Alvise Sommariva

Università degli Studi di Padova Dipartimento di Matematica

10 maggio 2018

Definizione (Spazio di Hilbert)

Uno spazio di Hilbert è uno spazio euclideo che è

- completo,
- separabile,
- infinito dimensionale (cf. [7, p.155]).

Nota.

Al variare del testo la definizione di spazio di Hilbert può essere leggermente diversa, ad esempio uno spazio di Hilbert è uno spazio euclideo completo (cf. [2]).

Esempio

Consideriamo lo spazio normato delle funzioni reali misurabili (cf. [7, p.284]) quadrato integrabili ($L^2(a,b)$, $\|\cdot\|_2$) dove (a, b) è un intervallo della retta reale, non necessariamente limitato (cf. [7, p.386], ricordando [7, p.308]), e

$$\|g\|_2^2 = (g,g), \quad (f,g)_2 = \int_a^b f(x) \cdot g(x) dx.$$

Si dimostra (non facile!) che questo spazio euclideo è un esempio di spazio di Hilbert (cf. [7, p.388]).

Esempio

Più in generale se $w:(a,b)\to\mathbb{R}$ è una funzione misurabile positiva allora lo spazio $(L^2_w(a,b),\|\cdot\|_{2,w})$ definito come

$$L_w^2(a,b) = \left\{ f \text{ misurabili t.c. } \int_a^b |f(x)|^2 w(x) dx < \infty \right\}$$

è uno spazio di Hilbert dotato del prodotto scalare

$$(f,g)_{2,w} = \int_a^b f(x) \cdot g(x) w(x) dx$$

(cf. [2, p.23]).

Definizione (Funzione peso)

Supponiamo sia $w:(a,b)\to\mathbb{R}$ una funzione tale che

- w è nonnegativa, con (a, b) non necessariamente limitato,
- $\int_a^b g(x) w(x) dx = 0$ per qualche funzione continua e non negativa g implica $g \equiv 0$ in (a, b).

Una tal w si dice funzione peso.

Esempio

Le funzioni peso più comuni sono (cf. [1, p.206])

- 1 $w(x) = 1 con x \in [-1, 1]$ (peso di Legendre);
- **2** $w(x) = \frac{1}{\sqrt{1-x^2}} con \ x \in (-1,1) \ (peso \ di \ Chebyshev));$
- **3** $w(x) = (1 x^2)^{\gamma (1/2)}$ con $x \in (-1, 1)$, $\gamma > (-1/2)$ (peso di Gegenbauer));
- **4** $w(x) = (1-x)^{\alpha} \cdot (1+x)^{\beta} \text{ con } x \in (-1,1), \ \alpha > -1, \ \beta > -1 \text{ (peso di Jacobi))};$
- **5** $w(x) = \exp(-x) \text{ con } x \in (0, +\infty) \text{ (peso di Laguerre)};$
- 6 $w(x) = \exp(-x^2)$ con $x \in (-\infty, +\infty)$ (peso di Hermite);

Teorema

Lo spazio vettoriale $L_w^2(a,b)$ contiene lo spazio dei polinomi \mathcal{P}_n di grado n (con $n \in \mathbb{N}$ arbitrario).

Dimostrazione.

Infatti, se $p_n(x) = \sum_{k=0}^n a_k x^k$ allora per la disuguaglianza triangolare e il fatto che per ogni k si ha

$$||x^k||_{2,w}^2 = \int_a^b |x|^{2k} w(x) dx < +\infty$$

necessariamente

$$\|p_n\|_{2,w} = \left\|\sum_{k=0}^n a_k x^k\right\|_{2,w} \le \sum_{k=0}^n |a_k| \|x^k\|_{2,w} < +\infty,$$

e quindi $p_n \in L^2_w(a, b)$.

Δ

Nota.

Si osservi che se "a" e "b" sono finiti, dal teorema di Weierstrass

$$||x^n||_{\infty} = \max_{x \in [a,b]} |x|^n < +\infty$$

ricordando che $w \ge 0$,

$$\int_a^b |x|^n w(x) dx \le ||x^n||_\infty \int_a^b w(x) dx$$

da cui se

$$\int_a^b w(x)\,dx < +\infty$$

automaticamente, per tutti gli $n \in \mathbb{N}$,

$$\int_{a}^{b} |x|^{n} w(x) dx < +\infty.$$

Problema.

