Equazione di Poisson.

Alvise Sommariva

Università degli Studi di Padova Dipartimento di Matematica

21 maggio 2018

Da

$$\Delta u(x_i, y_j) \approx \frac{u(x_{i+1}, y_j) + u(x_{i-1}, y_j) + u(x_i, y_{j+1}) + u(x_i, y_{j-1}) - 4u(x_i, y_j)}{h^2}$$
(1)

ricaviamo la discretizzazione dell'equazione

$$\begin{cases}
\Delta u(x,y) = f(x,y), & (x,y) \in \Omega = (0,1) \times (0,1) \\
u(x,y) = g(x,y), & (x,y) \in \partial\Omega
\end{cases}$$
(2)

nei punti (x_i, y_j) , $x_i = ih$, $y_j = jh$, h=1/(n+1)

$$u(x_{i+1}, y_j) + u(x_{i-1}, y_j) + u(x_i, y_{j+1}) + u(x_i, y_{j-1}) - 4u(x_i, y_j) = h^2 f(x_i, y_j),$$

per $i, j = 1, \ldots, n$, con le condizioni al contorno

$$u(x_i, y_j) = g(x_i, y_j), i = 0, j = 1, ..., n$$
 (4)

$$u(x_i, y_j) = g(x_i, y_j), i = n + 1, j = 1, ..., n$$
 (5)

$$u(x_i, y_i) = g(x_i, y_i), i = 1, ..., n, j = 0, j = n + 1.$$
 (6)

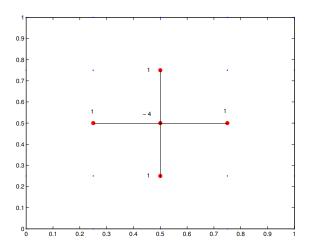


Figura : La molecola della discr. del Laplaciano avente centro (0.5, 0.5) e h = 0.25. Si ricordi di dividere ogni valore nella molecola per h^2 .

Il sistema lineare ottenuto può essere descritto matricialmente. Sia B la matrice $n \times n$

$$B = \begin{pmatrix} -4 & 1 & 0 & \dots & 0 \\ 1 & -4 & 1 & 0 & \dots \\ 0 & 1 & -4 & 1 & \dots \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 1 & -4 \end{pmatrix}$$

ed / la matrice identica di ordine n del tipo

$$I = \left(\begin{array}{cccc} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 1 \end{array}\right).$$

Allora

- se b è il vettore ottenuto dai contributi dei termini dovuti a f e g in (2) e (3),
- A la matrice a blocchi

$$A = \left(\begin{array}{cccc} B & I & 0 & \dots \\ I & B & I & \dots \\ \dots & \dots & \dots & \dots \\ \dots & 0 & I & B \end{array}\right)$$

si ricava che il sistema da risolvere è Au = b, usando ad esempio

- il metodo di Jacobi, o
- Gauss-Seidel, SOR o
- il gradiente coniugato.

Per una implementazione della matrice di Poisson A, utilizziamo la funzione makefish.m

```
function mat = makefish(siz);
% make a Poisson matrix

leng = siz*siz;
dia = zeros(siz,siz);
off = -eye(siz,siz);
for i=1:siz, dia(i,i)=4; end;
for i=1:siz-1, dia(i,i+1)=-1; dia(i+1,i)=-1; end;
mat = zeros(leng,leng);
for ib=1:siz,
    mat(1+(ib-1)*siz:ib*siz,1+(ib-1)*siz:ib*siz) = dia; end;
for ib=1:siz-1,
    mat(1+(ib-1)*siz:ib*siz,1+ib*siz:(ib+1)*siz) = off;
    mat(1+(ib-1)*siz:ib*siz,1+(ib-1)*siz:ib*siz) = off;
return;
```

Vediamone un esempio dalla shell di Matlab/Octave:

Si vede subito dal 4 sulla diagonale che makefish non calcola A ma -A e dovremo tener conto di questo dettaglio nell'implementazione.

Osserviamo che non è proprio facile determinare, fissato i, j, quali siano i punti adiacenti a (x_i, y_j) che essendo sul bordo hanno valore della soluzione noto a priori e quindi tali da contribuire attivamente al termine noto.

Facciamo un esempio sulla risoluzione dell'equazione di Poisson via metodo alle differenze con 5 punti.

