
Complete Abstractions Everywhere

Francesco Ranzato

Dipartimento di Matematica, University of Padova, Italy

Abstract. While soundness captures an essential requirement of the intrinsic ap-
proximation of any static analysis, completeness encodes approximations that are
as precise as possible. Although a static analysis of some undecidable program
property cannot be complete relatively to its reference semantics, it may well
happen that it is complete relatively to an approximated and decidable reference
semantics. In this paper, we will argue on the ubiquity of completeness properties
in static analysis and we will discuss the beneficial role that completeness can
play as a tool for designing and fine-tuning static analyses by reasoning on the
completeness properties of their underlying abstract domains.

1 Introduction

Static analysis relies on sound (a.k.a. correct) and computable semantic approximations.
A system S (or some observable behavior of it) is modeled by some semantics SemJSK
and a static analysis of S is designed as an approximate semantics Sem]JSKwhich must
be sound w.r.t. SemJSK. This may be called global soundness of static analysis. A sys-
tem S is typically designed by some form of composition of a number of constituents
ci and this is reflected on its global semantics SemJSK which is commonly defined by
some combinations of the semantics SemJciK of its components. Thus, global soundness
of a static analysis of S is ordinarily derived from local soundness of static analyses for
its components ci. This global vs. local picture of the soundness of static analysis is
very common, independently of the kind of systems (e.g., programs, reactive systems,
hardware systems), of static analysis techniques (dataflow analysis, model checking,
abstract interpretation, logical deductive systems, type systems, etc.), of system proper-
ties under analysis (safety, liveness, numerical properties, pointer aliasing, type safety,
etc.). We might single out a basic and rough proof principle in static analysis: global
soundness is derived from local soundness. In particular this applies to static analyses
that are designed using some form of abstract interpretation. Let us consider a simpli-
fied and recurrent scenario. A constituent of the global semantics is defined as least (or
greatest) fixpoint (denoted by lfp) of a monotone function f on some domain of prop-
erties D which is endowed with a partial order that encodes relative precision of prop-
erties. Here, lfp(f) play the role of global semantics which is therefore defined through
a component f : D→ D that plays the role of local semantics (e.g., f is a transfer func-
tion in program analysis). In abstract interpretation, a static analysis is then specified
as an abstract fixpoint computation which must be sound for lfp(f). This is routinely
defined through an ordered abstract domain A of properties and an abstract semantic
function f] : A → A that give rise to a fixpoint-based static analysis lfp(f]) (whose
decidability and/or practical scalability is usually ensured by chain conditions on A,

widenings/narrowings, interpolations, etc.). Soundness relies on encoding approxima-
tion through a concretization map γ : A→ D and/or an abstraction map α : D→ A: the
approximation of some value d through an abstract property a is encoded as α(d) ≤A a
or — equivalently when α/γ form a Galois connection — d ≤D γ(a). Hence, global
soundness translates to α(lfp(f)) ≤ lfp(f]), local soundness means α ◦ f ≤ f] ◦ α,
and the well-known “fixpoint approximation lemma” tells us that local implies global
soundness. This fixpoint approximation lemma has been first used in the early abstract
interpretation papers [8, Section 9], [6, Chapter 5], [9, Theorem 7.1.0.4], and has been
later rediscovered a number of times (e.g., [1, Section 3]).

While (both global and local) soundness captures a basic requirement of any reason-
able semantic approximation, completeness encodes approximations that are as precise
as possible. Once an abstract domain of properties A has been chosen, A yields a strict
upper bound to the precision of static analyses that approximate SemJSK over A: this
means that α(SemJSK) represents the best approximation that one can achieve over A.
We refer to as completeness when α(SemJSK) = Sem]JSK happens. In fixpoint-based
semantics, an abstract interpretation is globally complete when α(lfp(f)) = lfp(f]). Lo-
cally for f , completeness means that α◦f = f]◦α, meaning that in each local step, f] be-
haves in the best possible way as allowed by A. The approximation lemma for soundness
becomes the “transfer lemma” for completeness stating the proof principle that local
completeness implies global completeness. To the best of our knowledge, this transfer
lemma first appears in the early abstract interpretation paper [9, Theorems 7.1.0.4], and
has been later re-stated and re-proved multiple times, e.g., [3, Fact 2.3], [4, Lemma 4.3],
[1, Section 3] (where it is called µ-fusion rule).

