KRULL-SCHMIDT FINITELY ACCESSIBLE CATEGORIES

SEPTIMIU CRIVEI

Abstract. An additive category is called finitely accessible if it has direct limits, the class of finitely presented objects is skeletally small, and every object is a direct limit of finitely presented objects. Any finitely accessible additive category \mathcal{C} may be embedded as a full subcategory of the category $\text{Mod}(A)$ of unitary right modules over the functor ring A of \mathcal{C} such that the pure exact sequences in \mathcal{C} are those which become exact sequences in $\text{Mod}(A)$ through the embedding. The induced equivalence between \mathcal{C} and the full subcategory of the category $\text{Mod}(A)$ consisting of flat right A-modules offers the main technique for translating properties of modules over the functor ring A to properties of the finitely accessible category \mathcal{C}. Let \mathcal{C} be a finitely accessible additive category with products, and let $(U_i)_{i \in I}$ be a family of representative classes of finitely presented objects in \mathcal{C} such that each object U_i is pure-injective. Using functor ring techniques, we show that \mathcal{C} is a Krull-Schmidt category if and only if every pure epimorphic image of the objects U_i is pure-injective. We discuss connections with the classical Osofsky theorem (which characterizes semisimple rings as those rings for which every cyclic module is injective) and with a Grothendieck categorical version of the Osofsky-Smith theorem for modules.