Sia
$$\Omega = [0,1] \times [0,1]$$
, $h = 1/3$ e siano

$$P_{i,j} = (ih, jh), i, j = 0, 1, 2, 3.$$

E' chiaro che per

- per i = 0 i punti $P_{0,j}$ sono sull'asse x = 0 (cioè l'asse y),
- per i = 3 i punti $P_{3,j}$ sono sull'asse x = 1,
- per j = 0 i punti $P_{i,0}$ sono sull'asse y = 0 (cioè l'asse x)
- per j = 3 i punti $P_{i,3}$ sono sull'asse y = 1.

Date le condizioni al contorno, la soluzione in questi punti è nota ed è uguale a $u_{i,j} = g(x_i, y_j)$.

I rimanenti punti $P_{i,j}$, con i,j=1,2 sono interni a Ω ed è

$$u(x_{i+1}, y_j) + u(x_{i-1}, y_j) + u(x_i, y_{j+1}) + u(x_i, y_{j-1}) - 4u(x_i, y_j) = h^2 f(x_i, y_j),$$
(7)

Analizziamo caso per caso queste equazioni:

■ Nel caso i = 1, j = 1 si ha

$$u(x_2, y_1) + u(x_0, y_1) + u(x_1, y_2) + u(x_1, y_0) - 4u(x_1, y_1) = h^2 f(x_1, y_1),$$

$$u(x_0, y_1) = g(x_0, y_1), \ u(x_1, y_0) = g(x_1, y_0).$$

Portando questi due termini a secondo membro otteniamo

$$u(x_2,y_1)+u(x_1,y_2)-4u(x_1,y_1)=h^2 f(x_1,y_1)-g(x_0,y_1)-g(x_1,y_0).$$

9/38

Nel caso i=2, j=1 si ha $u(x_3,y_1)+u(x_1,y_1)+u(x_2,y_2)+u(x_2,y_0)-4u(x_2,y_1)=h^2\,f(x_2,y_1),$ $u(x_3,y_1)=g(x_3,y_1),\ u(x_2,y_0)=g(x_2,y_0)$ portando questi due termini a secondo membro otteniamo $u(x_1,y_1)+u(x_2,y_2)-4u(x_2,y_1)=h^2\,f(x_1,y_1)-g(x_3,y_1)-g(x_2,y_0).$

Nel caso i = 1, j = 2 si ha $u(x_2, y_2) + u(x_0, y_2) + u(x_1, y_3) + u(x_1, y_1) - 4u(x_1, y_2) = h^2 f(x_1, y_2),$ ed essendo

$$u(x_0, y_2) = g(x_0, y_2), \ u(x_1, y_3) = g(x_1, y_3)$$

portando questi due termini a secondo membro otteniamo

$$u(x_2,y_2)+u(x_1,y_1)-4u(x_1,y_2)=h^2 f(x_1,y_2)-g(x_0,y_2)-g(x_1,y_3).$$

■ Nel caso i = 2, j = 2 si ha

$$u(x_3, y_2)+u(x_1, y_2)+u(x_2, y_3)+u(x_2, y_1)-4u(x_2, y_2)=h^2 f(x_2, y_2),$$

ed essendo

$$u(x_3, y_2) = g(x_3, y_2), u(x_2, y_3) = g(x_2, y_3)$$

portando questi due termini a secondo membro otteniamo

$$u(x_1, y_2) + u(x_2, y_1) - 4u(x_2, y_2) = h^2 f(x_2, y_2) - g(x_3, y_2) - g(x_2, y_3).$$

Poniamo ora

$$b_1 := h^2 f(x_1, y_1) - g(x_0, y_1) - g(x_1, y_0),$$

$$b_2 := h^2 f(x_1, y_2) - g(x_0, y_2) - g(x_1, y_3),$$

$$b_3 := h^2 f(x_1, y_1) - g(x_3, y_1) - g(x_2, y_0),$$

$$b_4 := h^2 f(x_2, y_2) - g(x_3, y_2) - g(x_2, y_3),$$

ordiniamo i punti da sinistra a destra, e dal basso verso l'alto (ordine lessicografico)

