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This paper is centred around a nice conjecture, known to Wolfgang Rauten-
berg and myself since 19781: a modal algebra A is subdirectly irreducible if and
only if its dual frame A∗ is initial, or generated (see definitions in the text). I
here show that in full generality the conjecture is false, but that it becomes true
under some mild additional assumptions. Unfortunately, some counterexamples
seem to suggest that there is no room for just one general result containing all
cases in which the conjecture can be proved. Still, some of the theorems here
proved are general enough to include such interesting cases as the finite case,
the case of Kripke frames and the case of modal logic K4.

The literature on the subject consists, to my knowledge, exclusively of pages
154-156 of Rautenberg’s book [Rautenberg 1979]2. They contain what I call
Rautenberg’s criterion for a modal algebra to be subdirectly irreducible (see
1.11 below) and a reformulation of the conjecture in the special case of logics
K

m, which however seems to be false (see counterexample in Fig. 2 below).
Thus the results given here are all new. They can be seen as an application
of the ground work made in [Sambin-Vaccaro 1988]; in fact, topology seems to
be necessary to be able to express the additional conditions under which the
conjecture becomes true.

A version of the present paper was sent in 1985 as a letter to Johan van
Benthem answering to his curiosity about the conjecture, and circulated pri-
vately since then. Due to my change of interests, I lost trace of it. Destiny has
given me a second chance only eleven years later, by means of Marcus Kracht.
He came across a copy of my manuscript in Berlin, he realised that some of its
results covered a gap in his book [Kracht 1998] and thus got in contact with me;
in this way the paper was rescued. With remarkable patience, he also saved it
from a second oblivion: he convinced me to publish it and assisted me in many
ways to revise it (in particular, he rectified the statements of 2.1 and 3.8 and

1Sic; my private notes are unmistakably dated Oct. 4, 1978!
2One of the referees has drawn my attention to [Goldblatt 1989], where one direction of

our theorem 3.6 is proved.
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greatly simplified many counterexamples). I am very grateful to him.

1 Notation and preliminaries

We adopt the notation of [Sambin-Vaccaro 1988], henceforth TD, and certainly
follow its spirit. However, we telegraphically repeat here some of the definitions
while proving some general results3 which are needed here, but are not contained
in TD.

1.1 Frames

A frame is a triple F = (X, r, T ) where X is a set, r is a binary relation on
X and T is a boolean subalgebra of PX such that for every C ∈ T we have
r−1C ∈ T , where r−1C := {x ∈ X : x r y for some y ∈ C}. A subset of X is
called internal if it is in T . The set X is topologized by taking T as a base for
open subsets.

For every C ⊆ X , we put:

rC := {y ∈ X : x r y for some x ∈ C}

We write rx for r{x}; then rC = ∪{rx : x ∈ C}. We also put:

r∗C := {x ∈ X : rx ⊆ C}

Both operations, r and r∗, can be iterated, and we put:

r0C := C, r1C := rC, . . . , rn+1C := r(rnC)

r∗0C := C, r∗1C := r∗C, . . . , r∗n+1C := r∗(r∗nC)

We write rnx for rn{x}; note that rnx is the same as the image of x under the
relation rn. The operations r and r∗ are tied together as follows:

Lemma 1.1 For every C, D ⊆ X, rC ⊆ D iff C ⊆ r∗D.

Proof. Immediate, cf. TD.II.1.5.

Lemma 1.2 For every C ⊆ X and n, (rn)∗C = r∗nC.

Proof. A formal proof is by induction. Informally, it is immediate: x ∈ (rn)∗C
iff rnx ⊆ C iff rn−1x ⊆ r∗C iff ... iff x ∈ r∗nC.

For every C ⊆ X , we put:

r∞C :=
⋃

n∈N
rnC

3Such results are so natural that one would expect them to be known; in any case, a novelty
should be the fact that they are here proved using only minimal logic, namely intuitionistic
logic deprived of the rule for absurdity.
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r∞C :=
⋂

n∈N
r∗nC

We write r∞x for r∞{x}. Then r∞C =
⋃
{r∞x : x ∈ C} and r∞C = {x : r∞x ⊆ C}.

