On Compactness Estimates for Hamilton-Jacobi Equations

Khai T. Nguyen
Università di Padova

Abstract. Consider a first-order Hamilton-Jacobi equation
\[u_t(t, x) + H(\nabla u(t, x)) = 0, \quad x \in \mathbb{R}^N, \quad t > 0, \]
with a strictly convex and coercive Hamiltonian \(H : \mathbb{R}^N \to \mathbb{R} \). For every \(\bar{u} \in W^{1,1}(\mathbb{R}^N, \mathbb{R}) \), let \(S_t \bar{u} = u(t, \cdot) \) denote the unique viscosity solution of (0.1) with initial data \(u(0, \cdot) = \bar{u} \). Having in mind the analysis recently developed for solutions to conservation laws [2-4], inspired by a question posed by Lax, we are interested in studying the compactifying effect of the operator \(S_t \) at any fixed time \(t > 0 \), w.r.t the \(W^{1,1} \)-topology. Namely, we wish to estimate the Kolmogorov \(\varepsilon \)-entropy in \(W^{1,1} \) of the image of bounded sets of initial data through the map \(S_t \). We recall that, given a metric space \((X, d)\), and a totally bounded subset \(K \) of \(X \), we let \(N_\varepsilon(K \mid X) \) denote the minimal number of sets in a cover of \(K \) by subsets of \(X \) having diameter \(\leq 2\varepsilon \), and define the Kolmogorov \(\varepsilon \)-entropy of \(K \) as \(H_\varepsilon(K \mid X) = \log_2 N_\varepsilon(K \mid X) \). Entropy numbers play a central role in various areas of information theory and statistics as well as of ergodic and learning theory. In the present setting, as suggested by Lax, this concept could provide a measure of the order of “resolution” of a numerical method for (0.1).

Our main result in [1] shows that, for every fixed \(L, M > 0 \), letting \(C_{[L,M]} \) denote the set of Lipschitz functions \(u : \mathbb{R}^N \to \mathbb{R} \) with Lipschitz constant \(L \) and with support contained in \([-M, M]^N\), there holds
\[H_\varepsilon(S_T(C_{[L,M]}) \mid W^{1,1}(\mathbb{R}^N, \mathbb{R})) \approx (1/\varepsilon^N). \]
Relying on fine properties of monotone operators we derive upper estimates on the \(\varepsilon \)-entropy of classes of semiconcave functions, which in turn yield upper estimates on \(H_\varepsilon(S_T(C_{[L,M]})) \). Instead, lower bounds on \(H_\varepsilon(S_T(C_{[L,M]}) \mid W^{1,1}(\mathbb{R}^N, \mathbb{R})) \) are established in two steps. We first introduce a class of semiconcave functions \(SF \) defined as combinations of suitable bump functions, and with a combinatorial argument we provide an optimal lower estimate on the \(\varepsilon \)-entropy of such a class. Next, we prove a controllability result showing that any element of \(SF \) can be obtained, at any given time \(T > 0 \), as the value \(u(t, \cdot) \) of a viscosity solution of (0.1), with initial data in \(C_{[L,M]} \).

(Joint work with Fabio Ancona and Piermarco Cannarsa)

References