Global hypoellipticity for operators on compact manifolds and Diophantine phenomena

Alexandre Kirilov
UFPR, Curitiba, Brazil

We study the global hypoellipticity (GH) of a class of first order operators of type

\[L = D_t + a(t)Q(x, D) + ib(t)P(x, D), \quad D_t = i^{-1} \partial_t, \quad t \in \mathbb{T}, \quad x \in M, \]

where \(\mathbb{T} = \mathbb{R}/(2\pi \mathbb{Z}) \) stands for the one-dimensional flat torus, \(M \) is a closed \(C^\infty \) manifold, \(a, b \) are real smooth functions on \(\mathbb{T} \), and \(P(x, D), Q(x, D) \) are self-adjoint first order pseudo-differential operators on \(M \). We recall that \(L \) is GH if \(Lu = f \in C^\infty (\mathbb{T} \times M), u \in D'(\mathbb{T} \times M) \) implies that \(u \in C^\infty (\mathbb{T} \times M) \).

We assume the existence of an elliptic normal differential operator \(E \) of order \(m > 0 \) such that

\[[E, P(x, D)] = [E, Q(x, D)] = 0. \tag{1} \]

As particular cases we recapture constant vector fields on \(\mathbb{T} \times \mathbb{T}^n \) and vector fields on \(\mathbb{T} \times S^3 \).

We propose some new results on globally hypoelliptic operators under new Diophantine type conditions.

One of the main ingredients of our approach is the use of Fourier expansions in \(x \) defined by the basis of eigenfunctions associated to the elliptic operator \(E \) as outlined by R.T. Seeley in 1960’s.

The results are obtained in collaboration with and Fernando de Avila Silva (UFPR, Curitiba) and T. Gramchev (Univ. Cagliari)