Miglior approssimazione in spazi euclidei

Alvise Sommariya

Università degli Studi di Padova Dipartimento di Matematica

4 maggio 2018

Definizione (Spazio euclideo (in \mathbb{R}))

Uno spazio vettoriale E dotato di un prodotto interno (\cdot,\cdot) in $\mathbb R$, cioè una funzione reale definita sulle coppie $x,y\in E$ con le seguenti proprietà

- 1 $(x,x) \ge 0$ per ogni $x \in E$; inoltre (x,x) = 0 se e solo se x = 0;
- (x,y) = (y,x) per ogni $x,y \in E$;
- **3** $(\lambda x, y) = \lambda(x, y)$ per ogni $x, y \in E$ e $\lambda \in \mathbb{R}$;
- 4 (x, y + z) = (x, y) + (x, z) per ogni $x, y, z \in E$.

si dice spazio euclideo in \mathbb{C} .

A partire dal prodotto interno si può definire lo spazio normato $(E, \|\cdot\|)$ ponendo $\|f\| = \sqrt{(f, f)}$.

Definizione (Spazio euclideo (in \mathbb{C}))

Uno spazio vettoriale E dotato di un prodotto interno (\cdot,\cdot) in \mathbb{C} , cioè una funzione complessa definita sulle coppie $x,y\in E$ con le seguenti proprietà

- **1** $(x,x) \ge 0$ per ogni $x \in E$; inoltre (x,x) = 0 se e solo se x = 0;
- $(x,y) = \overline{(y,x)} \text{ per ogni } x,y \in E;$
- $(\lambda x, y) = \lambda(x, y) \text{ per ogni } x, y \in E;$
- 5 (x, y + z) = (x, y) + (x, z) per ogni $x, y, z \in E$.

si dice spazio euclideo in \mathbb{C} .

A partire dal prodotto interno si può definire lo spazio normato $(E, \|\cdot\|)$ ponendo $\|f\| = \sqrt{(f, f)}$.

Vediamo alcuni esempi di spazi euclidei:

■ \mathbb{R}^n dotato dell'usuale prodotto scalare, è uno spazio euclideo; se e_1, \ldots, e_n è una base ortonormale, cioè per cui $(\phi_j, \phi_k) = \delta_{j,k}$ (dove al solito $\delta_{j,k}$ è il delta di Kronecker), allora ogni vettore $x \in \mathbb{R}^n$ si può scrivere come

$$x = \sum_{k=1}^{n} c_n e_n, \ c_k = (x, e_k).$$

Infatti, moltiplicando ambo i membri di x per e_k si ha per la bilinearità del prodotto scalare

$$(x, e_s) = \left(\sum_{k=1}^n c_n e_n, e_s\right) = \sum_{k=1}^n c_n(e_n, e_s) = c_s(e_s, e_s) = c_s.$$

■ lo spazio C([a, b]) delle funzioni continue nel compatto [a, b], dotato del prodotto scalare

$$(f,g) = \int_a^b f(x)g(x) dx$$

è uno spazio euclideo, cf. [8, p.145].

■ lo spazio $L^2_{\mathbb{R}}([a,b])$ lo spazio delle funzioni misurabili $f:[a,b] \to \mathbb{R}$ con [a,b] compatto e tali che $|f|^2$ sia integrabile (cf.[4, p.5]), dotato del prodotto scalare

$$(f,g) = \int_a^b f(x)g(x) dx$$

è uno spazio euclideo *completo*, cioè ogni successione di Cauchy è convergente cf. [8, p.145].

■ lo spazio $L^2_{\mathbb{C}}([a,b])$ lo spazio delle funzioni misurabili $f:[a,b] \to \mathbb{C}$ con [a,b] compatto e tali che $|f|^2$ sia integrabile (cf.[4, p.5]) , dotato del prodotto scalare

$$(f,g) = \int_{a}^{b} f(x)\overline{g(x)} \, dx$$

è uno spazio euclideo completo, cf. (cf.[4, p.5]).

Ricordiamo che se $z=a+i\cdot b$ allora $\overline{z}=a-i\cdot b$ e \overline{z} si chiama il coniugio di z.

Teorema (Pitagora)

Sia E uno spazio euclideo, e siano $f,g \in E$ tali che (f,g) = 0 (cioè f e g sono ortogonali). Allora $||f + g||^2 = ||f||^2 + ||g||^2$.

Dimostrazione.

Essendo (f,g) = 0, dalla bilinearità del prodotto interno,

$$||f + g||^2 = (f + g, f + g) = (f, f) + (g, f) + (f, g) + (g, g)$$

$$= (f, f) + 0 + 0 + (g, g)$$

$$= ||f||^2 + ||g||^2$$

Δ

Notazione.