Of course, completeness cannot happen when D is able to represent undecidable
properties of S and the static analysis Sem]JSK is computable. Completeness may in-
stead occur and is actually quite common in comparative semantic modeling, i.e., in
studying semantic models at different levels of abstraction. For instance, Cousot [7]
defines a comprehensive abstract interpretation-based hierarchy of the most common
program semantics and highlights where completeness holds. It is important to remark
that although a static analysis cannot be complete relatively to its reference semantics,
it may well happen that it is complete relatively to an approximated and decidable ref-
erence semantics, e.g., as a notable case, a different and more precise static analysis.
In this paper, we will argue the important role that completeness can play as a tool for
designing and fine-tuning static analyses by reasoning on the completeness properties
of their underlying abstract domains. We will provide a number of examples ranging
from static analysis to model checking where the view of an abstract domain A under a
“completeness light” allows us to understand the deep reason of why and how A actually
works.

2 Complete and Exact Abstractions

As mentioned above, static program analysis will be here formalized in a simplified
abstract interpretation scenario.

Program semantics. We consider simple while programs with integer variables in
Var, integer arithmetic expressions in Aexp and boolean expressions in Bexp. Hence,

2

Store , Var → ℘(Z) denotes the set of stores, JeK : Store → Z the semantics of an
arithmetic expression e and JbK : Store→ {f, t} the semantics of a boolean expression
b. Transfer functions (| · |) : ℘(Store) → ℘(Store) model how assignments x := e
and boolean tests b affect the store: (|x := e |)S , {ρ[x 7→ JeKρ] ∈ Store | ρ ∈ S}
and (|b |)S , {ρ ∈ S | JbKρ = t}. The program semantics is usually defined as least
fixpoint of a system of recursive equations indexed on program points. We consider here
a denotational-style program semantics JPK : ℘(Store) → ℘(Store) whose definition
is standard:

Jstm1; stm2KS , Jstm2K(Jstm1KS), Jif b then stmKS , JstmK(|b |)S ∪ (|¬b |)S,
Jwhile b do stmKS , (|¬b |)

(
lfp(λT.S ∪ JstmK(|b |)T)

)
.

Soundness, Completeness and Exactness. A static program analysis is defined by
an abstract semantics of while programs that relies on some store abstraction. Given a
generic domain of properties D, we denote by Abs(D) the class of all possible abstrac-
tions of D. Thus, given an abstraction A ∈ Abs(℘(Store)) of store properties, a static
analysis needs to define locally sound abstract transfer functions on A and an abstract
program semantics on A which relies on these abstract transfer functions and is required
to be globally sound. Let us briefly recall how abstractions and local/global soundness
are formalized in abstract interpretation.

Abstractions are formalized as domains in abstract interpretation. If A ∈ Abs(D)
then both D and A are partially ordered by an approximation ordering where x ≤ y
means that y approximates x (or x is more precise than y). D and A are required to be
complete lattices in order to have arbitrary lub’s that model concrete and abstract dis-
junctions. Finally, the abstraction A is related to D at least by a monotone concretization
function γ : A → D which provides the concrete meaning of abstract values, so that:
(1) d ≤D γ(a) means that a is an abstract approximation of d and (2) f ◦ γ ≤D γ ◦ f]

means that the abstract function f] : A → A is a correct (or sound) approximation of
the concrete function f : D → D. A concretization function does not ensure the ex-
istence of best abstractions in A for concrete properties, i.e., it is not guaranteed that
∧A{a ∈ A | d ≤D γ(a)} is an abstract approximation of d. Consequently, a con-
cretization function does not guarantee the existence of best correct approximations
of concrete functions. Actually, most abstract domains A are related to D also by an
abstraction function α : D → A which provides the best approximation in A of any
concrete property. Accordingly, f] is a correct approximation of f when α ◦ f ≤ f] ◦ α.
Clearly, γ and α must agree on the way they encode approximation: this translates to
α(d) ≤A a⇔ d ≤D γ(a) and amounts to require that 〈α, γ〉 forms a Galois connection.
When f and f] are monotonic, and therefore have least (and greatest) fixpoints, local
soundness for f] implies global fixpoint soundness α(lfp(f)) ≤A lfp(f]).

If f ◦ γ = γ ◦ f] then f] is called an exact approximation of f , while f] is called
a complete approximation of f when α ◦ f = f] ◦ α holds. Here, we have that lo-
cal exactness/completeness implies global exactness/completeness: If f] is exact then
gfp(f) = γ(gfp(f])) and if f] is complete then α(lfp(f)) = lfp(f]). These can be
viewed as two facets of the principle “local implies global completeness” translated in
abstract interpretation terms. Exactness and completeness are orthogonal notions. Let
us point out that global exactness means that the abstract fixpoint computation gfp(f])

3

yields an exact representation in A of gfp(f) while global completeness guarantees that
the abstract fixpoint computation lfp(f]) provides the best representation in A of lfp(f).

