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Introduction

In this work we want to enlight some special aspects and further possible connections between
Quantum and Classical Mechanics. The problem of the realtion between Quantum Mechanics
and Classical Mechanics (QM and CM from now on) has a long history which dates back to
Einstein in 1917 ([Ein17]) and Schrödinger in 1926 ([Sch26]). This bond has been studied, mainly,
using two different point of view: the first one is called quantization and the second one is the
semiclassical limit or de-quantization.
In the first chapter, we reconsider a general setting for the Coherent States on Rn. We start
introducing the definition of Minimal Uncertainty STate (MUST), we derive the general form
for these states and we propose an integral equation (1.2.2) (involving the convolution with a
Gaussian) characterizing the phases of the MUSTs. Moreover, using Poisson Summation Formula
and the periodization operator, we are able to treat Coherent States on the flat Torus Tn. Then
(in the spirit of [AAG00] and [Per86]) we introduce the Heisenberg-Weyl algebra and group and
we show that the group action on the set of Gaussians creates precisely the set of Canonical
Coherent States (SCCS): the elements of SCCS satisfy the integral equation (1.2.2), furthermore,
by looking closer to the convolution equation, we show that it does not admit more general
solutions, at least among the polynomial functions on R.
Next, we study the propagation of Gaussian Coherent States. We look at their time evolution.
We elaborate some theorems concerning Gaussian Coherent State approximation and we put in
evidence that the approximate solutions behave in very different ways depending strongly on the
possible stability character of the point on which the initial states are centered. But there is
a common behaviour: every coherent state, centered on an unstable equilibrium point, starts
spreading exponentially fast (at a rate given by the Lyapunov exponent) around the unstable
manifold. By this line of thought, we restore some interesting statements by Paul proposed in
[Pau07b]and [Pau09]. In the last part of this chapter we look at the Wick rotation: we propose
some possible connections between approximate solutions of real Schrödinger equation, the work
of Iturriaga in [ISM09], the work of Davini and Siconolfi [DS06] and more generally with WKAM
theory. The references for this part are [CR97], [Pau07a], [Pau09], [Rob98], [Rob07] and [Sch01].
In the second chapter, we study Quasimodes for standard (i.e. mechanical) stationary Schrödinger
operators in Tn. In the beginning we follow the paper of Evans [Eva07], in which the author
constructs a quasimode (with discrepancy O(ε)) from a variational principle. Then, in order
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to construct quasimodes, we propose some applications of WKB approximation on the line of
thought of Hellfer, see [Hel88]. Then, inspired by Lazutkin’s techniques [Laz93] and with a
particular choice of the couple energy-amplitude, we are able to recover one result of Evans: more
precisely, we prove that the Effective Quantum Hamiltonian H̄ε(P ) coincides in P = 0, up to
second order terms, with the WKB energy E(ε) we have constructed.
In chapter three we start studying the evolutive Schrödinger equation for the Schwartz kernel
using Fourier Integral Operators (FIO). Using this approach we show that it is possible to
approximate the solution up to a fixed time T at which the caustics (of the associated Hamilton-
Jacobi equation) appear. We see that the first order terms are nothing but a system of PDEs
given by an Hamilton-Jacobi and a transport equation. We show that is possible to overcome
this difficulty using the group property of the FIOs: here we suggest a connection with the
Symplectic Homogenization presented in [Vit08]. Then we change the point of view and we start
looking at the so called “Madelung equations”. Solutions for this system of PDEs are not easy
write down (even in a weak environment) and so perform an approximation on these equations
by considering again the WKB setting. In the last part we modify the Madelung equations to
obtain two different systems of PDEs corresponding to nonlinear Schrödinger equations and in
this cases we found the stationary solutions.
Next, in the fourth chapter, Aubry-Mather’s and Weak KAM theory are presented. Here we
propose some connections among these subjects and results perfomed in the previous chapters:
we look for conditions on the classical Hamiltonian that give the uniqueness for the solution of
the stationary Hamilton-Jacobi equation

H(x,∇S) = E

In this part we follow Anantharaman and others, [AIPSM05]: we emphasize in particular that,
under certain assumptions, the unique solution of this equation is a generating function (in a
weak sense) of the unstable manifold. In the last part of this chapter we try to underline the
possible connections between our work and Quantum Unique Ergodicity (QUE).
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Introduzione

In questo lavoro si vogliono mettere in luce alcuni aspetti ed alcune connessioni tra la Meccanica
Classica e la Meccanica Quantistica. Il problema della relazione tra Meccanica Quantistica e
Meccanica Classica (QM e CM d’ora in poi) ha una lunga storia il cui inizio puó essere fatto risalire
ad Einstein nel 1917 ([Ein17]) e Schrödinger nel 1926 ([Sch26]). Questo legame è stato studiato,
principalmente, usando due punti di vista differenti ed opposti: il primo è detto quantizzazione
ed il secondo limite semiclassico o de-quantizzazione.
Nel primo capitolo vengono introdotti gli Stati Coerenti su Rn. Partendo dalla definizione di
Minimal Uncertainty STates (stati quantistici ad incertezza minima o MUSTs), si ricava la forma
generale di questi stati e si propone un’equazione integrale (si veda l’equazione (1.2.2)) che descrive
la fase di ogni MUST. Inoltre, usando la formula di Poisson e l’operatore di periodizzazione,
si mostra che è possibile definire gli Stati Coerenti anche sul toro piatto Tn. Seguendo le idee
di Ali, Antoine e Gazeau in [AAG00] e Perelomov in [Per86] vengono definiti ed introdotti
l’algebra e il gruppo di Heisenberg-Weyl. Succesivamente si mostra che l’azione di tale gruppo
sull’insieme delle Gaussiane genera esattamente l’insieme degli Stati Coerenti Canonici (SCCS):
gli elementi di tale insieme soddisfano l’equazione (1.2.2) ed inoltre, esaminando in maggior
dettaglio l’equazione stessa, si mostra che essa non ammette soluzioni più generali (almeno nella
classe dei polinomi su R).
Successivamente viene studiata la propagazione degli Stati Coerenti Gaussiani. Guardando alla
loro evoluzione temporale, vengono elaborati alcuni teoremi riguardanti l’approsimazione mediante
Stati Coerenti e viene messo in evidenza che il comportamento della soluzione approssimata
dipende fortemente dalla stabilità (o instabilità) del punto dello spazio delle fasi classico in cui
lo Stato Coerente è centrato. È però importante notare che vi è un comportamento comune:
ogni Stato Coerente, centrato in punto di equilibrio instabile, si “disperde” con una velocità
esponenziale (e legata all’esponente di Lyapunov del punto) attorno alla varietà instabile. In
questo modo vengono ritrovati i risultati annunciati da Paul in [Pau07b] e [Pau09]. Nell’ultima
parte del primo capitolo si studiano la rotazione di Wick e l’equazione di Schrördinger reale:
vengono messi in evidenza alcuni legami tra le soluzioni approssimate dell’equazione di Schrödinger
reale e i lavori di Iturriaga [ISM09] e Davini e Siconolfi [DS06].
Nel secondo capitolo vengono studiati i quasimodi per gli operatori di Schrödinger meccanici
su Tn. Nella prima parte del capitolo si segue il lavoro di Evans [Eva07], in cui l’autore
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riesce a costruire un quasimodo (con discrepanza O(ε)) partendo da un principio variazionale.
Successivamente vengono proposte e richiamate alcune applicazioni della teoria WKB nella
costruzione di quasimodi seguendo quanto fatto da Hellfer in [Hel88] e poi, ispirandosi ai lavori di
Lazutkin in [Laz93] e segliendo una particolare coppia energia-ampiezza di probabilità, si mostra
che è possibile ritrovare un risultato di Evans: più precisamente si mostra che l’Hamiltoniana
Effettiva Quantistica H̄ε(P ) coincide in P = 0, fino ai termini del secondo ordine, con l’energia
E(ε) costruita con i metodi WKB.
Nel terzo capitolo si studia l’equazione di Schrödinger evolutiva per il nucleo di Schwartz,
usando gli operatori integrali di Fourier (FIO). Usando questo metodo si mostra che è possibile
approssimare la soluzione fino ad un tempo T fissato in cui appaiono le caustiche (relative
all’equazione di Hamilton-Jacobi associata). I termini del primo ordine di quest’approssimazione
sono un sistema di PDE costituito da un equazione di Hamilton-Jacobi e un’equazione del
trasporto: si mostra che è possibile superare il problema delle caustiche sfruttando la proprietà di
gruppo degli operatori integrali di Fourier: in questa parte si suggerisce un possibile collegamento
con l’omogeneizzazione simplettica sviluppata da Viterbo in [Vit08]. Successivamente si cambia
punto di vista e si studiano le equazioni di Madelung: non è possibile scrivere esplicitamente una
soluzione di queste equazioni (nemmeno soluzioni deboli); per questo motivo si cerca una soluzione
approssimata del sistema di equazioni considerando, ancora una volta, un’approssimazione WKB.
Nell’ultima parte del capitolo vengono modificate le equazioni di Madelung per ottenere due
differenti sistemi di PDE corrispondenti a delle equazioni di Schrödinger non lineari e in questi
casi è possibile trovare una soluzione stazionaria (anche questa volta la soluzione è legata alla
teoria WKAM).
Infine nell’ultimo capitolo vengono introdotte le teorie classiche WKAM e di Aubry-Mather. Qui
si propongono delle connessioni tra questi argomenti e i risultati dei precedenti capitoli: si cercano
delle condizioni sull’Hamiltoniana classica che diano l’unicità della soluzione dell’equazione di
Hamilton-Jacobi stazionaria

H(x,∇S) = E

In questa parte si segue principalmente Anantharaman e altri in [AIPSM05]: sotto alcune
condizioni sul potenziale, l’unica soluzione di tale equazione, descrive localmente la varietà
instabile.
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Chapter 1

Coherent States and their evolution

The problem of understanding the relation between Classical and Quantum Mechanics has a long
history which dates back to Schrödinger in 1926 when he constructed minimum uncertainty wave
packets for the harmonic oscillator (see [Sch26]).
Before starting we make some remarks on the environments we will be working on: all Hilbert
spaces H we consider will be complex and separable (dimH will be countably infinite). Moreover
the scalar product will be indicated by 〈φ, ψ〉 or 〈φ|ψ〉 and will be antilinear in the first variable
φ and linear in the second ψ. We will use capital letters for the operators on H and small letters
for the functions (for example: if h is an Hamiltonian function then H will be its corresponding
operator on the Hilbert space). Here we will follow [AAG00], [Pau07b], [Pau07a], [Pau09].
About the notations: throughout all this work ε will represent the Planck’s constant ~.

1.1 Quantum Mechanics

In this section we will introduce the general setting of Quantum Mechanics (QM from now on)
and we will explain all the notation we will use.
In QM the state of a physical system is described by a complex-valued function ψ (also called
wave function) that belongs to an Hilbert space H. Tipically we will consider

H = L2(Rn) =
{
ψ : Rn → C :

∫
Rn
ψ∗(x)ψ(x)dx < +∞

}
We will use also the bra-ket notation: in this case the state ψ(x) will be described by the vector
|ψ〉 of the Hilbert space H and the scalar product on H will be given by

〈φ|ψ〉 =
∫
Rn
φ∗(x)ψ(x)dx

Quantum observables are described by self-adjoint (or essentially self-adjoint) operators acting
on the Hilbert space H. We will use capital letters for operators: for example the action of the
operator A on the state ψ will be given by Aψ or, using bra and ket, by |Aψ〉.

9



Chapter 1. Coherent States and their evolution

Definition 1.1.1. Let H an Hilbert space. An operator A : D(A) ⊆ H → H where D(A) is the
domain of A, is symmetric if

〈Ax|y〉 = 〈x|Ay〉 (1.1.1)

for all x, y ∈ D(A).

Before giving the definition of self-adjoint operator, we have to define the adjoint A† of an
operator A.

Definition 1.1.2. Let A : D(A) ⊆ H → H a densely defined linear operator. The adjoint A† of
A is defined in the following way.

(a) The domain D(A†) is the subset of H that contains all the vector x such that

y 7→ 〈x|Ay〉

is a continuous linear functional. Since it is continuous and densely defined it can be
extended to a continuous linear functional on all of H.

(b) If x is in D(A†), then there exists an unique element z ∈ H such that

〈x|Ay〉 = 〈z|y〉 (1.1.2)

for all y ∈ D(A).

The vector z is defined to be A†x.

Note that the adjoint operator is well well defined, using the denseness of the domain of the
operator and the uniqueness of Riesz representation (point (b)).

Definition 1.1.3. Let A be an operator densely defined on H. A is self-adjoint if A = A† and
D(A) = D(A†). We will say that A is essentially self-adjoint if A is self-adjoint and it admits
an unique self-adjoint extension to H.

The outcome of measuring an observable A is given by the mean value of the operator A on the
state ψ and will be denoted by

〈A〉ψ = 〈ψ|Aψ〉 =
∫
Rn
ψ∗(x)Aψ(x)dx

The two most important operators that we will use in the following are (Xiψ)(x) = xiψ(x) (the
multiplication operator) and (Piψ)(x) = −iε∂xiψ(x) (the momentum operator). Both X and P
are self adjoint operators with domains

D(X) = {ψ ∈ H |xkψ ∈ H, ∀k = 1, . . . , n}

D(P ) = {ψ ∈ H | ∂xkψ ∈ H, ∀k = 1, . . . , n}

10



Chapter 1. Coherent States and their evolution

The operators X and P satisfy the canonical commutation relations (also called Heisenberg
commutation relation)

[Xi, Pj ] = iεδijI (1.1.3)

where the brackets represent the commutator and are defined as [A,B] := AB − BA on the
domain of X · P − P ·X.

Theorem 1.1.4. Equation (1.1.3) implies that for any vector ψ sufficiently smooth, with
‖ψ‖L2(Rn) = 1, the Heisenberg uncertainty relations hold:

(∆Xi)ψ (∆Pi)ψ ≥
ε

2 (1.1.4)

for i = 1, . . . , n, where for an arbitrary self-adjoint operator A on H

(∆A)ψ =
√
〈ψ|A2ψ〉 − 〈ψ|Aψ〉2

Proof. We start from Schwartz inequality: for every couple of operators A and B and for every
state ψ(x) with ‖ψ‖L2(Rn) = 1 one has

〈A2〉ψ〈B2〉ψ =
∫
Rn

(Aψ)∗(Aψ)dx
∫
Rn

(Bψ)∗(Bψ)dx ≥
∣∣∣∣∫

Rn
(Aψ)∗(Bψ)dx

∣∣∣∣2 =
∣∣∣∣∫

Rn
ψ∗A(Bψ)dx

∣∣∣∣2
We can write∫

Rn
ψ∗A(Bψ)dx = 1

2

∫
Rn
ψ∗(AB +BA)ψdx+ 1

2

∫
Rn
ψ∗(AB −BA)ψdx

and thus
〈A2〉ψ〈B2〉ψ ≥

∣∣∣∣12
∫
Rn
ψ∗(AB +BA)ψdx+ 1

2

∫
Rn
ψ∗(AB −BA)ψdx

∣∣∣∣2
Now, since the expected value of the operator AB+BA

2 is real while the expected value of AB−BA2
is purely imaginary, we have that∣∣∣∣12

∫
Rn
ψ∗(AB +BA)ψdx+ 1

2

∫
Rn
ψ∗(AB −BA)ψdx

∣∣∣∣2 =

= 1
4

∣∣∣∣∫
Rn
ψ∗(AB +BA)ψdx

∣∣∣∣2 + 1
4

∣∣∣∣∫
Rn
ψ∗(AB −BA)ψdx

∣∣∣∣2
and since 1

4 |
∫
Rn ψ

∗(AB +BA)ψdx|2 ≥ 0 we can write

〈A2〉ψ〈B2〉ψ ≥
1
4

∣∣∣∣∫
Rn
ψ∗[A,B]ψdx

∣∣∣∣2
Now we make the substitution A = ∆Xi and B = ∆Pi, using (1.1.3) and the fact that

11



Chapter 1. Coherent States and their evolution

〈(∆Xi)2〉ψ = (∆Xi)2
ψ and 〈(∆Pi)2〉ψ = (∆Pi)2

ψ, we have

(∆Xi)2
ψ(∆Pi)2

ψ ≥
ε2

4

that implies (1.1.4).

1.2 Coherent States

We start searching on the Hilbert space L2(Rn) for the “most classical” states of QM.

Definition 1.2.1. The wave function ψ(x) is a coherent state (or MUST: Minimal Uncertainty
STate) if

(∆Xi)ψ(∆Pi)ψ = ε

2

The next step is to find the general form for a coherent state on Rn since the previous definition
tells us nothing about it. For a MUST we propose the following characterization for the amplitude
and the phase.

Proposition 1.2.2. A coherent state η(q,p)(x) has the following representation

η(q,p)(x) =
( 1
πε

)n/4
e

i
ε
ϕ(q,p)(x)

n∏
i=1

e−
(xi−qi)

2
2ε

where ∂xiϕ(q,p) solves 〈
η
∣∣∣(∂xiϕ(q,p))2η

〉
−
〈
η
∣∣∣∂xiϕ(q,p)η

〉2
= 0 (1.2.1)

The last equation can be rewritten as[
(∂xiϕ(q,p))2 ∗ G

]
(q) =

[
∂xiϕ(q,p) ∗ G

]2
(q) (1.2.2)

with
G(x) =

( 1
πε

)n/2 n∏
i=1

e−
x2
i
ε

and ∗ indicates the convolution.

Proof. We will have
(∆Xi)η(∆Pi)η = ε

2
when

|〈Xiη|Piη〉| = |Xiη|2|Piη|2

12



Chapter 1. Coherent States and their evolution

i.e. when Xiη and Piη are parallel vectors. This means, in particular, that

−iε∂xiη(x) = αxiη(x)

η(x) = C
n∏
i=1

eiαi
x2
i

2ε

where C is the normalization constant such that∫
Rn
|η(x)|2 dx = 1

Since η must be in H = L2(Rn, dx), we must have αi ∈ ImC>0 for every i. So a coherent states
must have the following form:

η(q,p)(x) = 1
(πε)n/4

e
i
ε
ϕ(q,p)(x)

n∏
i=1

e−
(xi−qi)

2
2ε

Now we want to find the equation satisfied by ϕ(q,p)(x). It is easy to see that

(∆Xi)η(q,p) =
√
ε

2

that means we must have
(∆Pi)η(q,p) =

√
ε

2
Using the following equalities

Piη(q,p) =
[
i(xi − qi) + ∂xiϕ(q,p)(x)

]
η(q,p)(x)

P 2
i η(q,p) =

[
ε− iε∂2

xiϕ(q,p)(x) +
(
i(xi − qi) + ∂xiϕ(q,p)(x)

)2]
η(q,p)(x)

〈
η(q,p)

∣∣∣Piη(q,p)
〉2

=
[
C(ε)

∫
Rn
∂xiϕ(q,p)(x)

n∏
i=1

e−
(xi−qi)

2
ε dx

]2

〈
η(q,p)

∣∣∣P 2
i η(q,p)

〉
= ε

2 + C(ε)
∫
Rn

(∂xiϕ(q,p)(x))2
n∏
i=1

e−
(xi−qi)

2
ε dx

Now we compute〈
η(q,p)

∣∣∣Piη(q,p)
〉

= i
〈
η(q,p)

∣∣∣(xi − qi)η(q,p)
〉

+
〈
η(q,p)

∣∣∣∂xiϕ(q,p)(x)η(q,p)(x)
〉

=
〈
η(q,p)

∣∣∣∂xiϕ(q,p)(x)η(q,p)(x)
〉

13



Chapter 1. Coherent States and their evolution

since
〈
η(q,p)

∣∣∣(xi − qi)η(q,p)
〉

= 0 (it is the first central moment of a Gaussian). In the same way

〈
η
∣∣∣P 2
i η
〉

=
〈
η
∣∣∣ [ε− iε∂2

xiϕ(x) +
(
i(xi − qi) + ∂xiϕ(x)

)2]
η

〉
= ε+

〈
η
∣∣∣(∂xiϕ)2η

〉
−
〈
η
∣∣∣(xi − qi)2η

〉
+ i
(
2
〈
η
∣∣∣(xi − qi)∂xiϕη〉− ε〈η∣∣∣(∂2

xiϕ)η
〉)

= ε+
〈
η
∣∣∣(∂xiϕ)2η

〉
− ε

2 + i
(
2
〈
η
∣∣∣(xi − qi)∂xiϕη〉− ε〈η∣∣∣(∂2

xiϕ)η
〉)

= ε

2 +
〈
η
∣∣∣(∂xiϕ)2η

〉
+ i
(
2
〈
η
∣∣∣(xi − qi)∂xiϕη〉− ε〈η∣∣∣(∂2

xiϕ)η
〉)

since
〈
η
∣∣∣(xi − qi)2η

〉
= ε

2 , being the second central moment of the Gaussian. Requiring that

〈
η
∣∣∣ [2(xi − qi)∂xiϕ(q,p)(x)− ε∂2

xiϕ(q,p)(x)
]
η
〉

= 0

(i.e. the imaginary part must be zero that is the second equation of (1.2.1)), it follows that

〈η|P 2
i η〉 − (〈η|Piη〉)2 = ε

2 + 〈η|(∂xiϕ)2η〉 − (〈η|∂xiϕη〉)2

In order to have 〈η|P 2
i η〉 − (〈η|Piη〉)2 = ε

2 , we must require

〈
η(q,p)(x)

∣∣∣(∂xiϕ(q,p)(x))η(q,p)(x)
〉
−
(〈
η(q,p)(x)

∣∣∣(∂xiϕ(q,p)(x))η(q,p)(x)
〉)2

= 0

and this equation implies that ϕ(q,p)(x) must satisfy the following equation

∫
Rn

(∂xiϕ(q,p)(x))2
(
C(ε)

n∏
i=1

e−
(xi−qi)

2
ε

)
dx =

[∫
Rn
∂xiϕ(q,p)(x)

(
C(ε)

n∏
i=1

e−
(xi−qi)

2
ε

)
dx

]2

that is, defining

G(x) = C(ε)
n∏
i=1

e−
x2
i
ε

we have [
(∂xiϕ(q,p))2 ∗ G

]
(q) =

[
∂xiϕ(q,p) ∗ G

]2
(q)

which is exactly (1.2.2).

14



Chapter 1. Coherent States and their evolution

Remark 1.2.3 We make an example: take H = L2(R, dx). Then the simplest function f(x)
that satisfies the equation [

f2 ∗ G
]

(q) = [f ∗ G]2 (q)

is f(x) = p, where p ∈ R. Infact we have

p2
∫
R
C(ε)e−

(x−q)2
ε dx =

[
p

∫
R
C(ε)e−

(x−q)2
ε dx

]2

and thus the phase is ϕ(q,p)(x) = px + k, where k ∈ R is a constant. Note that the same
argumet can be applied in the n-dimensional case: if H = L2(Rn, dx) then the simplest
function that satisfies (1.2.2) is ϕ(q,p)(x) = p · x+ k with p ∈ Rn and k ∈ R. We will see in
the following section that the right choice for k is k = pq/2.