Denoteremo con $<\phi_k>_{k=1,\dots,N}$ lo spazio vettoriale definito da $\{\phi_k\}_{k=1,\dots,N}.$

Teorema (Proiezione ortogonale)

Sia $f \in E$, E spazio euclideo e $\{\phi_j\}_{1,\dots,N}$ un sistema finito di elementi di E lin. indipendenti. Allora $f^* = \sum_{1,\dots,N} c_j^* \phi_j$ è la soluzione del problema

$$||f - f^*||_2 = \min_{g \in \langle \phi_k \rangle_{k=1,...,N}} ||f - g||_2$$

dove i coefficienti c_i^* verificano le cosidette equazioni normali

$$\sum_{k=1}^{N} (\phi_j, \phi_k) c_k^* = (\phi_j, f), \ j = 1, \dots, N.$$

La soluzione è caratterizzata dalla proprietà di ortogonalità cioè che f^*-f è ortogonale a tutti gli ϕ_k , con $k=1,\ldots,N$ o equivalentemente

$$(f^*, \phi_k) = (f, \phi_k), \ k = 1, \dots, N.$$
 (1)

Alvise Sommariva

Dimostrazione.

- Supponiamo che per un certo $f^* = \sum_{1,...,N} c_j^* \phi_j$ si abbia che $f^* f$ sia ortogonale a tutti i ϕ_k (e quindi a ogni loro combinazione lineare).
- Supponiamo $f^{\circ} \neq f^{*}$ sia l'elemento di migliore approssimazione.

Allora, visto che $f-f^*$ è ortogonale a $f^*-f^\circ \in <\phi_k>$, utilizzando il teorema di Pitagora

$$||f - f^{\circ}||^{2} = ||(f - f^{*}) + (f^{*} - f^{\circ})||^{2}$$
$$= ||f - f^{*}||^{2} + ||f^{*} - f^{\circ}||^{2} > ||f - f^{*}||^{2}$$
(2)

e quindi f° non può essere l'elemento di miglior approssimazione.

Di conseguenza se $f^* \in <\phi_k>_{k=1,\dots,N}$ e f^*-f è ortogonale a tutti i ϕ_k allora f^* è la miglior approssimazione di f in $<\phi_k>_{k=1,\dots,N}$. Rimane allora da mostrare che le condizioni di ortogonalità

$$\left(\sum_{j=1}^{N} c_{j}^{*} \phi_{j} - f, \phi_{k}\right) = 0, \quad k = 1, \dots, N$$

sono soddisfatte per un qualche (unico!) $c^* = (c_j)_{j=1,\dots,N}$.

Questo problema è equivalente alla esistenza della soluzione del sistema di equazioni normali

$$\sum_{k=1}^{N} (\phi_j, \phi_k) c_k^* = (\phi_j, f), \ j = 1, \dots, N$$
 (3)

cioè che la matrice $G=(G_{i,j})=((\phi_i,\phi_j))$ è non singolare.

Mostriamo che la matrice (di Gram) G è hermitiana, cioè $G = \overline{G}$, definita positiva e quindi non singolare. Infatti gli autovalori di queste matrici sono tutti strettamente e quindi lo è pure il loro prodotto che a sua volta è esattamente il determinante.

- Il fatto che sia hermitiana è di immediata verifica, poichè $G_{i,j} = (\phi_i, \phi_j) = \overline{(\phi_j, \phi_i)} = G_{j,i}$.
- Per mostrare che è definita positiva, basta vedere che se $v = (v_i) \in \mathbb{C}^N \setminus \{0\}$, $G_{i,j} = (\phi_i, \phi_j)$, allora $v^H G v > 0$.

Si osservi che $v^H G v \in \mathbb{R}$ essendo

$$(v^{H}Gv)^{H} = (v^{H}G^{H}v)^{H} = v^{H}Gv$$

 $e \overline{z} = z$ se e solo se $z \in \mathbb{R}$.

Supponiamo sia
$$v=(v_i)\in\mathbb{C}^N\backslash\{0\}$$
, $G_{i,j}=(\phi_i,\phi_j)$, $u=\sum_i\overline{v}_i\phi_i\neq 0$. Allora

$$v^{H} \cdot G \cdot v = v^{H} \cdot (\sum_{j} v_{j} (\overline{\phi_{i}, \phi_{j}}))_{i} = \sum_{i} \overline{v}_{i} (\sum_{j} \phi_{i}, \overline{v_{j}} \phi_{j})_{i}$$

$$= \sum_{i} \sum_{i} (\overline{v_{i}} \phi_{i}, \overline{v_{j}} \phi_{j}) = (u, u) > 0.$$

Quindi esiste f^* , di miglior approssimazione, ed è tale che $f^* - f$ è ortogonale a ϕ_k per k = 1, ..., N.

Nota.

Osserviamo ora che se non si possiede una base ortogonale $\{\phi_k\}_{k=1,\dots,N}$ allora per ottenere l'elemento di miglior approssimazione, bisogna

- Disporre dei prodotti scalari (ϕ_j, ϕ_k) per j, k = 1, ..., N e di (ϕ_j, f) per j = 1, ..., N.
- Con i valori (ϕ_j, ϕ_k) si forma la matrice simmetrica (e definita positiva!) di Gram le cui componenti sono $G_{j,k} = (\phi_j, \phi_k)$,
- con $b_j = (\phi_j, f)$ si definisce il termine noto b del sistema Gc = b,
- si risolve quindi tale sistema lineare, la cui soluzione fornisce le componenti (c_j^*) dell'elemento di miglior approssimazione $\sum_j c_j^* \phi_j$.