When a Galois connection is assumed, we have that f] is sound iff α ◦ f ◦ γ ≤ f].
Thus, any function f has a best correct approximation in A which is, at least theoreti-
cally, defined as f bestA , α ◦ f ◦ γ. Moreover, it turns out that the possibility of defining
an exact or complete abstract function f] on some abstraction A actually depends only
on A itself. In fact, we have that f] is complete iff f] = f bestA and α ◦ f = α ◦ f ◦ γ ◦ α,
while f] is exact iff f] = f bestA and f ◦γ = γ ◦α ◦ f ◦γ. In the following, we thus make
reference to a complete and exact abstraction A to mean completeness and exactness of
f bestA .

Abstract program semantics. Given a store abstraction A ∈ Abs(Store), abstract
transfer functions (|x := e |)A : A → A and (|b |)A : A → A must be locally sound, i.e.
correct: for any set S of stores, α((|x := e |)S) ≤A (|x := e |)A

α(S) and α((|b |)S) ≤A

(|b |)A
α(S). Also observe that the best abstract transfer functions on A are as follows:

(|x := e |)bestA a = α({ρ[x 7→ JeKρ] ∈ Store | ρ ∈ γ(a)})

(|b |)bestA a = α({ρ ∈ γ(a) | JbKρ = t})

The abstract denotational semantics JPKA : A → A is derived simply by composing
abstract transfer functions and by approximating concrete disjunctions of stores through
abstract lub’s in A:

Jstm1; stm2K
Aa , Jstm2K

A(Jstm1K
Aa)

Jif b then stmKAa , JstmKA((|b |)Aa) tA (|¬b |)Aa

Jwhile b do stmKAa , (|¬b |)A(
lfp(λ x.a tA JstmKA(|b |)Ax)

)
Of course, in the abstract fixpoint computation for a while-loop, a widening operator∇A

may be used in place of the lub tA for abstractions A that do not satisfy the ascending
chain condition or to accelerate convergence in A.

Soundness of the abstract semantics, that is α(JPK) ≤A JPKA, is a consequence of
three main points:

(1) Local soundness of abstract functions is preserved by their composition;
(2) The abstract lub tA is a sound approximation of the union ∪;
(3) Local soundness implies global fixpoint soundness.

3 Completeness in Program Analysis

Given a program P with n integer variables, in order to simplify the notation, we view
a n-tuple of integer values as a store for P so that 〈℘(Zn),⊆〉 plays the role of concrete
domain and store (either relational or non-relational) abstractions range in Abs(℘(Zn)).
Let us consider the simplest case of one single integer variable. Observe that the triv-
ial abstraction A> = {Z}, which abstracts each set of integers to the top value Z, is

4

always obviously complete, meaning that the mapping {Z 7→ Z} is both a complete
abstract transfer function and a complete abstract program semantics. Let us there-
fore consider the simplest abstraction which is different from the trivial abstraction
A> : this is a two-point abstraction {Z,K} for some set of integers K ∈ ℘(Z). To be
concrete and simple, let K = {0}, so that we consider the corresponding abstraction
A0 , {Z, {0}} ∈ Abs(℘(Z)). Note that A0 is only able to represent precisely the fact
that an integer variable has a value equals to 0 and that A0(∅) = {0}. Let us observe
that A0 is not complete for the transfer function (|x > 0 |): for example, we have that
A0

(
(|x > 0 |){−1}

)
= A0(∅) = {0} (Z = (|x > 0 |)A0

A0({−1}). Why A0 is not
complete for the test x > 0? As the example highlights, the problem lies in the fact that
if S is a set of integers that do not satisfy the test x > 0 then the abstraction of (|x > 0 |)S
boils down to the abstraction of the empty set ∅ which is {0}, whereas the only option
for A0 is to abstract one such set S to Z and this gives rise to incompleteness. Suitable
refinements of the abstraction A0 can avoid this incompleteness: one such refined ab-
straction should be complete for (|x > 0 |) while preserving the expressiveness of A0 .
For example, the Sign abstraction [8] depicted below on the left

Sign

0

Z≤0 Z≥0

Z A′

0

Z≤0

Z A′′

0

Z≥0

Z

turns out to be complete for (|x > 0 |) and, clearly, is more precise than A0 . Yet, for the
specific goal of being complete for (|x > 0 |), Sign is too refined, i.e. precise. In fact, the
abstraction A′ depicted above in the middle is still complete for (|x > 0 |), while being
simpler than Sign and more precise than A0 . What we really need here is a minimal
refinement of A0 which is complete for (|x > 0 |). This type of abstraction refinements
have been called complete shell refinements [13].