Remark 1.2.4 Once we have found n functions fi satisfying (1.2.2) it is necessary to find a
function ϕ(q,p) such that

dϕ(q,p)(x) =
n∑
i=1

fi(x)dxi

globally. This means that the fi(x)’s must be the components of a differential 1-form. On
Rn there is the well known condition

∂fi
∂xj

= ∂fj
∂xi

i.e. the functions must satisfy the closure condition in order to ϕ(q,p)(x) to exist. It is clear
that the solution of the problem depends on the topology of the manifold M we are working
on. In particular it depends on H1

DR(M), the first De Rham cohomology group of M (see
[BT95] for details). For example, from the fact that H1

DR(Rn) = 0 and H1
DR(Tn) 6= 0 the

solutions on these two manifolds will be different. It would be interesting also to understand
if the definition (1.2.3) contains all the possible solutions to (1.2.1).

In Rn there exist a larger family of functions, called Gaussons or Gaussian pure states, that, for
particular choices of the parameters, are similar to the MUST.

Definition 1.2.5. The Gaussons have the following form (see [AAG00]):

ηU,V(q,p)(x) =
(detU

πn

)1/4
exp

[ i
ε

〈
p, x− q

2

〉]
exp

[
−1

2 〈x− q, (U + iV )(x− q)〉
]

(1.2.3)

where x ∈ Rn, (q, p) ∈ R2n, U is a real n × n positive definite matrix and V ∈ Mn×n(R). We

15



Chapter 1. Coherent States and their evolution

will use the simbol SG to denote the set of Gaussons.

When U is a diagonal matrix but not the identity matrix, these states are called squeezed states.
If we write down explicitly the phase, we get

ϕ(q,p)(x) =
〈
p, x− q

2

〉
− 1

2〈x− q, V (x− q)〉 (1.2.4)

where V is an n× n matrix.
It is also possible to define generalized coherent states choosing as amplitude a more general
function than the Gaussian as Paul did in [Pau09], but he consider as phase only the function
ϕ(q,p)(x) = 〈p, x〉 (plane wave). Here we extend his definition letting the phase be as in (1.2.4)
for the gaussons.

Definition 1.2.6. Let a ∈ S(Rn) and (q, p) ∈ R2n. We define a generalized coherent state
centered in (q, p) as the following wave function

ψa,V(q,p)(x) = a

(
x− q√
ε

)
e

i
ε
(〈p,x−q〉− 1

2 〈V (x−q),(x−q)〉) (1.2.5)

where ‖a‖L2 = 1 and V is a real n× n matrix.

We want to underline that this type of Coherent States will be useful in the following sections
when we will perform a semiclassical approximation of the solution of the Schrödinger equation.
More precisely we will see that choosing as initial datum a Coherent State, it will evolve to a
generalized Coherent State as in the previous definition.

1.2.1 On the convolution equation

Now we consider the convolution equation (1.2.2) in a more general form. In particular we assume
that the variance σ of the Gaussian will take values in the interval ]0,+∞[. So the equation will
take the form

∫
Rn

(∂xiϕ(q,p)(x))2
(
C(σ)

n∏
i=1

e−
(xi−qi)

2
σ

)
dx =

[∫
Rn
∂xiϕ(q,p)(x)

(
C(σ)

n∏
i=1

e−
(xi−qi)

2
σ

)
dx

]2

In R this equation becomes

∫
R

(f(q,p)(x))2
(
C(σ)e−

(x−q)2
σ

)
dx =

[∫
R
f(q,p)(x)

(
C(σ)e−

(x−q)2
σ

)
dx

]2
(1.2.6)

and we will look for solutions of the form

f(x) =
d∑
i=0

ai(x− q)i

16



Chapter 1. Coherent States and their evolution

where f : R→ R and d = deg f is the degree of the polynomial. Using this particular form for
the solution f , we have that the integral on the right side of (1.2.6) is

∫
R
f(q,p)(x)

(
C(σ)e−

(x−q)2
σ

)
dx =

d∑
i=0

ai

(
C(σ)

∫
R

(x− q)ie−
(x−q)2
σ dx

)

=
d∑
i=0

aiE[(N(q, σ)− q)i]

where E[(N(q, σ)− q)i] stands for the central momentum of i-th order of the Normal distribution
with mean q and variance σ. It is a well known fact that

E[(N(q, σ)− q)i] =

0 if i is odd

σi(i− 1)!! if i is even
(1.2.7)

so that we have ∫
R
f(q,p)(x)

(
C(σ)e−

(x−q)2
σ

)
dx =

d∑
i=0
i even

σi(i− 1)!!ai

Now

(f(x))2 =
d∑

i,j=0
aiaj(x− q)i+j

and ∫
R

(f(q,p)(x))2
(
C(σ)e−

(x−q)2
σ

)
dx =

d∑
i,j=0

i+j even

σi+j(i+ j − 1)!!aiaj

so that equation (1.2.6) becomes

d∑
i,j=0

i+j even

σi+j(i+ j − 1)!!aiaj −
d∑

i,j=0
i,j even

σi+j(i− 1)!!(j − 1)!!aiaj = 0 (1.2.8)

To make things easier let us make some examples.

d = 1

We are looking for a function f of the form

f(x) = a0 + a1(x− q)

and equation (1.2.8) becomes
a2

0 + σ2a2
1 − a2

0 = σ2a2
1 = 0

17



Chapter 1. Coherent States and their evolution

that implies a1 = 0 and a0 = p ∈ R. This means, in particular, that the phase will be
ϕ(q,p)(x) = p(x− q).

d = 2

Again
f(x) = a0 + a1(x− q) + a2(x− q)2

and (1.2.8) will take the form

a2
0 + 2σ2a0a2 + σ2a2

1 + 3σ4a2
2 − a2

0 − 2σ2a0a2 − σ4a2
2 = a2

1 + 2σ2a2
2 = 0

and one has a0 = p ∈ R>0 and a1 = a2 = 0.

To understand better we simply rewrite (1.2.8) in the following way

d∑
i,j=0
i,j odd

σi+j(i+ j − 1)!!aiaj +
d∑

i,j=0
i,j even

σi+j [(i+ j − 1)!!− (i− 1)!!(j − 1)!!]aiaj = 0 (1.2.9)

It is easy to see that this equation does not admit any solution different from a0 = p and ak = 0
for k = 1, . . . , d. This means in particular, that the only real solution ϕ(x) to the convolution
equation of the form ∂xiϕ(x) = fi(xi) is the linear phase ϕ = 〈p|x− q

2〉.

1.3 The Heisenberg-Weyl Group

In this section we study the property of the Heisenberg-Weyl group and its action on the states.
In particular we will show how to “create” Canonical Coherent States, starting from a Gaussian
wave packet. We will see that these states satisfy the equation (1.2.2) and are related to the set
SG of Gaussons. For this part we will follow mostly [Per86], [AAG00] and [CR12].
In the following we will treat only the 1-dimensional case, but everything can be done in the
same way also for the n-dimensional case (component by component). The operators X and P
acting on the Hilbert space H, satisfy the Heisenberg commutation relation

[X,P ] = iεI, [X, I] = [P, I] = 0 (1.3.1)

Instead of working with X and P , it is useful to define two new operators.

Definition 1.3.1. The operators a and a† defined as

a† = X − iP√
2ε

(1.3.2)

a = X + iP√
2ε

(1.3.3)

18



Chapter 1. Coherent States and their evolution

are called creation and annihilation operators respectively.

Proposition 1.3.2. The creation and annihilation operators satisfy

[a, a†] = 1 (1.3.4)

[a, I] = [a†, I] = 0 (1.3.5)

Proof. Since it is a simple calculation using the properties of the commutator we prove only the
first equality:

[a, a†] =
[
X + iP

2
√
ε

,
X − iP

2
√
ε

]
= 1

2ε ([X,X] + [P, P ] + i[P,X]− i[X,P ])

= 1
2ε (i[P,X]− i[X,P ])

= 1
2ε (−2i[X,P ]) = −2i2ε

2ε I = I

We introduce three new operators

e1 = iP√
ε
, e2 = iX√

ε
, e3 = iI

that will generate the Lie algebra of the operators and we give the following definition.

Definition 1.3.3. The Heisenberg-Weyl algebra HW is a real, three dimensional, Lie algebra,
given by the commutation relations

[e1, e2] = e3, [e1, e3] = [e2, e3] = 0

The elements of HW are written as a linear combination of the generators:

x = x(s;x1, x2) = x1e1 + x2e2 + se3 (1.3.6)

where s, x1 and x2 are three real numbers and if we substitute

x1 = − q√
ε
, x2 = p√

ε

we can write the element of the algebra in terms of the operators X and P and of the point (q, p)
in the following way

x(s; q, p) = isI + i
ε

(pX − qP ) (1.3.7)

There is another way to express the generic element of the Lie algebra as a function of the
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creation and annilhation operators by putting

x(s;α) = isI + (αa† − ᾱa) (1.3.8)

where

α = q + ip√
2ε

= −x1 + ix2√
2

, ᾱ = q − ip√
2ε

This last expression will be particularly useful in what will follow. Since we are working with
a Lie algebra we have to define also the commutator of two elements: if x = x(s;x1, x2) and
y = y(t; y1, y2) their commutator will be

[x, y] = (x1y2 − x2y1)e3 = B(x, y)e3

where B(x, y) is the symplectic form on the (x1, x2)-plane.
To construct the corresponding Lie group from its algebra, one must use exponentiation: starting
from expression (1.3.8) we have

exp(x) = exp(isI) exp(αa† − ᾱa) = exp(isI)D(α) (1.3.9)

where
D(α) = exp(αa† − ᾱa) (1.3.10)

Note that we can rewrite in another form D(α) using the operators X and P and the point (q, p):

D(α) = exp i
ε

(pX − qP ) (1.3.11)

where we use (with an abuse of notation) the same symbol D(α) for the coordinates (q, p) and
its complexification α. Now the problem is to find the multiplication law of the group. We start
using the following identity (Baker-Campbell-Hausdorff)

expA expB = exp
(1

2[A,B]
)

exp(A+B) (1.3.12)

when [A, [A,B]] = [B, [A,B]] = 0.

Lemma 1.3.4. We have

D(α)D(β) = exp(iIm (αβ̄))D(α+ β) (1.3.13)

Proof. Putting A = αa† − ᾱa and B = βa† − β̄a, we get

A+B = (α+ β)a† − (ᾱ+ β̄)a

20



Chapter 1. Coherent States and their evolution

and so
exp(A+B) = D(α+ β)

It remains only to compute exp(1
2 [A,B]):

1
2 [A,B] = 1

2[αa† − ᾱa, βa† − β̄a] = 1
2(αβ̄ − ᾱβ) = i Im(αβ̄)

that means
exp

(1
2[A,B]

)
= exp(i Im(αβ̄))

as required.

We can write down explicitly the operator D(α) in terms of α, a, a† or using (q, p), X, P .

Lemma 1.3.5. We have

D(α) = exp
(
−|α|

2

2

)
exp

(
αa†

)
exp (−ᾱa) = exp

(
− i
ε

pq

2

)
exp

( i
ε
pX

)
exp

(
− i
ε
qP

)
(1.3.14)

Proof. Starting again from Weyl’s identity

exp(A+B) = exp
(
−1

2[A,B]
)

expA expB (1.3.15)

one has, recalling that [αa†,−ᾱa] = − |α|2 [a†, a] = |α|2 I

D(α) = exp
(
αa† − ᾱa

)
= exp

(
−|α|

2

2

)
exp

(
αa†

)
exp (−ᾱa)

and the first equality is proven. Moreover we have, starting from (1.3.11) and using again (1.3.15)
with A = i

εpX and B = − i
εqP , noticing that

1
2[A,B] = − i

ε

pq

2

we get
exp

( i
ε

(pX − qP )
)

= exp
(
− i
ε

pq

2

)
exp

( i
ε
pX

)
exp

(
− i
ε
qP

)
and the proof is completed.

We want to understand how these operators act on a state of H. To do this the following lemma
is very useful.

Lemma 1.3.6.

e
i
ε
pXψ(x) = e

i
ε
pxψ(x) (1.3.16)

e−
i
ε
qPψ(x) = ψ(x− q) (1.3.17)
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Proof. To prove the statements we use Taylor expansion of the exponential of the operator:

e
i
ε
pXψ(x) =

∞∑
n=0

1
n!p

n
( i
ε

)n
xnψ(x) = ψ(x)

∞∑
n=0

1
n!

( i
ε
px

)n
= e

i
ε
pxψ(x)

The second equality is obtained using the previous equality for the multiplication operator, but
using the Fourier transform to have the {P} representation for the wave function. In this case
the P operator is again the multiplication operator by p, so, using the previous result, we have

e−
i
ε
qP ψ̂(p) =

∞∑
n=0

1
n! (−q)

n
( i
ε

)n
pnψ̂(p) = ψ̂(p)

∞∑
n=0

1
n!

(
− i
ε
qp

)n
= e−

i
ε
qpψ̂(p)

and the last expression is exactly the Fourier transorm of the wave function ψ(x− q), i.e. we have

e−
i
ε
qPψ(x) = ψ(x− q)

We recollect everything in the following proposition.

Proposition 1.3.7. In coordinates representation the action of the operator D(α) is given by

D(α)ψ(x) = exp
( i
ε
p

(
x− q

2

))
ψ(x− q) (1.3.18)

Proof. Follows immediately from the previous lemma.

Remark 1.3.8 Suppose x ∈ R and to have as initial state

ψ(x) =
( 1
πε

)1/4
e−

x2
2ε

then D(α)ψ(x) has the following form

D(α)ψ(x) =
( 1
πε

)1/4
e−

(x−q)2
2ε e

i
ε
〈p,x− q2 〉 = ηU,V(q,p)(x)

as in (1.2.3) with V = 0 and U = 1
2ε . Now it is clear that the right constant k ∈ R that

appears in Remark 1.1.3 is pq/2.

The operator-valued map α 7→ D(α) = exp(αa† − ᾱa) is a unitary representation, up to a phase
factor, of the group of translations of the complex plane. Starting from (1.3.13) and observing
that

[A,B] = iIm (αβ̄) = −2iα ∧ β
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it is easy to verify the unitarity of the operator D(α):

D(α)D(−α) = e−iα∧αD(α− α) = I

and so D(−α) = exp(ᾱa − αa†) = D(α)† = D(α)−1. We can extend the relation (1.3.13):
considering α1, . . . , αn we have

D(αn) · . . . ·D(α1) = eiδD(α1 + . . .+ αn)

where the phase δ = −
∑
k<j

αk ∧ αj has a (symplectic) topological meaning: it is equal to the

oriented area of the poligon width edges α1, α1 + α2, . . . , α1 + . . .+ αn. In canonical coordinates
zj = (qj + pj)/

√
2 and we have

δ =
∑
j<k

1
2 (qjpk − qkpj) (1.3.19)

1.3.1 The set of canonical Coherent States

Now we give the general definition of the Heisenberg-Weyl group GHW .

Definition 1.3.9. The Heisenberg Weyl group GHW is the set of elements g of the form

g = (s, q, p), s ∈ R, (q, p) ∈ R2n

with the multiplication law

g1g2 = (s1 + s2 + ξ((q1, p1), (q2, p2)), q1 + q2, p1 + p2)

where ξ is the multiplier function

ξ((q1, p1), (q2, p2)) = 1
2(〈p1, q2〉 − 〈p2, q1〉)

Remark 1.3.10 We can rewrite the previous relation in the coordinates (q, p). Then every
element g ∈ GHW will be given by

g = (s, α), s ∈ R, α ∈ C

with multiplication law
g1g2 = (s1 + s2 + ξ(α, β), α+ β)

with ξ(α, β) = Im(αβ̄). Note that the function ξ coincides with δ in (1.3.19).
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Now we call Θ the phase subgroup of GHW , that means the set of elements of the form g = (s, 0, 0)
with s ∈ R. Then the quotient group GHW/Θ can be identified with R2n and parametrized by
(q, p) (or equivalently using α ∈ Cn). With this parametrization GHW/Θ carries the invariant
measure

dν(q, p) = dqdp

2π
and the function

σ : GHW/Θ→ GHW

σ(q, p) = (0, q, p)

defines a section in GHW , and it can be viewed as a fiber bundle over GHW/Θ, with fibers
isomorphic to θ. In this way we can define the set of canonical Coherent States.

Definition 1.3.11 ([AAG00]). The set

SCCS = {η(q,p) = D(α)η | (q, p) ∈ GHW/Θ}

where D(α)η = e
i
ε
〈p,x− q2 〉η(x− q) and

η(x) =
( 1
πε

)n/4 n∏
i=1

e−
x2
i

2ε

is a Gaussian Wave Packet, is called the set of Canonical Coherent States.

Remark 1.3.12 It easy to see that the set of Canonical Coherent States is a subset of the
set of Gaussons: SCCS ⊂ SG. More precisely one has that

SCCS =
{
ηU,V(q,p) ∈ SG

∣∣∣∣∣ U = 1
ε
I, V = 0

}

Proposition 1.3.13. Every Canonical Coherent State η(q,p) ∈ SCCS satisfies (1.2.2).

Proof. It is an easy computation: the phase function for a Canonical Coherent State is ϕ(q,p)(x) =
p · (x− q

2) and its i-th partial derivative ∂xiϕ(q,p)(x) = pi. Then (using the notations in (1.2.2))
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one has [(
∂xiϕ(q,p)

)2
∗ G
]

(q) = p2
iC(ε)

∫
Rn

n∏
i=1

e−
(xi−qi)

2
2ε dx1 . . . dxn = p2

i

[
∂xiϕ(q,p) ∗ G

]2
(q) =

[
C(ε)

∫
Rn
pi

n∏
i=1

e−
(xi−qi)

2
2ε dx1 . . . dxn

]2

= p2
i

as required.

1.4 Coherent States on the torus

In this section we want to underline the fact that it is possible to speak of coherent states on
the torus Tn. For example, if we want a Gaussian coherent state ψ(q,p)(x) with x ∈ T and
(q, p) = (0, 0), we have

ψ(0,0)(x) =
(
π

ε

)1/4∑
n

e−
n2
2 εeinx

because it is simply the coherent state on R where we have applied the Poisson Summation
Formula.

Proposition 1.4.1. Let g be the Gaussian on R. Then

+∞∑
k=−∞

g(x+ 2πk) = 1
2π

+∞∑
n=−∞

ĝ(n)einx

where
ĝ(n) =

√
2πε e−

n2
2 ε

is the Fourier Transform of the Gaussian.

Proof. Let

h(x) =
+∞∑

k=−∞
g(x+ 2πk)

then h is 2π-periodic and its Fourier coefficients are

ĥn = 1
2π

∫ 2π

0
h(x)e−inxdx = 1

2π

+∞∑
k=−∞

∫ 2π

0
g(x+ 2πk)e−inxdx

= 1
2π

+∞∑
k=−∞

∫ 2π(k+1)

2πk
g(x)e−inxdx = 1

2π

∫ +∞

−∞
g(x)e−inxdx = 1

2π ĝ(n)

and this concludes the proof.
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Chapter 1. Coherent States and their evolution

It is also possible to consider a Gaussian coherent state ϕα,Z(x) with α = (q, p) ∈ R2, Z ∈
Mn×n(C) with ImZ > 0 and its periodisation ϕ

(θ)
α,Z = Σ(θ)

N ϕα,Z . More precisely Σ(θ)
N is the

periodisation operator acting on the states in the following way

Σ(θ)
N =

∑
z∈Z2

(−1)Nz1z2ei(θ1z1−θ2z2)T̂ (z) (1.4.1)

where
T̂ (z)ψ(x) = e−iz1z2/2εeixz2/εψ(x− z1) (1.4.2)

and we suppose that N = 1
2πε (or equivalently the Planck’s constant can be obtained as ε = 1

2πN ).
In this case the state ϕ(θ)

α,Z is equal to

ϕ
(θ)
α,Z =

∑
n1,n2∈Z

(−1)Nn1n2ei(θ1n1−θ2n2)+ i
2εσ(n,z)D(n+ z)ϕ0,Z (1.4.3)

(see [CR12] for proofs), where σ is the symplectic form

σ((a, b), (c, d)) = ad− bc

and D is as in (1.3.18).

1.5 The symplectic group and the Siegel upper half space

Here we want to recall some results on the linear symplectic group Sp(n,R) that will be useful in
the following sections. We define

J :=
(
O −I
I O

)
(1.5.1)

Clearly one has the following equalities

J 2 = −I

J T = −J = J −1

Definition 1.5.1. A matrix A ∈M2n×2n(R) will be called a symplectic matrix if

ATJA = J (1.5.2)

and we will write A ∈ Sp(n,R).

Moreover we define the symplectic Lie algebra in the following way.

Definition 1.5.2. The symplectic Lie algebra sp(n,R) is the set of matrix A ∈M2n×2n(R) such
that eAt ∈ Sp(n,R) for all t ∈ R.
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Chapter 1. Coherent States and their evolution

First we recall two results on the polar decomposition of a matrix.

Proposition 1.5.3. (i) If A ∈ GL(2n,R) then

A = UP (1.5.3)

where U ∈ O(2n) and P is positive definite.

(ii) If A ∈ Sp(n,R) then

A = UP (1.5.4)

with U and P as before and U ,P ∈ Sp(n,R).

Proof. (i) If A = UP with U ∈ O(2n) and P > 0 then

ATA = PTUTUP = PTP = P2

and so we must have P = (ATA)1/2. Note that since ATA is positive definite then P is.
So we must have U = AP−1 and

(AP−1)TAP−1 = P−TATAP−1 = P−TPTPP−1 = I

and we get U ∈ O(2n) as required.

(ii) First note that if A is symplectic then

A−T = JAJ −1

and since A admits a unique polar decomposition by (i) we get

U−TP−T = JUPJ −1 = (JUJ −1)(JPJ −1)

Since JUJ −1 is orthogonal then we have JUJ −1 = U−T and so U is symplectic. Moreover
JPJ −1 is positive definite and so JPJ −1 = P−T that means P ∈ Sp(n,R).

Proposition 1.5.4. Sp(n,R) ∩ O(2n) is a maximal compact subgroup of Sp(n,R).

Proof. Let K be a subgroup of Sp(n,R) containing Sp(n,R) ∩ O(2n), we choose A ∈ K and we
show that A ∈ Sp(n,R) ∩ O(2n). Using the previous proposition we have A = UP and since
U ∈ O(2n) then U ∈ K. From this fact we must have also P = U−1A ∈ K. P is positive
definite and detP = 1 (from the fact that PTJP = J ), that implies either P = I or P has some
eigenvalue greater than 1. If P = I then A = U ∈ O(2n); otherwise we must have Pj ∈ K for all
j but ‖Pj‖ → ∞ implying that K is not compact.
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Chapter 1. Coherent States and their evolution

Proposition 1.5.5. Sp(n,R) is connected and Z is its fundamental group.

Proof. First note that if P ∈ Sp(n,R) then P is positive definite if and only if P = eB where
B ∈ sp(n,R) and B = BT . Moreover if we identify R2n with Cn using (q, p) 7→ q + ip, then
Sp(n,R) ∩O(2n) = U(n). So Sp(n,R) is topologically equivalent to the product U(n)× {B ∈
sp(n,R) |B = BT } and the proposition follows from the well known properties of U(n).

