Alvise Sommariva

Università degli Studi di Padova Dipartimento di Matematica

22 maggio 2018

Consideriamo l'equazione del calore

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + G, \ 0 < x < 1, \ t > 0 \\ u(0, t) = d_0(t), \ u(1, t) = d_1(t), \ t \ge 0 \\ u(x, 0) = f(x), \ 0 \le x \le 1 \end{cases}$$
 (1)

Sia m > 0 intero e sia

- $h_{x} = 1/m$
- $x_j = jh_x \text{ con } j = 0, 1, \dots, m.$

Si può mostrare che per $j=1,2,\ldots,m-1$ e $\xi_j\in(x_{j-1},x_{j+1})$, se la soluzione è sufficientemente regolare,

$$\frac{\partial^2 u}{\partial x^2}(x_j, t) = \frac{u(x_{j+1}, t) - 2u(x_j, t) + u(x_{j-1}, t)}{h_x^2} - \frac{h_x^2}{12} \frac{\partial^4 u}{\partial x^4}(\xi_j, t)$$
(2)

2/22

Da

una volta posto $u_j(t) := u(x_j, t)$, ci riconduciamo a studiare invece dell'equazione del calore

$$\underbrace{\frac{\partial u_{j}'(t)}{\partial t}(x_{j},t)}_{u_{j+1}(t)} = \underbrace{\frac{u_{j+1}(t)}{u(x_{j+1},t)} - 2\underbrace{u(x_{j},t)}_{u(x_{j},t)} + \underbrace{u_{j-1}(t)}_{u(x_{j-1},t)}}_{h_{x}^{2}} + G(x_{j},t)$$

per t > 0.

Di conseguenza, posto $u_j(t) := u(x_j, t)$, otteniamo quindi per j = 1, ..., m-1 il sistema di equazioni differenziali

$$u'_{j}(t) = \frac{u_{j+1}(t) - 2u_{j}(t) + u_{j-1}(t)}{h_{x}^{2}} + G(x_{j}, t)$$
(3)

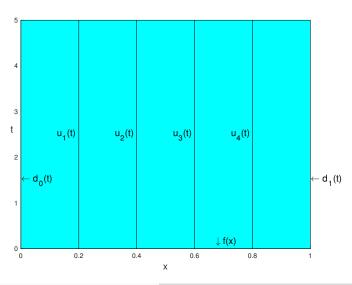
Risolto (3), si avrà una approssimazione della soluzione dell'equazione del calore per $x_j = jh_x$ e $t \ge 0$. Il procedimento appena descritto è noto in letteratura come *metodo delle linee*.

Nel risolvere il sistema dobbiamo far attenzione alle condizioni sul bordo

$$u_0(t) = d_0(t), \ u_m(t) = d_1(t)$$

e ricordare che la condizione iniziale del sistema di equazioni differenziali è

$$u_i(0) = f(x_i), j = 1, \ldots, m-1.$$



Alvise Sommariva

Equazione del calore.

5/ 22

Esempio

Vediamo per esempio il caso in cui m = 4. Da

$$u'_j(t) = \frac{u_{j+1}(t) - 2u_j(t) + u_{j-1}(t)}{h_x^2} + G(x_j, t), \quad j = 1, 2, 3,$$

il sistema diventa, ricordando i contributi del bordo,

$$u_1'(t) = \frac{u_2(t) - 2u_1(t) + u_0(t)}{h_x^2} + G(x_1, t) = \frac{u_2(t) - 2u_1(t)}{h_x^2} + G(x_1, t) + \frac{d_0(t)}{h_x^2}$$

$$u_2'(t) = \frac{u_3(t) - 2u_2(t) + u_1(t)}{h_x^2} + G(x_2, t)$$

$$u_3'(t) = \underbrace{\frac{u_3(t) - 2u_3(t) + u_2(t)}{h_x^2} + G(x_3, t)}_{h_x^2} + G(x_3, t) = \underbrace{\frac{-2u_3(t) + u_2(t)}{h_x^2} + G(x_3, t)}_{h_x^2} + G(x_3, t) + \underbrace{\frac{d_1(t)}{h_x^2}}_{h_x^2}$$