If C is clopen, we see that r∞C is open and r∞C is closed. r∞ and r∞ are
tied by the same relation as between r and r∗ (Lemma 1.1 above):

Lemma 1.3 For every C, D ⊆ X, r∞C ⊆ D iff C ⊆ r∞D.

Proof. For every C, D ⊆ X , r∞C ⊆ D iff
⋃

n∈N
rnC ⊆ D iff ∀n(rnC ⊆ D) iff

∀n(C ⊆ (rn)∗D) iff (by Lemma 1.2) ∀n(C ⊆ r∗nD) iff C ⊆ r∞D.

A subset C of X is called r-hereditary, or just hereditary, if for every x ∈ X ,
x ∈ C and x r y imply y ∈ C. That is, if every path beginning from C remains
inside C.

Lemma 1.4 For every C ⊆ X, the following are equivalent:

1. C is hereditary, i.e. ∀x(x ∈ C → rx ⊆ C)

2. rC ⊆ C

3. C ⊆ r∗C

4. r∞C = C

5. C = r∞C

6. ∀x(x ∈ C → r∞x ⊆ C)

Proof. (1) ⇒ (2). Clearly, rC =
⋃

x∈C
rx. Since rx ⊆ C for any x ∈ C,

rC ⊆ C follows.
(2) ⇔ (3) Is a particular case of Lemma 1.1.
(2) ⇒ (4). C ⊆ r∞C holds trivially by definition. By (2) we also have rC ⊆ C.
Then, by monotonicity of the operator r, rn+1C ⊆ rnC for all n. It follows that
rnC ⊆ C for all C, and so r∞C ⊆ C. This shows (4).
(4) ⇔ (5). By Lemma 1.3, r∞C ⊆ C iff C ⊆ r∞C, and the rest is trivial.
(5) ⇒ (6). If x ∈ C, then x ∈ r∞C, hence r∞x ⊆ C.
(6) ⇒ (1). If x ∈ C, then r∞x ⊆ C by (6), and hence a fortiori rx ⊆ C.

Lemma 1.5 For every x, y ∈ X,

r∞y ⊆ r∞x iff y ∈ r∞x iff ∃n(xrny).

Proof. Routine.

Lemma 1.6 For every C, r∞C is the greatest hereditary subset of C.

Proof. r∞C is hereditary: if x ∈ r∞C, then r∞x ⊆ C. So, if x r y then
r∞y ⊆ r∞x by Lemma 1.5, and hence r∞y ⊆ C, that is, y ∈ r∞C.

r∞C is the greatest hereditary subset: if D ⊆ C and D is hereditary, then
D = r∞D ⊆ C and hence D ⊆ r∞C by Lemma 1.3.
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Lemma 1.7 For every C, r∞C is the minimal hereditary subset containing C.

Proof. Very similar to that of Lemma 1.6.

Note that a corollary of Lemma 1.7 is: r∞x is the smallest hereditary subset
containing x.

1.2 Modal algebras

A modal algebra A is a pair (A, τ) where A is a boolean algebra and τ is a unary
operation s.t. τ1 = 1 and τ(a · b) = τa · τb. A filter F on A is said to be a
τ -filter if it is closed under τ , i.e. if a ∈ F implies τa ∈ F . The trivial τ -filter
is {1}.

For every n, the n-th iteration of τ is defined by τ 0a = a, τ1a = τa, . . .,
τn+1a = τ(τna). For every n, we put τna := a · τa · . . . · τna, which allows to
describe how τ -filters are generated.

Lemma 1.8 For any subset B ⊆ A,

{a ∈ A : for some b1, . . . , bk ∈ B and m1, . . . , mk ∈ N, a ≥ τm1
b1 · . . . · τmk

bk}

is the least τ -filter containing B, and is denoted by F [B].

Proof. Routine.