Se invece disponiamo di una base ortogonale $\{\phi_k\}_{k=1,...,N}$ allora il calcolo della miglior approssimazione non richiede la soluzione del sistema delle equazioni normali, bensi' da

$$c_k^* = \frac{(\phi_k, f)}{(\phi_k, \phi_k)}$$

il solo calcolo di alcuni prodotti interni e N divisioni.

Inoltre si noti che se $\{\phi_k\}_{k=1,\dots,N}$ è un sistema ortogonale, allora

- i coefficienti di Fourier c_i* sono independenti da N;
- tale indipendenza offre il vantaggio che se è necessario aumentare il numero totale di parametri c_j^* , non è necessario ricalcolare quelli precedentemente ottenuti.

Esempio

Un caso importante è quello in cui $\{\phi_j\}_{j=1,\dots,N}$ è un sistema ortogonale, cioè

$$(\phi_j,\phi_k)=c_j\delta_{j,k},\ c_j\neq 0,$$

dove al solito $\delta_{j,k}$ denota il delta di Kronecker; allora i coefficienti c_j^* (detti in questo caso di Fourier) sono calcolabili più semplicemente con la formula

$$c_j^* = rac{(f,\phi_j)}{(\phi_j,\phi_j)}, \;\; j=1,\ldots, extstyle N.$$

Nota.

Fissate le coppie $(x_k, f(x_k))$ e i pesi $w_k > 0$, ove $k = 1, \ldots, M$, una tipica richiesta è cercare il polinomio $p_n : \mathbb{R} \to \mathbb{R}$ di grado n <= M+1 tale che sia minima

$$\sum_{k=1,\ldots,M} w_k |p_n(x_k) - y_k|^2.$$

Se $\{\phi_k\}$ è una famiglia di n+1 polinomi dove ϕ_k ha grado esattamente k,

- poniamo $A_{k,j} = \phi(x_k) \sqrt{w_k}$ e A la matrice che ha come componenti $A_{k,j}$;
- definiamo il prodotto scalare $(f,g) := \sum_{k=1}^{M} w_k f(x_k) g(x_k)$ e notiamo che

$$(\phi_{i}, \phi_{j}) = \sum_{k=1}^{M} w_{k} \phi_{i}(x_{k}) \phi_{j}(x_{k}) = \sum_{k=1}^{M} (\sqrt{w_{k}} \phi_{i}(x_{k})) \cdot (\sqrt{w_{k}} \phi_{j}(x_{k}))$$

$$= \sum_{k=1}^{M} A_{k,i} A_{k,j} = \sum_{k=1}^{M} A_{i,k}^{T} A_{k,j} = (A^{T} A)_{i,j}$$

Si noti per prima cosa (fare alcuni facili conti!) che $p_n(x) = \sum_k c_k^* \phi_k(x)$ minimizza la quantità

$$\sum_{k=1,\ldots,M} w_k |p_n(x_k) - y_k|^2.$$

se e solo se per $(f,g) := \sum_{k=1}^{M} w_k f(x_k) g(x_k)$

$$\sum_{k} (\phi_i, \phi_k) c_k = (f, \phi_i).$$

Osserviamo inoltre che

- $da(f,g) := \sum_{k=1}^{M} w_k f(x_k) g(x_k),$
- $\bullet da A_{k,j} = \phi(x_k) \sqrt{w_k},$
- posto $\hat{\mathbf{f}} = (\hat{f}_k) := (\sqrt{w_k} f(x_k))_k$,
- denotata con $A_{i,.}^T$ la j-sima riga di A^T ,

abbiamo in particolare che per $j = 0, \ldots, n$,

$$(f,\phi_j) := \sum_{k=1}^{M} w_k f(x_k) \phi_j(x_k) = \sum_{k=1}^{M} \sqrt{w_k} f(x_k) \sqrt{w_k} \phi_j(x_k) = \sum_{k=1}^{M} A_{j,k}^T \hat{f}_k = A_{j,k}^T f.$$

Inoltre da

$$(\phi_i,\phi_k)=(A^TA)_{i,k}$$

abbiamo

$$\sum_{k} (\phi_i, \phi_k) c_k^* = \sum_{k} (A^T A)_{i,k} c_k^*.$$

Quindi, dovendo \mathbf{c}^* risolvere le equazioni normali $\sum_k (\phi_i, \phi_k) c_k = (f, \phi_i)$ per ogni $i = 0, \dots, n+1$, necessariamente da $(f, \phi_i) = A_{i}^T \mathbf{f}$,

$$\sum_{k} (A^{T}A)_{i,k} c_{k}^{*} = \sum_{k} (\phi_{i}, \phi_{k}) c_{k}^{*} = (f, \phi_{i}) = A_{j,\cdot}^{T} \mathbf{f}, \ i = 0, \dots, n+1$$

ovvero in forma matriciale

$$A^T A \mathbf{c}^* = A^T \mathbf{f}$$

che è la classica formulazione delle equazioni normali dell'algebra lineare.