Proposition 1.5.6. The subsets of GL(2n,R)

N =
{(

I F

O I

)
: F = F T

}
, N̄ =

{(
I O
G I

)
: G = GT

}

D =
{(

E O
O E−T

)
: E ∈ GL(n,R)

}

are subgroups of Sp(n,R). Moreover

N̄DN =
{(

A B

C D

)
∈ Sp(n,R) : detA 6= 0

}

Proof. The first part of the proposition is very easy to prove. Suppose now that we have three
matrices (one for every subgroup) and we multiply them. We obtain:

(
I O
G I

)(
E O
O E−T

)(
I F

O I

)
=
(
E EF

GE GEF + E−T

)
(1.5.5)

where the last matrix is symplectic and detE 6= 0 since E ∈ GL(n,R). To complete the proof

we will show that every symplectic matrix S =
(
A B

C D

)
with detA 6= 0 can be written as

the product of three matrices as in the statement of the proposition. Consider again (1.5.5).
One takes E = A, F = A−1B and G = CA−1 and we have to prove that F = F T , G = GT

and D = GEF + E−T . Since S is symplectic we have STJS = J that implies ATC = CTA,
ABT = BAT and ATD − CTB = I. Using the first two relations we haveA

TC = CTA⇒ ETGE = ETGTE ⇒ G = GT

ABT = BAT ⇒ EF TET = EFET ⇒ F = F T

It remains to show that D = GEF +E−T but D = A−TCTB +A−T = E−TETGTEF +E−T =
GEF + E−T .

Theorem 1.5.7. Sp(n,R) is generated by D ∪N ∪ {J } or by D ∪ N̄ ∪ {J }.

Proof. It is easy to verify that J N̄J −1 = N and J −1 ∈ JD. Define G as the subgroup generated
by D ∪N ∪ {J } (or equivalently by D ∪ N̄ ∪ {J }). It will contain N̄DN and, since N̄DN is
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an open neighborhood of the identity, G is open and also closed (its complement is an union of
cosets and so open). This implies, since Sp(n,R) is connected, that G = Sp(n,R).

The last theorem will be useful in the next sections: it tells us that every symplectic matrix can
be written as the product

S =
(
A O
O A−T

)(
I B

O I

)
J

or as

S =
(
A O
O A−T

)(
I O
B I

)
J (1.5.6)

If we choose a coherent state with phase

〈p, x− q〉+ 1
2〈Z(x− q), x− q〉

then we can associate to it the Lagrangian submanifold

{(x, p+ Z(x− q)) : x ∈ Rn} = {(q + x, p+ Zx) : x ∈ Rn}

that is a submanifold of T(q,p)(T ∗M). If Z is complex we have to “complexify” the tangent space.
Let (V, ω) be a symplectic vector space over R of dimension 2n and denote with V C its com-
plexification. A subspace L ⊂ V , or L ⊂ V C, is called Lagrangian if dimL = n, or dimC L = n

respectively, and
ω(z1, z2) = 0 for all z1, z2 ∈ L

Definition 1.5.8. The set of all Lagrangian planes in V is called Lagrangian Grassmannian and
denoted with Λ(V ). Similarly Λ(V C) is the Lagrangian Grassmannian of the complexification. A
Lagrangian plane L ∈ Λ(V C) is called positive if

iω(z̄, z) ≥ 0 for all z ∈ L

and totally real if
iω(z̄, z) = 0 for all z ∈ L

The set of all positive Lagrangian planes in V C will be denoted by Λ+(V C).

Definition 1.5.9. Let L0 be a totally real Lagrangian plane in V C. We denote with

Λ+
L0

(V C) :=
{
L ∈ Λ+(V C) : L ∩ L0

}
the space of all the Lagrangian planes transversal to L0.

Lemma 1.5.10. Λ+
L0

(V C) is isomorphic to the space of all symmetric n×n matrices with positive
imaginary part.
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Definition 1.5.11. The set of symmetric n×n matrices Z with positive imaginary part is called
Siegel upper half space Σn.

Let S ∈ Sp(n,R) be a 2n× 2n symplectic matrix of the form

S =
(
S11 S12

S21 S22

)

The linear symplectic group Sp(n,R) acts on the set of Lagrangian planes: infact there is a
bijection between the set of complex Lagrangian planes and the set of complex symmetric matrices.
A complex Lagrangian plane is the set LZ = {(x, Zx), x ∈ Cn}. Let Z a n× n complex matrix
with ImZ > 0. We look for a matrix S∗Z such that

SLZ = LS∗Z (1.5.7)

where LZ = {(x, Zx), x ∈ Cn} and LS∗Z = {(x,S∗Zx), x ∈ Cn}, then the equation (1.5.7) reads

(S11 + S12Z)x = y

(S21 + S22Z)x = S∗Zy

and inserting the first equation in the second, one gets

S∗Z = (S21 + S22Z)(S11 + S12Z)−1 (1.5.8)

Theorem 1.5.12. (i) If T ,S ∈ Sp(n,R) and Z ∈ Σn then T∗S∗Z = (T S)∗Z.

(ii) If Z ∈ Σn and S ∈ Sp (n,R) then S∗Z ∈ Σn;

(iii) for any Z1, Z2 ∈ Σn, there exists an S ∈ Sp (n,R) with S∗Z1 = Z2.

Proof. It is easy to prove (i). To prove (ii) we have to observe that

(
A O
O A−T

)
∗

Z = AZAT ,

(
I B

O I

)
∗

Z = Z +B, J∗Z = −Z−1

and, since A is real, B is real and symmetric and Z ∈ Σn, then AZAT and Z + B are in Σn.
Moreover −Z−1 is symmetric and

Im(−vZ−1v) = Im(−wZw) = Im(wZw) > 0

for all v = Zw 6= 0. Since we have prove the statement on the generators of Sp(n,R) we have the
result.
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1.6 Propagation of Coherent States

We will follow mainly [CR97], [Rob98] and [Sch01]. In this section we want to understand the
evolution of a coherent state in Rn centered at a point (q, p) of the phase space R2n. In the
following we will consider the self adjoint operator

H = −ε
2

2 ∆ + V (x) (1.6.1)

where x ∈ Rn, V (x) ∈ C∞(Rn) and H acts on L2(Rn). Corresponding to this operator there is
also its symbol

h(q, p) = 〈p, p〉2 + V (x) (1.6.2)

that is the Hamiltonian function defined on R2n. Our aim will be to approximate the solution of
the Cauchy problem 

iε∂tφ(t, x) = Hφ(t, x)

φ(0, x) = ψ(q,p)(x) =
( 1
πε

)n/4
e−
|x−q|2

2ε e
i
ε
〈p,x−q〉

(1.6.3)

so, from now on, φ(t, x) = e−
i
ε
Htψ(q,p)(x) will represent the exact solution of the problem (1.6.3).

Before proceeding in this direction, we need to understand how the error of an approximate
solution propagates in time.

Lemma 1.6.1. Let H be a self-adjoint operator and ψ(t, x) and φ(t, x) such that

iε∂tψ(t, x) = Hψ(t, x) +Rψ(t, x)

iε∂tφ(t, x) = Hφ(t, x)

ψ(0, x)− φ(0, x) = α0(x)

Then for all t ≥ 0 one has

‖ψ(t, ·)− φ(t, ·)‖L2 = O
(
‖α0‖L2 + t

ε
sup
s∈[0,t]

‖Rψ(s, ·)‖L2

)

Proof. Once we define e−
i
ε
tHα(t, x) := ψ(t, x)− φ(t, x), we get

iε∂t(ψ(t, x)− φ(t, x)) = H(ψ(t, x)− φ(t, x)) +Rψ(t, x)
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and

e−
i
ε
tH(iε∂tα(t, x)) +He−

i
ε
tHα(t, x) = He−

i
ε
tHα(t, x) +Rψ(t, x)

∂tα(t, x) = 1
iεe

i
ε
tHRψ(t, x)

From the last equality
α(t, x) = α0(x) + 1

iε

∫ t

0
e

i
ε
sHRψ(s, x)ds

and easily applying the L2 norm

‖α(t, ·)‖L2 ≤ ‖α0‖L2 + t

ε
sup
s∈[0,t]

‖Rψ(s, ·)‖L2

we get the estimate of the Theorem.

Before stating the main result of this part, we need one more proposition.

Proposition 1.6.2. Consider the following Cauchy problem−Ż = Z2 + V ′′x,x(q)

Z(0) = Z0
(1.6.4)

where Z(t) is a n× n complex-valued matrix and V ′′x,x is the Hessian of the potential V . Let

Z(t) = S(t)∗Z0 = (S21 + S22Z0)(S11 + S12Z0)−1 (1.6.5)

where S(t) is the 2n× 2n symplectic matrix solving the linearized equations
Ṡ = JH ′′S =

 O I

−V ′′x,x(q(t)) O

S
S(0) = I

(1.6.6)

where H ′′ is the Hessian of the Hamiltonian h(q, p) = 1
2〈p, p〉+ V (x). Then Z(t) is a solution of

(1.6.4).

Proof. We start computing(
Ṡ11 Ṡ12

Ṡ21 Ṡ22

)
=
(

S21 S22

−V ′′(q(t))S11 −V ′′(q(t))S12

)
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Now

Ż = (Ṡ21 + Ṡ22Z0)(S11 + S12Z0)−1

−(S21 + S22Z0)(S11 + S12Z0)−1(Ṡ11 + Ṡ12Z0)(S11 + S12Z0)−1

= (Ṡ21 + Ṡ22Z0)(S11 + S12Z0)−1 − Z(Ṡ11 + Ṡ12Z0)(S11 + S12Z0)−1

and

Ṡ11 + Ṡ12Z0 = S21 + S22Z0

Ṡ21 + Ṡ22Z0 = −V ′′(q(t))S11 − V ′′(q(t))S12Z0 = −V ′′(q(t))(S11 + S12Z0)

Substituting into the equation for Ż(t), we have

Ż = −V ′′(q(t))− Z2

that is exactly (1.6.4). Moreover Z(0) = I∗Z0 = (IZ0)(I)−1 = Z0.

The following Theorem tells us that we can approximate the solution of (1.6.3) using coherent
states, but we have to make the initial state evolve using the classical Hamiltonian. With this
approximation we make an error of order

√
ε . The statements are given in the articles of T.

Paul in [Pau09], [Pau07b] and [Pau07a]. For a different proof see [Hag80]. Here we propose a
different proof.

Theorem 1.6.3 (Paul [Pau07b]). Let V (x) ∈ C3(Rn) a function with bounded derivatives and
φ(t, x) = e−

i
ε
tHψ(q,p)(x) be the solution of (1.6.3). Then there exist a generalized coherent

state ψa,V(q,p) as in Definition (1.2.6), where a = a(t), V = V (t) are given in (1.6.18) below,
(q, p) = (q(t), p(t)) solve the classical system



q̇(t) = ∂h

∂p
(q(t), p(t))

q(0) = q

ṗ(t) = −∂h
∂q

(q(t), p(t))

p(0) = p

(1.6.7)

such that ∥∥∥φ(t, ·)− e
i
ε
Θ(t)ψ

a(t)
(q(t),p(t))(·)

∥∥∥
L2
≤ Cε1/2t sup

s∈[0,t]
| ImZ(s)|−3/2

∞ (1.6.8)

where Z(t) is a complex matrix n× n, | · |∞ is the matrix sup norm and the phase factor Θ(t) is
given by

Θ(t) =
∫ t

0

[
p(s)q̇(s)−H(q(s), p(s))

]
ds (1.6.9)
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Proof. In the following ψ(t, x) will represent the approximate solution of (1.6.3). We will divide
the proof in two steps:

(i) determine a(t), V (t), (q(t), p(t)),Θ(t);

(ii) compute and estimate the remainder Rψ(t, x);

(i) We start rewriting the initial datum as

ψ(q,p)(x) =
(

1
πε

)n/4
e−

(x−q)2
2ε e

i
ε
〈p,x−q〉

=
(

1
πε

)n/4
(det ImZ0)1/4e

i
ε
[〈p,x−q〉+〈Z0(x−q),x−q〉/2]

where we have chosen Z0 = iI. Then we look for an approximate solution of the form

ψ(t, x) = α(t)e
i
ε
Θ(t)e

i
ε
[〈p(t),x−q(t)〉+〈Z(t)(x−q(t)),x−q(t)〉/2]

under the condition that ψ(0, x) = ψ(q,p)(x). We insert ψ(t, x) in the Schrödinger equation and
we get:

(iεα̇/α− Θ̇− 〈ṗ, x− q〉+ 〈p, q̇〉+ 〈Zq̇, (x− q)〉 − 〈Ż(x− q), (x− q)〉/2)ψ =

= (−iεtrZ/2 + (p+ Z(x− q))2/2 + V (x))ψ

Now we develop the potential V (x) in powers of x− q and, up to second order, we get

iεα̇
α
− Θ̇− 〈p, q̇〉 = − iε

2 trZ + |p|
2

2 + V (q) (1.6.10)

−ṗ+ Zq̇ = Zp+ V ′x(q) (1.6.11)

−Ż = Z2 + V ′′x,x(q) (1.6.12)

From (1.6.11) we get the following Cauchy problem

ṗ = −V ′x(q)

p(0) = p

q̇ = p

q(0) = q

(1.6.13)

and taking q(t) and p(t) as the solutions of the Hamilton equations relative to

h(q, p) = |p|
2

2 + V (q)
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then the equation (1.6.11) is automatically satisfied.
Equation (1.6.12) gives −Ż = Z2 + V ′′x,x(q)

Z(0) = Z0 = iI

that is exactly (1.6.4), that means the solution is simply the matrix Z(t) given by (1.6.5):

Z(t) = S(t)∗Z0

From (1.6.10) we get another Cauchy problem


α̇

α
= −1

2trZ

α(0) = (det ImZ0)1/4

−Θ̇− 〈p, q̇〉 = |p|2
2 + V (q)

Θ(0) = 0

(1.6.14)

If we pose
Θ(t) =

∫ t

0
〈p(s), q̇(s)〉 − h(q(s), p(s))ds

and
α(t) = (det ImZ0)1/4e−

1
2

∫ t
0 tr [S(s)∗Z0]ds

then we get a solution of (1.6.14). So, since we have found α(t), (q(t), p(t)), Z(t),Θ(t), we can
construct ψ(t, x) and we have

ψ(t, x) = e
i
ε
Θ(t)

( 1
πε

)n/4
α(t)e

i
ε
〈Z(t)(x−q(t)),x−q(t)〉/2e

i
ε
〈p(t),x−q(t)〉 (1.6.15)

Note that a priori, we don’t know how Z(t) evolves in time, but we can rewrite Z(t) =
ReZ(t) + i ImZ(t) and the wave function takes the form

ψ(t, x) = e
i
ε
Θ(t)

( 1
πε

)n/4
α(t)ã

(
x− q(t)√

ε

)
e

i
ε
〈ReZ(t)(x−q(t)),x−q(t)〉/2e

i
ε
〈p(t),x−q(t)〉 (1.6.16)

=
( 1
πε

)n/4
a

(
t,
x− q(t)√

ε

)
e

i
ε
Θ(t)e

i
ε [〈p(t),x−q(t)〉+ 1

2 〈V (t)(x−q(t)),x−q(t)〉] = e
i
ε
Θ(t)ψ

a(t)
(q(t),p(t))

(1.6.17)
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where we have posed 

ã

(
x− q(t)√

ε

)
= e

1
2ε 〈ImZ(t)(x−q(t)),x−q(t)〉

a

(
t,
x− q(t)√

ε

)
:= α(t)ã

(
x− q(t)√

ε

)

V (t) := ReZ(t)

(1.6.18)

and clearly a ∈ S(Rn).
(ii) Now we compute the remainder Rψ(t, x). We have

(
iε ∂
∂t
−H

)
ψ(t, x) = Rψ(t, x)

where R is defined as

R = V (x)−
∑
|β|≤2

V β(q(t))
β! (x− q(t))β = O((x− q(t))3) (1.6.19)

and

Rψ(t, x) =

V (x)−
∑
|β|≤2

V β(q(t))
β! (x− q(t))β

α(t)e
i
ε
ϕ(x,t)

where ϕ(x, t) = Θ(t) + 〈p(t), x− q(t)〉+ 1
2〈Z(t)(x− q(t)), x− q(t)〉. We want to prove that

‖Rψ(t, ·)‖L2 ≤ Cε3/2| ImZ(t)|−3/2
∞ (1.6.20)

We start observing that

|Rψ(t, x)|2 ≤ C(ε)|α(t)|2
∣∣∣R2e

i
ε
ϕ(t,x)

∣∣∣ ∣∣∣e i
ε
ϕ(t,x)

∣∣∣ (1.6.21)

where C(ε) is the normalization constant (of the initial coherent state). Now we prove that

|R2e
i
ε
ϕ(t,x)| ≤ Cε3| ImZ(t)|3 (1.6.22)

holds true. To prove it we will use Lemma (A.2.2). To this end note that

Imϕ(x, t) = 1
2〈ImZ(t)(x− q(t)), (x− q(t))〉

and that Imϕ(t, x) ≥ 0 from the fact that Z(t) ∈ Σd because S(t) ∈ Sp (d,R) and Z0 ∈ Σd (see
Theorem 1.5.12). Clearly the amplitute a(t, x) of R2ψ(t, x) is of order O((x− q(t))6) (and so for
the x variable the condition (A.2.4) is satisfied), while in the t variable we have to put the term
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Chapter 1. Coherent States and their evolution

|ImZ(t)|∞. Finally we have to set N = 6
2 = 3 (because Imϕ is of order 2 in x− q(t)). So we get

|a(t, x)| ≤ C̃| ImZ(t)|−3
∞

and applying Lemma (A.2.2) we get∣∣∣R2ψ(t, x)
∣∣∣ ≤ C̄ε3| ImZ(t)|−3

∞

uniformly in x as required. Next we look at the term
∣∣∣e i
ε
ϕ(t,x)

∣∣∣ in (1.6.21).

∣∣∣e i
ε
ϕ(t,x)

∣∣∣ = e−
1
ε
〈ImZ(t)(x−q(t))|x−q(t)〉

that is a Gaussian centered on q(t). So we have that (1.6.21) becomes

|Rψ(t, x)|2 ≤ C(ε)ε3| ImZ(t)|−3
∞ |α(t)|2e−

1
ε
〈ImZ(t)(x−q(t))|x−q(t)〉

and taking the square root of the integral over Rn on both sides, we have

‖Rψ(t, ·)‖L2 ≤ Cε3/2| ImZ(t)|−3/2
∞

The last step is to use Lemma 1.6.1: we easily get∥∥∥φ(t, ·)− e
i
ε
Θ(t)ψ

a(t)
(q(t),p(t))(·)

∥∥∥
L2
≤ Ctε1/2 sup

s∈[0,t]
| ImZ(s)|−3/2

∞

1.6.1 Ehrenfest time

To better understand the error term in Theorem (1.6.3), one has to find a bound for | ImZ(t)|.

The pendulum

We consider as an example the case of the classical pendulum. Let (x, ξ) ∈ R2 and let

h(x, ξ) = ξ2

2 + cosx− 1

with x ∈ [0, 2π], be the classical Hamiltonian. Then the Quantum Mechanical operator associated
to h is

H = −ε2∆ + cosx− 1

and suppose that we want to construct an approximate solution to (1.6.3) where we choose the
coherent state centered on an equilibrium point (q(0), p(0)). It is trivial to see that there are
two equilibrium points given by (0, 0) (unstable) and (π, 0) (stable). In both cases we will have
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Chapter 1. Coherent States and their evolution

(q(t), p(t)) = (q(0), p(0)) since these two points are equilibria. We now try to find estimates for
ImZ(t).

(i) Stable case: in this situation one has that the matrix S in (1.6.6) is given by
Ṡ =

Ṡ11 Ṡ12

Ṡ21 Ṡ22

 =

 0 1

cosπ 0

S =

 S21 S22

−S11 −S12


S(0) = I

(1.6.23)

and we can easily determine all the entries of the matrix. One ends up with

S(t) =
(

cos t − sin t
sin t cos t

)
(1.6.24)

and the function Z(t) will be given by

Z(t) = (S21 + iS22)(S11 + iS12)−1 = (sin t+ i cos t)(cos t− i sin t)−1 (1.6.25)

= (sin t+ i cos t)(cos t+ i sin t) = i (1.6.26)

since Z0 = i. We have | ImZ(t)| = 1 and the error in the estimate (1.6.8) will be Cε1/2t.
In this case the approximation will be accurate up to times of order t ∼ O(ε−1/2).

(ii) Unstable case: in this case the matrix of the linearized system is

S(t) =
(

cosh t sinh t
sinh t cosh t

)
(1.6.27)

and Z(t) is given by

Z(t) = (S21 + iS22)(S11 + iS12)−1 = (sinh t+ i cosh t)(cosh t+ i sinh t)−1

= 2 sinh t cosh t
sinh2 t+ cosh2 t

+ icosh2 t− sinh2 t

sinh2 t+ cosh2 t

= tanh 2t+ i 1
sinh2 t+ cosh2 t

(1.6.28)

and so
| ImZ(t)|−3/2 = (sinh2 t+ cosh2 t)3/2 = (cosh 2t)3/2 ≤ e3t (1.6.29)

Then the error term will be Cε1/2te3t and the approximation will be good up to times
smaller than

t ≤W
(
C√
ε

)
(1.6.30)

whereW (x) is the so called Lambert W-function (i.e. the inverse of the function f(x) = xex).
Taking ε small enough one has that W (1/

√
ε ) is well approximated by log(1/

√
ε ), so our
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approximation is good up to times
t ∼ ln 1

ε
(1.6.31)

The general case

Here we want to find an estimate for the matrix norm | ImZ(t)| in the more general case where

h(x, ξ) = |ξ|
2

2 + V (x) (1.6.32)

with the corresponding Quantum Mechanical operator

H = −ε
2

2 ∆ + V (x)

Now we suppose that V (x) has a stable equilibrium point (qs, ps) and/or an unstable equilibrium
point (qu, pu).

Theorem 1.6.4. Let h(x, ξ) as in (1.6.32)

(i) If (qs, ps) is a stable equilibrium point and we consider the Cauchy problem (1.6.3) with
initial datum ψ(qs,ps)(x), then sups∈[0,t] | ImZ(s)|−3/2

∞ ≤ C where C ∈ R is a constant. In
this case the approximation of Theorem (1.6.3) is valid up to times of order t ∼ 1/

√
ε .

(ii) If (qu, pu) is an unstable equilibrium point and we consider the Cauchy problem (1.6.3) with
initial datum ψ(qu,pu)(x), then sups∈[0,t] | ImZ(s)|−3/2

∞ ≤ e3λt where λ > 0 is a constant. In
this case the approximation of Theorem (1.6.3) is valid up to times of order t ∼ 1

λ ln 1
ε .