In particular, F [b] = {a ∈ A : a ≥ τmb for some m}.
An element c ∈ A is said to be essential if F [c] 6= A and F [c] is contained

in every τ -filter distinct from {1}. We put EA := {c ∈ A : c is essential }.
Of course, A may have no essential elements. Actually, EA is not empty iff A
is subdirectly irreducible. In fact, according to the the standard definition of
universal algebra [Grätzer 1968], a modal algebra A is subdirectly irreducible
(s.i. from now on) if it has a least non-trivial congruence. So by the correspon-
dence between τ -filters and congruences, see TD.II.5, A is s.i. iff it has a least
non-trivial τ -filter. Moreover, we have:

Lemma 1.9 EA ∪ {1} coincides with the least τ -filter. So EA is not empty iff
A has a least non-trivial τ -filter.

Proof. If EA is empty, the claim is trivial. If EA is not empty, every element
of EA generates the least τ -filter. Conversely, every element different from 1 in
the least τ -filter generates it, and hence is in EA.

We can characterise essential elements:

Lemma 1.10 For every A, c ∈ A is essential iff c 6= 1 and (∀b 6= 1)∃m(τmb ≤ c).

Proof. Assume c is essential. Then F [c] is the least non-trivial τ -filter. So for
every b 6= 1, F [c] ⊆ F [b] and hence c ∈ F [b], that is τmb ≤ c for some m.

Conversely, assume that the condition holds. Let F be any non-trivial τ -
filter. For every b ∈ F , either b = 1 and hence trivially b ∈ F [c], or b 6= 1 and
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hence τmb ≤ c for some m. Since F is a τ -filter, τmb ∈ F and hence c ∈ F . So
the inclusion F [c] ⊆ F holds, and F [c] = EA ∪ {1}, i.e. c is essential.

We have thus reached (see [Rautenberg 1979], page 155):

Theorem 1.11 (Rautenberg’s criterion) A is s.i. iff there exists c 6= 1 in A

s.t. (∀b 6= 1)∃m(τmb ≤ c)

1.3 Beginning duality

As in TD, ∗ is the functor towards algebras, and ∗ the functor towards frames.
If A = (A, τ) is a modal algebra, then A∗ := (U(A), τ∗, βA) where U(A) is the
set of ultrafilters on A, S τ∗ T iff ∀a(τa ∈ S → a ∈ T ) for any S, T ∈ U(A),
βa := {S ∈ U(A) : a ∈ S} and βA := {βa : a ∈ A}. And if F = (X, r, T ) is a
frame, then F∗ := (T , r∗).

In TD.II.5 there is an indirect proof of the following theorem, but here a
direct proof gives a better feeling:

Theorem 1.12 The lattice of τ -filters of A and the lattice of τ∗-hereditary
closed subsets of A∗ are anti-isomorphic.

Proof. From boolean duality, we know that the assignment

F 7→ CF := {S ∈ U(A) : F ⊆ S} =
⋂

{βa : a ∈ F}

gives an isomorphism between filters and closed subsets (help: it is better seen
if we think of the copy A∗

∗ of A; then a proof is almost immediate). So it is
enough to show that F is closed under τ iff CF is τ∗-hereditary. We have:

∀a(a ∈ F → τa ∈ F )
iff ∀a(CF ⊆ βa → CF ⊆ βτa) because a ∈ F iff CF ⊆ βa

iff ∀a(CF ⊆ βa → CF ⊆ τ∗
∗βa) because βτa = τ∗

∗βa

iff ∀a(CF ⊆ βa → τ∗CF ⊆ βa) because of Lemma 1.1 above
iff τ∗CF ⊆ CF because CF , and hence also τ∗CF , is closed
iff CF is τ∗-hereditary, by Lemma 1.4 above.

Applying Theorem 1.12 to the definition of s.i. algebras, we have:

Corollary 1.13 A is s.i. iff A∗ has a greatest non-trivial τ∗-hereditary closed
subset.

Up to here, though some results were new, with respect to our topic it has
been only warming up: now the point is to characterise those frames with a
greatest non-trivial τ∗-hereditary closed subset.
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2 The main arguments

The idea on which the connection between initial frames and s.i. modal algebras
is based can be reduced to a few lines.