Osserviamo inoltre che da $(f,g) := \sum_{k=1}^{M} w_k f(x_k) g(x_k)$ e $A_{k,j} = \phi(x_k) \sqrt{w_k}$, posto $\mathbf{f} = (\sqrt{w_k} f(x_k))_k$ abbiamo in particolare che per $j = 0, \ldots, n$, denotata con $A_{j,\cdot}^T$ la j-sima riga di A^T ,

$$(f, \phi_j) := \sum_{k=1}^{M} w_k f(x_k) \phi_j(x_k) = \sum_{k=1}^{M} \sqrt{w_k} f(x_k) \sqrt{w_k} \phi_j(x_k) = A_{j, \cdot}^T \mathbf{f}$$

Inoltre da $(\phi_i, \phi_k) = (A^T A)_{i,k}$, abbiamo $\sum_k (\phi_i, \phi_k) c_k^* = \sum_k (A^T A)_{i,k} c_k^*$. Quindi, dovendo \mathbf{c}^* risolvere le equazioni normali $\sum_k (\phi_i, \phi_k) c_k = (f, \phi_i)$ per ogni $i = 0, \dots, n+1$ necessariamente

$$\sum_{k} (A^{T}A)_{i,k} c_{k}^{*} = \sum_{k} (\phi_{i}, \phi_{k}) c_{k}^{*} = (f, \phi_{i}) = A_{j,\cdot}^{T} \mathbf{f}$$

ovvero

$$A^T A c^* = A^T f$$

che è la classica formulazione delle equazioni normali dell'algebra lineare.

Problema.

A questo punto supponiamo che sia $S_0 \subset \ldots \subset S_n \subset \ldots \subseteq E$. Ci si domanda se per una qualsiasi $f \in E$ si abbia che $\lim_n E_n(f) = 0$. Abbiamo visto che questo equivale a stabilire che $\bigcup_n S_n$ è denso in E.

Al momento non abbiamo detto nulla riguardo una possibile base dello spazio euclideo E.

- Cosa serve richiedere ad E perchè esista una base, magari con cardinalità numerabile?
- Come ottenere basi ortonormali da una base arbitraria?

Definizione (Separabile)

Uno spazio euclideo E si dice separabile se e solo se contiene un sottinsieme $S \subseteq E$ denso e numerabile, cf. [8, p.48].

Teorema

Uno spazio euclideo separabile ha una base ortonormale $\{\phi_k\}_k$ finita o numerabile, cioè tale che $(\phi_j,\phi_k)=\delta_{j,k}$ e se $x\in E$ allora si può scrivere formalmente

$$x = \sum_{k \in \mathbb{N}} c_k \phi_k$$

per certi $\{c_k\}$, intendendo che $\lim_n ||x - \sum_{k=0}^n c_k \phi_k|| = 0$.

Inoltre vale il seguente teorema, basato sull'algoritmo di Gram-Schmidt (cf. [4, p.165]),

Teorema (Ortogonalizzazione)

Siano f_1, \ldots, f_n, \ldots un insieme numerabile di elementi linearmente indipendenti di uno spazio euclideo E. Allora E contiene un insieme di elementi $\{\phi_k\}_{k=1,\ldots,n,\ldots}$ tale che

- I il sistema $\{\phi_n\}$ è ortonormale (cioè $(\phi_m, \phi_n) = \delta_{m,n}$, dove $\delta_{m,n}$ è il delta di Kronecker);
- **2** ogni elemento ϕ_n è una combinazione lineare di f_1, \ldots, f_n ;
- **3** ogni elemento f_n è una combinazione lineare di ϕ_1, \ldots, ϕ_n .

Nota.

Si osservi che

- l'insieme di partenza f₁,..., f_n,... non deve essere necessariamente finito, come di solito viene spesso richiesto nell'algoritmo di ortogonalizzazione di matrici;
- l'insieme $\phi_1, \ldots, \phi_n, \ldots$ non deve essere necessariamente finito;
- se lo spazio euclideo ha una base numerabile formata da elementi linearmente indipendenti f_1, \ldots, f_n, \ldots , allora ha pure una base ortonormale.

Definizione (Serie di Fourier)

Se $f \in E$,

$$c_k = (f, \phi_k), k = 1, 2, \dots$$

e $\{\phi_k\}_{k=1,\dots,\infty}$ è una successione di elementi ortonormali di E, la serie (formale)

$$\sum_{k=1}^{+\infty} c_k \phi_k$$

è chiamata serie di Fourier di f.

Definizione (Chiuso)

Sia

$$\phi_1,\ldots,\phi_n,\ldots$$

una successione di elementi ortonormali di uno spazio vettoriale normato X. Se ogni elemento $f \in X$ può essere scritto formalmente come serie di Fourier allora l'insieme $\{\phi_k\}_{k=1,...}$, si dice chiuso in X.

Problema.

- Quali proprietà ha l'elemento di miglior approssimazione?
- Cosa bisogna assumere perchè la serie di Fourier di f converga a f?

