Random evolution driven by Hamiltonian flows and Lax–Oleinik semigroup.

A. Siconolfi
Università di Roma La Sapienza

Padova, February 2016
Random evolutions

Random evolution is a topic initiated by Reuben Hersh at the end of the sixties and pursued by several other authors as Griego, Pinsky, Swishchuk.
Random evolutions

Random evolution is a topic initiated by Reuben Hersh at the end of the sixties and pursued by several other authors as Griego, Pinsky, Swishchuk.

There are applicative as well as theoretical motivations.
Random evolutions

Random evolution is a topic initiated by Reuben Hersh at the end of the sixties and pursued by several other authors as Griego, Pinsky, Swishchuk.

There are applicative as well as theoretical motivations.

The theory provides a mathematical frame for models where evolving systems modify the mode of motion because of random changes in the environment.
Random evolutions

Random evolution is a topic initiated by Reuben Hersh at the end of the sixties and pursued by several other authors as Griego, Pinsky, Swishchuk.

There are applicative as well as theoretical motivations.

The theory provides a mathematical frame for models where evolving systems modify the mode of motion because of random changes in the environment.

One can think for instance of a particle subject to random collisions which determine changes in its velocity, a radio signal propagating through a turbulent medium, where the index of refraction varies at random, and so on.
Random evolutions

Random evolution is a topic initiated by Reuben Hersh at the end of the sixties and pursued by several other authors as Griego, Pinsky, Swishchuk.

There are applicative as well as theoretical motivations.

The theory provides a mathematical frame for models where evolving systems modify the mode of motion because of random changes in the environment.

One can think for instance of a particle subject to random collisions which determine changes in its velocity, a radio signal propagating through a turbulent medium, where the index of refraction varies at random, and so on.

The most relevant theoretical outputs are about asymptotic problems, more precisely singular perturbation results or central limit theorems in probabilistic terminology.
Roughly speaking, one multiply the evolution coefficients by a small parameter ε, speed up the related random trajectories multiplying by $\frac{1}{\varepsilon^\alpha}$ for a suitable α, and then pass to the limit as $\varepsilon \to 0$. The interesting aspect in these results is that the limit problem can be of different nature with respect to the evolution operators. Typical example is evolutions governed by elliptic operators giving at the limit an hyperbolic equation. Another example can be found in Evans’ *Entropy and PDE* where he considers linear first order evolutions with switchings driven by a Markov chain and obtain at the limit a diffusion. The basic setting in is when evolution is associated with linear uniformly elliptic operators and the switching are governed by a continuous time Markov chain.
Roughly speaking, one multiply the evolution coefficients by a small parameter ε, speed up the related random trajectories multiplying by $\frac{1}{\varepsilon^\alpha}$ for a suitable α, and then pass to the limit as $\varepsilon \to 0$.

The interesting aspect in these results is that the limit problem can be of different nature with respect to the evolution operators.
Roughly speaking, one multiply the evolution coefficients by a small parameter ε, speed up the related random trajectories multiplying by $\frac{1}{\varepsilon^\alpha}$ for a suitable α, and then pass to the limit as $\varepsilon \to 0$.

The interesting aspect in these results is that the limit problem can be of different nature with respect to the evolution operators.

Typical example is evolutions governed by elliptic operators giving at the limit an hyperbolic equation.
Roughly speaking, one multiply the evolution coefficients by a small parameter ε, speed up the related random trajectories multiplying by $\frac{1}{\varepsilon^\alpha}$ for a suitable α, and then pass to the limit as $\varepsilon \to 0$.

The interesting aspect in these results is that the limit problem can be of different nature with respect to the evolution operators.

Typical example is evolutions governed by elliptic operators giving at the limit an hyperbolic equation.