3.1 Shells

Recall that abstractions of a common concrete domain D are preordered w.r.t. their
relative precision: If A1,A2 ∈ Abs(D), where 〈αi, γi〉 are the corresponding Galois
connections, then A1 E A2, i.e. A1 is a refinement of A2 and A2 is a simplification of
A1, when for all d ∈ D, γ1(α1(d)) ≤D γ2(α2(d)). Moreover, A1 and A2 are equivalent
when A1 E A2 and A2 E A1. By a slight abuse of notation, Abs(D) denotes the family
of abstractions of D up to the above equivalence. It is well known [9] that 〈Abs(D),E〉
is a complete lattice. Given a family of abstract domains X ⊆ Abs(D), their lub tX is
therefore the most precise domain in Abs(D) which is a simplification of any domain
in X .

In a general abstract interpretation framework, Giacobazzi et al. [13] have shown
that an abstraction A can be made complete for a family of continuous concrete func-
tions through a minimal refinement of A. Consider a continuous concrete function
f : D → D and an abstraction A ∈ Abs(D). Then, A is refined to the complete
shell CShellf (A) which can be obtained as follows (we use a simplified characteri-
zation proved in [2, Theorem 4.1]). We first define a transform Rf : ℘(D) → ℘(D)

5

as Rf (X) , ∪a∈X max{d ∈ D | f (d) ≤ a}, namely Rf (X) collects, for any value
a ∈ X, the maximal concrete values d whose f -image is approximated by a. Then, we
define CShellf (A) , Cl∧(Rω

f (γ(A))), where Cl∧ denotes the closure under glb’s ∧ of
subsets of D and Rω

f denotes the ω-closure of Rf , i.e., Rω
f (X) , ∪i∈NRi

f (X) (note that
R0

f (X) = X). The main result in [13] shows that

CShellf (A) = t{A′ ∈ Abs(D) | A′ E A, A′ is complete for f}

namely, CShellf (A) is the least f -complete refinement of A.
Similarly, an abstraction can be also minimally refined in order to be exact for any

given set of functions [12]. Given a concrete function f : D → D, any abstraction
A ∈ Abs(D) can be refined to the exact shell EShellf (A) for f as follows: we define
Sf : ℘(D)→ ℘(D) as Sf (X) , {f (x) ∈ D | x ∈ X} and EShellf (A) , Cl∧(Sω

f (γ(A))).
Thus, Sω

f (γ(A)) is the closure of the abstraction A (more precisely, of its concrete image
γ(A)) under applications of the concrete function f while the exact shell EShellf (A) is
the closure of Sω

f (γ(A)) under glb’s in D. Here, we have that

EShellf (A) = t{A′ ∈ Abs(D) | A′ E A, A′ is exact for f}.

3.2 Signs

The above general solution [13] tells us that in order to make A complete we need to
iteratively add to A the maximal concrete values d such that f (d) ≤ a for some abstract
value a ∈ A until this process of adding new values to A converges, and at the end this
set of concrete values must be closed under glb’s. Thus, for the abstract value {0} ∈ A0 ,
we need to consider max{S ∈ ℘(Z) | (|x > 0 |)S ⊆ {0}} and this provides the concrete
value Z≤0 to join to A0 . In turn, max{S ∈ ℘(Z) | (|x > 0 |)S ⊆ Z≤0} = Z≤0, so that
we do not need to further refine A0 . Hence, Shell(|x>0|)(A) = A′. Likewise, we have
that A′′ = {Z,Z≥0, 0} (which is depicted above) is the complete shell refinement of A
for the transfer function (|x < 0 |). Furthermore, Sign can be obtained as complete shell
refinement of A for both transfer functions (|x > 0 |) and (|x < 0 |).

We have therefore analyzed the genesis of a toy abstract domain like Sign from
the viewpoint of completeness: Sign is characterized as the minimal refinement of a
basic domain {Z, 0} whose abstract transfer functions for the boolean tests x > 0?
and x < 0? are complete. In the following, we will show that this completeness-based
view on abstraction design can be very useful to understand the genesis of a range of
numerical abstractions.

3.3 Constant propagation

Let us consider the standard abstraction CP used in constant propagation analysis [16]:

∅

0−1−2· · · 1 2 · · ·

Z

6

CP is more precise than the basic abstraction A0 , hence it makes sense to ask whether
CP can be viewed as a complete shell refinement of A0 for some transfer functions.
From the viewpoint of its completeness properties, one may observe that CP is clearly
complete for the transfer functions (|x := x + k |), for any k ∈ Z. Moreover, we also no-
tice that if an abstraction A is complete for (|x := x + 1 |) and (|x := x− 1 |) then, since
completeness is preserved by composing functions, A is also complete for all the trans-
fer functions (|x := x + k |), for all k ∈ Z, and this allows us to focus on (|x := x± 1 |)
only. Actually, it turns out that completeness for (|x := x± 1 |) completely character-
izes constant propagation CP, in the sense that the complete shell of A0 for both
(|x := x + 1 |) and (|x := x− 1 |) is precisely CP. To this aim, it is enough to note that

max{S ∈ ℘(Z) | (|x := x− 1 |)S ⊆ {0}} = {1}
max{S ∈ ℘(Z) | (|x := x− 1 |)S ⊆ {1}} = {2} · · ·
max{S ∈ ℘(Z) | (|x := x + 1 |)S ⊆ {0}} = {−1}
max{S ∈ ℘(Z) | (|x := x + 1 |)S ⊆ {−1}} = {−2} · · ·

and that at the end the closure under intersection adds the empty set ∅.