Teorema (Bessel-Parseval)

Sia $\phi_1, \ldots, \phi_n, \ldots$ una successione di elementi ortonormali di uno spazio euclideo E e sia $f \in E$. Allora

L'espressione

$$\|f-\sum_{k=1}^n a_k\phi_k\|$$

ha il minimo per

$$a_k = c_k = (f, \phi_k), k = 1, 2, \dots, n$$

ed è uguale a

$$\sqrt{\|f\|^2 - \sum_{k=1}^n c_k^2}.$$

■ Vale la disuguaglianza di Bessel

$$\sum_{k=1}^{\infty} c_k^2 \leq \|f\|^2.$$

■ Vale l'uguaglianza di Parseval

$$\sum_{k=1}^{\infty} c_k^2 = \|f\|^2$$

se e solo se l'insieme $\{\phi_k\}_{k=1,2,...}$ è chiuso in E.

Nota.

Osserviamo che

- la soluzione al problema di miglior appross. in norma || · || esiste ed è unica: per ottenerla basta calcolare i coefficienti di Fourier.
- se $\{c_k\}_{k=1,...,n}$ determina l'elemento di miglior approssimazione di f rispetto alla norma indotta dal prodotto scalare in $S_n = <\phi_1,...,\phi_n>$, allora

$$\lim_{n} \|f - \sum_{k=1}^{n} c_k \phi_k\| = \lim_{n} \sqrt{\|f\|^2 - \sum_{k=1}^{n} c_k^2} = 0$$

in virtù dell'uguaglianza di Parseval.

Definizione (Polinomi trigonometrici)

Lo spazio vettoriale $\mathbb{T}_n^{\mathbb{R}}$ dei polinomi trigonometrici di grado n è costituito dalle combinazioni lineari delle funzioni

$$\begin{array}{rcl} \phi_0^*(x) & \equiv & 1 \\ \phi_{2k-1}^*(x) & \equiv & \cos{(kx)}, \ k=1,\ldots,n \\ \phi_{2k}^*(x) & \equiv & \sin{(kx)}, \ k=1,\ldots,n. \end{array}$$

Osserviamo che per n = 1, 2, ..., essendo per le formule di Werner

$$\cos(nx)\cdot\cos(mx) = \frac{\cos((n+m)x) + \cos((n-m)x)}{2}$$

e

$$\int_{-\pi}^{\pi} \cos(kx) dx = \begin{cases} 0, & k \neq 0 \\ 2\pi, & k = 0 \end{cases}$$

necessariamente (applicando la formula di Werner nel primo e quarto punto)

- $\int_{-\pi}^{\pi} \cos^2(nx) \, dx = \int_{-\pi}^{\pi} \frac{\cos(2nx) + 1}{2} dx = \pi;$
- $\int_{-\pi}^{\pi} \sin^2(nx) \, dx = \int_{-\pi}^{\pi} (1 \cos^2(nx)) \, dx = 2\pi \pi = \pi;$
- $\int_{-\pi}^{\pi} \cos(nx) \cdot \cos(mx) dx = 0, m \neq n.$

Inoltre per $n = 1, 2, \ldots$

$$\sin(nx)\cdot\sin(mx) = \frac{\cos((n+m)x) - \cos((n-m)x)}{2}$$

implica

$$\int_{-\pi}^{\pi} \sin(nx) \cdot \sin(mx) dx = 0, m \neq n$$

in quanto

$$\int_{-\pi}^{\pi} \cos(kx) dx = \begin{cases} 0, & k \neq 0 \\ 2\pi, & k = 0 \end{cases}.$$

Sia $L^2_{\mathbb{R}}([-\pi,\pi])$ lo spazio delle funzioni misurabili $f:[-\pi,\pi]\to\mathbb{R}$ in $[-\pi,\pi]$ compatto e tali che $|f|^2$ sia integrabile (cf.[4, p.5]) . Sia tale spazio dotato del prodotto scalare $(f,g)=\int_{-\pi}^{\pi}f(x)g(x)\,dx$.

Per quanto visto

$$1/\sqrt{2\pi},\ldots,\cos{(nt)}/\sqrt{\pi},\sin{(nt)}/\sqrt{\pi},\ldots$$

è una succ. ortonorm. di funzioni in $L^2_{\mathbb{R}}([-\pi,\pi])$.

■ Si dimostra che le 2n + 1 funzioni

$$\phi_0(t)=1/\sqrt{2\pi},\ldots,\phi_{2n-1}(t)=\cos{(nt)}/\sqrt{\pi},\,\phi_{2n}(t)=\sin{(nt)}/\sqrt{\pi}$$
 formano una base ortonorm. di $\mathbb{T}_n^\mathbb{R}$ dotato del prod. scal. di $L^2_\mathbb{P}([a,b])$.

Si vede che $\{\phi_k\}_{k=0,\dots,2n}$ è chiuso in $L^2_{\mathbb{R}}([-\pi,\pi])$ (cf. [4, p.267]).