Another example can be found in Evans’ *Entropy and PDE* where he considers linear first order evolutions with switchings driven by a Markov chain and obtain at the limit a diffusion.
Roughly speaking, one **multiply** the evolution coefficients by a small parameter ε, speed up the related random trajectories multiplying by $\frac{1}{\varepsilon^\alpha}$ for a suitable α, and then **pass to the limit** as $\varepsilon \to 0$.

The **interesting aspect** in these results is that the limit problem can be of different nature with respect to the evolution operators.

Typical example is evolutions governed by **elliptic operators** giving at the limit an **hyperbolic equation**.

Another example can be found in Evans’ *Entropy and PDE* where he considers **linear first order evolutions** with switchings driven by a **Markov chain** and obtain at the limit a **diffusion**.

The basic setting in is when evolution is associated with **linear uniformly elliptic operators** and the switching are governed by a **continuous time Markov chain**.
In this case the related expectation semigroup applied to a given initial datum solves a weakly coupled system of parabolic equations with coupling matrix equal to the generator of the random chain, up to a sign.
In this case the related \textit{expectation semigroup} applied to a given initial datum solves a \textit{weakly coupled system of parabolic equations} with coupling matrix equal to the generator of the random chain, up to a sign.

In this frame the expectation operators are nothing but the \textit{random switched concatenation} of the expectations of the evolution operators.

This is a research in collaboration with Andrea Davini and Maxime Zavidovique.
In this case the related expectation semigroup applied to a given initial datum solves a weakly coupled system of parabolic equations with coupling matrix equal to the generator of the random chain, up to a sign.

In this frame the expectation operators are nothing but the random switched concatenation of the expectations of the evolution operators.

The situation is quite different in the nonlinear case we are going to describe. In this case in fact the expectation semigroup is given by a random version of Lax–Oleinik formula.
In this case the related expectation semigroup applied to a given initial datum solves a weakly coupled system of parabolic equations with coupling matrix equal to the generator of the random chain, up to a sign.

In this frame the expectation operators are nothing but the random switched concatenation of the expectations of the evolution operators.

The situation is quite different in the nonlinear case we are going to describe. In this case in fact the expectation semigroup is given by a random version of Lax–Oleinik formula.

The connection with weakly coupled systems plus the presence of a Markov chain prompted the idea to adapt this frame to Hamiltonian switching dynamics and to study it in connection with a time–dependent HJ system.
In this case the related expectation semigroup applied to a given initial datum solves a weakly coupled system of parabolic equations with coupling matrix equal to the generator of the random chain, up to a sign.

In this frame the expectation operators are nothing but the random switched concatenation of the expectations of the evolution operators.

The situation is quite different in the nonlinear case we are going to describe. In this case in fact the expectation semigroup is given by a random version of Lax–Oleinik formula.

The connection with weakly coupled systems plus the presence of a Markov chain prompted the idea to adapt this frame to Hamiltonian switching dynamics and to study it in connection with a time–dependent HJ system.

This is a research in collaboration with Andrea Davini and Maxime Zavidovique.
time–dependent HJ systems

\[\partial_t u_i + H_i(x, Du_i) + \sum_{j=1}^{M} \lambda_{ij} u_j(x) = 0 \quad \text{in } \mathbb{R}^N \times [0, +\infty) \quad \text{(HJS)} \]
time–dependent HJ systems

\[\partial_t u_i + H_i(x, Du_i) + \sum_{j=1}^{M} \lambda_{ij} u_j(x) = 0 \quad \text{in } \mathbb{R}^N \times [0, +\infty) \quad (\text{HJS}) \]

here

- The H_i are unrelated and assumed for simplicity of Tonelli type;
The subject of weakly coupled has floated around since many years especially in control theoretic literature in connection with the so–called hierarchical control. A new approach using modern viscosity techniques and establishing relationship with weak KAM theory has started recently.

