Harmonic functions in a domain with a small hole: the two-dimensional case

Paolo Musolino

The asymptotic behaviour of the solutions of boundary value problems in domains with small holes has been largely investigated by many authors with different approaches. In this seminar, we consider a Dirichlet problem for the Laplace operator in a bounded domain Ω^ϵ of \mathbb{R}^n containing the origin, where we remove a small set whose size is determined by a parameter ϵ and which collapses to 0 for $\epsilon = 0$. Then for $\epsilon \neq 0$ we denote the solution to such a problem by u_ϵ. If $p \in \Omega^\epsilon$ and $p \neq 0$, then it makes sense to consider for $\epsilon \neq 0$ and ‘small’ the value of the solution u_ϵ at the point p. It is natural to ask what can be said on the map which takes ϵ small and positive to $u_\epsilon(p)$ around the degenerate value $\epsilon = 0$. One can try to answer to this question in several ways. By the approach proposed by Lanza de Cristoforis, one can show that, if $n \geq 3$, then there exist $\epsilon_p > 0$ and a real analytic function U_p from $]-\epsilon_p, \epsilon_p[$ to \mathbb{R} such that $u_\epsilon(p) = U_p[\epsilon]$ for all $\epsilon \in]0, \epsilon_p[$, and one can then investigate the validity of such an equality for ϵ negative. After an introductory part on the case of dimension $n \geq 3$, we will turn to consider the two-dimensional case.

Based on joint work with M. Dalla Riva (CIDMA, Universidade de Aveiro).

Reference