$$P_1 = (x_1, y_1), P_2 = (x_2, y_1), P_3 = (x_1, y_2), P_4 = (x_2, y_2),$$

e infine poniamo

$$u_1 = u(x_1, y_1), u_2 = u(x_2, y_1), u_3 = u(x_1, y_2), u_4 = u(x_2, y_2),$$

ottenendo così

$$u_2 + u_3 - 4u_1 = b_1,$$

 $u_1 + u_4 - 4u_2 = b_2,$
 $u_4 + u_1 - 4u_3 = b_3,$
 $u_3 + u_2 - 4u_4 = b_4,$

da cui posto

$$A = \left(\begin{array}{cccc} -4 & 1 & 1 & 0 \\ 1 & -4 & 0 & 1 \\ 1 & 0 & -4 & 1 \\ 0 & 1 & 1 & -4 \end{array}\right)$$

basta risolvere il sistema Au = b per ottenere $u(x_1, y_1)$, $u(x_2, y_1)$, $u(x_1, y_2)$, $u(x_2, y_2)$.

Notiamo che

calcola proprio -A, mentre il termine noto b può essere facilmente calcolato dopo aver notato che

- **1** i termini $-g(x_i, y_0)$ sono presenti nelle componenti b_i ;
- 2 posto n=1/h, per $i=1,\ldots,n-1$, i termini $-g(x_i,y_n)$ sono presenti nelle componenti $b_{(n-1)^2-(n-1)+i}$;
- 3 per j = 1, ..., n-1, i termini $-g(x_0, y_j)$ sono presenti nelle componenti b_s con $s \equiv 1 \mod n-1$;
- 4 per j = 1, ..., n-1, i termini $-g(x_n, y_j)$ sono presenti nelle componenti b_s con $s \equiv 0 \mod n-1$.

Vediamo ora un'implementazione del metodo sopra descritto, detto per ovvi motivi a 5 punti (cf. (3)). Risulta importante ricordare la seguente stima dell'errore

Teorema

Se u è soluzione dell'equazione di Poisson (2) ed è almeno 4 volte differenziabile con continuità nel quadrato $\Omega := [0,1] \times [0,1]$ ed u_h l'approssimazione ottenuta col metodo alle differenze con 5 punti, utilizzando una griglia $\mathcal{G} = \{(x_i,y_j)\}$ con $x_i = i$ h, $y_j = j$ h, h = 1/(n+1) allora

$$|u(x_i,y_j)-u_h(x_i,y_j)|\leq ch^2$$

con

$$c = (1/24) \left(\max_{(x,y) \in \Omega} \left| \frac{\partial^4 u(x,y)}{\partial x^4} \right| + \max_{(x,y) \in \Omega} \left| \frac{\partial^4 u(x,y)}{\partial y^4} \right| \right)$$

Ci si aspetta quindi dai test numerici che effettueremo un errore dell'ordine di h^2 .

Salviamo in poisson5pts.m la funzione

```
function u=poisson5pts(n,f,g_left,g_right,g_down,g_up)
A=-makefish(n);
h=1/(n+1);
x=(h:h:1-h)'; v=x;
% SOLUZIONI IN BASSO.
x loc=x:
v_loc=zeros(size(x_loc));
b down=feval(g down.x loc.v loc):
% SOLUZIONI IN ALTO.
y_loc=ones(size(x_loc));
b_up=feval(g_up,x_loc,y_loc);
% SOLUZIONI A SINISTRA.
v loc=x loc: x loc=zeros(size(x loc)):
b_left=feval(g_left,x_loc,y_loc);
% SOLUZIONI A DESTRA
x_loc=ones(size(x_loc));
b_right=feval(g_right,x_loc,y_loc);
```

```
% COMPOSIZIONE TERMINE NOTO.
b1=b down:
% PRIMA RIGA IN BASSO.
 b1(1)=b1(1)+b_left(1); b1(n)=b1(n)+b_right(1);
% PRIMA RIGA IN ALTO.
bn=b_up; bn(1)=bn(1)+b_left(n); bn(n)=bn(n)+b_right(n);
% RIGHE INTERMEDIE.
bi=[]:
 for j=2:(n-1)
     biloc=zeros(n,1);
     bjloc(1)=bjloc(1)+b_left(j);
     bjloc(n)=bjloc(n)+b_right(j);
     bi=[bi: biloc]:
end
b=[b1; bj; bn];
% GRIGLIA LESSICOGRAFICA (METODO STANDARD).
 lunghezza_x=length(x); X=[]; Y=[];
 for index=1:lunghezza x
    X = [X : x]:
    Y = [Y; y(index)*ones(size(x))];
 end
fXY=feval(f,X,Y);
b_f=(h^2)*fXY; b=b_f-b; u=A\b;
```