Proof. First of all note that in (i) and (ii) the matrix of the system (1.6.6) has constant coefficients
so the solution will be

S(t) = eMt (1.6.33)

where

M =
(

O I
−V ′′(q∗) O

)
(1.6.34)

and q∗ = qu, qs. S(t) is a symplectic matrix and can be decomposed as in (1.5.6) so that

S(t) =
(
A O
O A−T

)(
I O
B I

)(
O −I
I O

)
=
(

O −A
A−T −A−TB

)
(1.6.35)

and the matrix Z(t) will be given by

Z(t) = (S21 + iS22)(S11 + iS12) = (A−T − iA−TB)(−iA)−1 = (A−T − iA−TB)(iA−1) (1.6.36)

Then the imaginary part of Z(t) is

ImZ(t) = (AAT )−1
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and considering its norm
| ImZ(t)| = |(AAT )−1| ≥ |AAT |−1

Finally
sup
s∈[0,t]

| ImZ(s)|−3/2 ≤ |AAT |3/2 ≤ |A|3 ≤ sup
s∈[0,t]

|S(s)|3

where the last inequality comes from the fact that A is a block of S and so the norm of S will be
bigger than the norm of A. Then both (i) and (ii) are easily derived observing that S(t) is the
matrix of the linearized flow.
(i) Since we are linearizing around a stable equilibrium point |S(s)| ≤ C1/3 for all s ∈ [0, t],
where C is a constant and so sups∈[0,t] | ImZ(s)|−3/2 ≤ C. From this we will have that our
approximation is valid up to

Cε1/2t ≤ 1⇒ t ∼ 1√
ε

(ii) The point (qu, pu) in an unstable equilibrium, so sups∈[0,t] |S(s)| ≤ ceλt where λ > 0 is the
greatest Lyapunov exponent of the classical system and c ∈ R>0 is a constant. This implies that
the error term will remain small until

Cε1/2te3λt ≤ 1

and this is solved by
t ≤ 1

λ
W

(
Cλ√
ε

)
where W is W-Lambert function. The last expression can be well approximated by

t ∼ 1
λ

ln 1
ε

We want to make some remarks on the proof of the previous theorem: first of all if we look in
the details of the proof we can see that the same argument can be used if we center the Coherent
State ψ(q,p)(x) on a general point (q, p) of the phase space. For example in [Pau07b], the author
suggests that | ImZ(t)|−3/2 ≤ e3µ(x,ξ)t where µ(x, ξ) ≥ 0 is an α-Hölder function (with α > 0)
depending on the point of the phase space (x, ξ) and the “goal” is to find the smallest µ.
The second observation is that we have find two different scales of times for which the approxi-
mation is good: 

t ∼ 1√
ε

t ∼ 1
λ

ln 1
ε

We will call these times Ehrenfest times.
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Definition 1.6.5. The Ehrenfest time tE(ε) is defined as

tE(ε) ∼


1√
ε

in the stable case

1
λ ln 1

ε in the unstable case

(1.6.37)

1.6.2 Spreading of wave packets

Following the work of Comberscue and Robert in [CR97] we choose α = (q, p) (a fixed point of
the classical motion), and we take as initial datum the coherent state ϕα = D(α)ψ(0,0) centered
on (q, p), where 

α = q + ip√
2ε

a = X + iP√
2ε

, a† = X − iP√
2ε

D(α) = exp(ᾱa† − αa)

and ψ(0,0)(x) = (πε)−n/4 exp(−|x|2/(2ε)). We want to measure the spreading of the wave packets
so we define

S(t) :=
〈
D(−α)ψ(t, x)

∣∣∣ n∑
j=1

(a†jaj + aja
†
j)D(−α)ψ(t, x)

〉
=‖aD(−α)ψ(t, x)‖2 + ‖a†D(−α)ψ(t, x)‖2

where ψ(t, x) = e−
i
ε
Htϕα(x).

Lemma 1.6.6. S(0) = n.

Proof. One has

S(0) =
〈
D(−α)ψ(0, x)

∣∣∣∣∣
n∑
j=1

(a†jaj + aja
†
j)D(−α)ψ(0, x)

〉

=
〈
D(−α)D(α)ψ(0,0)

∣∣∣∣∣
n∑
j=1

(a†jaj + aja
†
j)D(−α)D(α)ψ(0,0)

〉

=
n∑
j=1
〈ajψ(0,0)|ajψ(0,0)〉+ 〈a†jψ(0,0)|a

†
jψ(0,0)〉

=
n∑
j=1
‖ajψ(0,0)‖2 + ‖a†jψ(0,0)‖
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Next we calculate

a†jψ(0,0)(x) = Xj − iPj√
2ε

( 1
(πε)n/4

e−
|x|2
2ε

)
=
√

1
2ε

1
(πε)n/4

xje
− |x|

2
2ε +

√
1
2ε

1
(πε)n/4

xje
− |x|

2
2ε

=
√

2
ε

1
(πε)n/4

xje
− |x|

2
2ε

and finally we get

∥∥∥a†jψ(0,0)

∥∥∥2
=
〈
a†jψ(0,0)

∣∣∣ajψ(0,0)
〉

= 2
ε

1
(πε)n/2

∫
Rn
x2
je
− |x|

2
ε dx

= 2
ε

1
(πεn/2)

∫
R
x2
je
− |x|

2
ε dxj = 2

ε

ε

2 = 1

In the same way one can show that
ajψ(0,0)(x) = 0

and so we get

S(0) =
n∑
j=1
‖ajψ(0,0)‖2 + ‖a†jψ(0,0)‖ = n

as required.

Our aim is to compute
∆S(t) := S(t)− S(0) = S(t)− n

that is the dispersion (or the spreading) of the wave packet. We first calculate

T (t) :=
〈
D(−α)Φ(t)

∣∣∣ n∑
j=1

(a†jaj + aja
†
j)D(−α)Φ(t)

〉

where Φ(t) is the approximant of Ψ(t) given by

Φ(t) = eiδt/εΦ0(t) = eiδt/εD(α)U0(t)Ψ0

We get
T (t) = n+ 2‖aU0(t)Ψ0‖2 = n+ tr (Z∗t Zt)

where (Zt)jk = (uk + ivk)j , u and v solve

(
u̇

v̇

)
= JMt

(
u

v

)

and Mt is the Hessian of H at (qt, pt) = αt. Moreover we call λ the Lyapunov exponent relative
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to the fixed point α. One of the main results of the paper is the following Theorem.

Theorem 1.6.7. We have the asymptotics ∆S(t) = ∆T (t) + O(εα) if one of the following
conditions is fulfilled:

(i) λ ≤ 0 (“stable case”) and 0 ≤ t ≤ εα−1/2

(ii) λ > 0 (“unstable case”) and ∃ε′ > ε such that 0 ≤ t ≤ ((1− 2ε′)/6λ) log(1/ε)

Proof. For the proof see [CR97].

In the same article there is another important result that tells us how fast the spreading is.

Corollary 1.6.8. Assume that H is time independent and the greatest Lyapunov exponent is
λ > 0. Then ∆S(t) ∼ e2λt as t→ +∞ and ε→ 0 as long as t[log(1/ε)]−1 stays small enough.

In the following our aim will be to recover a similar result in our construction. We start this
part observing that, using Theorem 1.6.3, we can construct a wave packet that approximates the
solution of Schrödinger equation and has the following form

ψ(t, x) = e
i
ε
Θ(t)

( 1
πε

)n/4
α(t)e

i
ε
〈Z(t)(x−q(t)),x−q(t)〉/2e

i
ε
〈p(t),x−q(t)〉 (1.6.38)

and, if we consider the probability density, we have

|ψ(t, x)|2 ∼ e
1
ε
〈ImZ(t)(x−q(t)),x−q(t)〉 (1.6.39)

Now we give the following proposition.

Proposition 1.6.9. The variance σ of the probability distribution (1.6.39) grows exponentially
fast, i.e. σ ∼ ekt where k > 0 is a constant, for t → +∞ and ε → 0 as long as t[log(1/ε)]−1

stays small enough.

Proof. The variance σ of the probability distribution in (1.6.39) is

σ(t) =
√

ε

2 ImZ(t)

It is clear that, since (1.6.38) is an approximation valid up to times of order t ∼ tE(ε) = 1
λ ln 1

ε ,
that we can “push” t→ +∞ only if t[log(1/ε)]−1 stays small enough. Under this assumption we
rewrite

σ(ε, t) = ε1/2(2 ImZ(t))−1/2 ∼ ε1/2eλt

and putting t ∼ 1
λ ln 1

ε we have

σ(ε) ∼ 1√
ε
→ +∞

for ε→ 0. This means that the gaussian start spreading exponentially fast in time as long as the
condition t[log(1/ε)]−1 << 1 is fullfilled.
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An example of the spreading of the wave packet

To clarify the problem of the spreading of the wave packet, we make a new example.
Consider the following quantum mechanical operator

H = −ε
2

2 ∆ + x2(x2 − 1)

where x ∈ R. We know that approximating quantum evolution with a generalized coherent state
makes the classical Hamiltonian “appear”

h(q, p) = p2

2 + x2(x2 − 1) (1.6.40)

The graph of the double well and the phase-space contour plot can be seen in Figure 1.1.

-1.0 -0.5 0.0 0.5 1.0

-2

-1

0

1

2

Figure 1.1: The phase portrait of the Hamiltonian in (1.6.40)

We consider as initial coherent state the following wave function

ψ(0,0)(x) =
( 1
πε

)1/4
e

i
2ε 〈Z0x,x〉

where Z0 = iI (that is a coherent state centered on the unstable equilibrium point (0, 0)). We
know from Theorem 1.6.3 that quantum evolution can be approximated by

φ̃(t, x) =
( 1
πε

)1/4
e

i
ε
〈Z(t)x,x〉

since (q(t), p(t)) = (0, 0). We want to understand what happen at different “fractions” of
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Eherenfest time: in particular we want to understand how the density spreads in time. Again we
must compute ImZ(t) and, in order to do so, we must solve

(
Ṡ11 Ṡ12

Ṡ21 Ṡ22

)
=
(
S21 S22

2S11 2S12

)

with the initial condition S(0) = I. It is easy to find

S(t) =

 cosh
√

2 t 1√
2 sinh

√
2 t

2√
2 sinh

√
2 t cosh

√
2 t

 (1.6.41)

so that

Z(t) =

√
2

2 sinh
√

2 t+ i cosh
√

2 t
cosh

√
2 t+ i 1√

2 sinh
√

2 t
(1.6.42)

and after some easy computations

Z(t) = 2√
2

sinh
√

2 t cosh
√

2 t
1 + 3

2 sinh2√2 t
+ i 1

1 + 3
2 sinh2√2 t

(1.6.43)

that implies that the imaginary part of the function Z(t) is

ImZ(t) = 1
1 + 3

2 sinh2√2 t

Note that sups∈[0,t] | ImZ(s)|−3/2
∞ = | ImZ(t)|−3/2

∞ ≤ e3
√

2 t so, in this example we can put
λ =

√
2 . Moreover the real part of Z(t) is bounded: |ReZ(t)|∞ ≤ C. The graphs of the

functions | ImZ(t)|−3/2
∞ and |ReZ(t)|∞ are shown in Figure 1.2.
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5.0 ´ 1014
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Figure 1.2: The plots of (ImZ(t))−3/2 (on the left) and of ReZ(t) (on the right)
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We proceed as before: we compute the double of the variance of the probability distribution

|ψ(t, x)|2 ∼ exp
(
− x2

ε(1 + 3
2 sinh2√2 t)

)

that is
2σ = 2

√
ε

2 ImZ(t) (1.6.44)

It is easy to see that 2σ(t) ∼ O(1) for t ∼ 1
2
√

2 ln 1
ε , i.e. for t ∼ 1

2 tE . This means in particular
that the semiclassical wave function is completely spread (over the unstable manifold) after half
of Eherenfest time: we have recovered a result of Paul that can be found in [Pau09].

1.6.3 The limit t→∞

In this part we will study the limit for t→∞, for the approximate solutions of the Schrödinger
equation as in Theorem 1.6.3. It is clear from the proof of that Theorem, that the approximation
is of order ε

1
2 only if t < log 1

ε . In particular we will write limεt for the “mixed” limit limε→0,t→∞

under the condition that t
(
log 1

ε

)−1
stays small enough (as in Corollary 1.6.8 or Proposition

1.6.9). For example, if we write the time as a function of ε, we can require that

lim
ε→0

t(ε)
log 1

ε

= 0

So we proceed with the following definition.

Definition 1.6.10. We define

lim
εt
f(ε; t) := lim

ε→0
f(ε; t(ε))

where the function t(ε) satisfies

lim
ε→0

t(ε)
log 1

ε

= 0

under the conditions:

(a) limε→0 t(ε) = +∞

(b) t(ε) < Et(ε) for all ε > 0 and Et(ε) is the Ehrenfest time.

Given a Gaussian coherent state ψ(q,p)(x), it is possible to rewrite it as

ψ(q,p)(x) = A(x)e
i
ε
S(x) (1.6.45)

where A(x) = 1
(πε)n/4 e

− (x−q)2
2ε

S(x) = 〈p, x− q〉
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(we have omitted the (q, p)-dependence on S(x) and A(x) to lighten the notations). Now we try
to solve the Schrödinger equation iε∂tψ(t, x) = Hψ(t, x)

ψ0(x) = ψ(q,p)(x)
(1.6.46)

and using (1.6.45) in (1.6.46), we get the following system of PDEs

∂tS + h(x,∇S) = ε2 ∆A
A

S(0, x) = 〈p, x− q〉

∂t(A2) + div (A2∇S) = 0

A(0, x) = 1
(πε)n/4 e

− (x−q)2
2ε

(1.6.47)

that we will call Madelung system of PDEs and we will study in some more details in the following
chapters. We note here that when ε = 0, the previous system of PDEs becomes

∂tS + h(x,∇S) = 0

S(0, x) = 〈p, x− q〉

∂t(A2) + div (A2∇S) = 0

A(0, x) = δq(x)

Now we recall the result of Theorem 1.6.3: we can construct a semiclassical wave function
ψ
α(t),V (t)
(q(t),p(t)) such that

∥∥∥e− i
ε
tHψ(q,p)(x)− e

i
ε
Θ(t)ψ

α(t),V (t)
(q(t),p(t))(x)

∥∥∥
L2
≤ Cteλtε1/2

and

ψ
α(t),V (t)
(q(t),p(t))(x) =

(
1
πε

)n/4
α(t)e

i
ε
Θ(t)e

i
ε
〈Z(t)(x−q(t)),x−q(t)〉/2e

i
ε
〈p(t),x〉

where V (t) = ReZ(t). We know from the previous sections that an approximate solution to the
first equation of (1.6.47) is given by

S(t, x) = 〈p(t), x〉+
∫ t

0
p(s)q̇(s)− h(q(s), p(s))ds+ 1

2V (t) (1.6.48)

Here we define
S(t, x) = 〈p(t), x〉+ Θ(t) + 1

2V (t)

where Θ(t) is given by

Θ(t) =
∫ t

0
p(s)q̇(s)− h(q(s), p(s))ds
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Moreover note that limt→∞
V (t)
t = 0 since |ReZ(t)|∞ < +∞. We want to perform the limit

limt→∞
S(t,x)
t , but we can do this limit under the condition of the Definition 1.6.10, since the

semiclassical approximation must be valid.
Let us suppose that the Hamiltonian function has one of the following forms:

(i) h(q, p) = |p|2/2 + V (q);

(ii) h(q, p) = h(p);

(iii) h(q, p) = h̃(p) + δf(q, p), with 0 < δ � 1 small enough, if the dimension of the cotangent
fiber bundle is 2 or 4.

and that we can associate the corresponding Lagrangian function (using the Legendre transform).
In the first case the energy level sets h(q, p) = E are compact. In particular we have that the
classical motion (q(t), p(t)) will be confined in this set. In the other cases we will have:

(ii) h is integrable, so p(t) = p(0)

q(t) = ωt+ q(0)

(iii) h is quasi-integrable and the dimension is low, so

‖p(t)− p(0)‖ ≤ O(
√
ε )

there is not Arnol’d diffusion.

In all the previous cases

(i) from the fact that the energy levels are compact then ‖p(t)‖ < +∞ and one gets

lim
εt

S(t, x)
t

= lim
εt

〈p(t), x〉+ Θ(t) + 1
2V (t)

t
= lim

εt

Θ(t)
t

(ii) from the fact that p(t) = p(0), we have

lim
εt

S(t, x)
t

= lim
εt

〈p(t), x〉+ Θ(t)
t

= lim
εt

〈p(0), x〉+ Θ(t) + 1
2V (t)

t
= lim

εt

Θ(t)
t

(iii) without Arnol’d diffusion: p(t) ≤ p(0)± C
√
ε and:

lim
εt

S(t, x)
t

= lim
εt

〈p(t), x〉+ Θ(t) + 1
2V (t)

t
= lim

εt

Θ(t)
t
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In all three cases one has the following equalities:

lim
εt

S(t, x)
t

= lim
εt

Θ(t)
t

= lim
εt

1
t

∫ t

0
[p(s)q̇(s)− h(q(s), p(s))]ds

= lim
εt

1
t

∫ t

0
l(q, q̇)ds

where l(x, ẋ) is the Lagrangian associated to h. It follows that

lim
εt

S(t, x)
t
≥ lim

t→∞

1
t

inf
{∫ t

0
l(q(s), q̇(s))ds

}
= c[0]

where c[0] is Mañé critical value relative to h.

Remark 1.6.11 In fact the same result holds even in the case when

lim
t→∞

‖p(t)‖
t

= 0

So it is possible to have Arnol’d diffusion: we need only that the velocity of the moments to
be small enough.

1.7 Coherent States and defect measures

The fact that the Coherent States are the most “classical” object in Quantum Mechanics is
reaffirmed by the following theorem.

Theorem 1.7.1. Let h(x, ξ) be a symbol and H = h(x, εD) its standard quantization. Then
considering the set of coherent states

ψ(q,p)(ε, x) =
( 1
πε

)n/4
e−
|x−q|2

2ε e
i
ε
〈p,x−q〉 (1.7.1)

one has
lim
ε→0
〈Hψ(q,p)(ε, x)|ψ(q,p)(ε, x)〉 = h(q, p) (1.7.2)

Proof. We compute

〈h(x, εD)ψ(q,p)(ε, x)|ψ(q,p)(ε, x)〉 =

=
( 1

2πε

)n ∫∫∫
R3n

h(x, ξ)e
i
ε
〈x−y|ξ〉ψ(q,p)(ε, y)ψ̄(q,p)(ε, x) dydξdx

= 2n/2

(2πε)3n/2

∫∫∫
R3n

h(x, ξ)e
i
ε
(〈x−y|ξ〉+〈y−q|p〉−〈x−q|p〉)e−

1
2ε (|y−q|2+|x−q|2) dydξdx

= 2n/2

(2πε)3n/2

∫∫∫
R3n

h(x, ξ)e
i
ε
〈x−y|ξ−p〉e−

1
2ε (|y−q|2+|x−q|2) dydξdx

(1.7.3)
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Now fix (x, ξ) and calculate the integral in y∫
Rn
e

i
ε
〈x−y|ξ−p〉e−

1
2ε |y−q|

2
dy = e

i
ε
〈x−q|ξ−p〉

∫
Rn
e−

i
ε
〈y|ξ−p〉e−

1
2ε |y|

2
dy

= e
i
ε
〈x−q|ξ−p〉F

(
e−

1
2ε |y|

2)(ξ − p
ε

)
= (2πε)n/2e

i
ε
〈x−q|ξ−p〉e−

1
2ε |ξ−p|

2

Going back to the mean value

〈h(x, εD)ψ(q,p)(ε, x)|ψ(q,p)(ε, x)〉 =

= 2n/2

(2πε)n
∫∫

R2n
h(x, ξ)e

i
ε
〈x−q|ξ−p〉e−

1
2ε (|x−q|2+|ξ−p|2) dxdξ

h(q, p) 2n/2

(2πε)n
∫∫

R2n
e

i
ε
〈x−q|ξ−p〉e−

1
2ε (|x−q|2+|ξ−p|2) dxdξ + o(1)

= Ch(q, p) + o(1)

The last step is to show that the constant C is equal to 1. But it is an easy computation, since

C = 2n/2

(2π)n
∫∫

R2n
ei〈x|ξ〉e−

1
2 (|x|2+|ξ|2) dxdξ = 1

In the proof of the previous Theorem we showed that the measure associated to a coherent state
of the form (1.7.1) is the Dirac measure δ(q,p), since applying Theorem (B.4.2) we have

lim
ε→0
〈Hψ(q,p)(ε, x)|ψ(q,p)(ε, x)〉 =

∫
R2n

h(x, ξ) dµ(x, ξ) =
∫
R2n

h(x, ξ) δ(q,p) = h(q, p) (1.7.4)

Moreover it is important to understand that coherent states are useful in “de-quantizing” simbols:
given a quantized operator one can recover its classical symbol computing its mean value on
coherent states. As we will see in next section coherent states are a particular subclass of
Lagrangian states: these are the states that “concentrates” around a Lagrangian submanifold of
the phase space.

1.8 Lagrangian states

Another example of a particular class of states is given by the functions of the form

e
i
ε
ϕ(x)
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with ϕ(x) is a real function, or by a linear superposition of these functions

( 1
2πε

)n/2 ∫
Rn
e
i
ε
ϕ(x,θ)a(x, θ)dθ

where Imϕ(x, θ) = 0. From the stationary phase method (see Appendix A.1), these functions
are concentrated on the Lagrangian submanifold

Λϕ = {(x, ϕ′x(x, θ)) : ϕ′θ(x, θ) = 0}

1.8.1 Quantization of Lagrangian submanifold

We look for approximate solutions of the stationary Schrödinger equation

(H − E)ψ = 0 (1.8.1)

That means that we look for a function ψ(ε, x) and E(ε) such that

(H − E(ε))ψ(ε, x) = O(εN )

for ε→ 0 and some N ∈ N. Following the classical WKB theory, we choose ψ of the form

( 1
2πε

)n/2 ∫
Rn
e
i
ε
ϕ(x,θ)a(ε, x, θ)dθ (1.8.2)

where ϕ is a real valued function and a(ε, x, θ) has an asymptotic expansion of the form

a(ε, x, θ) ∼
∞∑
n=0

εnan(x, θ)

for ε→ 0. We assume that a(ε, x, θ) has uniformly compact support in θ and ϕ(x, θ) is assumed
to be smooth and non degenerate on the set {(x, θ)|ϕ′θ(x, θ) = 0}. Moreover we assume that E(ε)
has the asymptotic expansion

E(ε) ∼
∑
n=0

εnEn

At the points x where ϕ′θ(x, θ) = 0 has only one solution θ(x) in a neighborhood of x, we can
apply the method of stationary phase to get

ψ(ε, x) = e
i
ε
ϕ(x,θ(x))ã(ε, x)

where

ã(ε, x) = ei
π
4 signϕ′′θ,θ(x,θ(x))

|detϕ′′θ,θ(x, θ(x))|1/2
a0(x, θ(x)) +O(ε)
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The last expression holds true when x is a non degenerate point for ϕ(x, θ(x)). If for a given x
there is no θ with (x, θ) ∈ supp a and for which ϕ is stationary, then

ψ(ε, x) = O(ε∞)

We have to determine the action of the operator H on the oscillating function e
i
ε
ϕa.

Theorem 1.8.1. Let H a pseudodifferential operator with symbol h(λ, ξ, x) ∈ S0(ma,b), and
a(x), ϕ(x) smooth functions with Imϕ(x) ≥ 0; a(x) is compactly supported. Then

H(ae
i
ε
ϕ)(x) = b(ε, x)e

i
ε
ϕ(x) +O(ε∞)

and b(ε, x) is given by

b(ε, x) = eiε(〈Dy ,Dξ〉+
1
2 〈Dξ,ϕ

′′(x)Dξ〉)e
i
ε
R(x,y)h̃

(
ε; ξ + ϕ′(x), x+ y

2
)
a(x+ y)|y=0,ξ=0 (1.8.3)

where h̃ is an almost analytic extension of the symbol h of H and R is given by

R(x, y) = ϕ(x+ y)− ϕ(x)− 〈ϕ′(x), y〉 − 1
2〈y, ϕ

′′(x)y〉

Proof. See [Dui96].