For every frame F = (X, r, T ), we put IF := {x ∈ X : r∞x = X}. Every
point in IF is said to be initial, and F itself is said to be initial, or generated if
IF 6= ∅. We will often deal with X − IF , and we thus give it a name, putting
HF := X − IF . Keeping in mind Corollary 1.13, we see that the following
observation connects initial frames with s.i. algebras:

Lemma 2.1 For every frame F , HF is hereditary. Moreover, if X has a great-
est non-trivial hereditary subset C then HF = C; otherwise HF = X. So F is
initial iff F admits a greatest non-trivial hereditary subset.

Proof. The last part follows from the first two.
HF is hereditary: assume that x ∈ HF . Then r∞x 6= X . So for every

y ∈ r∞x, we also have r∞y 6= X (because r∞y ⊆ r∞x) and hence y ∈ HF .
That is, r∞x ⊆ HF .

HF is the greatest hereditary subset: if D 6= X and D is hereditary, then
x ∈ D implies r∞x ⊆ D, that is r∞x 6= X and x ∈ HF .

Unfortunately, we can not apply 1.13 to HF , since HF is not necessarily
closed (see the counterexample in Fig. 2 below).

Lemma 2.2 For every frame F and every subset C, if HF ⊆ C and C 6= X,
then HF = r∞C.

Proof. If HF ⊆ C 6= X , then r∞C ⊆ HF because r∞C is hereditary and non
trivial, and hence HF is the greatest such set. But also HF ⊆ r∞C, because
HF ⊆ C implies r∞HF ⊆ r∞C and HF = r∞HF .

Lemma 2.3 For every F , either HF is a dense subset of X or HF is closed.

Proof. If HF is not dense, there is a clopen subset C with HF ⊆ C 6= X . But
then HF = r∞C by Lemma 2.2, and r∞C is closed.

All this is enough to show that, in one direction, the situation is clear and
not unsatisfying; as usual, a subset is said to be of measure zero if it does not
contain a nonempty open subset:

Theorem 2.4 For every algebra A, if IA∗
is not of measure zero, then A is s.i.

Proof. If IA∗
is not of measure zero, then HA∗

is not dense, and hence is closed
by Lemma 2.3. So HA∗

is the greatest non trivial closed hereditary subset, and
A is s.i. by Corollary 1.13.

Example 2.5 Showing that in general

A∗ initial 6⇒ A s.i.
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Figure 1: The frame Ω
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Figure 2: The frame Ω∗
∗
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We find a descriptive initial frame F with F∗ not s.i.; the point is that HF

will not be closed. Let Ω = (N, >, T ) be the frame consisting of the set N of
natural numbers, the accessibility relation >, and the internal sets being the
finite and cofinite subsets of N. The corresponding Kripke frame is shown in
Fig. 1. (We employ the following convention. • represents an irreflexive point,
◦ a reflexive point. Usually, all other relations are indicated by arrows, except
in transitive frames, where we show only the immediate successor relation.) It
is easily checked that the bidual of Ω has one more point, consisting of the
ultrafilter of cofinite sets. Let us denote this point by ω. Furthermore, ω sees
all other points. Hence Ω∗

∗ = (N ∪ {ω}, >,U), where U consists of the finite
sets not containing ω, and their complements. The corresponding Kripke frame
is shown in Fig. 2. Now, put A := Ω∗. A∗ is clearly initial, and IA∗

= {ω}.
However, A is not s.i. (note that Theorem 2.4 does not apply, since IA∗

= {ω}
and {ω} is closed but not open, hence HA∗

is not closed). In fact, take the set
Fk := {a : a ⊇ [k)} of subsets a of N containing all numbers ≥ k. This is a
r∗-filter in A. Moreover,

⋂
k
Fk = {N}. This shows that A has no non-trivial

smallest r∗-filter, and so A is not s.i.
Incidentally, Ω∗

∗ is nothing but the universal frame on zero generators for
GL, that is the dual of the free Magari algebra on the empty set (GL is the modal
logic of provability, see [Boolos 1993] or [Smoryński 1985], Magari algebras were
introduced in [Magari 1975], and called diagonalizable algebras there).