The \(H_i \) are unrelated and assumed for simplicity of Tonelli type;

the coupling matrix \(\Lambda \) is such that \(e^{-\Lambda t} \) is a stochastic matrix for any \(t \geq 0 \), or in other terms \(-\Lambda \) generates a Markov chain.
time–dependent HJ systems

\[\partial_t u_i + H_i(x, Du_i) + \sum_{j=1}^{M} \lambda_{ij} u_j(x) = 0 \quad \text{in } \mathbb{R}^N \times [0, +\infty) \text{ (HJS)} \]

here

- The \(H_i \) are unrelated and assumed for simplicity of Tonelli type;
- the coupling matrix \(\Lambda \) is such that \(e^{-\Lambda t} \) is a stochastic matrix for any \(t \geq 0 \), or in other terms \(-\Lambda \) generates a Markov chain.

The subject of weakly coupled has floated around since many years especially in control theoretic literature in connection with the so–called hierarchical control.
time–dependent HJ systems

\[\partial_t u_i + H_i(x, Du_i) + \sum_{j=1}^{M} \lambda_{ij} u_j(x) = 0 \quad \text{in } \mathbb{R}^N \times [0, +\infty) \quad (\text{HJS}) \]

Here

- The \(H_i \) are unrelated and assumed for simplicity of Tonelli type;
- the coupling matrix \(\Lambda \) is such that \(e^{-\Lambda t} \) is a stochastic matrix for any \(t \geq 0 \), or in other terms \(-\Lambda \) generates a Markov chain.

The subject of weakly coupled has floated around since many years especially in control theoretic literature in connection with the so–called hierarchical control.

A new approach using modern viscosity techniques and establishing relationship with weak KAM theory has started recently.
Camilli–Ley–Loreti–Nguyen (2011)
Mitake–Tran (2011)
Camilli–Ley–Loreti–Nguyen (2011)
Mitake–Tran (2011)

and a more general class of Hamiltonians were studied by
Davini–Zavidovique (2012)
and a more general class of Hamiltonians were studied by

- Camilli–Ley–Loreti–Nguyen (2011)
- Mitake–Tran (2011)
- Davini–Zavidovique (2012)

The interesting point is that the stationary version of the previous system, with the same assumptions on Λ, behaves like an Eikonal scalar equation.
Camilli–Ley–Loreti–Nguyen (2011)
Mitake–Tran (2011)

and a more general class of Hamiltonians were studied by

Davini–Zavidovique (2012)

The interesting point is that the stationary version of the previous system, with the same assumptions on \(\Lambda \), behaves like an Eikonal scalar equation.

There is an associated critical value, say \(c \). and if the ambient space is compact, the flat torus then \(a = c \) is the unique for which
Camilli–Ley–Loreti–Nguyen (2011)
Mitake–Tran (2011)

and a more general class of Hamiltonians were studied by

Davini–Zavidovique (2012)

The interesting point is that the stationary version of the previous system, with the same assumptions on Λ, behaves like an Eikonal scalar equation.

There is an associated critical value, say c. and if the ambient space is compact, the flat torus then $a = c$ is the unique for which

$$H_i(x, Du_i) + \sum_{j=1}^{M} \lambda_{ij} u_j(x) = a$$
Camilli–Ley–Loreti–Nguyen (2011)
Mitake–Tran (2011)

and a more general class of Hamiltonians were studied by

Davini–Zavidovique (2012)

The interesting point is that the stationary version of the previous system, with the same assumptions on Λ, behaves like an Eikonal scalar equation.

There is an associated critical value, say \(c \). and if the ambient space is compact, the flat torus then \(a = c \) is the unique for which

\[
H_i(x, Du_i) + \sum_{j=1}^{M} \lambda_{ij} u_j(x) = a
\]

admits (viscosity) solution on the whole space. There exists an Aubry set and other facts of weak KAM theory can be generalized to the system setting.
Probabilistic frame

In

- Mitake, S., Tran, Yamada (2015)

it has been proposed a working probabilistic interpretation of the stationary system, which allows in particular to define

- an adapted action functional
Probabilistic frame

In

- Mitake, S., Tran, Yamada (2015)

it has been proposed a working probabilistic interpretation of the stationary system, which allows in particular to define

- an adapted action functional
- give representation formulae for sub/solutions.
Probabilistic frame

In

- Mitake, S., Tran, Yamada (2015)

it has been proposed a **working probabilistic interpretation** of the stationary system, which allows in particular to define
 - an adapted **action functional**
 - give **representation formulae** for sub/solutions.