Note that the first two terms of the expansion b ∼ b0 + εb1 + ε2b2 + . . ., are given by

b0(x) = a0(x)h0(x, ϕ′) (1.8.4)

b1(x) = a1(x)h0(x, ϕ′) + a0(x)h1(x, ϕ′) + i
(
∂xa0(x)∂ξh0(x, ϕ′) + 1

2a0(x)∂x∂ξh0(x, ϕ′)
)

(1.8.5)

+ i
(1

2a0(x)∂ξϕ′′∂ξh0(x, ϕ′)
)

Now if we use (1.8.2) in equation (1.8.1), we find

(H − E(ε))ψ(ε, x) =
( 1

2πε

)n/2 ∫
Rn
e

i
ε
ϕ(x,θ) [b(ε, x, θ)− E(ε)a(ε, x, θ)] dθ (1.8.6)

and we require that b(ε, x, θ)−E(ε)a(ε, x, θ) are O(ε∞) on the Lagrangian submanifold Λϕ. This
implies for the first two terms (using (1.8.4) and (1.8.5))

a0h0 − E0a0 = 0 (1.8.7)

a1h0 + a0h1 + i
(
∂xa0∂ξh0 + 1

2a0∂x∂ξh0 + 1
2a0∂ξϕ

′′∂ξh0

)
− E0a1 − E1a0 = 0 (1.8.8)

We can rewrite equation (1.8.7) as

h0(x, ϕ′x(x, θ)) = E0 (1.8.9)
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that is an Hamilton-Jacobi equation for ϕ. From symplectic geometry and the theory of Hamilton-
Jacobi equations, the set

Λϕ =
{
(x, ϕ′x(x, θ)) |ϕ′θ(x, θ) = 0

}
(1.8.10)

is a Lagrangian submanifold of T ∗X. Then the Hamilton-Jacobi equation (1.8.9) has a solution
if there exists a Lagrangian submanifold of T ∗X which is invariant under the Hamiltonian flow
relative to Xh0 , the principal simbol of H.
Now if (1.8.9) is satisfied, then (1.8.8) becomes

a0(h1 − E1) + i
(
∂xa0∂ξh0 + 1

2a0∂x∂ξh0 + 1
2a0∂ξϕ

′′∂ξh0

)
= 0 (1.8.11)

and, using the fact that 1
2a0∂x∂ξh0 + 1

2a0∂ξϕ
′′∂ξh0 = 1

2a0
∂
∂x∂ξh0(x, ϕ′), we get

a0(h1(x, ϕ′(x))− E1) + i
(
∂xa0(x, θ)∂ξh0(x, ϕ′(x)) + 1

2a0(x, θ) ∂
∂x
∂ξh0(x, ϕ′(x))

)
= 0 (1.8.12)

We can think of a0 as a half density on Λ: the Lie derivative of a half density b(x)|dx|1/2 in the
direction of the vector field X is given by

LXb(x)|dx|1/2 =
(
X(b) + 1

2(divX)b
)
|dx|1/2

hence equation (1.8.12) becomes

1
i LXh0

a0 − (h1 − E1)a0 = 0 (1.8.13)

once we interpret a0 as a half density on Λ. Using Stokes theorem, we can find a necessary
condition for the previous equation to be solvable:

E1 =
∫

Λ
h1dµΛ

1.9 Wick rotation, coherent states and Hamilton-Jacobi equa-
tion

In this section we want to point out a connection between weak solutions of Hamilton-Jacobi
equation, coherent states and Wick rotation. The Wick rotation consists in the “complexification”
of the time t 7→ it and it is equivalent to the complexification of ε 7→ iε. So we introduce the
parameter δ = 1

iε and we look at the Schrödinger equation for δ →∞ with δ in the set of real
numbers (so we are considering ε purely imaginary). Schrödinger equation becomes

1
δ

∂ψ

∂t
(t, x) = Hδψ(t, x) (1.9.1)
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where Hδ is the operator Hδ = 1
2δ2 ∆ + V (x) (note the change of sign in front of the Laplacian).

In the following x ∈ X where X is a manifold. If we look for solution of (1.9.1) of the form

ψ(t, x) = exp (−δSδ(t, x)) (1.9.2)

(this is called Cole-Hopf transformation) we find that Sδ(t, x) must solve

∂Sδ
∂t

+ h(x,∇xSδ) = ∆Sδ
2δ (1.9.3)

where
h(x, p) = 1

2 |p|
2 + V (x) (1.9.4)

We give the following definition of viscosity solution of Hamilton-Jacobi equation.

Definition 1.9.1. A continuous function S : R>0 ×X → R is a viscosity solution of

∂S

∂t
+ h(x,∇xS) = 0 (1.9.5)

if for every C2 function ϕ the following conditions hold:

(i) S is a sub-solution: for all (t, y) ∈ R>0×X such that S−ϕ has a local maximum, one has

∂ϕ

∂t
+ h(x,∇xϕ) ≤ 0 (1.9.6)

(ii) S is a super-solution: for all (t, y) ∈ R>0 ×X such that u− ϕ has a local minimum, one
has

∂ϕ

∂t
+ h(x,∇xϕ) ≥ 0 (1.9.7)

For δ →∞ one obtains exactly the weak solutions of Hamilton-Jacobi equation (1.9.5). References
are in [Lio83] or in [BD97]. Under some particular conditions on the Hamiltonian h, the stationary
Hamilton-Jacobi equation

h(x,∇u) = E (1.9.8)

selects an unique (weak) solution (see [AIPSM05] or the discussion in §4.4 below). From the
work of Davini and Siconolfi [DS06] one has, choosing X = Tn, that the solution S(t, x) behaves
for t→∞ as S(t, x) ∼ u(x)− ct: this is a sort of “spreading” of the function S for large times.
In the following we will try to connect this result with coherent states evolution. We start
choosing as initial datum for (1.9.1) the “coherent state”

ψ(0, x) = exp
[
−δ
(1

2〈Z(x− q), x− q〉+ 〈p, x− q〉
)]

(1.9.9)

Then we proceed as in Section 1.6: we look for an approximate solution of (1.9.1) with a form
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strictly analogous to the already used for the standard Schrödinger equation (see Theorem 1.6.3)

ψ(t, x) = e−δ[−
1
δ

lnα(t)+ 1
2 〈Z(t)(x−q(t)),x−q(t)〉+〈p(t),x−q(t)〉+Θ(t)] (1.9.10)

and we find (q(t), p(t)), Z(t), α(t),Θ(t) as before (that is, using a Taylor approximation up to
O(|x − q|3)) . The problem is that we don’t know if the matrix Z(t) has the same properties
of the analogous matrix of coherent states: if so then we will have a spreading phenomena
also in this case and a similar result to the one in [ISM09] (the exponential “spreading” of the
function S(t, x)). This would provide another link between classical WKAM theory and Quantum
Mechanics. Now we try to go further in this direction. First we define β(t) = lnα(t) in (1.9.10),
so that it becomes

ψ(t, x) = e−δ[−
1
δ
β(t)+ 1

2 〈Z(t)(x−q(t)),x−q(t)〉+〈p(t),x−q(t)〉+Θ(t)]

and we compute ∂ψ
∂t :

1
δ

∂ψ

∂t
(t, x) = 1

δ
β̇(t)− 1

2〈Ż(t)(x− q(t))|(x− q(t))〉+ 〈Z(t)q̇(t)|x− q(t)〉−

−〈ṗ(t)|x− q(t)〉+ 〈p(t)|q̇(t)〉 − Θ̇(t)

and Hδψ(t, x):

Hδψ(t, x) = − 1
2δ trZ(t) + 1

2
(
p(t) + Z(t)(x− q(t))

)2
+ V (q(t))+

+V ′(q(t))(x− q(t)) + 1
2V
′′(q(t))(x− q(t))2

Now comparing the two terms we get the following equations

β̇(t) = −1
2trZ(t) (1.9.11)

〈p(t)|q̇(t)〉 − Θ̇(t) = |p(t)|
2

2 + V (q(t)) (1.9.12)

Z(t)q̇(t)− ṗ(t) = Z(t)p(t) + V ′(q(t)) (1.9.13)

−Ż(t) = Z2(t) + V ′′(q(t)) (1.9.14)

We start our discussion from equation (1.9.13). It can be easily seen (again) that we can determine
the function (q(t), p(t)) simply as the solution of Hamilton equations relative to the hamiltonian
h(q, p) = |p|2

2 + V (q). Next we look at equation (1.9.12): having (q(t), p(t)) we can easily find
Θ(t). More precisely

Θ(t) =
∫
pdq − hdt

55



Chapter 1. Coherent States and their evolution

(written in a compact form). Then equation (1.9.11) is easily solved by

β(t) = ln
(
e−

1
2

∫ t
0 tr [S(s)∗Z0]ds

)
(1.9.15)

where S(t) is the (well-known) matrix solving (1.6.6) and the ∗ product is defined as in (1.6.5).
The only difference with the work done in the previous section is in equation (1.9.14): we have
to solve the following Cauchy problem−Ż(t) = Z2(t) + V ′′(q(t))

Z(0) = I

and not −Ż(t) = Z2(t) + V ′′(q(t))

Z(0) = iI

Since the general solution to this problem is given by Z(t) = S(t)∗Z0, for Z0 = I we have

Z(t) = S(t)∗I = (S21 + S22)(S11 + S12)−1 (1.9.16)

and we can use again the decomposition of the matrix S we used in (1.5.6), so that

S(t) =
(

O −A
−AT −ATB

)

In this way we have from (1.9.16)

Z(t) = (A−T −A−TB)(−A)−1 = (A−TBA−1 −A−TA−1)

and applying the sup-norm to the matrix, we get

|Z(t)|∞ = |A−TBA−1 −A−TA−1|∞ ≤

≤ |A−TBA−1|∞ + |(AAT )−1|∞ = |Re Z̃(t)|∞ + | Im Z̃(t)|∞

compare with (1.6.36), where Z̃(t) solves

−
˙̃
Z(t) = Z̃2(t) + V ′′(q(t))

Z̃(0) = iI
(1.9.17)

We already know from section §1.6 that |Re Z̃(t)|∞ ≤ C and | Im Z̃(t)|−3/2
∞ ≤ eλt. In the following

1-dimensional case we are able to get more precise results which appear in a good correspondence
with the weak KAM description of the related classical Hamiltonian system.
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The one dimensional case

To understand better the problem, we consider the one dimensional case. Moreover we set
(q(t), p(t)) = (qu, pu) an unstable equilibrium point and without loss of generality we can choose
(qu, pu) = (0, 0). We have that the matrix Z(t) in this case is function that satisfies the following
equation

−Ż(t) = Z2(t) + V ′′(0) (1.9.18)

where V ′′(0) is a negative constant (since (0, 0) is an unstable equilibrium point): we define
k0 = V ′′(0). Now we write Z(t) = X(t) + iY (t) and we get that the real and the imaginary part
of Z(t) satisfy Ẋ(t) = Y 2(t)−X2(t)− k0

Ẏ (t) = −2X(t)Y (t)
(1.9.19)

If we want to find equilibria we have to solve the systemY
2 −X2 − k0 = 0

2XY = 0

that has as solutions the points (±
√
−k0 , 0). We can easily look at the stability of these points:

considering the linearized system around the equilibria we find that (+
√
−k0 , 0) in an attractor

while (−
√
−k0 , 0) is a repeller. Moreover it is easy to understand that considering

−Ż(t) = Z2(t) + k0

Z(0) = 1

then the solution Z(t) is real and Z(t) → +
√
−k0 for t → +∞. Now we come back to the

approximate solution ψ̃(t, x) of the real Schrödinger equation

ψ̃(t, x) = e−δS̃(t,x)

where S̃(t, x) is given by

S̃(t, x) = −1
δ
β(t) + 1

2Z(t)(x− q(t))2 + p(t)(x− q(t)) + Θ(t) (1.9.20)

and since (q(t), p(t)) = (0, 0) we can rewrite

S̃(t, x) = −1
δ
β(t) + 1

2Z(t)x2 + Θ(t) (1.9.21)
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We consider the limit: limt→+∞
S̃(t,x)
t . We have that

lim
t→+∞

−β(t)
δ t

= 0

because β(t) for t running to +∞ is going to a constant (see (1.9.15)), and moreover

lim
t→+∞

Θ(t)
t

= −c[0]

where c[0] is the Mañé critical value (see Section 4.2). We obtain

S̃(t, x) t→+∞∼
√
−k0 x

2 − c[0]t (1.9.22)

that is we have, for t big enough, that the solution “splits” into a time component and a space
component: this is similar to the result of [DS06]. In addition to this we have to notice that this
splitting is exponentially fast and this is again similar to the result of [ISM09].

What we have presented here is still work in progress but we think that it is important to
understand the relation between the semiclassical limit and the WKAM theory (presented in
Chapter 4).

58



Chapter 2

WKB constructions of quasimodes

2.1 Quasimodes

Preliminaries

Definition 2.1.1. Let H be an Hilbert space and H a self adjoint operaton on H with domain
D(H). A couple (ψ,E) with ψ ∈ D(H), ‖ψ‖ = 1 (here ‖ · ‖ denotes the norm on the Hilbert
space H) and E ∈ R is called quasimode with error δ if

(H − E)ψ = r, with ‖r‖ ≤ δ (2.1.1)

First of all we observe that:

(i) even if (ψ,E) is a quasimode with small error δ, ψ could be far away from an eigenfunction;

(ii) on the other hand if (ψ,E) is a quasimode then E is close to an eigenvalue.

Proposition 2.1.2. Let (ψ,E) a quasimode with error δ and suppose that the spectrum of H
is discrete in a neighbourhood of [E − δ, E + δ]. Then there is at least one eigenvalue of H in
[E − δ, E + δ].

Proof. Let RH(E) := (H − E)−1 be the resolvent. Then

‖RH(E)‖ ≤ 1
dist(E, spec (H))

Now we choose Ẽ 6∈ spec (H) close to E and we apply to (2.1.1) RH(Ẽ)

(H − Ẽ)−1(H − E)ψ = (H − Ẽ)−1
[
(H − Ẽ)ψ + (Ẽ − E)ψ

]
= RH(Ẽ)r

ψ = RH(Ẽ)r − (Ẽ − E)RH(Ẽ)ψ
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Then we take the norm and we have

1 = ‖ψ‖ ≤ ‖r‖
dist(Ẽ, spec(H))

+ |Ẽ − E|
dist(Ẽ, spec(H))

dist(Ẽ, spec(H)) ≤ δ + |Ẽ − E|

and letting Ẽ → E we get the result.

Quasimodes allows us to approximate well the spectrum of an operator but not its eigenfunctions,
as the following example shows.

Remark 2.1.3 Consider ψ = a1ψ1+a2ψ2 with |a1|2+|a2|2 = 1 and ψ1, ψ2 two eigenfunctions
of H. Then

(H − E)ψ = a1(E1 − E)ψ1 + a2(E2 − E)ψ2 = r

and ‖r‖2 ≤ (E1 − E)2 + (E2 − E)2. If E1 and E2 are close to E then ‖r‖ is small but this
does not imply that ψ is close to ψ1 or ψ2.

One interesting property of quasimodes is that they evolve like eigenfunctions.

Theorem 2.1.4. Let H be a semiclassical Hamiltonian, (ψ,E) a quasimode with error δ and let
U(t) = e−

i
ε
tH . Then

‖U(t)ψ − e−
i
ε
tEψ‖ ≤ δ t

ε

Proof.

U(t)ψ − e−
i
ε
tEψ = e−

i
ε
tE [e

i
ε
tEU(t)ψ − ψ]

= − i
ε
e−

i
ε
tE
∫ t

0
iε∂t′(e

i
ε
t′EU(t′)ψ)dt′

= − i
ε
e−

i
ε
tE
∫ t

0
e
i
ε
t′EU(t′)(H − E)ψdt′

Taking the norms
‖U(t)ψ − e−

i
ε
tEψ‖ ≤ t

ε
‖r‖ = δ

t

ε

2.1.1 Lagrangian quasimodes

Consider the stationary Schrödinger equation

H(x,−iε∇)ψ = Eψ
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where ψ(x) = a(x)e
i
ε
u(x) where a and u are real functions with u(x) = P · x + v(x) and

H(x, p) = |p|2
2 +W (x). In details we have

−ε
2

2 ∆ψ +Wψ = Eψ (2.1.2)

Proposition 2.1.5. ψ = ae
i
ε
u solves the stationary Schrödinger equation if and only if the couple

(a, u) solve the following system of equations:

H(x,∇u) = E + ε2

2
∆a
a

div(a2∇u) = 0
(2.1.3)

Proof.
∆ψ =

(
∆a+ 2i

ε
∇a · ∇u− 1

ε2a|∇u|
2 + i

ε
a∆u

)
e
i
ε
u

Putting this expression in (2.1.2), we find

(
a
( |∇u|2

2 +W − E
)
− ε2

2 ∆a
)
− iε(2∇a · ∇u+ a∆u) = 0

Setting to zero the real and the imaginary part, dividing and multiplying by a the first and the
second equation respectively, we get (2.1.3).

Remark 2.1.6 The condition u(x) = P · x+ v(x) is required because we want ψ to be a
Bloch wave function (i.e. ψ = e

i
ε
P ·xψ̂). This imply that the system (2.1.3) is transformed

into H(x, P +∇v(x, P )) = E(P ) + ε2

2
∆a
a

div((P +∇v(x, P ))a2(x, P )) = 0

Remark 2.1.7 We can restate everything saying that ψ solves the stationary Schrödinger
equation if and only if the couple (a, u) solve

H(x,∇u) = E + ε2

2
∆a
a

and the following conditions holds:

(i) div(a2∇u) = 0

(ii)
∫
Tn
a2dx = 1
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2.1.2 Variational formulation

We write again ψ(x) = a(x)e
i
ε
u(x).

Definition 2.1.8. We define the action of ψ as

Ã[ψ] :=
∫
Tn

(
− ε2

2 |∇a|
2 + a2

2 |∇u|
2 −Wa2

)
dx

where ψ must satisfy:

(i) div(ψ̄∇ψ − ψ∇ψ̄) = 0

(ii)
∫
Tn
|ψ|2dx = 1

Ã is called Guerra-Morato action functional (see [GM83]).

It is easy to verify that (i) is nothing but

div(a2∇u) = 0

and (ii) implies
∫
Tn a

2dx = 1.

Definition 2.1.9. We define

j
Ã

(τ) :=
∫
Tn

(
− ε2

2 |∇a(τ)|2 + a(τ)2

2 |∇u(τ)|2 −Wa(τ)2
)
dx (2.1.4)

as the functional Ã[ψ] evaluated on the variations {a(τ), u(τ)}−1≤τ≤1 with {a(0), u(0)} = {a, u}.

The following proposition clarifies the connection with what we have done before.

Proposition 2.1.10. ψ is a critical point for the functional Ã[ψ] if and only if the couple (a, u)
solves

H(x,∇u) = E + ε2

2
∆a
a

(2.1.5)

Proof. Clearly ψ is a critical point for Ã only if j′(0) = 0. Now we get

j′(0) =
∫
Tn
−ε2∇a · ∇a′ + aa′|∇u|2 + a2∇u · ∇u′ − 2Waa′dx

Differentiating with respect to τ and posing τ = 0 in the conditions (i) and (ii) of the definition
of Ã, we have

(i) div(2aa′∇u+ a2∇u′) = 0

(ii)
∫
Tn

2aa′∇u+ a2∇u′dx = 0
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Integrating on Tn (i) multiplied by v and adding to it (ii) multiplied by P , we get:

0 =
∫
Tn
v div(2aa′∇u+ a2∇u′)dx+

∫
Tn
P · (2aa′∇u+ a2∇u′)dx

=
∫
Tn
∇v · (2aa′∇u+ a2∇u′)dx+

∫
Tn
P · (2aa′∇u+ a2∇u′)dx

=
∫
Tn

(∇v + P ) · (2aa′∇u+ a2∇u′)dx =
∫
Tn
∇u · (2aa′∇u+ a2∇u′)dx

that is ∫
Tn
a2∇u · ∇u′dx = −

∫
Tn

2aa′|∇u|2dx

Substituting this expression in j′(0), one has

j′(0) =
∫
Tn
−ε2∇a · ∇a′ − aa′|∇u|2 − 2Waa′dx

and integrating by parts: ∫
Tn
−ε2∇a · ∇a′dx =

∫
ε2a′∆a dx

The expression for j′ becomes

j′(0) =
∫
Tn

2a′
(
ε2

2 ∆a−
(
a
|∇u|2

2 +Wa

))
dx

Differentiating
∫
Tn a

2dx = 1 with respect to τ and letting τ = 0, we get∫
Tn
a′a dx = 0

that is j′(0) = 0 if and only if

ε2

2 ∆a−
(
a
|∇u|2

2 +Wa

)
= −Ea

or, in other words,
ε2

2 ∆a+ Ea =
(
|∇u|2

2 +W

)
From the fact that we must have a > 0, we have

H(x,∇u) = |∇u|
2

2 +W = E + ε2

2
∆a
a
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Remark 2.1.11 In conclusion we can restate everything in this way: ψ(x) = a(x)e
i
ε
u(x)

solves the stationary Schrödinger equation if and only if the couple (a, u) solves the system
(2.1.3) if and only if the couple (a, u) is stationary for the functional Ã.

2.1.3 Evans’ method

In his recent article [Eva07], Evans looks for a quantum version of WKAM theorem. He proceed
in this way: he defines a “quantum” action functional and costructs some weak critical points for
this action. It is easy to see that this action functional is the convex analog of Guerra-Morato
action functional. Then he proves that the wave functions, constructed with these critical points,
are approximate solutions of the Schrödinger stationary equation.

Definition 2.1.12. The action functional for the wave function ψ is

A[ψ] :=
∫
Tn

ε2

2 |∇ψ|
2 −W |ψ|2dx (2.1.6)

where ψ satisfies the following:

(i)
∫
Tn
|ψ|2dx = 1;

(ii)
∫
Tn

(ψ̄∇ψ − ψ∇ψ̄) · ∇φdx = 0 for all φ ∈ C1(Tn);

(iii) ε

2i

∫
Tn
ψ̄∇ψ − ψ∇ψ̄ dx = V ∈ Rn.

If we consider again wave functions in polar form, i.e.

ψ(x) = a(x)e
i
ε
u(x)

where u(x) = P · x+ v(x), the action can be rewritten as

A[ψ] :=
∫
Tn

(ε2

2 |∇a|
2 + a2

2 |∇u|
2 −Wa2

)
dx (2.1.7)

and the conditions (i)-(iii) becomes

1.
∫
Tn
a2dx = 1;

2. div(a2∇u) = 0;

3.
∫
Tn
a2∇u dx = V

Proceding as before, we give the following definition.
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Definition 2.1.13.

jA(τ) :=
∫
Tn

(ε2

2 |∇a(τ)|2 + a(τ)2

2 |∇u(τ)|2 −Wa(τ)2
)
dx (2.1.8)

is the functional A[ψ] evaluated on the variations {a(τ), u(τ)}−1≤τ≤1 where {a(0), u(0)} = {a, u}.

Theorem 2.1.14. j′(0) = 0 for all the variations if and only if

H(x,∇u) = E − ε2

2
∆a
a

(2.1.9)

Proof. The proof is the same of (2.1.5).

We consider now the dual problems:−
ε2

2 ∆w + εP · ∇w −Ww = E0w

w Tn-periodic
(2.1.10)

−
ε2

2 ∆w∗ − εP · ∇w∗ −Ww∗ = E0w
∗

w∗ Tn-periodic
(2.1.11)

where E0 = E0(ε, P ) is the principal eigenvalue. Using Cole-Hopf transform

w = e−v/ε

w∗ = ev
∗/ε

we get the following two problems−
ε
2∆v + 1

2 |P +∇v|2 +W = H̄ε(P )

v Tn-periodica
(2.1.12)


ε
2∆v∗ + 1

2 |P +∇v∗|2 +W = H̄ε(P )

v∗ Tn-periodica
(2.1.13)

where we have defined
H̄ε(P ) := |P |

2

2 − E0(ε, P ) (2.1.14)

First of all we show that the principal eigenvalue −E0 is precisely the energy E in 2.1.9.