In the other direction, the situation is much more complex, and it seems
that there is no room for just one general result. What I can prove, is based on
the following observation:

Lemma 2.6 Let F be a frame s.t. r∞x is closed for every x ∈ X. Then

C is essential in F∗ ⇒ HF ⊆ C.
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Figure 3: The frame Z
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Proof. Assume C is essential, and let x ∈ HF . Then r∞x 6= X and since r∞x

is closed, there is a clopen D 6= X with r∞x ⊆ D. From r∞x ⊆ D we have
x ∈ r∞D, but since C is essential, r∞D ⊆ C and hence x ∈ C.

Lemma 2.7 For every algebra A, if A is s.i. and τ∗
∞S is closed for every

S ∈ U(A), then A∗ is initial, with IA∗
not of measure zero.

Proof. If A is s.i., there exists c ∈ A with c essential. Then βc is essential in
A∗

∗, and hence Lemma 2.6 applies to yield HA∗
⊆ βc, that is IA∗

⊆ βνc (where
νc is the complement of c), and βνc 6= ∅ since c 6= 1.

Certainly the condition “r∞x is closed” is elegant in theory, but difficult
to verify in practice. Still, it includes some useful particular cases (see below).
Moreover, I don’t know whether it is really unavoidable. However, some kind
of condition is necessary, as the following example shows.

Example 2.8 Showing that in general

A s.i. 6⇒ A∗ initial

We find an example of a descriptive frame F which is not initial, but F∗

is s.i. Namely, let Z := (Z, r, T ), where Z is the set of integers, and x r y iff
x = y ± 1, and let T be the set of finite and cofinite subsets of Z. This is a
frame. A := Z∗ is the desired algebra. We can deduce already that A is s.i.,
because the only proper r∗-filter is that of cofinite subsets. In fact, assume a
r∗-filter contains any subset C which is different from Z and let z′ 6∈ C; then
for any z ∈ Z, z 6∈ r∗kC, where k := |z− z′|, so that (by closure under supersets
and intersection) all cofinite subsets are also contained. A∗ is the bidual of Z ,
Z∗

∗. This frame has one more point than Z, based on the ultrafilter of cofinite
subsets of Z. We denote this point by ω. Put x s y iff x, y ∈ Z and x r y or
x = y = ω and let U be the set of finite subsets of Z∪{ω} not containing ω and
their complements. Then Z∗

∗ = (Z ∪ {ω}, s,U). Z∗
∗ is not initial.

3 Adding some hypotheses

In at least two particular cases we can put Theorem 2.4 and Lemma 2.7 together:

Theorem 3.1 For every finite algebra A, A is s.i. iff A∗ is initial.
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Figure 4: The frame Z∗
∗
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Proof. The assumptions of Theorems 2.4 and Lemma 2.7 are trivially satisfied:
τ∗

∞S is always closed, and IA∗
is always open.

Theorem 3.2 If A satisfies K4, then A is s.i. iff IA∗
is not of measure zero.

Proof. When A satisfies K4, τ∗ is transitive and for every transitive r the
equation r∞x = {x} ∪ rx holds. So τ∗

∞S is closed, because {S} is closed (A∗

is Hausdorff) and τ∗S is closed (τ∗ is point-closed, see TD.II.2.9). Now apply
2.4 and 2.7.

Note that the proof of Theorem 3.2 does not use the fact that A∗ is compact.
In fact, we can prove a little more than Theorem 3.2, at the cost of proving
another little Lemma:

Lemma 3.3 If F is transitive and refined, then for every C ∈ T , C is essential
in F∗ iff HF ⊆ C and C 6= X.

Proof. (⇒) If F is transitive and refined, r∞x is closed for every x. Then
apply Lemma 2.6.
(⇐) Let D be clopen, with D 6= X . Then r∞D = HF by Lemma 2.2. But
r∞D = D ∩ r∗D because r is transitive, and HF ⊆ C. So D ∩ r∗D ⊆ C and C

is essential.