Il sistema differenziale (3) può essere riscritto matricialmente. Posto

$$\mathbf{u}(t) := [u_1(t), \dots, u_{m-1}(t)]^T$$

$$\mathbf{u}_0 := [f(x_1), \dots, f(x_{m-1})]^T$$

$$\mathbf{g}(t) := \left[\frac{1}{h_x^2} d_0(t), 0, \dots, 0, \frac{1}{h_x^2} d_1(t)\right]^T + [G(x_1, t), \dots, G(x_{m-1}, t)]^T$$

$$A = \frac{1}{h_x^2} \begin{bmatrix} -2 & 1 & 0 & 0 & \dots & 0 \\ 1 & -2 & 1 & 0 & \dots & 0 \\ 0 & 1 & -2 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & 1 & -2 \end{bmatrix}$$

$$(4)$$

otteniamo che (3) è equiv. al sistema di eq. differenziali (lineari)

$$\mathbf{u}'(t) = A\mathbf{u}(t) + \mathbf{g}(t), \, \mathbf{u}(0) = \mathbf{u}_0. \tag{5}$$

Alvise Sommariva

Equazione del calore.

Nota.

Osserviamo che la matrice a predominanza diagonale

$$A = \frac{1}{h_x^2} \begin{bmatrix} -2 & 1 & 0 & 0 & \dots & 0\\ 1 & -2 & 1 & 0 & \dots & 0\\ 0 & 1 & -2 & 1 & \dots & 0\\ \dots & \dots & \dots & \dots & \dots & \dots\\ 0 & 0 & 0 & 0 & 1 & -2 \end{bmatrix}$$
 (6)

è

- A è simm. definita negativa per i teoremi di Gershgorin.
- Si mostra che se $A \in \mathbb{R}^{(m-1)\times (m-1)}$, allora i suoi autov. sono

$$-\frac{2-2\cos(\frac{j\pi}{m})}{h_x^2}=-2m^2\frac{1-\cos(\frac{j\pi}{m})}{m^2h_x^2}=-2m^2(1-\cos(\frac{j\pi}{m})).$$

■ Diagonalizzabile e I — h_tA è invertibile (A è def. negativa).

Nota.

Sotto ipotesi opportune di regolarità delle funzioni d_0 , d_1 , G, f, si può mostrare che

$$\max_{j=0,...,m} \max_{t \in [0,T]} |y(x_j,t) - u_j(t)| \le C_T h_x^2$$

con C_T indipendente da h_x .

Nota.

La matrice quadrata A di dimensione m-1 non è in generale troppo malcondizionata, come vediamo dagli esempi che seguono.

m	h	$[\lambda_{min},\lambda_{max}]$	cond(A)
5	2.00e - 01	[9.55e + 00, 9.05e + 01]	9.47e + 00
10	1.00e - 01	[9.79e + 00, 3.90e + 02]	3.99e + 01
15	6.67e - 02	[9.83e + 00, 8.90e + 02]	9.05e + 01
20	5.00e - 02	[9.85e + 00, 1.59e + 03]	1.61e + 02
25	4.00e - 02	[9.86e + 00, 2.49e + 03]	2.53e + 02
30	3.33e - 02	[9.86e + 00, 3.59e + 03]	3.64e + 02
100	1.00e - 02	[9.87e + 00, 4.00e + 04]	4.05e + 03

Tra i metodi più comuni nel risolvere il problema differenziale (di Cauchy)

$$\begin{cases}
\mathbf{u}'(t) = F(t, \mathbf{u}(t)) \\
\mathbf{u}(0) = \mathbf{u}_0
\end{cases}$$
(7)

citiamo il metodo di Eulero esplicito (posto $\mathbf{u}_{n+1} = \mathbf{u}(t_{n+1})$)

$$\begin{cases}
\mathbf{u}_{n+1} = \mathbf{u}_n + hF(t_n, \mathbf{u}_n) \\
\mathbf{u}_0 \text{ assegnato}
\end{cases}$$
(8)

e quello di Eulero implicito

$$\begin{cases}
\mathbf{u}_{n+1} = \mathbf{u}_n + hF(t_{n+1}, \mathbf{u}_{n+1}) \\
\mathbf{u}_0 \text{ assegnato}
\end{cases}$$
(9)

Nel nostro caso

$$F(t, \mathbf{v}(t)) := A\mathbf{v}(t) + \mathbf{g}(t)$$

e quindi il metodo di Eulero esplicito genera la successione

$$\begin{cases} \mathbf{v}_{n+1} = \mathbf{v}_n + h_t(A\mathbf{v}_n + \mathbf{g}(t_n)) \\ \mathbf{v}_0 \text{ assegnato} \end{cases}$$
 (10)

mentre Eulero implicito determina

$$\begin{cases}
\mathbf{v}_{n+1} = \mathbf{v}_n + h_t(A\mathbf{v}_{n+1} + \mathbf{g}(t_{n+1})) \\
\mathbf{v}_0 \text{ assegnato}
\end{cases} (11)$$

o equivalentemente

$$\begin{cases} (I - h_t A) \mathbf{v}_{n+1} = \mathbf{v}_n + h_t \mathbf{g}(t_{n+1}) \\ \mathbf{v}_0 \text{ assegnato} \end{cases}$$
 (12)

Nota.