Fissati

- $f \in L^2_w([a,b]),$
- $n \in \mathbb{N}$,

il problema ai minimi quadrati (nel continuo) consiste nel determinare il polinomio p_n di grado n tale che sia minima la quantità (cf. [1, p.204-207])

$$||f - p_n||_{2,w} = \int_a^b |f(x) - p_n(x)|^2 w(x) dx.$$

Essendo $L_w^2([a,b])$ uno spazio euclideo, e $(\phi_k)_{k=0,...,n}$ una base di \mathcal{P}_n , abbiamo visto che la soluzione del problema

$$\|f - f^*\|_{2,w} = \min_{g \in span\{\phi_0,...,\phi_n\}} \|f - g\|_{2,w}$$

è $f^* = \sum_{j=0}^n \gamma_j^* \phi_j$ dove i coefficienti γ_j^* verificano le cosidette equazioni normali

$$\sum_{k=0}^{n} (\phi_{j}, \phi_{k})_{2,w} \gamma_{k}^{*} = (\phi_{j}, f)_{2,w}, \ j = 0, \dots, n.$$

La soluzione è caratterizzata dalla proprietà di ortogonalità cioè che $f^* - f$ è ortogonale a tutti gli ϕ_k , con k = 1, ..., n, ovvero

$$(f, \phi_k)_{2,w} = (f^*, \phi_k)_{2,w}, \ k = 0, \dots, n$$

Definizione (Polinomi ortogonali)

Una tal famiglia triangolare di polinomi $\{\phi_k\}_{k=0,\dots,n}$ (cioè tale che $deg(\phi_k)=k$) si dice ortogonale rispetto alla funzione peso w nell'intervallo di riferimento se e solo se

$$(\phi_i,\phi_j)_{2,w}=c_i\,\delta_{i,j}$$

con

- \bullet $\delta_{i,j}$ il delta di Kronecker,
- $c_i > 0, i, j = 0, ..., n$.

Si può dimostrare

- usando la procedura di Gram-Schmidt che una tal famiglia triangolare di polinomi esiste e con la stessa procedura costruirla direttamente;
- inoltre è immediato osservare che ogni polinomio di grado n si può scrivere univocamente come combinazione lineare di ϕ_0, \ldots, ϕ_n .

Di conseguenza se $p_n = \sum_{k=0}^n a_k \phi_k$, allora per la bilinearità del prodotto scalare $(\cdot, \cdot)_{2,w}$

$$(\phi_{n+1}, \rho_n)_{2,w} = (\phi_{n+1}, \sum_{k=0}^n a_k \phi_k)_{2,w} = \sum_{k=0}^n a_k (\phi_{n+1}, \phi_k)_{2,w} = 0.$$

Polinomi ortogonali: unicitá

Nota. (Facoltativo)

Osserviamo che è unica la famiglia triangolare di polinomi $\{\phi_k\}_{k=0,...,n}$ con coefficiente di grado massimo uguale a 1 (polinomi monici).

Se $\{\phi_k^*\}_{k=0,...,n}$ fosse un altra famiglia con questa proprietà e $\phi_n^* \neq \phi_n$ allora

 $lack \phi_n^* - \phi_n$ è un polinomio ortogonale (a grado n) in quanto per $p_n \in \mathbb{P}_n$

$$(\phi_n^* - \phi_n, p_n) = (\phi_n^*, p_n) + (\phi_n, p_n) = 0$$

• $\phi_n^* - \phi_n$ è un polinomio di grado n-1 in quanto ϕ_n^* e ϕ_n sono monici.

Ma allora, essendo $\phi_{\it n}^* - \phi_{\it n}$ pure un polinomio non nullo di grado n-1

$$0 < (\phi_n^* - \phi_n, \phi_n^* - \phi_n)_{2,w} = 0$$

il che è assurdo e quindi $\phi_{n}^{*}=\phi_{n}$.

Inoltre (cf. [4, p.978], [1, p.213])

Teorema (Zeri di polinomi ortogonali)

Sia $\{\phi_k\}_{k=0,\dots,n}$ una famiglia triangolare di polinomi ortogonali in (a,b) rispetto ad una funzione peso "w". Allora gli zeri del polinomio ortogonale ϕ_n

- sono esattamente n,
- hanno molteplicità 1,
- **appartengono** all'intervallo aperto (a, b).

Dimostrazione.

Siano x_1, \ldots, x_m (con $m \le n$) tutti e soli gli zeri di ϕ_n interni ad (a,b) con molteplicità rispettivamente $\alpha_1, \ldots, \alpha_m$.

Di conseguenza, per qualche numero a_n abbiamo

$$\phi_n(x) = a_n \left(\prod_{k=1}^m (x - x_k)^{\alpha_k} \right) r(x)$$

avendo supposto $\prod_{k=1}^{m} (x - x_k)^{\alpha_k} \equiv 1$ se non ci sono zeri interni ad (a, b).

Il polinomio r per costruzione non ha zeri in (a, b) e quindi non si annulla mai ed essendo una funzione continua ha segno costante.

Da
$$x_1, \ldots, x_m$$
 nodi in (a, b) e $x_{m+1}, \ldots, x_{n^*} \in \mathbb{C} \setminus (a, b)$ e $\phi_n(x) = a_n \left(\prod_{k=1}^m (x - x_k)^{\alpha_k} \right) r(x)$

si evince che

$$r(x) = \prod_{k=m+1}^{n^*} (x - x_k)$$

ha segno costante in (a, b).