Note that the above lemma does not hold if we substitute “transitive refined”
with “Kripke”:

Example 3.4 Showing that in general for Kripke frames F

HF ⊆ C and C 6= X 6⇒ C essential

Take the Kripke frame (Z, r) as in Fig. 3. We have HF = ∅. Now let D be
the union of the intervals [2k − k, 2k + k] for all k. Then (r∗)nD 6= ∅ for all n,
since 2n ∈ (r∗)nD. Hence, ∅ is not essential. Nevertheless, there exist essential
elements, for example Z − {0}.

Theorem 3.5 For every transitive refined frame F , F is initial with HF not
dense iff F∗ is s.i.
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Proof. F is initial with HF not dense iff there exists C ∈ T with HF ⊆ C and
C 6= X iff (by Lemma 3.3) there exists C ∈ T which is essential in F∗ iff F∗ is
s.i.

Note that the theorem above has Theorem 3.2 as a particular case (when F
is descriptive). The advantage is that it applies also to Kripke frames.

The assumption of transitivity in Theorem 3.5 can be substituted with that
of F being a Kripke frame, but unfortunately the proof has to be changed:

Theorem 3.6 For every Kripke frame F , F is initial iff F∗ is s.i.

Proof. (⇐) Since F∗ is s.i., there exists an essential C ∈ T . And since r∞x is
trivially closed, we can apply Lemma 2.6 and 2.2 and obtain HF = r∞C. In
particular, HF 6= X and hence IF 6= ∅.
(⇒) Assume IF 6= ∅, and let x ∈ IF . We want to show that E := X − {x} is
essential. To this aim, let C 6= X . Then there is a y 6∈ C. Since x is initial,
xrny for some n, and therefore x 6∈ r∗nC (note that this holds trivially if n = 0,
i.e. if x = y). A fortiori, x 6∈ C ∩ . . . ∩ r∗nC and hence C ∩ . . . ∩ r∗nC ⊆ E,
which is the claim.

3.1 More on K4

We first introduce a further definition (similar to that of [Rautenberg 1979],
page 149). An element a of A is said to be open if the principal filter generated
by a is closed under τ . That is, if F [a] = {b ∈ A : a ≤ b}. If A satisfies K4,
then a is open iff a = τa · a iff a ≤ τa.

Lemma 3.7 For every A and a ∈ A, a is open iff βa is τ ∗-hereditary.

Proof. The principal filter F generated by a corresponds to the clopen subset
βa. And F is closed under τ , i.e. a is open, iff βa is τ∗-hereditary, because of
Theorem 1.12.

Call EA principal if EA ∪ {1} is a principal filter distinct from {1}.

Theorem 3.8 For every A satisfying K4, the following are equivalent:

1. A is s.i.

2. EA is principal

3. A has an element which is open and essential

4. A has a greatest open element 6= 1

5. A∗ has a greatest non trivial clopen hereditary subset

6. IA∗ is a nonempty clopen subset

7. IA∗ is open and not empty
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Proof. (1) ⇒ (7). By Lemma 2.3, IA∗ is either open or of measure zero. By
Theoreom 2.4, if A is s.i., IA∗ is not of measure zero. Hence it is open and
nonempty.

(7) ⇒ (6). We show that HA∗ closed implies HA∗ clopen. In fact, if HA∗

is closed and not trivial, there is a clopen C with HA∗ ⊆ C 6= X . Then
HA∗ = r∞C = C ∩ r∗C, which is clopen.

(6) ⇒ (5). If HA∗ is clopen, it is the greatest hereditary clopen subset.
(5) ⇒ (4). By Lemma 3.7 above.
(4) ⇒ (3). Let c be the greatest open element. Then for every a 6= 1, a · τa

is open and hence a · τa ≤ c, that is, c is essential.
(3) ⇒ (2). Let c be open and essential. Then {b : c ≤ b} is a τ -filter because

c is open, and is equal to EA ∪ {1} because c is essential.
(2) ⇒ (1). If EA is principal, EA is nonempty.