Osserviamo che a differenza del metodo esplicito, poichè

$$\begin{cases} (I - h_t A) \mathbf{v}_{n+1} = \mathbf{v}_n + h_t \mathbf{g}(t_{n+1}) \\ \mathbf{v}_0 \text{ assegnato} \end{cases}$$
 (13)

ad ogni iterazione si richiede la soluzione di un'equazione (che nel nostro caso è lineare). Usando i primi due teoremi di Gerschgorin, si vede che $(I-\gamma A)$ è definita positiva per $\gamma \geq 0$ (e quindi non singolare).

A partire da Eulero esplicito ed Eulero implicito si definiscono i cosidetti θ -metodi in cui, con \mathbf{v}_0 assegnato,

$$\mathbf{v}_{n+1} = (1-\theta)\left(\mathbf{v}_n + h_t(A\mathbf{v}_n + \mathbf{g}(t_n))\right) + \theta\left(\mathbf{v}_n + h_t(A\mathbf{v}_{n+1} + \mathbf{g}(t_{n+1}))\right)$$

Per

- $\theta = 0$ si ottiene il metodo di Eulero esplicito;
- $\theta = 1$ si ottiene il metodo di Eulero implicito;
- $\theta = 1/2$ si ottiene il metodo di Crank-Nicolson.

Stabilità

Consideriamo l'equazione del calore nel caso $G \equiv 0$, cioè

$$\begin{cases}
\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, & 0 < x < 1, \ t > 0 \\
u(0, t) = d_0(t), & u(1, t) = d_1(t), \ t \ge 0 \\
u(x, 0) = f(x), & 0 \le x \le 1
\end{cases}$$
(14)

Si dimostra che, se $d_0(t)$, $d_1(t) = 0$, la soluzione esatta tende a 0 e quindi si richiede che la soluzione numerica abbia la stessa proprietà. In tal caso la soluzione si dice assolutamente stabile.

Stabilità

Il problema continuo viene discretizzato come proposto precedentemente, ottenendo il sistema differenziale

$$\mathbf{u}'(t) = A\mathbf{u}(t), \ \mathbf{u}(0) = \mathbf{u}_0 \tag{15}$$

che è possibile risolvere con un generico θ -metodo

$$\mathbf{v}_{n+1} = (1 - \theta) \left(\mathbf{v}_n + h_t A \mathbf{v}_n \right) + \theta \left(\mathbf{v}_n + h_t A \mathbf{v}_{n+1} \right)$$
 (16)

con \mathbf{v}_0 assegnato.

Stabilità Eulero esplicito

Nel caso di Eulero esplicito abbiamo

$$\mathbf{v}_{n+1} = \mathbf{v}_n + h_t A \mathbf{v}_n = (I + h_t A) \mathbf{v}_n \tag{17}$$

Siccome A è diagonalizzabile, abbiamo che per qualche S, $A = S^{-1}\Lambda S$, con Λ diagonale. Posto $\mathbf{u}_n = S\mathbf{v}_n$, osserviamo che

$$\mathbf{u}_n \to 0 \Leftrightarrow \mathbf{v}_n \to 0$$
.

Infatti

$$\|\mathbf{u}_n\| = \|S\mathbf{v}_n\| \le \|S\|\|\mathbf{v}_n\|$$

implica che se $\mathbf{v}_n \to 0$ allora $\mathbf{u}_n \to 0$. Viceversa

$$\|\mathbf{v}_n\| = \|S^{-1}\mathbf{u}_n\| \le \|S^{-1}\|\|\mathbf{u}_n\|$$

implica che se $\mathbf{u}_n \to 0$ allora $\mathbf{v}_n \to 0$.