Proposition 2.1.15. The value E in (2.1.9) is equal to −E0, i.e.

E = −E0
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Proof. It is quite easy to prove: setting P = 0 in (2.1.12) and (2.1.13) we get

−
ε
2∆v + 1

2 |∇v|
2 +W = −E0

ε
2∆v∗ + 1

2 |∇v
∗|2 +W = −E0

and using the definitions of u and a: u(x) = v+v∗
2 , a(x) = e

v∗−v
ε and substituting them into

(2.1.9) one gets:

E =
[
− ε

4∆v + 1
4 |∇v|

2 + 1
2W

]
+
[ε
4∆v∗ + 1

4 |∇v
∗|2 + 1

2W
]

and the conclusion follows.

Remark 2.1.16 Evans is able to prove that

H̄ε(P ) ≤ H̄(P ) ≤ H̄ε(P ) +O(ε)

when ε→ 0. In other words
lim
ε→0

H̄ε(P ) = H̄(P )

for all P ∈ Rn where
H̄(P ) = 1

2 |∇u|
2 +W

for almost all x ∈ Tn (this means that H̄ is the homogeneization of H) and u = P · x+ v.
From min-max formula

H̄(P ) = inf
v∈C1(Tn)

max
x∈Tn

{1
2 |P +∇v|2 +W (x)

}
we get

H̄(0) = max
x∈Tn

W (x)

H̄ε(0) = −E0(ε, 0)

and so
E0(ε, 0)→ min

x∈Tn
{−W (x)}

in the limit ε→ 0.

2.2 WKB constructions of quasimodes

First examples

In this section we follow [BB97].
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On the real line

We consider stationary Schrödinger equation on R

−ε
2

2 ∂
2
xψ(x) + V (x)ψ(x) = Eψ(x)

for energy values E ∈ I =]E−, E+[. We suppose that in the interval I the level sets {p
2

2 +V = E}
are periodic orbits. We choose two points x0 < x1 such that V (xi) = E (that corresponds to the
caustics of the Lagrangian {H(x, p) = E}) and we look for solutions in the interval ]x0, x1[ of
the following form

ψ(x) = a(x)e
i
ε
S(x)

Substituting in the Schrödinger equation such a function, we find that the phase S(x) must
satisfy the following Hamilton-Jacobi equation

|∂xS(x)|2

2 + V (x) = E (2.2.1)

It is a well known fact that a solution of the previous equation is given by

S(x, x0;E) = ±
∫ x

x0

√
2(E − V (y)) dy

or, equivalently, by
S(x1, x;E) = ±

∫ x1

x

√
2(E − V (y)) dy

(where x ∈]x0, x1[ and up to an additive constant). Moreover we find as a solution for the
continuity equation the following amplitude

a(x) = C√
∂xS(x)

= C√
p(x)

where we have identified the momentum p(x) with ∂xS. We have that the phase is a multivalued
function and, in particular, we can write

ψ(x) = 1√
p(x)

(
Ae

i
ε

∫ x1
x

p(y)dy +Be−
i
ε

∫ x1
x

p(y)dy
)

(2.2.2)

If x < x0 or x > x1 then p(x) = i|p(x)| and in particular, for x > x1 (i.e. in the classically
forbidden region),

ψ(x) = 1√
|p(x)|

Ce
− 1
ε

∫ x
x1
|p(y)|dy (2.2.3)

It is clear that in x0 and in x1 the two wave functions must coincide (paying attentio to the fact
that in those points the semiclassical solution is not well defined because p(x) = 0). Using Taylor
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expansion in x = x1, Schrödinger equation becomes

d2ψ

dx
(x) = 2

ε2 (x− x1)∂xV (x1)ψ(x)

and translating x1 in the origin, we get

∂2
xxψ(y) = yψ(y)

where we have posed 2
ε2∂xV (0) = α3 and αx = y. The solution (for y << 0) of this equation is

given by the so called Airy function

Ai(y) ' |y|−1/4 sin
(2

3 |y|
3/2 + 1

4π
)

while for y >> 0 we have
Ai(y) ' 1

2y
−1/4e−

2
3y

3/2

Equalizing the first with (2.2.2) and the second with (2.2.3), one gets B = −A = iCei
π
4 and ψ in

the interior of the potential well becomes

ψ(x) = 2C√
p(x)

sin
(1
ε

∫ x1

x
p(y)dy + π

4
)

(2.2.4)

Proceeding analogously for x0 (and considering the fact that ∂xV (x0) < 0) we have

ψ(x) = 2C̃√
p(x)

sin
(1
ε

∫ x

x0
p(y)dy + π

4
)

(2.2.5)

For x ∈]x0, x1[ we must have

C sin
(1
ε

∫ x1

x
p(y)dy + π

4
)

= C̃ sin
(1
ε

∫ x

x0
p(y)dy + π

4
)

−1
ε

∫ x1

x
p(y)dy − π

4 + (n+ 1)π = 1
ε

∫ x

x0
p(y)dy + π

4

1
ε

∫ x1

x0
p(y)dy =

(
n+ 1

2
)
π (2.2.6)

The equation (2.2.6) is called quantization condition (for energetic levels in a smooth potential
well on the points x0 and x1). In a compact form

1
ε

∮
pdx =

(
n+ 1

2
)
π
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Suppose that V (x0) = +∞. Then the quantization condition changes: ψ(x1) = 0 and so

sin
(1
ε

∫ x1

x0
p(y)dy + π

4
)

= 0

that gives us a different quantization condition

1
ε

∫ x1

x0
p(y)dy =

(
n+ 3

4
)
π

The potential “barrier” V (x0) = +∞ has added the phase π
2 .

WKB on the torus: EKB

As we saw in the previous section, the action S(x, x0;E) is a multivalued function: it is made
up by two components (two branches) and this is reflected in the wave function ψ(x) showing
two exponential terms of the form exp(±iS/ε). But this fact can be expressed in another way:
the two branches represents the trajectory of the particle in the phase space and to every point
on this curve must be associated an unique value of the momentum px. So, on this curve, the
semiclassical wave function must be simply:

ψ(x,E) = 1√
2πε

∣∣∣∂2S(x,E)
∂E∂x

∣∣∣1/2 exp(iS(x,E)/ε)

Denote with ∆S the change in the phase after a full cycle. At each turning point we get an
additional phase of −π

2 (because of the change of sign), and so one must have

1
ε

∆S − 2π2 = 2nπ

because of the single-valuedness. If the turning points are µ we get

1
ε

∆S − µπ2 = 2nπ

and, since ∆S = 2
∫
pdq is the phase over the period, we have∮

pdq =
(
n+ µ

4
)
πε, n = 0, 1, 2, . . .

.

2.2.1 Near a minimum of the potential

We assume in the following that V ∈ C∞(Rn) admits a local non degenerate minimum in 0. We
suppose (eventually changing the coordinates) that

(H1) V (0) = 0;
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(H2) V ′(0) = 0

(H3) V ′′(0) > 0

where V ′′(0) is the Hessian of V in 0. We look for a formal solution of the following type

ψ(x, ε) = a(x, ε)e−
ϕ(x)
ε

Before starting the computations we need two proposition in order to solve the eikonal equation
and the transport equations that we will find.

Proposition 2.2.1 ([Hel88]). Assume (H1),(H2) and (H3) hold. Moreover assume that

V ′′(0) =


µ1 0 . . . 0
0 µ2 . . . 0
...

... . . . ...
0 0 . . . µn

 (2.2.7)

with µj > 0 for all j and let E0 = minV . Then there exists an unique positive function
ϕ ∈ C∞(Rn) defined in a neighborhood U of 0 such that

1
2 |∇ϕ|

2 = (V − E0) (2.2.8)

in U and
ϕ(x)− ϕ0(x) = O(|x|3) (2.2.9)

where
ϕ0(x) =

n∑
i=1

√
µi

x2
i

2

Proof. We determine ϕ(x) as the generating function of a Lagrangian submanifold

Λ+ = {(x, ϕ(x)), x ∈W}

where W is a neighborhood of 0 lying in q−1(0) where q(x, ξ) = −p(x, ξ) = |ξ|2
2 − (V − E0). In a

neighborhood of (0, 0) in T ∗Rn we have

q(x, ξ) = ξ2

2 −
∑
j

µj
x2
j

2 +O(|(x, ξ)|3)

and the vector field is given by

XH =
∑
j

ξj
∂

∂xj
+
∑
j

µjxj
∂

∂ξj
+O(|(x, ξ)|2)
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and its linear part is
Y0 =

∑
j

ξj
∂

∂xj
+
∑
j

µjxj
∂

∂ξj

The matrix associated is

A =
(

O I
V ′′(0) O

)

that has ±√µj for j = 1, . . . , n as eigenvalues. We denote with Λ+
0 (or Λ−0 ) the positive (resp.

negative) eigenspace. Λ+
0 (resp. Λ−0 ) is the set of the points (x, ξ) such that e−tY0(x, ξ) → 0

when t → +∞ (resp. t → −∞). Moreover Λ±0 are Lagrangian subspaces of T ∗Rn given by
ξj = ±√µj xj . Then there exists two Lagrangian submanifolds Λ± tangent to Λ±0 in (0, 0) that
are caracterized as the set of points (x, ξ) such that φt(x, ξ)→ (0, 0) when t→ ±∞. Moreover
there exists a neighborhood U of (0, 0) such that we can parametrize Λ+ as the set of points
(x, ψ1(x), . . . , ψn(x)) with ψi ∈ C∞(u) and such that

∂ψi
∂xj

= ∂ψj
∂xi

(because Λ+ is Lagrangian). Then there exists a function ϕ ∈ C∞(U) such that


∂ϕ
∂xi

(x) = ψi(x)

ϕ(0) = 0

and we get also
ϕ(x) = ϕ0(x) +O(|x|3)

because T(0,0)Λ+ = Λ+
0 . The equation (2.2.8) is equivalent to the statement Λ+ ⊂ q−1(0).

Proposition 2.2.2 ([Hel88]). Lex X be a C∞ real vector field defined in a neighborhood of 0.
Suppose that its linear part is given by:

X0 =
n∑
i=1

νixi∂xi

with νi > 0. Let b ∈ C∞ a function such that b(0) = 0. Then for each function g ∈ C∞ such
that g(0) = 0 and for each constant γ ∈ R, there exists a unique function f ∈ C∞ defined in a
neighborhood U of 0 such that (X + b)f = g

f(0) = γ

in U .
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Proof. We can choose new coordinates y such that

y = x+O(|x|2)

and
X =

n∑
i=1

νiyi∂yi

In the new coordinates the problem becomes

(
n∑
i=1

νiyi∂yi + b(y)
)
f = g

f(0) = γ

We reduce to γ = 0. Let (t, y)→ φt(y) the flow associated to X. Then

φt(y) = (eνjtyj)j=1,...,n

Taking the norm, we get the estimate

|φt(y)| ≤ Ce−minj νj |t||y|

for t ∈]−∞, 0]. The solution is given by

f(y) =
∫ 0

−∞
g(φt(y)) exp

(
−
∫ 0

t
b(φs(y)) ds

)
dt

If |g(y)| ≤ CN |y|N then we have

|g(φt(y))| ≤ CNCNe−N minj νj |t||y|N∣∣∣∣∣−
∫ 0

t
b(φs(y))ds

∣∣∣∣∣ ≤ C0|t||y|

Using these inequalities, we have∣∣∣∣∣g(φt(y)) exp
(
−
∫ 0

t
b(φs(y)) ds

)∣∣∣∣∣ ≤ CNCN |y|Ne(C0|y|−N minj νj)|t|

We assume |y| ≤ ε0 and we choose N > C0ε0
minj νj + 1. We get that

|f(y)| ≤ C̃N |y|N

We can apply the same argument to the derivative of f .
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Theorem 2.2.3 ([Hel88]). Under the hypothesis (H1),(H2) and (H3), we can find a positive
function ϕ ∈ C∞(Rn), a formal series:

E(ε) ∼
∞∑
j=0

εjEj

where E0 = minV = 0, E1 is the first eigenvalue of the associate harmonic oscillator and a
formal symbol defined in a neighborhood of 0

a(x, ε) ∼
∞∑
j=0

εjaj(x)

and such that the following estimate holds in a neighborhood of 0:

(H(ε)− E(ε))(a(x, ε)e−ϕ(x)/ε) = O(ε∞) · e−ϕ(x)/ε (2.2.10)

Moreover
a(0, ε) = (2π)−n/4

Proof. We formally insert ψ = ae−ϕ/ε in (2.2.10) and expand in powers of ε. We get

∑
j

εj+2

2 ∆aje−ϕ/ε +
∑
j

εj+1∇aj∇ϕe−ϕ/ε +
∑
j

V aje
−ϕ/ε −

∑
i,j

εi+jEjaie
−ϕ/ε

+
∑
j

εj+1

2 aj∆ϕe−ϕ/ε −
∑
j

εjaj |∇ϕ|2e−ϕ/ε

Now the coefficient of ε0 is equal to 0 if we have(
− 1

2 |∇ϕ|
2 + (V − E0)

)
a0 = 0

and from Proposition (2.2.1) we get the existence of a unique positive function ϕ solving the
eikonal equation.
Then we look at the coefficient of ε1 that is

2∇ϕ · ∇a0 + (∆ϕ− 2E1)a0 = 0

with the initial condition a0(0) = (2π)−n/4, i.e. a transport equation as in Proposition (2.2.2)
with f = a0, γ = (2π)−n/4, g = 0, and b = ∆ϕ− E1, if b(0) = 0. This last condition with (2.2.9)
defines E1:

E1 = 1
2∆ϕ(0) =

n∑
j=1

√
µj
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The coefficient for ε2 is

2∇ϕ · ∇a1 + (∆ϕ− 2E1)a1 = −∆a0 + 2E2a0

with the initial condition a1(0) = 0. We can apply again Proposition (2.2.2) with f = a1, γ =
0, b = ∆ϕ− E1 and g = −∆a0 + E2a0, if g(0) = 0, that is

−∆a0(0) + 2E2a0(0) = 0

i.e.
E2 = 1

2
∆a0(0)
a0(0)

(because a0(0) 6= 0) and we can proceed in the same way for the other coefficients.

2.2.2 Near a maximum of the potential

We will work on Tn. We look for approxiamte solutions of the form

ψ(x) = a(x, ε)e
i
ε
ϕ(x)

(Bloch wave form) with a(x, ε) ∼
∑
k ε

kak(x), for the stationary Schrödinger equation

−ε
2

2 ∆ψ + (V − E)ψ = 0

In other words we are trying to construct a quasimode near the maximum of the potential. We
make the following assumptions on the potential V :

(A1) V ′(0) = 0

(A2) V ′′(0) < 0

Theorem 2.2.4. Under the hypothesis (A1) and (A2) we can find a Lipschitz function ϕ ∈
C0(Tn), a formal series:

E(ε) ∼
∞∑
j=0

εjEj

where E0 = max V , E1 = 0 and a formal symbol defined in a neighborhood of 0

a(x, ε) ∼
∞∑
j=0

εjaj(x)

and such that the following estimate holds in a neighborhood of 0:

‖(H(ε)− E(ε))(a(x, ε)e
i
ε
ϕ(x))‖L2 = O(ε3) (2.2.11)
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Proof. Proceeding in the same way as in the previous theorem, we get(
− ε2

2 ∆a− iε∇a · ∇ϕ− iε

2 a∆ϕ+ 1
2a|∇ϕ|

2 + (V − E)a
)
e
i
ε
ϕ = 0

The order 0 is given by the Hamilton-Jacobi equation(
1
2 |∇ϕ|

2 + (V − E0)
)
a0 = 0

If we choose E0 = max V then we know that there exist a (weak) Lipschitz solution ϕ(x) defined
on Tn, that is C3 in a neighborhood of 0.
If we look at the first order, we have(

1
2 |∇ϕ|

2 + (V − E0)
)
a1 + E1a0 − i

(
∇a0 · ∇ϕ+ 1

2a0∆ϕ
)

= 0

and we need to impose E1 = 0

∇a0 · ∇ϕ+ 1
2a0∆ϕ = div (a2

0∇ϕ) = 0

The second equation admits a (weak, in the sense of measure) solution a0, as in [Eva07].
The second order is given by(

1
2 |∇ϕ|

2 + (V − E0)
)
a2 + E1a1 − E2a0 −

1
2∆a0 − i

(
∇a1 · ∇ϕ+ 1

2a1∆ϕ
)

= −i
(
∇a1 · ∇ϕ+ 1

2a1∆ϕ
)
−
(

1
2∆a0 + E2a0

)
= 0

and we can choose
E2 = −1

2
∆a0(0)
a0(0)

(we suppose here a0(0) 6= 0).

2.2.3 Another WKB approximation near the maximum

Now we try an alternative WKB approximation to get a result that will be useful in the following.
As before we choose

ψ(x, ε) = a(x, ε)e
i
ε
ϕ(x)
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but we look for the following expansionsa(x, ε) ∼
∑
k(iε)kak(x)

E(ε) ∼
∑
k(iε)kEk

A similar construction can be found in [Laz93].

Theorem 2.2.5. Under the hypothesis (A1) and (A2) we can find a Lipschitz function ϕ ∈
C0(Tn), a formal series:

E(ε) ∼
∞∑
k=0

(iε)kEk

where E0 = max V , E1 = 0 and a formal symbol defined in a neighborhood of 0

a(x, ε) ∼
∞∑
k=0

(iε)kak(x)

and such that the following estimate holds in a neighborhood of 0:

‖(H(ε)− E(ε))(a(x, ε)e
i
ε
ϕ(x))‖L2 = O(ε3) (2.2.12)

Proof. Proceeding in the usual way, we get(
− ε2

2 ∆a− iε∇a · ∇ϕ− iε
2 a∆ϕ+ 1

2a|∇ϕ|
2 + (V − E)a

)
e

i
ε
ϕ = 0

The order 0 is given by the Hamilton-Jacobi equation(
1
2 |∇ϕ|

2 + (V − E0)
)
a0 = 0

If we choose E0 = max V then we know that there exist a (weak) Lipschitz solution ϕ(x) defined
on Tn, that is C3 in a neighborhood of 0.
If we look at the first order, we have

i
(

1
2 |∇ϕ|

2 + (V − E0)
)
a1 + iE1a0 − i

(
∇a0 · ∇ϕ+ 1

2a0∆ϕ
)

= 0

and again we need to imposeE1 = 0

∇a0 · ∇ϕ+ 1
2a0∆ϕ = div (a2

0∇ϕ) = 0

The second equation admits a (weak, in the sense of measure) solution a0, as in [Eva07].
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The second order is given by

−
(

1
2 |∇ϕ|

2 + (V − E0)
)
a2 + E1a1 + E2a0 −

1
2∆a0 − i

(
∇a1 · ∇ϕ+ 1

2a1∆ϕ
)

= −i
(
∇a1 · ∇ϕ+ 1

2a1∆ϕ
)
−
(

1
2∆a0 − E2a0

)
= 0

and we can choose
E2 = +1

2
∆a0(0)
a0(0)

(we suppose here a0(0) 6= 0).

We constructed a, ϕ and E in this way because now we get the following Theorem.

Theorem 2.2.6. The function H̄ε(P ) for P = 0 in (2.1.14) concides with the real part of the
function E(ε) constructed in Theorem 2.2.5 up to second order terms. That means

|H̄ε(0)− ReE(ε)| = O(ε3)

Proof. In the previous theorem we constructed the function E(ε) as

E(ε) = max V + ε2

2
∆a0(0)
a(0) +O(ε3)

We recall here some definitions that the reader can find in [Eva07] and also in the previous
chapter. Define w(x), v(x) and E(0, ε) as the solution of

−ε
2

2 ∆w − V w = E(0, ε)w

−ε2∆v + |∇v|
2

2 + V = max V

In particular

H̄ε(0) = −E(0, ε) = max V + ε2

2
∆w
w

and computing the Taylor series around ε = 0 we get

H̄ε(0) = H̄ε(0)|ε=0 + d

dε
H̄ε(0)|ε=0ε+ d2

dε2 H̄ε(0)|ε=0ε
2 +O(ε3)

= max V + ε2

2
∆w0(0)
w0(0) +O(ε3)
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where we assume that w ∼
∑
k ε

kwk and v ∼
∑
k ε

kvk and w0, v0 solve


1
2w0∆v0 +∇w0 · ∇v0 = 0
|∇v0|2

2 + V = max V

and so we have w0 = a0 and v0 = ϕ.
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Chapter 3

WKB approximation of the
Schrödinger evolutive equation

3.1 FIO and WKB

In the time independent WKB approximation the starting point is one the following ansatzs

ψ(x) = e
i
ε
ϕ(x)A(ε, x)

ψ(x) =
∫

Θ
e

i
ε
ϕ(x,θ)A(ε, x, θ)dθ

where Θ = RN (the set of frequencies), ϕ is a real phase and the amplitude A admits the following
expansion in powers of ε: A(ε, x, θ) ∼

∑
εjAj(x, θ). Let K(ε, t, x, y) the propagator of the time

dependent Schrödinger operator, that is the Schwartz kernel of the unitary operator UH(t). K
satisfies iε ∂

∂t
K(ε, t, x, y) = HK(ε, 0, x, y)

K(ε, t, x, y) = δ(x− y)
(3.1.1)

We will look for solutions of the form

K(ε, t, x, y) =
∫

Θ
e

i
ε
ϕ(t,x,θ,y)A(ε, x, θ, y)dθ (3.1.2)

and we assume that the quantum Hamiltonian is of the following type

H = −ε2∆ + V (3.1.3)

where the potential V is assumed to be smooth and satisfies the estimate

|∂αxV (x)| ≤ Cα
(
1 + |x|2

) 1
2 (2−|α|)+ (3.1.4)
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Chapter 3. WKB approximation of the Schrödinger evolutive equation

for every α multindex and for every x ∈ Rn. We make for K the following ansatz

K(ε, t, x, y) = (2πε)−n
∫

Θ
e

i
ε
(S(t,x,η)−〈y,η〉)

∑
j≥0

εjAj(t, x, η)

 dη
with the initial conditions at t = 0

S(0, x, η) = 〈x, η〉

A0(0, x, η) = 1

Aj(0, x, η) = 0, for j ≥ 1

Now starting from (3.1.1) and computing the expansion in ε, we get the following equation for S

∂tS(t, x, η) +H(x, ∂xS(t, x, η)) = 0 (3.1.5)

that is an Hamilton-Jacobi equation for S, and the sequence of transport equations for Aj

i∂tA0(t, x, η) = L(x, η,Dx)A0(t, x, η) (3.1.6)

i∂tAj(t, x, η) = L(x, η,Dx)Aj(t, x, η) + Fj(A0, . . . , Aj) (3.1.7)

where L(x, η,Dx) represents the following differential operator

L(x, η,Dx)B = ∂pH ·DxB + (2i)−1
[
tr
(
∂2
p,pH(x, ∂xS) · ∂2

x,x + ∂2
x,pH(x, ∂xS)

)]
B

and the Fj ’s are polynomial in a finite number of derivatives of A0, . . . , Aj , with uniformily
bounded coefficients.