Here **working** means adapted to analysts, avoiding as much as possible complicated probabilistic notions and the use of abstract probability spaces.
Probabilistic frame

In

- Mitake, S., Tran, Yamada (2015)

it has been proposed a working probabilistic interpretation of the stationary system, which allows in particular to define

- an adapted action functional
- give representation formulae for sub/solutions.

Here working means adapted to analysts, avoiding as much as possible complicated probabilistic notions and the use of abstract probability spaces.

We have used as base probability space the space \mathcal{D} of paths

$$\omega : [0, +\infty) \rightarrow \{1, \cdots, M\}$$

taking as values the indices of the system, from 1 to M, and with finite jumps in any bounded time interval (cadlag).
The space D is endowed with the minimal σ–algebra \mathcal{F} making the evaluation maps

$$\omega \mapsto \omega(t)$$

measurable. \mathcal{F} is the Borel σ–algebra related to a metric on D, named after Prohorov, making D a Polish space, namely complete and separable.
The space \mathcal{D} is endowed with the minimal σ–algebra \mathcal{F} making the evaluation maps

$$\omega \mapsto \omega(t)$$

measurable. \mathcal{F} is the Borel σ–algebra related to a metric on \mathcal{D}, named after Prohorov, making \mathcal{D} a Polish space, namely complete and separable.

Polish spaces are the most general ambient where the basic facts of measure theory, say in \mathbb{R}^N are still valid.
The space \mathcal{D} is endowed with the minimal σ–algebra \mathcal{F} making the evaluation maps

$$\omega \mapsto \omega(t)$$

measurable. \mathcal{F} is the Borel σ–algebra related to a metric on \mathcal{D}, named after Prohorov, making \mathcal{D} a Polish space, namely complete and separable.

Polish spaces are the most general ambient where the basic facts of measure theory, say in \mathbb{R}^N are still valid.

A natural filtration \mathcal{F}_t is also considered. Roughly speaking, the sets of \mathcal{F}_t are measurable sets whose trajectories are selected via conditions on the interval $[0, t]$.
It is defined on \mathcal{D} a family of probability measures depending on $e^{-\Lambda t}$ and an initial distribution of indices, namely a stochastic vector of \mathbb{R}^M with nonnegative components summing to 1.
It is defined on \mathcal{D} a family of probability measures depending on $e^{-\Lambda t}$ and an initial distribution of indices, namely a stochastic vector of \mathbb{R}^M with nonnegative components summing to 1.

We denote, for $i = 1, \cdots, M$, by \mathbb{P}_i, \mathbb{E}_i the probability measures and expectation operators related to e_i.

It is defined on \mathcal{D} a family of probability measures depending on $e^{-\Lambda t}$ and an initial distribution of indices, namely a stochastic vector of \mathbb{R}^M with nonnegative components summing to 1.

We denote, for $i = 1, \cdots, M$, by \mathbb{P}_i, \mathbb{E}_i the probability measures and expectation operators related to e_i.