Stabilità Eulero esplicito

Da

$$\mathbf{u}_{n+1} = S\mathbf{v}_{n+1} = S(\mathbf{v}_n + h_t A \mathbf{v}_n) = \mathbf{u}_n + h_t S A \mathbf{v}_n$$
$$= \mathbf{u}_n + h_t S S^{-1} \Lambda S \mathbf{v}_n = \mathbf{u}_n + h_t \Lambda \mathbf{u}_n = (I + h_t \Lambda) \mathbf{u}_n.$$

se $\mathbf{u}_n = (u_{n,i})_i$, $\Lambda_{i,i} = \lambda_i$, essendo Λ diagonale, la *i*-sima equazione diventa

$$u_{n+1,i} = (1 + h_t \lambda_i) u_{n,i}$$

e di conseguenza

$$u_{n+1,i} = (1 + h_t \lambda_i) u_{n,i} = \ldots = (1 + h_t \lambda_i)^{n+1} u_{0,i}$$

e quindi $\mathbf{u}_n \to 0$ se e solo se

$$|1 + h_t \lambda_i| < 1, i = 1, \ldots, m-1.$$

Stabilità Eulero esplicito

La condizione $|1+h_t\lambda_i|<1$ pone i vincoli sul passo

$$h_t \leq \frac{2}{|\lambda_i|}, \quad i=1,\ldots,m-1.$$

Essendo

$$\lambda_i = -rac{2-2cos(rac{j\pi}{m})}{h_x^2}, \ j=1,\ldots,m-1$$

abbiamo che $\lambda_i < 0$ per $i = 1, \ldots, m-1$ e $\max_i |\lambda_i| = |\min_i(\lambda_i)|$,

$$|\min_{i}(\lambda_{i})| = |\lambda_{m-1}| = |-\frac{2 - 2cos(\frac{(m-1)\pi}{m})}{h_{x}^{2}}| \approx \frac{|-4|}{h_{x}^{2}} = \frac{4}{h_{x}^{2}}$$

da cui la condizione sulla stabilità asintotica

$$h_t \leq \frac{h_x^2}{2}.$$

Stabilità Eulero implicito

Nel caso di Eulero implicito abbiamo

$$\mathbf{v}_{n+1} = \mathbf{v}_n + h_t A \mathbf{v}_{n+1} \tag{18}$$

da cui immediatamente

$$\mathbf{v}_{n+1} = (I - h_t A)^{-1} \mathbf{v}_n \tag{19}$$

Siccome A è diagonalizzabile, abbiamo che per qualche S, $A = S^{-1}\Lambda S$, con Λ diagonale. Posto $\mathbf{u}_n = S\mathbf{v}_n$,

$$\mathbf{u}_{n+1} = S\mathbf{v}_{n+1} = S(I - h_t A)^{-1} \mathbf{v}_n = S(S^{-1}S - h_t S^{-1} \Lambda S)^{-1} \mathbf{v}_n$$

$$= S(S^{-1}(I - h_t \Lambda)S)^{-1} \mathbf{v}_n = SS^{-1}(I - h_t \Lambda)^{-1} S\mathbf{v}_n$$

$$= (I - h_t \Lambda)^{-1} \mathbf{u}_n.$$
(20)

Se $\mathbf{u}_n = (u_{n,i})_i$, $\Lambda_{i,i} = \lambda_i$, la *i*-sima equazione diventa

$$u_{n+1,i} = (1 - h_t \lambda_i)^{-1} u_{n,i}$$

e quindi, da

$$u_{n+1,i} = (1 - h_t \lambda_i)^{-1} u_{n,i} = \ldots = (1 - h_t \lambda_i)^{-(n+1)} u_{0,i}$$

il metodo converge asintoticamente a 0 se e solo se

$$|1/(1-h_t\lambda_i)|<1, i=1,\ldots,m-1.$$

Stabilità Eulero implicito

Siccome A è definita negativa e simile a Λ , abbiamo che $\lambda_i < 0$ e quindi

$$|1/(1-h_t\lambda_i)|<1.$$

è verificata per qualsiasi scelta di h_t .

Questo significa che qualsiasi sia h_t , la successione del metodo di Eulero implicito converge asintoticamente a 0, come la soluzione dell'equazione del calore.