Dalle precedenti osservazioni e del teorema di Bessel-Parseval:

Teorema

Consideriamo la successione di elementi ortonormali

$$1/\sqrt{2\pi},\ldots,\cos{(nt)}/\sqrt{\pi},\sin{(nt)}/\sqrt{\pi},\ldots$$

di $L^2_{\mathbb{R}}([a,b])$. Allora i coefficienti di Fourier che determinano l'elemento di miglior approssimazione corrispondono a

- $c_0 = \int_{-\pi}^{\pi} f(x) \, dx / \sqrt{2\pi}$
- $c_{2k-1} = \frac{1}{\sqrt{\pi}} \int_{-\pi}^{\pi} f(x) \cos(kx) dx, \ k = 1, 2, ...;$
- $c_{2k} = \frac{1}{\sqrt{\pi}} \int_{-\pi}^{\pi} f(x) \sin(kx) dx, \ k = 1, 2, \dots$

 $ed \ ed \ E_k(f) = 0.$

Inoltre vale l'uguaglianza di Parseval

$$\frac{1}{2} \qquad \left(\int_{-\pi}^{\pi} f(x) \, dx \right)^{2} + \sum_{k=1}^{\infty} \left(\int_{-\pi}^{\pi} f(x) \cos(kx) \, dx \right)^{2} +$$

$$+ \sum_{k=1}^{\infty} \left(\int_{-\pi}^{\pi} f(x) \sin(kx) \, dx \right)^{2} = \pi \|f\|^{2}$$

(cf. [11]).

Polinomi trigonometrici complessi

Definizione (Polinomi trigonometrici complessi)

Lo spazio vettoriale $\mathbb{T}_n^{\mathbb{C}}$ dei polinomi trigonometrici complessi di grado n è costituito dalle combinazioni lineari delle funzioni

$$\begin{array}{rcl} \phi_0^*(x) & \equiv & 1 \\ \phi_{2k-1}^*(x) & \equiv & \exp\left(-ikx\right), \ k = 1, \dots, n \\ \phi_{2k}^*(x) & \equiv & \exp\left(ikx\right), \ k = 1, \dots, n \end{array}$$

dove "i", come al solito, è la costante immaginaria.

Polinomi trigonometrici complessi

Teorema

La successione $\{\phi_k^*\}_k$ è una composta di elementi ortogonali di $L^2_{\mathbb{C}}$.

Dimostrazione.

Per $j,k\in\mathbb{Z}$, ricordando l'identità di Eulero

$$\overline{\exp(ikx)} = \overline{\cos(kx) + i\sin(kx)} = \cos(kx) - i\sin(kx) = \exp(-ikx)$$
e dal fatto che $\exp(imx) \cdot \exp(inx) = \exp(i(m+n)x)$ ricaviamo

$$\int_0^{2\pi} \exp(ijx) \cdot \overline{\exp(ikx)} \, dx = \int_0^{2\pi} \exp(i(j-k)x) \, dx.$$

Se $\mathbf{j} = \mathbf{k}$ tale integrale vale evidentemente 2π altrimenti, se $\mathbf{j} \neq \mathbf{k}$ vale 0 in quanto

$$\int_0^{2\pi} \exp(i(j-k)x) dx = \frac{(\exp(i(j-k)2\pi) - \exp(i(j-k)0))}{i(j-k)}$$
$$= \frac{1}{i(i-k)} \cdot (1-1) = 0.$$

Polinomi trigonometrici complessi

Poichè $\{\phi_k^*\}$ è chiusa in $L^2_{\mathbb{C}}([0,2\pi])$ (cf.[2, p.24-27])

Teorema

Consideriamo la successione di elementi ortonormali di $L^2_{\mathbb{C}}([0,2\pi])$

$$1/\sqrt{2\pi},\ldots,\exp\left(-inx\right)/\sqrt{2\pi},\exp\left(inx\right)/\sqrt{2\pi},\ldots$$

Allora i coeff. di Fourier dell'elemento di miglior appross. sono

- $c_0 = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} f(x) dx;$
- $c_{2k-1} = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} f(x) \exp(ikx) dx, \ k = 1, 2, ...;$
- $c_{2k} = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} f(x) \exp(-ikx) dx, \ k = 1, 2, ...;$

 $ed \ \dot{e} \ lim_k E_k(f) = 0.$

Inoltre vale l'uguaglianza di Parseval

$$\sum_{k=-\infty}^{\infty} \left(\int_0^{2\pi} f(x) \exp\left(ikx\right) dx \right)^2 = 2\pi \|f\|^2$$

Polinomi trigonometrici complessi

Nota.

Di solito non si usa per tali serie di Fourier la notazione introdotta, ma si preferisce descriverla come la serie bilatera

$$f(x) = \sum_{k=-\infty}^{\infty} \gamma_k \exp(ikx)$$

con

$$\gamma_k = \frac{1}{2\pi} \int_0^{2\pi} f(x) \exp\left(-ikx\right) dx \tag{4}$$

Tale espansione è facilmente ricavabile da quella precedentemente espressa.