In order to define a random Lax–Oleinik semigroup, we have adapted, with Andrea and Maxime, the probabilistic frame to the time–dependent case.
Random Lax–Oleinik formula

We have obtained for any initial continuous datum u^0 for any $t \geq 0$, $i = 1, \ldots, M$
Random Lax–Oleinik formula

We have obtained for any initial continuous datum u^0 for any $t \geq 0$, $i = 1, \cdots, M$

$$(S(t)u^0)_i(x) = \inf_{\gamma(0,\omega)=x} \mathbb{E}_i \left[u^0_{\omega(t)}(\gamma(t)) + \int_0^t L_{\omega(s)}(\gamma(s), -\dot{\gamma}(s)) \, ds \right].$$
Random Lax–Oleinik formula

We have obtained for any initial continuous datum \(u^0 \) for any \(t \geq 0, \ i = 1, \ldots, M \)

\[
(S(t)u^0)_i(x) = \inf_{\gamma(0, \omega) = x} \mathbb{E}_i \left[u^0_{\omega(t)}(\gamma(t)) + \int_0^t L_{\omega(s)}(\gamma(s), -\dot{\gamma}(s)) \, ds \right].
\]

where the infimum is computed over the class of admissible curves starting at \(x \) to be specified.
Random Lax–Oleinik formula

We have obtained for any initial continuous datum u^0 for any $t \geq 0$, $i = 1, \ldots, M$

$$(S(t)u^0)_i(x) = \inf_{\gamma(0,\omega) = x} \mathbb{E}_i \left[u^0_{\omega(t)}(\gamma(t)) + \int_0^t L_{\omega(s)}(\gamma(s), -\dot{\gamma}(s)) \, ds \right].$$

where the infimum is computed over the class of admissible curves starting at x to be specified.

As we will see a main issue will be to show continuity of the function given by the formula
Admissible random curves

We call admissible curve a random variable \(\gamma : \mathbb{D} \to \mathbb{C} \) such that it is uniformly (in \(\omega \in \mathbb{D} \)) locally (in \(t \)) absolutely continuous, a time synchronization condition holds, namely \(\gamma \) is nonanticipating, i.e. for any \(t \geq 0 \) \(\omega_1 \equiv \omega_2 \) in \([0, t] \) \(\implies \gamma (\cdot, \omega_1) \equiv \gamma (\cdot, \omega_2) \) in \([0, t] \).

(1) The definition implies two crucial properties the set \(\{ (t, \omega) \in \mathbb{R}_+ \times \Omega : \gamma (\cdot, \omega) \text{ is not differentiable at } t \} \) belongs to the product \(\sigma \)-algebra \(B(\mathbb{R}_+) \otimes \mathcal{F} \) and has vanishing \(L^1 \times P \) measure; \(t \mapsto E_i [u_{\omega}(t)](t, \gamma(t)) \) is locally absolutely continuous in \([0, +\infty) \).
Admissible random curves

We call admissible curve a random variable \(\gamma : D \rightarrow C([0, +\infty); \mathbb{R}^N) \) such that
Admissible random curves

We call admissible curve a random variable \(\gamma : \mathcal{D} \to C([0, +\infty); \mathbb{R}^N) \) such that

- it is uniformly (in \(\omega \in \mathcal{D} \)) locally (in \(t \)) absolutely continuous,
Admissible random curves

We call admissible curve a random variable \(\gamma : \mathcal{D} \to C([0, +\infty); \mathbb{R}^N) \) such that

- it is uniformly (in \(\omega \in \mathcal{D} \)) locally (in \(t \)) absolutely continuous,
- a time synchronization condition holds, namely \(\gamma \) is nonanticipating, i.e. for any \(t \geq 0 \)

\[
\omega_1 \equiv \omega_2 \text{ in } [0, t] \Rightarrow \gamma(\cdot, \omega_1) \equiv \gamma(\cdot, \omega_2) \text{ in } [0, t]. \tag{1}
\]
Admissible random curves

We call admissible curve a random variable \(\gamma : \mathcal{D} \to C([0, +\infty); \mathbb{R}^N) \) such that

- it is uniformly (in \(\omega \in \mathcal{D} \)) locally (in \(t \)) absolutely continuous,
- a time synchronization condition holds, namely \(\gamma \) is nonanticipating, i.e. for any \(t \geq 0 \)

\[
\omega_1 \equiv \omega_2 \text{ in } [0, t] \quad \Rightarrow \quad \gamma(\cdot, \omega_1) \equiv \gamma(\cdot, \omega_2) \text{ in } [0, t]. \quad (1)
\]