3.4 Intervals
Sign is not complete for the transfer function (|x := x + 1 |). In fact, notice that

Sign((|x := x + 1 |){−1}) = Sign({0}) = {0}

(|x := x + 1 |)Sign Sign({−1}) = (|x := x + 1 |)Sign(Z≤0) = Z

The well-known domain Int of integer intervals [8] is instead clearly complete for
(|x := x + 1 |) and (|x := x− 1 |). As shown in [13], the complete shell of Sign for
(|x := x + 1 |) and (|x := x− 1 |) turns out to be Int. In fact, we have that:

max{S ∈ ℘(Z) | (|x := x± 1 |)S ⊆ Z≤0} = Z≤∓1

max{S ∈ ℘(Z) | (|x := x± 1 |)S ⊆ Z≤−1} = Z≤∓2 · · ·
max{S ∈ ℘(Z) | (|x := x± 1 |)S ⊆ Z≥0} = Z≥∓1

max{S ∈ ℘(Z) | (|x := x± 1 |)S ⊆ Z≥1} = Z≥∓2 · · ·
and clearly the family of sets Z≤k and Z≥k, where k ranges in Z, generate by intersection
all the integer intervals in Int.

It is worth noting that, in general, completeness is not preserved under abstraction
refinements. In fact, while Sign is complete for (|x > 0 |), its complete shell Int for
(|x := x± 1 |) loses this completeness: for example, we have that Int((|x > 0 |){0, 2}) =
[2, 2] while (|x > 0 |)Int Int({0, 2}) = [1,+∞) u [0, 2] = [1, 2]. It is simple to observe
that if we try to compensate this lack by the complete shell of Int for (|x > k |), for all
k ∈ Z, we end up with the whole concrete domain ℘(Z): this depends on the fact that

max{S ∈ ℘(Z) | (|x > k |)S ⊆ Z≥k+2} = Z6=k+1

and then by closing under intersections the family of sets {Z6=k}k∈Z we get ℘(Z). If
instead we consider the complete shell of Int for the specific transfer function (|x > 0 |)
then Int would be refined to Int 6=1 , Int∪{I r {1} | I ∈ Int}, namely Int 6=1 is able
to represent precisely integer intervals with an inner hole {1}.

7

3.5 Octagons

Let us consider the program P ≡ x := 0; y := 4; while x 6= 0 do {x– –; y++}. Ac-
cording to Miné [17], this is one paradigmatic program showing the need for relational
abstract domains. In fact, we have that the interval abstraction Int is not complete for
P. Here, Store = ℘(Z2) so that:

Int(JPK〈x/{4}, y/{0}〉) = 〈x/[0, 0], y/[4, 4]〉

JPKInt Int(〈x/{4}, y/{0}〉) = 〈x/[0, 0], y/[0,+∞)〉

Of course, the problem of Int with P is that Int is not able to represent precisely the
invariant property x + y = 4 of the while-loop. Miné [17] then proposes to refine
intervals to the so-called octagon abstraction Oct ∈ Abs(℘(Store)), which is able to
express precisely sets of integers like {〈x, y〉 ∈ Z2 | x± y = k}, where k ∈ Z. Observe
that a set like S = {〈x/0, y/4〉, 〈x/2, y/2〉, 〈x/4, y/0〉} cannot be represented precisely
in Oct, since Oct must add 〈x/1, y/3〉 and 〈x/3, y/1〉 in the approximation of S. Thus,
the observation here is that Oct is exact for the function λ S.S ∪ (|x– –; y++ |)S which
is iterated in the fixpoint computation of the while-loop of P. It is worth remarking
that Oct is also complete for λ S.S ∪ (|x– –; y++ |)S, but this is not the distinguishing
feature of Oct compared to Int because Int is already complete for this function, as the
following picture suggests:

Int

(
•
A

•A′
•B
•B
′)

=

•
A

•A′
•B
•B
′

= Int

(
•
A

•A′
•B
•B
′)