Consideriamo il polinomio

$$q(x) = \left(\prod_{k=1}^{m} (x - x_k)^{mod_2(\alpha_k)}\right).$$

- Se uno zero di ϕ_n ha molteplicità dispari ma maggiore di 1 o uno almeno ha molteplicità pari o esiste uno zero complesso non in (a,b), è facile osservare che il grado di q è minore di m e quindi di n.
- Qualsiasi sia un numero naturale, $\alpha_k + \text{mod}_2(\alpha_k)$ è un numero pari.

Poichè

$$\phi_n(x)q(x) = a_n \left(\prod_{k=1}^m (x - x_k)^{\alpha_k + mod_2(\alpha_k)} \right) r(x)$$

- ha segno costante,
- non coincide col polinomio nullo,

abbiamo una contraddizione in quanto se per assurdo $q \in \mathbb{P}_{n-1}$

$$0 = (\phi_{n}, q) = \int_{a}^{b} \phi_{n}(x) \, q(x) \, w(x) \, dx$$

$$= \int_{a}^{b} \left(a_{n} \prod_{k=1}^{m} (x - x_{k})^{\alpha_{k}} r(x) \right) \prod_{k=1}^{m} (x - x_{k})^{mod_{2}(\alpha_{k})} \, w(x) \, dx$$

$$= \int_{a}^{b} a_{n} \left(\prod_{k=1}^{m} (x - x_{k})^{\alpha_{k} + mod_{2}(\alpha_{k})} \right) r(x) \, w(x) \, dx \neq 0.$$

Nota.

Potrebbe venire il dubbio su perchè qualche zero non possa essere "a" o "b".

Nella dimostrazione avrebbe quale unico effetto che r si annulla in "a" o "b", rimanendo di segno costante in (a, b).

La conclusione è che il polinomio ortogonale p_n ha n radici distinte e semplici, interne ad (a,b).

Definizione (Polinomio monico)

Un polinomio $p_n(x) = \sum_{k=0}^n a_k x^k$ si dice monico se $a_n = 1$.

Teorema (Ricorsione a 3 termini)

Sia $\{\phi_k\}_{k=0,\dots,n}$ una famiglia triangolare di polinomi ortogonali monici in [a,b] rispetto ad una funzione peso w. Si supponga $\phi_{-1}(x)=0$, $\phi_0(x)=1$, Allora per $n\geq 0$

$$\phi_{n+1}(x) = (x - \beta_n)\phi_n(x) - \gamma_n\phi_{n-1}(x).$$

dove si ha

$$\beta_n = \frac{(x\phi_n, \phi_n)_{2,w}}{(\phi_n, \phi_n)_{2,w}} > 0 \tag{1}$$

$$\gamma_n = \frac{(x\phi_{n-1}, \phi_n)_{2,w}}{(\phi_{n-1}, \phi_{n-1})_{2,w}}$$
 (2)

Nota.

Notiamo che

- scelti i polinomi ortogonali ϕ_0 e ϕ_1 , la procedura determina la famiglia triangolare di polinomi ortogonali di grado superiore, non appena sono disponibili i coefficienti α_k , β_k , γ_k .
- Se ϕ_n è tale che $(\phi_n, \phi_k) = 0$ per k = 0, ..., n-1 allora per $\tau \neq 0$ pure $\tilde{\phi}_n = \tau \phi_n$ è tale che

$$(\tilde{\phi}_n, \phi_k) = (\tau \phi_n, \phi_k) = \tau(\phi_n, \phi_k) = 0, \ k = 0, \dots, n-1$$

e quindi potrebbe essere considerato quale polinomio ortogonale di grado n.

Nota.

Il caso in cui il polinomio $\hat{\phi}_{n+1}$ richiesto sia in forma ortonormale deriva da quello del caso monico.

Infatti se $\gamma_0 = \int_a^b w(x) dx$ e il polinomio ortogonale monico è

$$\phi_{n+1}(x) = (x - \beta_n)\phi_n(x) - \gamma_n\phi_{n-1}(x)$$

allora

$$\|\phi_{n+1}\|_{2,w}^2 = \gamma_0 \cdot \ldots \cdot \gamma_n$$

da cui è possibile ottenere facilmente $\hat{\phi}_{n+1}$ (cf.[6, p.11])

K. Atkinson, An Introduction to Numerical Analysis, Wiley, (1989).

K. Atkinson e W. Han, Theoretical Numerical Analysis, A Functional Analysis Framework, Springer, (2001).

D. Bini, M. Capovani e O. Menchi , Metodi numerici per l'algebra lineare, Zanichelli, (1993).

V. Comincioli, Analisi Numerica, metodi modelli applicazioni, McGraw-Hill, (1990).

G. Dahlquist e A. Biorck, Numerical methods, Dover, (2003).

W. Gautschi, Orthogonal Polynomials, Computation and Approximation, Oxford University Press, (2004),

A.N. Kolmogorov e S.V. Fomin, Introductory Real Analysis, Dover publications, 1970.