The definition implies two crucial properties
Admissible random curves

We call admissible curve a random variable \(\gamma : \mathcal{D} \to C([0, +\infty); \mathbb{R}^N) \) such that

- it is uniformly (in \(\omega \in \mathcal{D} \)) locally (in \(t \)) absolutely continuous,
- a time synchronization condition holds, namely \(\gamma \) is nonanticipating, i.e. for any \(t \geq 0 \)

\[
\omega_1 \equiv \omega_2 \text{ in } [0, t] \implies \gamma(\cdot, \omega_1) \equiv \gamma(\cdot, \omega_2) \text{ in } [0, t]. \quad (1)
\]

The definition implies two crucial properties

- the set

\[
\{ (t, \omega) \in \mathbb{R}_+ \times \Omega : \gamma(\cdot, \omega) \text{ is not differentiable at } t \}
\]

belongs to the product \(\sigma \)-algebra \(\mathcal{B}(\mathbb{R}_+) \otimes \mathcal{F} \) and has vanishing \(\mathcal{L}^1 \times \mathbb{P} \) measure;
Admissible random curves

We call admissible curve a random variable $\gamma : \mathcal{D} \to C([0, +\infty); \mathbb{R}^N$ such that

- it is uniformly (in $\omega \in \mathcal{D}$) locally (in t) absolutely continuous,
- a time synchronization condition holds, namely γ is nonanticipating, i.e. for any $t \geq 0$

$$\omega_1 \equiv \omega_2 \text{ in } [0, t] \implies \gamma(\cdot, \omega_1) \equiv \gamma(\cdot, \omega_2) \text{ in } [0, t]. \quad (1)$$

The definition implies two crucial properties

- the set

$$\{ (t, \omega) \in \mathbb{R}_+ \times \Omega : \gamma(\cdot, \omega) \text{ is not differentiable at } t \}$$

belongs to the product σ–algebra $\mathcal{B}({\mathbb{R}_+}) \otimes \mathcal{F}$ and has vanishing $\mathcal{L}^1 \times \mathbb{P}$ measure;
- $t \mapsto \mathbb{E}_i[u_{\omega(t)}(t, \gamma(t))]$ is locally absolutely continuous in $[0, +\infty)$.
this in turn allows proving that time derivative of a locally Lipschitz continuous function on an admissible curve and expectations \mathbb{E}_i commute, up to a term which, roughly speaking, records the indices jumps on the underlying paths and contains the coupling matrix.
this in turn allows proving that time derivative of a locally Lipschitz continuous function on an admissible curve and expectations E_i commute, up to a term which, roughly speaking, records the indices jumps on the underlying paths and contains the coupling matrix.

This can be understood as a sort of Itô formula, in differential form, adapted to the probabilistic frame.
this in turn allows proving that time derivative of a locally Lipschitz continuous function on an admissible curve and expectations \mathbb{E}_i commute, up to a term which, roughly speaking, records the indices jumps on the underlying paths and contains the coupling matrix.

This can be understood as a sort of Itô formula, in differential form, adapted to the probabilistic frame.

Theorem

*Let $u : [0, +\infty) \times \mathbb{R}^N \to \mathbb{R}^M$, γ, i be a locally Lipschitz–continuous function, an admissible curve, and an index in \{1, \ldots, M\}, respectively. Then

$$\frac{d}{dt} \mathbb{E}_i[u_{\omega(t)}(t, \gamma(t))] \bigg|_{t=s} = \mathbb{E}_i \left[-(u(s, \gamma(s)) \omega(s)) + \frac{d}{dt}u_{\omega(s)}(t, \gamma(t)) \bigg|_{t=s}\right]$$

for a.e. $s \in [0, +\infty)$*
We say that a function $u : [0, +\infty) \times \mathbb{R}^N \rightarrow \mathbb{R}^M$ has dominated evolution if