Si supponga che la funzione $f \in L^2_{\mathbb{C}}([0,2\pi])$ sia in realtà continua in $[0,2\pi]$ e periodica cioè $f(0)=f(2\pi)$. Dalla teoria è noto che possiamo scrivere formalmente

$$f(x) = \sum_{k=-\infty}^{\infty} \frac{1}{2\pi} \left(\int_0^{2\pi} f(x) \exp\left(-ikx\right) dx \right) \exp\left(ikx\right). \tag{5}$$

Usualmente non si calcola tutta la sommatoria ma si considera una sua approssimazione

$$\sum_{k=-M}^{M} \frac{1}{2\pi} \left(\int_{0}^{2\pi} f(x) \exp(-ikx) dx \right) \exp(ikx)$$

per M sufficientemente grande.

Osserviamo che differentemente dalla classica interpolazione polinomiale in nodi generici, l'approssimante trigonometrica è disponibile se siamo in grado di calcolare numericamente la quantità

$$I_k := \frac{1}{2\pi} \int_0^{2\pi} f(x) \exp\left(-ikx\right) dx$$

per $k = -M, \dots, M$.

Per funzioni continue e periodiche, si prova che è una buona scelta utilizzare la formula dei trapezi composta ([1, p.285-288])

$$\int_{a}^{b} f(x)dx \approx \frac{h}{2}(f(a) + f(b)) + h \sum_{i=1}^{M^{*}-1} f(x_{i}),$$

ove $x_i = a + ih$, $i = 0, ..., M^*$, $h = (b - a)/M^*$.

Supponiamo $g:[0,2\pi] o \mathbb{R}$ sia

- continua,
- periodica, cioè $g(0) = g(2\pi)$.

Utilizzando la formula composta dei trapezi basata su M intervalli equispaziati, posti $x_i = jh, j = 0, \dots, M^*, h = 2\pi/M^*$

$$\int_{0}^{2\pi} g(x)dx \approx \frac{h}{2}(g(0) + g(2\pi)) + h \sum_{j=1}^{M^{*}-1} g(x_{j})$$

$$= h \cdot g(2\pi) + h \sum_{j=1}^{M^{*}-1} g(x_{j}) = h \sum_{1}^{M^{*}} g(x_{j})$$

$$= \frac{2\pi}{M^{*}} \sum_{i=1}^{M^{*}} g(x_{j})$$

Così, per g continua e periodica in $[0,2\pi]$

$$\int_0^{2\pi} g(x)dx \approx \frac{2\pi}{M^*} \sum_{j=1}^{M^*} g\left(\frac{2j\pi}{M^*}\right).$$

Supposto che

- f sia continua e periodica in $[0, 2\pi]$,
- $g(x) = f(x) \exp(-ikx), k = -M, \dots, M,$
- $M^* = 2M + 1$

il coefficiente di Fourier $\xi_k(f) = \frac{1}{2\pi} \int_0^{2\pi} f(x) \exp(-ikx) dx$, $k = -M, \dots, M$ è tale che

$$\xi_k(f) \approx \frac{1}{2M+1} \sum_{i=1}^{2M+1} f\left(j \cdot \frac{2\pi}{2M+1}\right) \cdot \exp\left(-ik \cdot j \frac{2\pi}{2M+1}\right).$$

Supposto $k = -M, \dots, M$, da

$$\xi_k(f) pprox rac{1}{2M+1} \sum_{j=1}^{2M+1} f\left(j \cdot rac{2\pi}{2M+1}
ight) \cdot \exp\left(-ik \cdot j rac{2\pi}{2M+1}
ight).$$

definiti

•
$$\mathcal{X}_j = \frac{1}{2M+1} f\left(\frac{2\pi}{2M+1} j\right) \text{ (con } j = 1, \dots, 2M+1);$$

abbiamo $\xi_k(f) \approx \sigma_k$ (ove $k = -M, \dots, M$), in quanto

$$\xi_{k}(f) = \frac{1}{2\pi} \int_{0}^{2\pi} f(x) \exp(-ikx) dx$$

$$\approx \sum_{i=1}^{2M+1} \mathcal{X}_{j} \cdot \exp\left(\frac{-ik2\pi j}{2M+1}\right) = \sigma_{k}.$$
(6)

L'algoritmo della Fast Fourier Transform permette di calcolare

$$\tilde{\sigma}_{k} = \sum_{i=0}^{N-1} \tau_{j} \cdot \exp\left(-i\frac{2\pi}{N}jk\right), \quad k = 0, \dots, N-1$$
 (7)

non in $O(N^2)$ operazioni ma $O(N \cdot \log(N))$.

Con un po' di fatica (!!!), visto che $\sigma_k = \sigma_{k+2M+1}$,

$$\sigma_k = \sum_{j=1}^{2M+1} \mathcal{X}_j \cdot \exp\left(\frac{-ik2\pi j}{2M+1}\right)$$

ove k = -M, ..., M, si puó riformulare come in (7), per N = 2M + 1.

Originariamente fu scoperto da Cooley-Tukey nel 1965 (anche se secondo alcuni era noto a Gauss!).

IEEE Guest Editors' Introduction: The Top 10 Algorithms. The FFT is perhaps the most ubiquitous algorithm in use today to analyze and manipulate digital or discrete data.