Theorem 3.1.1. There exists T > 0 small enough such that

(i) The HJ equation (3.1.5) has a unique solution S(t, x, η). Moreover one has

Φ−tH (x, ∂xS(t, x, η)) = (∂ηS(t, x, η), η)

and S satisfies the following estimate (z = (x, η)):

|∂γzS(t, z)| ≤ C(1 + |z|2)
1
2 (2−|γ|)+

(ii) The transport equations (3.1.6) and (3.1.7) admit by induction, a sequence of unique
solutions Aj(t, x, η) ∈ C∞([−T, T ]× Z), that satisfy∣∣∣∂kt ∂γzAj(t, z)∣∣∣ ≤ C
for all (t, z) ∈ [−T, T ]× Z.
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(iii) Introducing the FIO

UH,N (t)ψ(x) = (2πε)−n
∫
Z
e

i
ε
(S(t,x,η)−〈y,η〉)

 ∑
0≤j≤N

εjAj(t, x, η)

ψ(y)dydη (3.1.8)

we have the following remainder

sup
|t|≤T

‖UH(t)− UH,N (t)‖L2 = O(εN ) (3.1.9)

Proof. Following [Rob87] and [HR83]. The Hamilton-Jacobi and transport equations can be
solved using standard methods (integration along the classical flow): thus the time T > 0 is
determined by the presence of caustics. For the estimates:

(iε∂t −H)UH,N (t) = RN (ε; t) (3.1.10)

where RN (ε; t) is the Fourier Integral Operator defined by

RN (ε; t)ϕ(x) = (2πε)−n
∫
Z
rN (ε; t, x, η)e

i
ε
(S(t,x,η)−〈x,η〉)dxdη

where ε−N−1rN (t, x, ·) is of order O(0) for t ∈ [−T, T ] and ε ∈]0, ε0]. This implies that there
exists a constant C > 0 such that

‖RN (ε; t)‖ ≤ CεN+1

for all t ∈ [−T, T ] and all ε ∈]0, ε0].

Group property

We want to construct approximations for UH(t) for every time t. We can do this using the group
property of the operator. Fix T1 ∈]0, T/2[, consider t ∈]kT1, (k + 1)T1[ and assume k ≥ 1. Then

UH(t) = UH(t− kT1) · UH(T1)k

and we can approximate it by

VH,N (t) = UH,N (t− kT1) · UH,N (T1)k

From the estimate (3.1.9), we get the following estimate

sup
kT1≤t≤(k+1)T1

‖UH(t)− VH,N (t)‖L2 = O(εN )
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VH,N (t) is a FIO: applying the product rule for FIO, we get VH,N (t) = I(φ,B, ε) with

φ(t, x, θ, y) = S(t− kT1, x, ηk+1)− 〈yk+1, ηk+1〉+
∑

1≤j≤k
S(T1, yj+1, ηj)− 〈yj , ηj〉

y = y1, θ = (η1, y2, η2, . . . , yk+1, ηk+1) ∈ (Rn)2k+1

B(ε; t, x, θ, y) = A(N)(ε; t− kT1, x, ηk+1)
j=k∏
j=1

A(N)(ε;T1, yj+1, ηj)

where
A(N)(ε; t, x, η) =

∑
0≤j≤N

εjAj(t, x, η)

A similar result can be found in [GZ10]: in their work the authors are able to construct a
multivalued WKB approximation of the Schrödinger evolution operator.
There is another interesting possible connection between the construction of the FIO using the
group property and the so called Symplectic Homogenization of Viterbo in [Vit08], since the
phase of the FIO is constructed precisely using the composition rule for generating functions. In
Viterbo’s notations

Fk(x, p; ξ) =
k∑
j=1

S(tj , ξj , pj) +Qk(x, p; ξ)− 〈p, x〉

is the generating function of the k-th composition of the flow. More precisely, Viterbo consider
the following function.

Definition 3.1.2. We define
hk(p) := c(µx, Fk,p)

where Fk,p = Fk(x, p; ξ).

The detailed definition of c(µx, Fk,p) = c(µx ⊗ 1(ξ), Fk(p)) arises from the min-max theory in the
cohomological setting, see [Vit08]. The author is then able to prove that the sequence {hk}k∈N
c-converges to a function h∞(p) (the c-convergence is a weak convergence for the flows). It turns
out that h∞ coincides with the α Mather function (or equivalently the homogenization of the
Hamiltonian h).
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Remark 3.1.3 The definition of hk is based essentially on the search for a critical value for η
fixed and x and the parameters ξ are free to vary. To the 0-dimensional cohomology generator
(the cohomology of the points), i.e. 1(ξ) in our case, corresponds the minimum, while to the
volume form µx correspond a maximum or a saddle point (depending on the compactness
of the manifold). For this we can conjecture that the critical value c(µx ⊗ 1(ξ), Fk) can be
written as an inf max. More precisely, this does work whenever Fk is positive definite in the
auxiliary parameters ξ, one would have

c(µx ⊗ 1(ξ), Fk) = inf
ξ∈R2(k−1)

max
x∈Tn

Fk(x, p; ξ) (3.1.11)

It is interesting to notice that if (3.1.11) holds true, then one must have

h∞(p) = lim
k→∞

inf
ξ∈R2(k−1)

max
x∈Tn

Fk(x, p; ξ)

and, since h∞ coincides with the homogeneized Hamiltonian, we would have

lim
k→∞

inf
ξ∈R2(k−1)

max
x∈Tn

Fk(x, p; ξ) = inf
f∈C1(Tn)

max
x∈Tn

H(x,∇f + p) = H̄(p)

To conclude this remark, note that the limit k → ∞ for the numbers of parameters,
corresponds to the limit t→∞ for the time of the phase of the FIO: this would mean that,
for large times, the phase c-converge to H̄(p).

3.2 Madelung approach

In the following we will make the following hypothesis on the Hamiltonian:

(i) H : Td × Rd → R, H(x, p) = p2

2 + V (x) (we will consider only mechanical Hamiltonians);

(ii) V (x) has only non degenerate maxima (xi)1≤i≤m;

(iii) there exists only one xI ∈ {xi|1 ≤ i ≤ m} that minimizes
∑m
j=1

√
kj(xi) where −kj(xi) is

the j-th eigenvalue of the Hessian of V at the point xi.

Without loss of generality we will suppose that xI = 0 (it will be clear in the following chapters
why we have made these hypothesis). We will look for an approximate solution of the time
dependent Schrödinger equation on Tdiε∂tψ

t = Hψt

ψ(0, x) = ψ(0,0)
(3.2.1)
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where ψ(0,0) is a (Gaussian) coherent state centered in (0, 0) ∈ Td × Rd, where H = − ε2

2 ∆ + V ,
of the form

ψ(t, x) = A(t, x)e
i
ε
S(t,x)

and we will use WKB approximation both in the amplitude and in the phase

A(t, x) ∼
∑
k

εkAk(t, x) S(t, x) ∼
∑
l

εlSl(t, x)

We will find a series of partial differential equation and we will compute the remainder of the
approximation of order 2. The problem is to find an (a priori) estimate for this remainder.

Some Computations

Using the WKB approximation

ψ(t, x) =
(∑

k

εkAk(t, x)
)
e
i
ε

∑
l
εlSl(t,x)

we transform the Schrödinger equation into(∑
k,l

Ak∂tSl + 1
2
∑
k,l,m

εk+l+mAk(∂xSl)(∂xSm) +
∑
k

εkAkV −
1
2
∑
k

εk+2∂xxAk
)

(3.2.2)

+iε
(∑

k

εk∂tAk +
∑
k,l

εk+l
(
∂xAk∂xSl + 1

2Ak∂xxSl
))

= 0 (3.2.3)

so we get the following series of sistem of PDEs

∑
k,l

Ak∂tSl + 1
2
∑
k,l,m

εk+l+mAk(∂xSl)(∂xSm) +
∑
k

εkAkV −
1
2
∑
k

εk+2∂xxAk = 0

∑
k

εk∂tAk +
∑
k,l

εk+l
(
∂xAk∂xSl + 1

2Ak∂xxSl
)

= 0

Now, looking at order 0, 1 and 2, we get

ε0 :

∂tS0 + 1
2(∂xS0)2 + V = 0

∂tA0 + ∂xA0∂xS0 + 1
2A0∂xxS0 = 0

ε1 :

∂tS1 + (∂xS0)(∂xS1) = 0

∂tA1 + ∂xA1∂xS0 + 1
2A1∂xxS0 = −(∂xA0∂xS1 + 1

2A0∂xxS1)
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ε2 :


∂tS2 + (∂xS0)(∂xS2) = 1

2
∂xxA0
A0
− 1

2(∂xS1)2

∂tA2 + ∂xA2∂xS0 + 1
2A2∂xxS0 =

= −(∂xA0∂xS2 + 1
2A0∂xxS2 + ∂xA1∂xS1 + 1

2A1∂xxS1)

Note that order 0 can be rewritten as∂tS0 + 1
2(∂xS0)2 + V = 0

∂tA
2
0 + ∂x(A2

0∂xS0) = 0

and so the first equation is an Hamilton-Jacobi PDE and the second is a continuity equation.
Looking at the first and second order equations we have a transport equation and something
similar to a continuity equation.

Reducing the equations

In this section we will look closer to the equations and we will try to simplify them. Take the
first order system

ε1 :

∂tS1 + (∂xS0)(∂xS1) = 0

∂tA1 + ∂xA1∂xS0 + 1
2A1∂xxS0 = −(∂xA0∂xS1 + 1

2A0∂xxS1)

A possible solution of the first equation is S1(t, x) = c ∈ R. But if we look at the initial datum on
the phase S(0, x) = 0, we have that S1(t, x) = 0. In particular the systems of equations become

ε0 :

∂tS0 + 1
2(∂xS0)2 + V = 0

∂tA
2
0 + ∂x(A2

0∂xS0) = 0

ε1 :

S1(t, x) = 0

∂tA
2
1 + ∂x(A2

1∂xS0) = 0

ε2 :

∂tS2 + (∂xS0)(∂xS2) = 1
2
∂xxA0
A0

∂tA2 + ∂xA2∂xS0 + 1
2A2∂xxS0 = −(∂xA0∂xS2 + 1

2A0∂xxS2)

Now the first system is again Hamilton-Jacobi + Continuity equation; the second system has only
the (same!) Continuity equation (but the solution could be different depending on a different
initial datum for A1) while the third system is given by a Transport equation and something
similar to a Continuity equation.
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The remainder

Suppose that we have found the solutions up to the second order approximation: we build the
wave function

ψ(t, x) = (A0 + εA1 + ε2A2)e
i
ε
(S0+εS1+ε2S2)

and we put it into the Schrödinger equation and compute the remainder R(t, x):

iεψ(t, x)−Hψ(t, x) = R(t, x)

The real part is given by

ReR(t, x) = ε3
[1
2
A1
A0
∂xxA0 −

1
2∂xxA1 +A0(∂xS1)(∂xS2)

]
+ ε4

[1
2
A2
A0
∂xxA0 −

1
2∂xxA2 +A0(∂xS2)2 +A1(∂xS1)(∂xS2)

]
+ ε5

[
A1(∂xS2) +A2(∂xS1)(∂xS2)

]
+ ε6

[1
2(∂xS2)2

]
while the imaginary part is

ImR(t, x) = ε3
[ 1
2A1

∂x(A2
1∂xS2) + 1

2A2
∂x(A2

2∂xS1)
]

+ ε4
[ 1
2A2

∂x(A2
2∂xS2)

]
Knowing that ∂xS1 = 0 we can simplify the remainder:

ReR(t, x) = ε3
[1
2
A1
A0
∂xxA0 −

1
2∂xxA1

]
+ ε4

[1
2
A2
A0
∂xxA0 −

1
2∂xxA2 +A0(∂xS2)2

]
+ ε5

[
A1(∂xS2)

]
+ ε6

[1
2(∂xS2)2

]

ImR(t, x) = ε3
[ 1
2A1

∂x(A2
1∂xS2)

]
+ ε4

[ 1
2A2

∂x(A2
2∂xS2)

]
Using T.Paul Lemma we can estimate

‖R(t, x)‖ ≤ Ctε2 sup
s∈[0,t]

|T (s, x)|
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where T (t, x) is simply R(t, x) where we have taken out the common factor ε3. So the problem
is to find an (a priori) estimate for

sup
s∈[0,t]

|T (t, x)| ≤ 1
2 sup
s∈[0,t]

∣∣∣A1∂xxA0 −A0∂xxA1
A0

+ ∂x(A2
1∂xS2)
A1

∣∣∣
3.3 Other systems of PDEs

Madelung and Fokker-Planck

Instead of considering the “classical” system of PDEs∂tS +H(x,∇S) = ε2

2
∆A
A

∂tP + div(P∇S) = 0

(where A =
√
P ), we want to study a new one given by

∂tS +H(x,∇S) = ε2

2
∆A
A

∂tP + div(P∇S) = ν(ε)∆P
(3.3.1)

Again: A =
√
P and ν(ε) is the viscosity constant (and we consider it as a function of ε). Note

that this (toy?) model satisfy

d

dt

∫
Tn
P (t, x)dx = −

∫
Tn
∇ · (P∇S − ν(ε)∇P )dx = 0

First of all we look for the existence of equilibrium points: so we need to find the solutions of the
stationary system H(x,∇S) = Eε + ε2

2
∆A
A

div(P∇S) = ν(ε)∆P
(3.3.2)

Definition 3.3.1. We will say that (S(x), P (x), Eε) (where x ∈ Tn) is an equilibrium point of
(3.3.1) if it solves (3.3.2)

We can state now the existence of an equilibrium point.

Proposition 3.3.2. An equilibrium point for (3.3.1) is given by (Sε(x), e
Sε(x)
ν , Eε) where Sε(x)

is the unique (up to a constant) solution of

1
2

(
1− ε2

4ν2

)
|∇S(x)|2 + V (x) = Eε + ε2

4ν∆S(x) (3.3.3)

and Eε is the unique constant associated to Sε.
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Proof. If Pε(x) = e
Sε(x)
ν then

ν(ε)∆Pε = ν(ε)∇ · (∇Pε) = ∇ · (e
Sε(x)
ν ∇Sε)

∇ · (Pε∇Sε) = ∇ · (e
Sε(x)
ν ∇Sε)

so Pε solves the Fokker-Planck stationary equation. Now computing

ε2

2
∆
√
Pε√
Pε

= ε2

2 e
−Sε2ν

(
∆Sε
2ν e

Sε
2ν + |∇Sε|

2

4ν2 e
Sε
2ν

)

= 1
2
ε2

4ν2 |∇Sε|
2 + ε2

4ν∆Sε

that inserted in the first equation gives (3.3.3).

Hamilton-Jacobi and Fokker-Planck

Now we try to study a problem that seems simpler:∂tS +H(x,∇S) = 0

∂tP + div(P∇S) = ν∆P
(3.3.4)

Clearly an equilibrium of this system of equations is given byH(x,∇Ŝ) = E

div(P̂∇Ŝ) = ν∆P̂

and the second equation admits P̂ (x) = e
Ŝ(x)
ν as a solution. Moreover, the functional

I(t) =
∫
P (t, x) ln P (t, x)

P̂ (x)
dx

is a Lyapunov function for the Fokker-Planck equation (that means d
dtI(t) ≤ 0 and d

dtI(t) = 0 if
and only if P (t, x) = P̂ (x)). The Hamilton-Jacobi equation is unique up to a constant, so we
have to choose this constant in order to have∫

Tn
P̂ (x)dx = 1

i.e. the equilibrium must be a probability on Tn.

Example 3.3.3. We make an example: the free particle on T1. The equilibrium equations will
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be given by |∂xŜ(x)|2 = 0

∂xxP̂ (x) = 0

The second equation gives P̂ (x) = Ax+B, but, because P̂ must be a probability

∫ 1

0
Ax+B dx = 1

and we get B = 1 − A
2 . Moreover P̂ (x) = eC/ν (must be a constant) so we must have A = 0

and we finally find (Ŝ(x), P̂ (x)) = (0, 1). In this situation we will have lim
t→∞
‖S(t, x)− Ŝ(x)‖∞ =

lim
t→∞
‖S(t, x)‖ = 0 and P (t, x) t→∞→ 1.

Going back to NLS equations

Now we try to get back to the equations that originates the systems that we have seen before.

Proposition 3.3.4. (i) If the couple (S(t, x), P (t, x)) solves the system of PDEs (3.3.1), then
ψ(t, x) =

√
P (t, x) e

i
ε
S(t,x) solves

iε∂tψ = −ε
2

2 ∆ψ + V (x)ψ + iε

2 ν
ψ

|ψ|2
∆|ψ|2 (3.3.5)

(ii) If the couple (S(t, x), P (t, x)) solves (3.3.4), then ψ(t, x) =
√
P (t, x) e

i
ε
S(t,x) solves

iε∂tψ = −ε
2

2 ∆(ψ − |ψ|) + V (x)ψ + iε

2 ν
ψ

|ψ|2
∆|ψ|2 (3.3.6)
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Chapter 4

Semiclassical limit and WKAM
Theorem

In this chapter we present some known tools and few final elaborations useful to the results
worked out in chapter 1. Here we will follow mainly [Sib04] and [AIPSM05].

4.1 Mather’s Minimal Action

Consider the n-dimensional torus Tn = Rn/Zn. Denote with (x, v) the coordinates on TTn =
Tn × Rn. Let L : S1 × TTn → R of class C2.

Definition 4.1.1. The action of a curve C1 γ : [a, b]→ Tn is defined as

A(γ) :=
∫ b

a
L(t, γ(t), γ̇(t))dt

It is a well known fact that the curves that extremize the action functional solve Euler-Lagrange
equations:

d

dt

∂L

∂v
(t, γ(t), γ̇(t)) = ∂L

∂x
(t, γ(t), γ̇(t)) (4.1.1)

for all t ∈ [a, b]. To solve equation (4.1.1) is equivalent to solve

∂2L

∂v2 (t, γ(t), γ̇(t))γ̈(t) = ∂L

∂x
(t, γ(t), γ̇(t))− ∂2L

∂x∂v
(t, γ(t), γ̇(t))γ̇(t) (4.1.2)

and if the Lagrangian L satisfies Legendre condition

det ∂
2L

∂v2 6= 0

then it is possible to solve (4.1.2). Moreover it is well defined a vector field XL(t, x, v) =
((x, v), (v,Xπ

L(t, x, v)) over T (TTn) such that the solutions of γ̈(t) = Xπ
L(t, x, v) are exactly the

solutions of (4.1.1).
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Definition 4.1.2. The vector field XL is called Euler-Lagrange vector field and its flow ϕL is
the Euler-Lagrange flow.

Remark 4.1.3 Even if L is only of class C2, ϕL is in C1.

Definition 4.1.4. A convex Lagrangian is a C2 function such that the following conditions hold:

(i) restricted to every fiber {t} × TxTn, L is strictly convex; i.e.

∂2L

∂v2 > 0

for all v ∈ {t} × TxTn;

(ii) L has a superlinear growth (with respect to some Riemannian metric)

lim
|v|→∞

L(x, v)
|v|

=∞

uniformly in x;

(iii) the Euler-Lagrange flow ϕL is complete; i.e. its solutions exist for all times.

Remark 4.1.5 A Lagrangian L is not uniquely determined by its flow ϕL. Indeed if L
generates ϕL, then also every Lagrangian of the form

Lη(x, v) := L(x, v)− ηx(v)

where η is any closed 1-form on the torus Tn, generates the same flow ϕL. If we consider the
two actions

∫
γ Lη and

∫
γ L, we can see that they differ for the term

∫
γ η. Since η is a closed

1-form, using Stokes’ Theorem we know that this integral does not depend on γ, but only
on the initial and final points and so it is a constant. The two actions differ by a constant
and so generate the same Euler-Lagrange flow ϕL. Moreover if L is convex, then the new
Lagrangian Lη is also convex.

In the following we will consider only convex Lagrangian and we will not deal with orbits of
Euler-Lagrangian flow, but rather with invariant probability measures.

Definition 4.1.6. LetML be the set of ϕL-invariant probability measures. We define the action
of µ ∈ML as

A(µ) =
∫
Ldµ ∈ R ∪ {+∞}
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For every µ ∈ML we associate the linear functional

H1(Tn,R)→R

[η] 7→
∫
η dµ

where we consider a 1-form ν as a function on TTn that is linear on the fibers. By duality there
exists a unique class ρ(µ) ∈ H1(Tn,R) such that∫

η dµ = 〈[η]|ρ(µ)〉 (4.1.3)

for all [η] ∈ H1(Tn,R).

Definition 4.1.7. The class ρ(µ) ∈ H1(Tn,R) defined by (4.1.3), is called the rotation vector of
µ.

Definition 4.1.8. Let L be a convex Lagrangian. Then the function

α : H1(Tn,R)→R

h 7→min{A(µ) |µ ∈ML, ρ(µ) = h}

is calles the minimal action of L. Every invariant measure µ ∈ML, i.e. with A(µ) = α(ρ(µ))
realizing the minimum, is called minimal measure.

Proposition 4.1.9. The minimal action α : H1(Tn,R)→ R is a convex, superlinear function.

Proof. Let h1, h2 ∈ H1(Tn,R) and λ ∈ [0, 1]. Choose minimal measures µ1, µ2 ∈ML such that
ρ(µi) = hi. Then the convex combination

µ = λµ1 + (1− λ)µ2

lies inML and has rotation vector ρ(µ) = λh1 + (1− λ)h2. Since both µ1 and µ2 are minimal,
we conclude that

α(λh1 + (1− λ)h2) = min{A(ν) | ν ∈ML, ρ(ν) = ρ(µ)} ≤ A(µ) =∫
Ld(λµ1 + (1− λ)µ2) = λ

∫
Ldµ1 + (1− λ)

∫
Ldµ2 = λα(h1) + (1− λ)α(h2)

which proves the convexity of α.

Since α is convex, it posseses a convex conjugate

α∗ : H1(Tn,R)→R

c 7→ sup
h∈H1

(〈c|h〉 − α(h))
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4.2 Mañé critical value

Definition 4.2.1. A curve γ : [a, b]→ Tn is called absolutely continuous if for every ε > 0 there
exists δ > 0 such that for every finite set of open disjoint intervals (si, ti) ⊂ [a, b] of total length
less than δ, one has

∑
i d(γ(ti), γ(si)) < ε where d is a Riemannian metric on Tn.

Definition 4.2.2. Let L : TTn → R be a convex Lagrangian. The action of an absolutely
continuous curve γ : [a, b]→ Tn is

AL(γ) :=
∫ b

a
L(γ(t), γ̇(t)) dt

Given two points x1, x2 ∈ Tn and T > 0, we denote with CT (x1, x2) the set of absolutely
continuous curve γ : [0, T ]→ R with γ(0) = x1 and γ(T ) = x2.

Definition 4.2.3. For every k ∈ R we define

Φk(x1, x2;T ) := inf{AL+k(γ) | γ ∈ CT (x1, x2)}

The action potential Φk is

Φk : Tn × Tn →R ∪ {−∞}

(x1, x2) 7→ inf
T>0

Φk(x1, x2;T )

and the critical value of L is given by

c(L) := inf{k ∈ R |Φk(x, x) > −∞ per qualche x ∈ Tn}

The following proposition show the relation between Mañé critical value and minimal action of
all the measures ofML, regardless of their rotation vector.

Proposition 4.2.4.
c(L) = −min{AL(µ) |µ ∈ML}

Proof. First of all, one can show that

min{AL(µ) |µ ∈ML} = min{AL(µγ) | γ abs. cont. curve}

where µγ is the probability measure equally distributed along some absolutely continuous curve
γ. We prove that

−c(L) = min{AL(µγ) | γ abs. cont. curve}

For any curve γ, we have AL+c(L)(µγ) ≥ 0 by definition of c(L). Therefore

−c(L) ≤ min{AL(µγ) | γ abs. cont. curve}
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To prove the reversed inequality, we observe that, when k < c(L), there exists a curve γ with
AL+k(µγ) < 0, which implies

−k ≥ min{AL(µγ) | γ abs. cont. curve}

and to get the result, we let k tend to c(L).