$$u_i(s_0, \gamma(0)) - E_i[u_\omega(s_0 - t_0)(t_0, \gamma(s_0 - t_0))] \leq E_i \int_{s_0 - t_0}^0 L_{\omega}(s) (\gamma(s), -\dot{\gamma}(s)) \, ds$$

for any $s_0 \geq t_0 \geq 0$, $i = 1, \ldots, M$, any admissible curve γ. Exploiting this notion it will be proved continuity of Lax–Oleinik formula plus and it will be put in relation with (HJS).
We say that a function \(u : [0, +\infty) \times \mathbb{R}^N \rightarrow \mathbb{R}^M \) has dominated evolution if

\[
\begin{align*}
&u_i(s_0, \gamma(0)) - \mathbb{E}_i[u_{\omega(s_0-t_0)}(t_0, \gamma(s_0-t_0))] \leq \mathbb{E}_i \int_0^{s_0-t_0} L_{\omega(s)}(\gamma(s), -\dot{\gamma}(s)) \, ds
\end{align*}
\]

for any \(s_0 \geq t_0 \geq 0 \), \(i = 1, \ldots, M \), any admissible curve \(\gamma \).
We say that a function \(u : [0, +\infty) \times \mathbb{R}^N \rightarrow \mathbb{R}^M \) has dominated evolution if

\[
ui(s_0, \gamma(0)) - E_i [u_{\omega(s_0-t_0)}(t_0, \gamma(s_0-t_0))] \leq E_i \int_0^{s_0-t_0} L_{\omega(s)}(\gamma(s), -\dot{\gamma}(s)) \, ds
\]

for any \(s_0 \geq t_0 \geq 0, \ i = 1, \ldots, M \), any admissible curve \(\gamma \).

Exploiting this notion it will proved continuity of Lax–Oleinik formula plus and it will be put in relation with (HJS).
The starting properties are
The starting properties are

- the function given by LO formula has dominated evolution and is greater than or equal to any continuous function with dominated evolution taking the same initial datum;
The starting properties are

- the function given by LO formula has dominated evolution and is greater than or equal to any continuous function with dominated evolution taking the same initial datum;

- any function locally bounded from above with dominated evolution is subsolution to (HJS)
The starting properties are

- the function given by LO formula has dominated evolution and is greater than or equal to any continuous function with dominated evolution taking the same initial datum;

- any function locally bounded from above with dominated evolution is subsolution to (HJS)

- any locally Lipschitz–continuous subsolution to (HJS) has dominated evolution
These properties, combined with a comparison principle which holds by monotonicity of the system, gives
These properties, combined with a comparison principle which holds by monotonicity of the system, gives

Theorem

Let u^0 be bounded uniformly continuous then $u(t, x) = (S(t)u^0)(x)$ is the unique continuous solution to (HJS).
Existence of minimizers

Theorem

Assume the initial datum u^0 to be locally Lipschitz–continuous, then for any x there are random admissible curves starting at x realizing the minimum in Lax–Oleinik formula.
Existence of minimizers

Theorem

Assume the initial datum u^0 to be locally Lipschitz–continuous, then for any x there are random admissible curves starting at x realizing the minimum in Lax–Oleinik formula.

There are some additional information on the minimizing curves.
Existence of minimizers

Theorem

Assume the initial datum u^0 to be locally Lipschitz–continuous, then for any x there are random admissible curves starting at x realizing the minimum in Lax–Oleinik formula.

There are some additional information on the minimizing curves.

Theorem

- the minimizing curve η is C^1 except at the switching times;
- the solution u is C^1 on η except at the switching times;
- for any minimizing curve η there exists an adjoint random curve $P(\omega, t)$ with

$$P(\omega, t) \in \partial_v L_{\omega(t)}(\eta(\omega, t), -\dot{\eta}(\omega, t))$$

almost surely. Here L_i are the Lagrangians associated to H_i.