Salviamo in demopoisson5pts.m la demo

```
% MODIFIED VERSION: MARCH 13, 2008.
demo_example=2;
switch demo example
case 1
      f=inline('zeros(size(x))','x','y');
       g_down=inline('ones(size(x))','x','y');
      g_up=inline('ones(size(x))','x','y');
g_left=inline('ones(size(x))','x','y');
g_right=inline('ones(size(x))','x','y');
solution=inline('ones(size(x))','x','y');
case 2
      f=inline('zeros(size(x))', 'x', 'y');
g_down=inline('exp(pi*x)', 'x', 'y');
       g_up=inline('-exp(pi*x)','x','y');
g_left=inline('cos(pi*y)','x','y');
       g_right=inline('((exp(1))^pi)*cos(pi*y)','x','y');
       solution=inline('(exp(pi*x)).*cos(pi*y)','x','y
```

```
case 3
    f = inline('(-2*(pi^2))*sin(pi*x).*sin(pi*y)','x','y');
    g_down=inline('zeros(size(x))','x','y');
    g_up=inline('zeros(size(x))','x','y');
    g_left=inline('zeros(size(x))','x','y');
    g_right=inline('zeros(size(x))','x','y');
    solution=inline('(sin(pi*x)).*sin(pi*y)','x','y');

otherwise
    f = inline('ones(size(x))','x','y');
    g_down=inline('zeros(size(x))','x','y');
    g_up=inline('zeros(size(x))','x','y');
    g_left=inline('zeros(size(x))','x','y');
    s_right=inline('zeros(size(x))','x','y');
    solution=inline('(sin(pi*x)).*sin(pi*y)','x','y');
end
```

```
for index=2.5
    n=2^index; h=1/(n+1); x=(h:h:1-h)'; y=x;
    [X,Y]=meshgrid(x,y); X=X'; Y=Y';
   % VETT. SOL. NEI PUNTI DELLA GRIGLIA ORD. IN LESSICOGR...
    u=poisson5pts(n,f,g_left,g_right,g_down,g_up);
   % USO RESHAPE COSI' LA SOLUZIONE HA LE STESSE DIMENSIONI DELLE MATRICI X, Y.
    Z=(reshape(u,n,n));
    if demo_example <=3
        V=feval(solution, X, Y);
        err(index)=norm(V(:)-Z(:),inf);
        if index = 1
          fprintf('\n \t [n]: %4.0f [ERR]: %2.2e',n,err(index));
        else
         fprintf('\n \t [n]: %4.0f [ERR]: %2.2e [RATIO]: %2.2f',...
               n, err(index), err(index-1)/err(index));
        end
    end
end
surf(X,Y,Z);
```

Equazione di Poisson: descrizione dell'implementazione.

Alcune osservazioni sui codici Matlab/Octave appena esposti.

■ Posto $h = \frac{1}{n+1}$, allora la matrice $B \in \mathbb{R}^{n \times n}$ mentre il termine noto b e il vettore soluzione u apparterranno a \mathbb{R}^{n^2} . dobbiamo risolvere un sistema lineare Au = b con

$$A = \left(\begin{array}{ccccc} B & I & 0 & \dots & 0 \\ I & B & I & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ \dots & 0 & I & B & I \end{array}\right)$$

e b un vettore i cui contributi dipendono dai valori che hanno sul bordo le funzioni f e g che definiscono l'equazione di Poisson

$$\begin{cases}
-\left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right] = f(x, y), & (x, y) \in \Omega \\
u(x, y) = g(x, y), & (x, y) \in \partial\Omega
\end{cases}$$
(8)

Equazione di Poisson: descrizione dell'implementazione.

- Dobbiamo tener conto che makefish non calcola A ma $\bar{A} = -A$ ed è per questo che scriviamo A=-makefish(n).
- (Per i più esperti) La funzione meshgrid crea a partire da due vettori di numeri reali x, y, le ascisse X e le ordinate Y dei punti facenti parte della griglia generata da x ed y. In particolare la matrice di punti

$$\begin{pmatrix} (x_1, y_1) & (x_2, y_1) & \dots & (x_n, y_1) \\ \dots & \dots & \dots & \dots \\ (x_1, y_n) & (x_2, y_n) & \dots & (x_n, y_n) \end{pmatrix}$$

viene descritta tramite la griglia di ascisse e ordinate

$$X = \left(\begin{array}{cccc} x_1 & x_2 & \dots & x_n \\ \dots & \dots & \dots \\ x_1 & x_2 & \dots & x_n \end{array}\right)$$

е

$$Y = \begin{pmatrix} y_1 & y_1 & \dots & y_1 \\ y_2 & y_2 & \dots & y_2 \\ y_3 & y_3 & \dots & y_3 \end{pmatrix}$$

Equazione di Poisson: descrizione dell'implementazione.