Stabilità Crank-Nicolson

Nel caso di Crank-Nicolson abbiamo

$$\mathbf{v}_{n+1} = (1/2)(\mathbf{v}_n + h_t A \mathbf{v}_{n+1}) + (1/2)(\mathbf{v}_n + h_t A \mathbf{v}_n)$$
 (21)

da cui immediatamente

$$\mathbf{v}_{n+1} = \mathbf{v}_n + (1/2)h_t A \mathbf{v}_{n+1} + (1/2)h_t A \mathbf{v}_n$$
 (22)

cioè

$$(I - \frac{h_t}{2}A)\mathbf{v}_{n+1} = (1 + \frac{h_t}{2}A)\mathbf{v}_n$$
 (23)

ovvero, essendo $I - \frac{h_t}{2}A$ invertibile poichè definita positiva,

$$\mathbf{v}_{n+1} = (I - \frac{h_t}{2}A)^{-1}(I + \frac{h_t}{2}A)\mathbf{v}_n. \tag{24}$$

Essendo $A = S^{-1}\Lambda S$, con Λ diagonale, posto $\mathbf{u}_n = S\mathbf{v}_n$,

$$\mathbf{u}_{n+1} = S\mathbf{v}_{n+1} = S(I - \frac{h_t}{2}A)^{-1}(I + \frac{h_t}{2}A)\mathbf{v}_n$$

$$= S(I - \frac{h_t}{2}A)^{-1}S^{-1}S(1 + \frac{h_t}{2}A)S^{-1}S\mathbf{v}_n$$

$$= \left(S(I - \frac{h_t}{2}A)S^{-1}\right)^{-1}(1 + \frac{h_t}{2}\Lambda)\mathbf{u}_n = (1 - \frac{h_t}{2}\Lambda)^{-1}(1 + \frac{h_t}{2}\Lambda)\mathbf{u}_n$$

Stabilità Crank-Nicolson

Da

$$\mathbf{u}_{n+1} = \left(1 - \frac{h_t}{2}\Lambda\right)^{-1} \left(1 + \frac{h_t}{2}\Lambda\right) \mathbf{u}_n$$

la i-sima equazione diventa

$$\mathbf{u}_{n+1,i} = \frac{1 + \frac{h_t}{2} \lambda_i}{1 - \frac{h_t}{2} \lambda_i} \mathbf{u}_{n,i}$$

e quindi

$$\mathbf{u}_{n+1,i} = \frac{1 + \frac{h_t}{2} \lambda_i}{1 - \frac{h_t}{2} \lambda_i} \mathbf{u}_{n,i} = \ldots = \left(\frac{1 + \frac{h_t}{2} \lambda_i}{1 - \frac{h_t}{2} \lambda_i}\right)^{n+1} \mathbf{u}_{0,i}$$

e come nel caso scalare converge a 0 se e solo se

$$rac{\left|1+rac{h_t}{2}\lambda_i
ight|}{\left|1-rac{h_t}{2}\lambda_i
ight|}<1$$

che è sempre verificata poichè $\lambda_i < 0$.

Visto che $\mathbf{v}_n \to 0$ se e solo $\mathbf{u}_n \to 0$, la successione del metodo di Crank-Nicolson converge asintoticamente a 0, come la soluzione dell'equazione del calore, senza condizioni su h_t .

Facoltativo. Stabilità

Nota.

Si dimostra che le matrici dei sistemi lineari dei metodi di Eulero implicito e di Crank-Nicolson sono molto meglio condizionate della matrice A del sistema differenziale. Infatti essendo

$$\lambda_{min}(A) \approx -4/h_x^2$$

ed essendo $1 - \cos(x) \approx x^2/2$ per $x \approx 0$, $mh_x = 1$,

$$\lambda_{max}(A) = -\frac{2(1 - \cos(\pi/m))}{h_x^2} \approx -\frac{2(\pi/m)^2}{2h_x^2} = -\pi^2$$

da cui $\operatorname{cond}_2(A) \approx \frac{4}{\pi^2 h_{\mathsf{x}}^2}$ mentre, da $\lambda_{min}(1 - h_{\mathsf{t}}A) = 1 - h_{\mathsf{t}}\lambda_{max}(A)$,

$$\lambda_{max}(1-h_tA)=1-h_t\lambda_{min}(A)$$
, per $h_t\pi^2\ll 1$,

$$\frac{\text{cond}_2(1 - h_t A)}{1 - h_t \lambda_{max}(A)} = \frac{1 - h_t \lambda_{min}(A)}{1 - h_t \lambda_{max}(A)} \approx \frac{1 + 4h_t / h_x^2}{1 + h_t \pi^2} \approx 1 + 4h_t / h_x^2.$$

Nota.

Quanto visto, presuppone che nell'equazione del calore sia $g\equiv 0$, ma una analisi simile può essere effettuata anche per il caso in cui $g\neq 0$.