What we really need is an abstract domain which is able to express precisely the invari-
ant x + y = 4 in each iteration step in the fixed point computation of the while-loop of
P. We thus refine Int to its exact shell for the function F , λ S.S ∪ (|x– –; y++ |)S and,
dually, for G , λ S.S ∪ (|x++; y– – |)S. This exact shell can be simply characterized as
follows: for a generic point 〈a, b〉 ∈ ℘(Z2), we have that

F0({〈a, b〉}) = {〈a, b〉}
F1({〈a, b〉}) = {〈a, b〉, 〈a− 1, b + 1〉}
F2({〈a, b〉}) = {〈a, b〉, 〈a− 1, b + 1〉, 〈a− 2, b + 2〉}
· · ·

so that Fω({〈a, b〉}) = {〈x, y〉 ∈ Z2 | x + y = a + b, x ≤ a, y ≥ b}. Likewise, we
have that Gω({〈a, b〉}) = {〈x, y〉 ∈ Z2 | x − y = a + b, x ≥ a, y ≤ b}. Then, by
closing under intersections Int, {Fω({〈a, b〉})}〈a,b〉∈Z2 and {Gω({〈a, b〉})}〈a,b〉∈Z2 we
precisely get all the octagons in Oct.

3.6 Polyhedra

The well-known polyhedra abstraction [10] can be characterized as a simple further
step of exact refinement of octagons. It is enough to consider a generic program scheme

8

like
Q ≡ x := x0; y := y0; while (∗) do {x := x + kx; y := y + ky}

Of course, in this case Oct fails to represent precisely the invariant kxy− kyx = kxy0 −
kyx0 of the while-loop of Q.

It is therefore clear that the exact shell refinement of Oct (or Int) for the family of
functions F = {λ S.S∪(|x := x + kx; y := y + ky |)S}〈kx,ky〉∈Z2 adds to Oct all the linear
sets {〈x, y〉 ∈ Z2 | ax + by = c}, where a, b, c range in Z, so that the closure under
intersections (i.e., logical conjunction) precisely provides the polyhedra abstraction.

4 Completeness in Model Checking

Consider a system model specified as a Kripke structure K = (State,�). Standard
abstract model checking [5] consists in approximatingK by an abstract Kripke structure
A = (State],�]), where the set State] of abstract states is defined by a surjective map
h : State → State] that joins together indistinguishable concrete states. Thus, State]

determines a partition of State and vice versa any partition of State can be viewed as
a set of abstract states. It is simple to view state partitions as abstractions [19]. Any
state partition P ∈ Part(State) can be viewed as an abstraction Pa ∈ Abs(℘(State)⊆)
that approximates any set S of states by the minimal cover of S in the partition P, i.e.,
∪{B ∈ P | B ∩ S 6= ∅}. Hence, Pa , {S ⊆ State | ∃{Bi}i∈I ⊆ P. S = ∪i∈IBi},
ordered by subset inclusion, is viewed as an abstraction in Abs(℘(State)) that encodes
the state partition P. Furthermore, if A ∈ Abs(℘(State)) is any abstraction then A is the
encoding of some state partition P, i.e. A = Pa, iff A is exact for the negation function
¬ : ℘(State) → ℘(State) such that ¬S = State rS. This embedding of the lattice
of partitions Part(State) into the lattice of abstractions Abs(℘(State)) allows us to
reason on the completeness and exactness properties of partitions, and hence of abstract
Kripke structures.

4.1 Strong Preservation

Given some temporal specification language L — like CTL, ACTL, µ-calculus, etc. —
and a corresponding interpretation of its formulae on the states of a Kripke structure
K, an abstract Kripke structure A preserves L when for any ϕ ∈ L and s ∈ State,
h(s) |=A ϕ ⇒ s |=K ϕ, while A strongly preserves L when h(s) |=A ϕ ⇔ s |=K ϕ
holds.

Given a language L and a Kripke structure K, a well-known key problem is to com-
pute the smallest abstract state space State]

L, when this exists, such that one can define
an abstract Kripke structure AL = (State]

L,�
]) that strongly preserves L. This prob-

lem admits solution for a number of well-known temporal languages like Hennessy-
Milner logic HML, CTL, ACTL and CTL-X (i.e. CTL without the next-time operator
X). A number of algorithms for solving this problem exist, like those by Paige and Tar-
jan [18] for HML and CTL, by Henzinger et al. [15] and Ranzato and Tapparo [21]
for ACTL, and Groote and Vaandrager [14] for CTL-X. These are coarsest partition
refinement algorithms: given a language L and an initial state partition P, which is de-
termined by a state labeling in K, these algorithms can be viewed as computing the

9

coarsest partition PL that refines P and induce an abstract Kripke structure that strongly
preserves L. It is worth remarking that these algorithms have been designed for com-
puting some well-known behavioural equivalences used in process algebra like bisim-
ulation (for CTL), simulation (for ACTL) and stuttering bisimulation (for CTL-X).
Our abstract interpretation approach allows us to provide a generalized view of these
partition refinement algorithms based on exactness properties.