Così ad esempio

```
>> h=1/3;
>> x=h:h:1-h:
     0.3333
                0.6667
>> y=x;
>> [X,Y]=meshgrid(x,y)
     0.3333
                0.6667
     0.3333
                0.6667
Y =
     0 3333
               0 3333
     0.6667
                0.6667
|>>
```

descrivendone le coordinate x, y.

Esempio

Si studi mediante il metodo alle differenze precedente descritto, l'equazione di Poisson nel quadrato unitario $\Omega = [0,1] \times [0,1]$

$$\begin{cases}
\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, & (x, y) \in \Omega \\
u(x, y) = 1, & (x, y) \in \partial\Omega
\end{cases}$$
(9)

la cui soluzione è u(x,y) = 1. Utilizzare n = 2, 4, ..., 32.

Non è difficile osservare che

$$\max_{(x,y)\in\Omega}\left|\frac{\partial^4 u(x,y)}{\partial x^4}\right|=0, \max_{(x,y)\in\Omega}\left|\frac{\partial^4 u(x,y)}{\partial y^4}\right|=0$$

e quindi ci si aspetta che per qualsiasi *h* si abbia un errore dell'ordine della precisione di macchina.

Lanciamo da shell il primo esempio della demo, ottenendo

Per ratio si intende il rapporto dell'errore tra due iterate successive.

Esempio

Si studi mediante il metodo alle differenze,

$$\begin{cases} \frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} = 0, & (x, y) \in \Omega \\ u(x, 0) = \exp(\pi x), & x \in [0, 1] \\ u(x, 1) = -\exp(\pi x), & x \in [0, 1] \\ u(0, y) = \cos(\pi y), & y \in [0, 1] \\ u(1, y) = \exp(\pi) \cdot \cos(\pi y), & y \in [0, 1] \end{cases}$$
(10)

la cui soluzione è $u(x,y) = \exp(\pi x) \cdot \cos(\pi y)$. Utilizzare n = 2, 4, ..., 32.

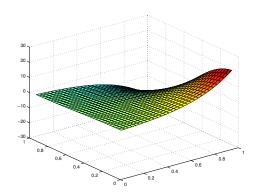


Figura: Soluzione del problema 2.

Si nota subito che per $x,y\in[0,1]$ si ha

$$\left| \frac{\partial^4 u}{\partial x^4}(x, y) \right| = \pi^4 \left| \exp(\pi x) \cdot \cos(\pi y) \right| \le \pi^4 \exp(\pi) \approx 2254.1$$

$$\left| \frac{\partial^4 u}{\partial y^4}(x, y) \right| = \pi^4 \left| \exp(\pi x) \cdot \cos(\pi y) \right| \le \pi^4 \exp(\pi) \approx 2254.1$$

da cui

$$c \le (1/24) \cdot 2254.1 \cdot 2 \approx 187.8428.$$

Quindi quale maggiorazione dell'errore assoluto in norma infinito, per n=3,7,15,31, avremo i valori immagazzinati qui sotto nel vettore err

```
>> format short e 
>> c=187.8428; err=[]; 
>> for n=2:5, N=2^n-1; h=1/(N+1); h2=h^2; err=[err; c*h2]; end 
>> err 
err = 1.1740e+0012.9350e+0007.3376e-0011.8344e-001>>
```

Lanciando la demo demopoisson5pts, per demoexample=2, abbiamo

```
>> demopoisson5pts
[n]: 4 [ERR]: 9.75e-002 [RATIO]: 0.74
[n]: 8 [ERR]: 3.20e-002 [RATIO]: 3.04
[n]: 16 [ERR]: 9.05e-003 [RATIO]: 3.54
[n]: 32 [ERR]: 2.45e-003 [RATIO]: 3.69
>>
```

