Data parallelism

General Purpose GPU Programming

Supercomputer hidden in
the GPU

o Computer graphics is all about manipulating huge
amounts of data...

e ...butthe actual operations on that data are
relatively simple vector or matrix operations

Data Parallelization

2 /10

2 ways of Data parallelism

10 11 Midnight

e Pipelining

- = N
- ~— r
- I_.._’ ?-
| o ;.-:.l".
‘\
el Q/' — 5?
(o] I 4=ri 3. _3 &
v,
e D Dl_if
 Multiple ALUs (with wide memory bus)
3, [3; [3; 39, 7 > [T
a, |3, |3, 3, ,’,,/ E—B{ -~
By ey B = -~ \
doy [y | dis didN, T~ - R
| NS & ~ N\,
. \\\ /, ~ — [c, < [<, <,
\ X h » ~ PG | % |G [S
[] \)ﬁ_‘_,—fi,// EN Lo te e .
VAN AN C C .
’/ "\ anl > \\\‘ ,/’ ,/ |
b‘ b; bq b.‘ / \\\ ;; _@E / .
Lo [L | b | b s - / (]
- 4/
R [h. [, F. — \ - /
0.0 R Y - /
3 3 [~.
’ . Aub N /

GPU architecture

 GPUs use pipelining, multiple ALUs and other
techniques

» Different architecture for every GPU

V/ ".-‘1'-’;'-' . -
0 c M Nt
50T e s A
| S5 et S

 OpenCL targets multiple architectures by defining
a C-like language that allows us to express a
parallel algorithm abstractly

4 /10

OpenCL programming

The task of the programmer is to divide the
problem into the smallest work-items he can.

- Kernel: specifies what each work-item has to do

The OpenCL compiler and runtime then worry
about how best schedule those work-items on the
avallable hardware so that that hardware is utilized
as efficiently as possible

5 /10

Example: array
multiplication

DataParallelism/MultiplyArrays/multiply_arrays.cl

kernel void multiply arrays(_ global const float* inputA,
~_global const float* inputB,
~global float* output) {

int 1 = get global id(0);
output[i] = inputA[1i] * 1nputB[i];
}

inputA inputB oulput

work-item () ——pp=
work-item 1 —pp
work-item 2 —p

— work-item 1023 —p=

6 /10

OpenCL plattorm model

 Each device has one or more compute units, each of
which provides some processing elements
Devices C :f/n/ru‘.e Linit

izl

v

o
.
™~

™~
e Processing Elenenl
]
1

 Work-items execute on processing elements. A
collection of work-items executing on a single compute
unit is a work-group

7 /10

Memory model

* Global memory: Memory available to all work-
items executing on a device

 Local memory: Memory local to a work-group

e communication between work-items executing In
a work-group (e.g. barrier)

8 /10

HOW DIQ IS @ WOrk-group

» Size of work-groups is variable

» Solution: Break the problem into sub-problems

T

°\,/° O\/'
global id 0
\V< global size >
group id 0 | group id 1 groupid2 |= e w| groupidn
T(—Iocal size —>
local id O

9 /10

Conclusions

e Data parallelism is ideal whenever you're taced
with a problem where large amounts of numerical

data needs to be processed

* [he runtime helps to work with different
architectures

 [The programmer's task is to model the problem in
order to make it parallelizable

10/10