4.2 Bisimulation

Given a partition P ∈ Part(State) and a state s, P(s) denotes the block of P that
contains s. Then, P is a bisimulation on a Kripke structure K when P(s) = P(t) and
s � s′ imply that there exists some state t′ such that t � t′ and P(s′) = P(t′). It is
well known [5] that P is a bisimulation iff the abstract Kripke structure AP = 〈P,�∃
〉 strongly preserves HML (or, equivalently, CTL), where B1 �∃ B2 iff there exist
si ∈ Bi such that s1 � s2. Moreover, the coarsest partition in Part(State) which is a
bisimulation on K exists and is called bisimulation equivalence.

Bisimulation for P can be expressed as an exacteness property of the abstraction
Pa [19]. The standard predecessor operator pre : ℘(State)→ ℘(State) onK is defined
as pre(T) , {s ∈ State | s � t, t ∈ T} and is here considered as a concrete function.
Hence, it turns out that P is a bisimulation iff Pa is exact for pre. As a consequence,
any partition refinement algorithm for computing bisimulation can be characterized as
an exact shell abstraction refinement for: (1) the negation operator ¬, in order to en-
sure that the abstraction is indeed a partition and (2) the predecessor operator pre, in
order to ensure that the partition is a bisimulation. In particular, the Paige-Tarjan bisim-
ulation algorithm [18] can be viewed as an efficient implementation of this exact shell
computation.

4.3 Simulation

Given a preorder relation R ∈ PreOrd(State) on states, R(s) denotes {t ∈ State |
(s, t) ∈ R} while PR , R ∩ R−1 ∈ Part(State) denotes the symmetric reduction of R,
which being an equivalence relation can be viewed as a state partition.

A preorder R is a simulation on a Kripke structure K if t ∈ R(s) and s � s′ imply
that there exists some state t′ such that t � t′ and t′ ∈ R(s′). It is well known [5] that
a preorder R is a simulation iff the abstract Kripke structure AR = 〈PR,�∃〉 strongly
preserves ACTL and that the largest preorder in PreOrd(State) which is a simulation
on K exists and is called simulation preorder.

The characterization of simulation as an exactness property follows the lines of
bisimulation [19]. Similarly to partitions, a preorder relation R can be viewed as an ab-
straction Ra ∈ Abs(℘(State)) that approximates any set S ⊆ State with the image of S
through R, i.e. ∪s∈SR(s). Thus, Ra , {S ⊆ State | ∃ S ⊆ State . S = ∪s∈SR(s)},
ordered by subset inclusion, is viewed as an abstraction in Abs(℘(State)) that en-
codes the preorder relation R. On the other hand, an abstraction A ∈ Abs(℘(State))
is the encoding of some state preorder R, i.e. A = Ra, iff A is exact for the union
∪ : ℘(State)2 → ℘(State). We notice that A is exact for the union iff A is a so-called
disjunctive abstraction, so that the lattice of preorder relations PreOrd(State) can be

10

embedded into Abs(℘(State)) as the sublattice of disjunctive abstractions. This allows
us to get the following characterization: a preorder R is a simulation iff Ra is exact for
pre. Here, we obtain that any algorithm for computing the simulation preorder can be
characterized as an exact shell abstraction refinement for: (1) the union ∪, in order to
ensure that the abstraction represents a preorder and (2) the predecessor operator pre, in
order to ensure that this preorder is a simulation. In particular, the simulation algorithm
with the best time complexity [21] has been designed as an efficient implementation of
this exact shell computation.

4.4 Stuttering Bisimulation and Simulation

Stuttering bisimulation and simulation relations characterize temporal logics which do
not feature the next-time connective X. Let us focus on stuttering simulation. A preorder
relation R ∈ PreOrd(Σ) is a stuttering simulation onK if t ∈ R(s) and s � s′ imply that
there exist states t0, ..., tk, with k ≥ 0, such that: (i) t0 = t, (ii) for all i ∈ [0, k[, ti � ti+1

and ti ∈ R(s), (iii) tk ∈ R(s). It turns out that stuttering simulation can be characterized
as an exactness property [19]. Following [14], consider the binary stuttering operator
pos : ℘(State)× ℘(State)→ ℘(State) which is defined as follows:

pos(S,T) ,

{s ∈ S | ∃ k ≥ 0.∃ s0, ..., sk. s0 = s & ∀ i ∈ [0, k). si ∈ S, si � si+1 & sk ∈ T}.