3.2 About logics K
m

Following [Rautenberg 1979], for every m we put

K
m := K ⊕ p ∧ 2p . . . ∧ 2

mp → 2
m+1p

that is, the least normal extension containing the formula p∧2p . . .∧2
mp → 2

m+1p.
Of course, this formula is expressed algebraically by τma ≤ τm+1a. Note that
K

1 is not the same thing as K4.

Lemma 3.9 Let F be any refined frame with r closed and satisfying K
m for

some m. Then for every x ∈ X,

r∞x = {x} ∪ rx ∪ . . . ∪ rmx

Proof. Let us write r∗mC for C ∩ r∗C ∩ . . . ∩ r∗mC. Then

F |= p ∧ 2p . . . ∧ 2
mp → 2

m+1p

iff (∀C ∈ T )(r∗mC ⊆ r∗m+1C)

iff (∀C ∈ T )(∀x ∈ X)(x ∈ r∗mC → x ∈ r∗m+1C)

iff (∀C ∈ T )(∀x ∈ X)({x} ∪ rx ∪ . . . ∪ rmx ⊆ C → rm+1x ⊆ C)

iff (∀x ∈ X)(rm+1x ⊆ {x} ∪ rx ∪ . . . ∪ rmx)

The last equivalence is essentially based on the fact that both {x} ∪ rx ∪
. . . ∪ rmx and rm+1 are closed. Now r∞x =

⋃
n∈N

rnx, but for every n it holds
that rm+1+nx ⊆ rn({x} ∪ rx ∪ . . . ∪ rmx) = rnx ∪ . . . ∪ rm+nx and hence
r∞ = {x} ∪ rx ∪ . . . ∪ rmx.

In other words, a Kripke or descriptive frame F satisfies K
m iff every path

in F can be reduced to a path of length at most m.
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We immediately obtain that, when K
m is satisfied, any set C is hereditary

iff C = r∞C = C ∩ r∗C ∩ . . . ∩ r∗mC. In particular, r∞C is clopen whenever
C is clopen. Moreover, a is open in A |= K

m iff a = τma iff a ≤ τa · . . . · τma.
Thus all the results we proved for K4 hold also for K

m, except Lemma 3.3 and
Theorem 3.5 (we should restrict them to frames in which r is closed, to obtain
that r∞x is closed). I omit all the proofs, which however are just a variation on
those for K4.

3.3 Half a theorem

When A is s.i. and satisfies K4 or K
m, EA is principal and IA∗

is clopen. Thus
one would hope to prove something like: for every A, A is s.i. with EA principal

iff A∗ is initial with IA∗
clopen. We will give the proof of only one half of it;

my conjecture was that also the other half could be proved, but Marcus Kracht
found a counterexample [Kracht 1998b].

We need a lemma with an interesting proof: compactness of A∗ is used for
the first time, and shows why r∞C is difficult to handle.

Lemma 3.10 For every descriptive frame F and every C ∈ T :

HF is closed, HF 6= X and C is essential iff HF ⊆ C and C 6= X

Proof. (⇒) Since HF is closed and non trivial, F∗ is s.i. and HF corresponds
to the filter EF∗ . Thus any clopen C different form X and containing HF is in
EF∗ , that is, is essential.
(⇐) Let D ∈ T with D 6= X . Since r∞D is hereditary, r∞D ⊆ HF ⊆ C.
But C is open and r∞D is an infinite intersection of closed subsets. By the
compactness of F , a finite intersection suffices, i.e. D∩ . . .∩r∗nD ⊆ C for some
n. So C is essential.

Theorem 3.11 If IA∗
is clopen and nonempty, A is s.i. and EA is principal.

Proof. Since IA∗
is open and nonempty, A is s.i. and EA non empty. If IA∗

is clopen, then HA∗
is clopen and a fortiori closed. We thus apply Lemma 3.10

to obtain that HA∗
is itself essential, and the least such. So, if HA∗

= βc, EA

is principal and generated by c.
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