Si può dimostrare [1, p.179] (non banale!) che

Teorema

Se $f:[0,2\pi]\to\mathbb{R}$ è continua e periodica allora il polinomio trigonometrico complesso

$$p_M(x) = \sum_{i=-M}^{M} a_k \cdot \exp(-ikx)$$

dove

$$a_k = \frac{1}{2M+1} \sum_{i=1}^{2M+1} f\left(j \cdot \frac{2\pi}{2M+1}\right) \cdot \exp\left(-ik \cdot j \frac{2\pi}{2M+1}\right)$$

(cioè a_k è l'approssimazione del coefficiente di Fourier $\xi_k(f)$ utilizzando la formula dei trapezi composta) interpola la funzione "f" nei nodi $x_j = j \cdot \frac{2\pi}{2M-1}$.

Ci poniamo varie domande:

- Quanto buona è l'approssimazione fornita dal metodo dei trapezi, nel calcolo degli integrali?
- Come decadono i coefficienti di Fourier (vedasi anche il Lemma di Lebesgue-Riemann)?
- **Q**uanto buona è l'approssimazione fornita dalla miglior approssimazione f_n in norma 2 o dall'interpolante p_n ?

Definizione (Variazione limitata o rettificabile)

Una funzione $f:[a,b] \to \mathbb{R}$ si dice a variazione limitata se

$$T_a^b(f) = \sup\{\sum_{i=1}^n |f(t_i) - f(t_{i-1})| : a = t_0 < t_1 < \ldots < t_n = b\} < +\infty.$$

La quantitá $T_2^b(f)$ si chiama variazione.

Esempi di funzioni a variazione limitata sono

- Le funzioni lipschitziane su [a, b];
- le funzioni di classe $C^1([a, b])$.

Teorema ([10])

Se

- $f \ \dot{e} \ \eta \geq 1$ volte differenziabile, periodica e Lipschitziana,
- $f^{(\eta)}$ è periodica e a variazione limitata V in $[0, 2\pi]$,

$$I(f) = \int_0^{2\pi} f(x) dx,$$

$$I_N(f) = \frac{\pi}{N} (f(0) + f(2\pi)) + \frac{2\pi}{N} \sum_{j=2}^{N-1} f(j2\pi/N),$$

$$|I_N(f)-I(f)|\leq \frac{4V}{N^{\eta+1}}.$$

Se f è analitica con $|f(t)| \le M$ nella striscia aperta di semiampiezza α attorno all'asse reale del piano complesso, allora

$$|I_N(f)-I(f)|\leq \frac{4\pi M}{\exp{(\alpha N)}-1}.$$

Teorema (Grandezza coeff. Fourier, [10, p.560])

Se f è

- $f \ \dot{e} \ \eta \geq 1$ volte differenziabile, periodica,
- $f^{(\eta)}$ è periodica e a variazione limitata V in $[0, 2\pi]$,

allora

$$|\xi_k(f)| \leq \frac{V}{2\pi |k|^{\eta+1}}.$$

Se f è analitica con $|f(t)| \le M$ nella striscia aperta di semiampiezza α attorno all'asse reale del piano complesso, allora

$$|\xi_k(f)| \leq M \cdot \exp(-\alpha|k|).$$

Teorema (Facoltativo. Qualità approssimazione, [10, p.560])

Se f è

- $f \ \ \hat{e} \ \eta \geq 1$ volte differenziabile, periodica,
- $f^{(\eta)}$ è periodica e a variazione limitata V in $[0, 2\pi]$,

allora

- la miglior approssimante $f_n = \sum_{j=-n}^n \xi_k(f) \cdot \exp(-ikx)$ in norma 2,
- il polinomio interpolante $p_n(x) = \sum_{j=-n}^n a_k \cdot \exp(-ikx)$

sono tali che

$$\|f-f_n\|_{\infty} \leq \frac{V}{\pi \eta(n)^{\eta}}, \quad \|f-p_n\|_{\infty} \leq \frac{2V}{\pi \eta(n)^{\eta}}.$$

Bibliografia

K. Atkinson, An Introduction to Numerical Analysis, Wiley, 1989.

K. Atkinson e W. Han, Theoretical Numerical Analysis. A Functional Analysis Framework, Springer, 2001.

G. Dahlquist e A. Bjorck , Numerical methods, Dover, 2003.

P.J. Davis, Interpolation and Approximation, Dover, 1975.

Encyclopedia of Math, (Orthogonal Series),

http://www.encyclopediaofmath.org/index.php/Orthogonal_series.

G. Gilardi Analisi Due, seconda edizione, McGraw-Hill, 1996.

D.H. Griffel, Applied functional analysis, Dover publications, 2002.

A.N. Kolmogorov e S.V. Fomin. Introductory Real Analysis. Dover publications, 1970.

A. Quarteroni, R. Sacco e F. Saleri Matematica Numerica, Springer, 1998.

G.B. Wright, M. Javed, H. Montanelli, L.N. Trefethen, Extension of Chebfun to periodic functions, SIAM J. Sci. Comp., 2015.

Wikipedia, (Fourier Series), http://en.wikipedia.org/wiki/Fourier_series.