Hence, it turns out that a preorder R is a stuttering simulation iff Ra is exact for pos.
As shown in [20], this allows us to design an efficient algorithm for computing the
stuttering simulation preorder as an exact shell abstraction refinement for the union ∪
and the stuttering operator pos.

4.5 Probabilistic Bisimulation and Simulation

The main behavioral relations between concurrent systems, like simulation and bisim-
ulation, have been studied in probabilistic extensions of reactive systems like Markov
chains and probabilistic automata. As recently shown in [11], we mention that bisimu-
lation and simulation relations on probabilistic transition systems can still be character-
ized as exactness properties in abstract interpretation and as a byproduct this allows to
design efficient algorithms that compute these behavioral relations as exact shell refine-
ments.

5 Conclusion

We have shown how completeness and exactness properties of abstractions play an
ubiquitous role in static analysis by exhibiting an array of examples ranging from ab-
stract interpretation-based program analysis to abstract model checking. We are con-
vinced that it is often rewarding to look at scenarios based on some form of semantic
approximation under the light of completeness/exactness: this can be useful both to un-
derstand the deep logic of the approximation and to profit of the beneficial toolkit that
completeness brings, like complete and exact shell refinements.

11

Acknowledgements. I would like to thank Roberto Giacobazzi for his constant and
passionate brainstorming on completeness and exactness: Roberto and I are both per-
suaded that completeness can be spotted really everywhere.

References
1. C. Aarts, R. Backhouse, E. Boiten, H. Doornbos, N. van Gasteren, R. van Geldrop,

P. Hoogendijk, E. Voermans, J. van der Woude. Fixed-point calculus. Inform. Process.
Lett., 53(3): 131-136, 1995.

2. G. Amato and F. Scozzari. Observational completeness on abstract interpretation. Funda-
menta Informaticae, 47(12):1533-1560, 2011.

3. K.R. Apt and G.D. Plotkin. Countable nondeterminism and random assignment. J. ACM,
33(4):724-767, 1986.

4. J.W. de Bakker, J.-J.C. Meyer and J. Zucker. On infinite computations in denotational se-
mantics. Theoret. Comput. Sci., 26(1-2):53-82, 1983.

5. E.M. Clarke, O. Grumberg and D.A. Peled. Model checking. The MIT Press, 1999.
6. P. Cousot. Méthodes itératives de construction et d’approximation de points fixes

d’opérateurs monotones sur un treillis, analyse sémantique des programmes. Ph.D. dis-
sertation, Université Scientifique et Médicale de Grenoble, Grenoble, France, 1978.

7. P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract
interpretation. Theoretical Computer Science, 277(1-2):47-103, 2002.

8. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In Proc. 4th ACM POPL, pp. 238-
252, 1977.

9. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Proc. 6th
ACM POPL, pp. 269–282, 1979.

10. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a
program. In Proc. 5th ACM POPL, pp. 84-97, 1978.

11. S. Crafa and F. Ranzato Bisimulation and simulation algorithms on probabilistic transition
systems by abstract interpretation. Formal Methods in System Design, 40(3):356-376, 2012.

12. R. Giacobazzi and E. Quintarelli. Incompleteness, counterexamples and refinements in ab-
stract model checking. In Proc. 8th SAS, LNCS 2126, pp. 356-373, 2001.

13. R. Giacobazzi, F. Ranzato and F. Scozzari. Making abstract interpretations complete.
J. ACM, 47(2):361-416, 2000.

14. J.F. Groote and F. Vaandrager. An efficient algorithm for branching bisimulation and stutter-
ing equivalence. In Proc. ICALP’90, LNCS 443, pp. 626-638, Springer, 1990.

15. M.R. Henzinger, T.A. Henzinger and P.W. Kopke. Computing simulations on finite and
infinite graphs. In Proc. 36th FOCS, pp. 453–462, IEEE Press, 1995.

16. G. Kildall. A unified approach to global program optimization. In Proc. 1st ACM POPL,
pp. 194–206, 1973.

17. A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computation, 19(1):31-
100, 2006.

18. R. Paige and R.E. Tarjan. Three partition refinement algorithms. SIAM J. Comput.,
16(6):973–989, 1987

19. F. Ranzato and F. Tapparo. Generalized strong preservation by abstract interpretation. J.
Logic and Computation, 17(1):157-197, 2007.

20. F. Ranzato and F. Tapparo. Computing stuttering simulations. In Proc. 20th Int. Conf. on
Concurrency Theory (CONCUR’09), LNCS vol. 5710, pp. 542-556, Springer, 2009.

21. F. Ranzato and F. Tapparo. An efficient simulation algorithm based on abstract interpretation.
Information and Computation, 208(1):1-22, 2010.

12

	Complete Abstractions Everywhere
	Francesco Ranzato