- Come ci si aspettava la maggiorazione è realizzata, ma purtroppo come stima è abbastanza conservativa.
- 2 Nella colonna [RATIO] abbiamo indicato il rapporto e_{2h}/e_h dove e_h è l'errore assoluto compiuto dal metodo a 5 punti con passo h (ovvero la quantità esposte nella colonna [ERR] nella stessa riga di h). Il fatto che la ratio sia 4 non è sorprendente. Infatti se l'errore decresce come h^2 si può supporre che sia $e_h \approx \hat{c}h^2$ per qualche \hat{c} indipendente da h e quindi

$$rac{e_{2h}}{e_h} pprox rac{\hat{c}(2h)^2}{\hat{c}h^2} pprox 4.$$

Esempio

Si risolva l'equazione di Poisson nel quadrato unitario $\Omega = [0,1] \times [0,1]$

$$\begin{cases} \frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} = (-2\pi^{2}) \sin(\pi x) \sin(\pi y), & (x, y) \in \Omega \\ u(x, 0) = 0, & x \in [0, 1], \\ u(x, 1) = 0, & x \in [0, 1], \\ u(0, y) = 0, & y \in [0, 1], \\ u(1, y) = 0, & y \in [0, 1]. \end{cases}$$

$$(11)$$

la cui soluzione è $u(x,y) = \sin(\pi x) \sin(\pi y)$, con il metodo alle differenze precedentemente descritto. Utilizzare $n = 2, 4, \dots, 32$.

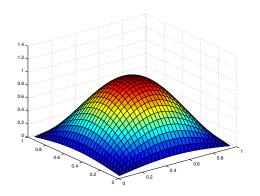


Figura: Soluzione del problema 3.

Ripetendo la stima basata sulle derivate quarte della soluzione *u* abbiamo facilmente

$$c \le (1/24) \, 2 \, \pi^4 \approx 8.1174$$

da cui

```
>> c = 8.1174; \\ >> err = []; for n = 2:5, N = 2^n; N = N - 1; h = 1/(N+1); h 2 = h^2; err = [err; c*h2]; end \\ >> format short e \\ >> err \\ err = \\ 5.0734e = 001 \\ 1.2683e = 001 \\ 3.1709e = 002 \\ 7.9271e = 003 \\ >>
```

Lanciando la demo demopoisson5pts, per demoexample=3, abbiamo

```
>> demopoisson5pts

[n]: 4 [ERR]: 3.04e-002 [RATIO]: 2.39

[n]: 8 [ERR]: 9.91e-003 [RATIO]: 3.06

[n]: 16 [ERR]: 2.83e-003 [RATIO]: 3.51

[n]: 32 [ERR]: 7.54e-004 [RATIO]: 3.75

>>
```

Rispetto al caso precedente la stima è più precisa, e la ratio di circa 4 ci dice che la convergenza è ancora dell'ordine di h^2 .

Equazione di Poisson: esercizio.

Esercizio

Si risolva l'equazione di Poisson nel quadrato $\Omega = [0, \pi] \times [0, \pi]$

$$\begin{cases} \frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} = 0, & (x, y) \in \Omega \\ u(x, 0) = 0, & x \in [0, \pi], \\ u(x, \pi) = 0, & x \in [0, \pi], \\ u(0, y) = \sin(y), & y \in [0, \pi], \\ u(\pi, y) = \exp(\pi) \sin(y), & y \in [0, \pi]. \end{cases}$$
(12)

la cui soluzione è $u(x,y) = \exp(x)\sin(y)$, con il metodo alle differenze precedentemente descritto. Utilizzare n = 2, 4, ..., 32.

Equazione di Poisson: esercizio (suggerimento).

Modificare poisson5pts come segue

```
function u=poisson5pts(n,f,g_left,g_right,g_down,g_up,a,b)
if nargin <= 6
    a=0; b=1;
end

A=-makefish(n);
h=(b-a)/(n+1);
x=(a+h:h:b-h)'; y=x;
...</pre>
```

come pure opportunamente demopoisson5pts, utilizzando $\emph{a}=0$, $\emph{b}=\pi.$

Su nargin.

La chiamata nargin conta gli argomenti forniti dall'utente come input e permette di aggiustare casi in cui non tutte le variabili siano state assegnate dall'utente.

```
>> help nargin
NARGIN Number of function input arguments.
Inside the body of a user—defined function, NARGIN returns
the number of input arguments that were used to call the
function.
...
```

Bibliografia

V. Comincioli, Analisi Numerica, metodi modelli applicazioni, Mc Graw-Hill, 1990.