Reconsidering the definition of α∗(c) we have

α∗(0) = −min
h

min{AL(µ) | ρ(µ) = h} = −min{AL(µ) |µ ∈ML}

that gives an alternative way to describe the critical value c(L).

Corollary 4.2.5. For every closed 1-form ν on Tn, we have

c(L− ν) = α∗([ν])

Moreover, if H is the Hamiltonian corresponding to L, we have

c(L) = inf
u∈C∞(Tn,R)

max
x∈Tn

H(x, du(x))

Remark 4.2.6 To make an example we can consider two Lagrangians on Tn

L−(x, v) = |v|
2

2 − V (x)

L+(x, v) = |v|
2

2 + V (x)

where V (x) is a continuous potential. Then

c(L−) = max
x∈Tn

V (x)

c(L+) = max
x∈Tn
{−V (x)} = − min

x∈Tn
V (x)

that means ‖V ‖C0 = c(L−) + c(L+) or equivalently 1
2‖L

+ − L−‖C0 = c(L−) + c(L+).
Considering the fact that L+ = H is the Legendre transform of L, we have c(L+) = c(H) or
c(H + h) = α(h).

4.3 WKAM solutions

From the fact that an invariant torus is the graph of a closed 1-form ν, then ν must satisfy
the equation H(x, νx) = k where k is a constant. Finding a smooth exact invariant torus gr du,
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where u : Tn → R is a smooth function, is equivalent to finding a smooth solution of the time
independent Hamilton-Jacobi equation

H(x, du(x)) = k

Given a continuous function u : Tn → R, we will write

u ≺ L+ c

if u(x)− u(y) ≤ Φc(y, x) for all x, y ∈ Tn, where Φc is the action potential for the critical value

c = c(L)

Remark 4.3.1 Fathi in [Fat05] has shown that a function u satisfies u ≺ L+ c if and only
if it is Lipschitz and satisfies

H(x, du(x)) ≤ c per q.o. x ∈ Tn

i.e. is a subsolution of Hamilton-Jacobi equation.

4.4 Uniqueness of WKAM solutions

Viscosity solutions and stable/unstable manifold

Here we will look to the following problem on Td

H(x,∇S(x)) = c (4.4.1)

and we will try to find out the relation between the viscosity solution S(x) and the stable/unstable
manifold. First of all it is important to stress out the fact that this problem has been already
solved by [AIPSM05]. Here we want to explain and clarify their work.
Equation (4.4.1) can be solved using viscosity methods: it is possible to solve

H(x,∇Sε(x)) + ε∆Sε(x) = c(ε) (4.4.2)

obtaining an unique sequence of equilipschitz solutions (Sε)ε>0 (for an unique value c(ε)) that
admits a convergent subsequence (Sεk)k∈N → S where S is a solution of (4.4.1). At this point it
is important to stress out the fact that exists an unique value c ∈ R such that equation (4.4.1)
admits a solution, but in general this solution is not unique (obviously different solutions can
differ by a constant but can also be completely different).
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In the following we will make the following hypothesis on the Hamiltonian:

(i) H : Td × Rd → R, H(x, p) = p2

2 + V (x) (we will consider only mechanical Hamiltonians);

(ii) V (x) has only non degenerate maxima (xi)1≤i≤m;

(iii) there exists only one xI ∈ {xi|1 ≤ i ≤ m} that minimizes
∑m
j=1

√
kj(xi) where −kj(xi) is

the j-th eigenvalue of the Hessian of V at the point xi.

Aubry set and static classes

Definition 4.4.1. A continuous function S : Td → R is called a viscosity solution of equation
(4.4.1) if it satisfies:

(i) If v is a C1 function and S − v has a local maximum at x then

H(x,Dv(x)) ≥ c

(ii) If v is a C1 function and S − v has a local minimum at x then

H(x,Dv(x)) ≤ c

The constant c ∈ R in equation (4.4.1) can be characterized using α Mather’s function:

c = α(0) = − inf
µ
{
∫
Td×Rd

L(x, v)dµ(x, v)}

where µ are probability measures on Td × Rd invariant under the Euler-Lagrange flow of L. The
action of a piecewise C1 curve γ : [0, T ] ∈ Td is defined by

A(γ) =
∫ T

0
L(γ(s), γ̇(s))ds

Definition 4.4.2. Given k ∈ R, the Peierls barrier is a function h : Td × Td → R ∪ {−∞,+∞}
defined by

hk(x0, x1) = lim inf
T→∞

hkT (x1, x2)

where
hkT (x0, x1) = inf

γ
{A(γ) + kT |γ(0) = x0 and γ(T ) = x1}

Since T is not bounded, there exists only one value of k such that hk will be finite: that value is
c the Mañé critical value.

Definition 4.4.3. Define

hT (x0, x1) = hcT (x0, x1); h(x0, x1) = hc(x0, x1)
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and
A = {x ∈ Td|h(x, x) = 0}

is the Aubry set.

Remark 4.4.4 The set A can be lifted in an unique way to a set Ã ⊂ Td × Rd that is
invariant by Euler-Lagrange flow.

The static classes on A are defined by equivalence: x ∼ y if and only if

h(x, y) + h(y, x) = 0

Viscosity solutions are completely determined by the values taken at each static class: denote
with Ui the i-th static class and choose a point xi for each static class. Moreover assign a value
φi ∈ R for every i. If there exists a viscosity solution of (4.4.1) such that S(xi) = φi for all i, we
have φj − φi ≤ h(xi, xj). Viceversa if φj − φi ≤ h(xi, xj) for every i, j ∈ [1,m], then there exists
an unique viscosity solution S(x) given by

S(x) = max
i
φi − h(x, xi)

Remark 4.4.5 Let H(x, p) = p2

2 +V (x), where V has a finite number of maxima (xi)1≤i≤m

which are all non degenerate. The static classes are the points xi and c = max V . We will
assume that there is only one xI such that

∑
j

√
kj(xi) >

∑
j

√
kj(xI)

for every i 6= I and −kj(xi), j = 1, . . . , d are the eigenvalues of the Hessian of V at xi.

Proposition 4.4.6. If S is a viscosity solution of the Hamilton-Jacobi equation

1
2 |∇S(x)|2 + V (x) = c

that has a local maximum at xi, then S is C3 in a neighbourhood of xi and the eigenvalues of
D2S(xi) are −

√
kj(xi) , j = 1, . . . , d.

Proof. S has a maximum in xi so, using v = S(xi) in the definition of viscosity solution, we get

V (xi) = 1
2 |Dv|

2 + V (xi) ≥ c = max V (x)
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thus xi is a maximum of V . There exists a neighbourhood U of xi such that for every x ∈ U , the
point (x,∇S(x)) is in the stable manifold W s of (xi, 0). Moreover S|U is in the same class of
differentiability as V and coincides with −h(., xi). Differentiating we get

D2S(xi)D2S(xi) = −D2V (xi)

So if R is a matrix that diagonalizes D2V (xi) then it also diagonalizes D2S(x)D2S(x) and so
the eigenvalues of D2S(xi) are −

√
kj(xi) .

Stochastic Lax Formula and estimates

We introduce the probability space (Ω,B,P) with a Brownian motion W (t) on the flat torus Td.
The solution of (4.4.2) satisfies

Sε(x) = sup
v

E
(
Sε(Xε(τ))−

∫ τ

0
L(Xε(s), v(s))ds− c(ε)τ

)
(4.4.3)

where v is an admissible progrssively measurable control process and Xε is the solution to the
stochastic equation dXε(t) = v(t)dt+

√
2ε dW (t)

Xε(0) = x
(4.4.4)

Now we show that the solutions of (4.4.2) are Lipschitz and semiconvex.

Lemma 4.4.7. The solutions Sε of (4.4.2) are Lipschitz and semiconvex uniformly in ε. There-
fore there are always subsequences converging in the C0 norm.

Proof. |c(ε)| is bounded independentely of ε: applying the definition of viscosity solution to v = 0
and x we get

inf H(x, 0) ≤ c(ε) ≤ supH(x, 0)

By hypothesis |∂xH(x, p)| ≤ K(|p|+ 1) for a constant K > 0. Since H is superlinear there exists
R > 0 such that for |p| ≥ R

H(x, p) ≥ r +
√
dK (|p|+ 1)

where d is the dimension of the torus. Let w = |DSε|2 then

Dw = 2D2SεDSε (4.4.5)

∆w = 2Tr(D2Sε)2 + 2D(∆Sε) ·DSε (4.4.6)

Then we get
∂xH ·DSε + 1

2∂pH ·Dw + ε

2∆w − εTr(D2Sε)2 = 0

Let x0 ∈ Td be a point where w attains its maximum, then Dw(x0) = 0 and ∆w(x0) ≤ 0. We
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have
(H(x0, DSε)− c(ε))2 ≤ εdK(|DSε|+ 1)|DSε|

Some useful propositions

Fathi and Siconolfi showed the existence of a C1 critical subsolution of HJ equation, i.e.

H(x,∇f) ≤ c

Moreover, they found that such an f can be constructed so that H(x,∇f) < c outside A (the
Aubry set). As a consequence (Legendre inequality):

L(x, v) + c−∇f(x) · v ≥ L(x, v) +H(x,∇f)−∇f(x) · v ≥ 0 (4.4.7)

for all (x, v) ∈ Td × Rd and it is equal to 0 if (x, v) ∈ A. In the following we will assume that
the static classes consist only of a finite number of periodic hyperbolic orbit γi : [0, Ti]→ Td for
1 ≤ i ≤ m.

Lemma 4.4.8. Let S be a viscosity solution of (4.4.1) and define ϕ = S − f and also

h̃(x, y) = h(x, y) + f(x)− f(y)

Then

(i) h̃(x, y) ≤ h̃(x, z) + h̃(z, y);

(ii) h̃(x, y) ≥ 0 and h̃(x, y) = 0 if and only if x, y ∈ γi for some i;

(iii) ϕ is constant on γi for every i;

(iv) if x ∈ Td is a local maximum of ϕ then exists i such that x ∈ γi.

Proof. (i) h̃(x, y) = h(x, y) + f(x) − f(y) ≤ h(x, z) + h(z, y) + f(z) − f(z) + f(x) − f(y) =
h̃(x, z) + h̃(z, y).

(ii)

h̃(x, y) = h(x, y) + f(x)− f(y) = lim
T→∞

inf
γ

∫ T

0

[
L(γ(s), γ̇(s)) + c

]
ds+ f(x)− f(y)

= lim
T→∞

inf
γ

∫ T

0
L(γ(s), γ̇(s)) + c+∇f(γ(s)) · γ̇(s)ds

and we have h̃(x, y) ≥ 0 from (4.4.7). If x and y are in the same γi then L+ c+∇f · γ̇ = 0
and we have h̃(x, y) = 0.
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(iii) We use

S(γi(T ))− S(γi(0)) =
∫ T

0
L(γi(t), γ̇i(t))dt+ cT

From this we get

g(γi(T ))− g(γi(0)) =
∫ T

0
(L(γi(t), γ̇i(t))) + c−∇f(γi(t), γ̇i(t))dt

Since L + c − ∇f is zero on the Aubry set (that contains every γi), we have that g is
constant along γi.

(iv) S is a viscosity solution of (4.4.1) so, if x is a local maximum of g, then

H(x,Df(x)) ≥ c

but this is true only if x ∈ A.

Proposition 4.4.9. If S is a viscosity solution to the Hamilton-Jacobi equation (4.4.1) and
g = S − f has a local maximum at γi, then there is a neighbourhood U of γi such that

S(x) = S(xi)− h(x, xi)

for x ∈ U . This implies that (x,∇S(x)) belongs to the stable manifold (xi, 0) under the Hamilto-
nian flow, and that S is C3 on U .

Proof. Let U be a neighbourhood of xi on which xi is a local maximum of g. Then for every j
we have

g(xi) = g(xi)− h̃(xi, xi) ≥ g(xj)− h̃(xi, xj) (4.4.8)

Remember that g and h̃ are continuous so, if the inequality is strict for all j 6= i, there exists a
neighbourhood of γi where

g(x) = max
k
{g(xk)− h̃(x, xk)} = g(xi)− h̃(x, xi)

and, using the definition of g and h̃, we get S(x) = S(xi)− h(x, xi).
It is more difficult to show this when the equality in (4.4.8) occurs for some j 6= i. We start
choosing y ∈ ∂U such that h(xi, y) + h(y, xj) = h(xi, xj). Let γT : [0, T ]→ Td be a curve joining
xi and xj and achieving

hT (xi, xj) = inf{A(γ) + cT |γ : [0, T ]→ Td joins xi and xj}

Let us define TU the smallest time such that γT (TU ) /∈ U and yT = γT (TU ) ∈ ∂U the first point
of intersection. Now we show that both TU and T − TU tends to infinity when T → ∞: this
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follows from the fact that γ̇T (0)→ γ̇i(0) and γ̇T (T )→ γ̇j(0). In fact let v a limit point of γ̇T (0)
and let (γ(t), γ̇(t))t≥0 be the Euler-Lagrange flow of (xi, v). Using that

hT (xi, xj)− hT−1(γT (1), xj) = A(γT |[0,1])

and letting T →∞, we get

h(xi, xj)− h(γ(1), xj) = A(γ|[0,1])

Moreover
h(γi(−1), xj)− h(xi, xj) = A(γi|[−1,0])

so
h(γi(−1), xj)− h(γ(1), xj) = A(γ|[0,1]) +A(γi|[−1,0])

Lemma 4.4.10. If S is a viscosity solution of (4.4.1) such that g = S−f has only one maximum
at the orbit γI , then

S(x) = S(xI)− h(x, xI)

Proof. We assume that I = 1, g(x1) = 0 = −h̃(x1, x1) and g(x1) ≥ g(x2) ≥ . . . ≥ g(xm). We use
induction: we assume that g(xl) = −h̃(xl, x1) for l ≤ i, and we prove

Next we introduce the following

λi := 1
Ti

∫ Ti

0
∆hi(γi(t))dt = 1

Ti

∫ Ti

0
∆h(γi(t), xi)dt

(where xi = γi(0)), for i ∈ {1, . . . ,m}. We assume there is only one i for which λi is minimal: we
call it I.

Lemma 4.4.11.
c′+(0) := lim inf

ε→0+

c(ε)− c(0)
ε

≥ −λI

Proof.

Lemma 4.4.12. Suppose that g = S − f has a local maximum at γi. Then i = I and

lim
n→∞

c(εn)− c(0)
εn

= −λI

Proof.

The fundamental theorem

We recall here the hypothesis that we need:
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(i) there exists only one static class γI such that

λI = min
1≤i≤m

λi

(ii) ∂xH
|p|+1 is uniformly bounded.

Under these conditions we state and prove the following:

Theorem 4.4.13. The solution Sε of (4.4.2), normalized imposing Sε(xI) = 0, converges
uniformly to −hI(x) = −hI(x, xI) as ε→ 0.

Proof. Let f be a C1 critical subsolution that we suppose strict outside the static classes and
let Sεn be a sequence of solutions of (4.4.2). Using Lemma 4.4.7 we know that there exists a
convergent subsequence Sεnk ; we call S0 its limit. By Lemma 4.4.12 we have that the unique
place where S0 − f can have a local maximum is at γI . So we have

S0(x) = S0(xI)− h(x, xI)

(from Lemma 4.4.10). But Sεnk (xI) = 0 (from the normalization condition) that implies
S0(xI) = 0 and so

S0(x) = −h(x, xI)

We showed that the unique solution S0(x) coincides with −h(x, xI) that is the “weak” generating
function of the stable manifold (see Proposition 4.4.6), and this holds true for every convergent
subsequence Sεnk .

4.5 Quantum Unique Ergodicity (QUE)

Let a ∈ C∞c (TM). Egorov’s theorem states that for t fixed, one has∥∥∥∥exp
(
− itε2 ∆

)
Opε(a) exp

(
itε

2 ∆
)
−Opε(a ◦ gt)

∥∥∥∥
L2(M)

= O(ε)

for ε→ 0, where gt is the geodetic flow (we assume that it is “chaotic” in some sense: hyperbolic,
ergodic, mixing...) on a Riemannian manifold M (we can think of M = Tn). We consider the
problem

−ε2∆ψε = ψε (4.5.1)

when ε→ 0 (high energies) and an orthonormal basis of L2(M) = L2(M,dV ol) where V ol is the
volume measure of M . Then every wave function

|ψε(x)|2dV ol(x)
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defines a probability measure on M that can be lifted to TM considering the distributions

νε(a) = 〈Opε(a)ψε, ψε〉L2(M)

called Husimi distributions (choosing the right quantization these are effectively probability
measures). The limit ν0 of a convergent subsequence is again a probability measure on S1M ⊂ TM
(S1M is the unitary sphere of TM). By Egorov’s theorem ν0 is flow-invariant. We will call these
measures semiclassical measures. The problem is to understand which measures are semiclassical
measures (more precisely: which measures are the limit of a subsequence of Husimi’s measures?).
The following theorem gives an answer to this question.

Theorem 4.5.1 (Snirelman, Zelditch, Colin de Verdière). Let gt ergodic for the Lioville normal-
ized measure L on S1M . Then there exists J ⊂ N of density 1 such that

νj → L

for j ∈ J .

Snirelman’s theorem tells us that “almost all” subsequences converge to Liouville’s measure.
QUE conjecture (Quantum Unique Ergodicity) states: if M has negative sectional curvature
then all subsequences converge to L.
We return now to the problem of determine a couple (a(t, x), S(t, x)) of solutions of

∂tS +H(x,∇S) = ε2

2
∆A
A

S(0, x) = S0(x)

∂tP + div(P∇S) = 0,
√
P = A

P (0, x) = P0(x)

(4.5.2)

and suppose that
lim
t→∞
−Sε(t, x)

t
= cε[0] ε→0→ c0[0] = max V (4.5.3)

holds true. As we have already seen

cε[0] = − inf
µε

{∫
Lµε

}
and suppose that the infimum is effectively reached, i.e. there exists a measure µε such that∫

Lµε = cε[0] ε→0→ c0[0] = max V =
∫
Lµ

This means: semiclassical measures seem to be Mather’s measures, the ones that minimize the
action.
Let ψ ∈ L2(Tn) and suppose to compute the mean value 〈ψ|Aψ〉 for some observable A. Quantum
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observables are represented by pseudo-differrential operators with principal simbol of class C∞.
Weyl quantization procedure will give

〈ψ|Aψ〉 =
∑
p∈εZn

∫
Tn

∫
Tn
a(x, 2πp)ψ̄

(
x+ y

2

)
ψ

(
x− y

2

)
e−2πipy/εdydx

Wigner measures on T ∗Tn are defined by the density

Wε(x, p) =
∫
Tn
ψ̄(x+ y

2)ψ(x− y

2)e−2πipy/εdy

for all p ∈ εZn. In this way

〈ψ|Aψ〉 =
∑
p∈εZn

∫
Tn
a(x, 2πp)Wε(x, p)

Wigner measures have the following properties.

Proposition 4.5.2. (i) Let ψ smooth and such that∫
Tn
|ψ|2 = 1

Then ∑
p∈εZn

∫
Tn
Wε(x, p) = 1

(ii) Let ψ a solution of Schrödinger equation

Hψ = Eψ

then ∑
p∈εZn

∫
Tn

( |2πp|2
2 + V (x)

)
Wε(x, p) = E

(iii) Let (ψε)ε a sequence of solutions of

Hψε = Eεψε

with Eε bounded. Then, eventually considering a subsequence, Wε converges weakly to a
measure W0 for ε→ 0.

(iv) W0 is invariant for the dynamic, i.e.

{W0, H} = p · ∇xW0 −∇xV · ∇pW0 = 0
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It is clear that the action ∫
Tn

ε2

2 |∇ψ|
2 − V (x)|ψ|2

can be rewritten as

∑
p∈εZn

∫
Tn

∫
Tn

[
|2πp|2

2 − V (x)
]
ψ̄

(
x+ y

2

)
ψ

(
x− y

2

)
e−2πipy/εdydx

In general Wigner measures are not positive: to make them positive we must consider the
measures

W̃ε = ζε ∗Wε

where
ζε(x, p) = Cεne−2π(|x|2+|p|2)/ε

and the constant C is such that

∑
p∈εZn

∫
Tn
ζε(x, p)dx = 1

The W̃ε are called Husimi measures. Moreover the W̃ε converge to a positive probability measure.

Theorem 4.5.3. (i) Let W̃ε a Husimi measure that minimizes the action. Then for ε→ 0

∫
T ∗Tn

|p|2

2 − V (x)dW̃ε →
∫
T ∗Tn

|p|2

2 − V (x)dW̃0

(ii) W̃0 is a Mather measure.
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Appendix A

Stationary phase method

Since we will encounter the semiclassical Fourier Transform and it will be an integral of the type∫
Rn
e−

i
ε
〈x,ξ〉u(x) dx

it will be very important to understand what happen in the limit ε→ 0.

A.1 Stationary phase method in dimension one

Our pourpose is to study the asymptotic behaviour of

I(ε) =
∫
R
u(x)e

i
ε
f(x) dx

when ε→ 0 (in the semiclassical regime) and u and f are sufficently smooth. We want to show
that the integral is “concentrated” around the points where f is stationary. More precisely, it is
possible to show that:

(i) if f has not any critical point in the support of u, then I(ε) ∼ O(ε∞);

(ii) if f has only one non degenerate critical point x0 in the support of u, then

I(ε) ∼ (2πε)1/2 eiσ π4

|f ′′(x0)|
1
2
e

i
ε
f(x0)u(x0)

where σ = sgn f ′′(x0) is the sign of the second derivative of f in x0.

We start giving the following definition.

Definition A.1.1. Let u ∈ C∞c (R), f ∈ C∞(R), we define for ε > 0

I(ε) =
∫
R
e

i
ε
f(x)u(x) dx (A.1.1)
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Remark A.1.2 Before stating the main results, we want to clarify the notations. When we
write I(ε) ∼ O(ε∞) (or equivalently I(ε) = O(ε∞)), we mean that for every N ∈ N, there
exists a constant KN such that

|I(ε)| ≤ KNε
N

for all 0 < ε ≤ ε0 for a fixed ε0 > 0.

Proposition A.1.3. If f ′(x) 6= 0 for all x ∈ K = supp (u), then I(ε) = O(ε∞) for ε→ 0.

Proof. Fix N ∈ N: this will be the number of times we will integrate by parts. Note that, since
f ′ 6= 0, the differential operator

∂̃ := ε

i
1
f ′
∂x

is well defined. It is trivial to see that ∂̃e
i
ε
f = e

i
ε
f . This implies that ∂̃Ne

i
ε
f = e

i
ε
f and

consequently
|I(ε)| =

∣∣∣∣∫
R
∂̃N

(
e

i
ε
f(x)

)
u(x)

∣∣∣∣ =
∣∣∣∣∫

R
e

i
ε
f(x)

(
∂̃N
)∗
u(x)

∣∣∣∣
where ∂̃∗ is the adjoint of ∂̃ and it is given by

∂̃∗u = −εi ∂x
(
u

f ′

)
From the fact that u is smooth and compactly supported we have that the last expression is of
size ε. Thus |I(ε)| ≤ KNε

N as required.

The previous proposition tells us that if the phase has no stationary point in the support of the
amplitude than the integral I(ε) goes to 0 more rapidly than any power of ε. What happens if
f ′ = 0 at one point x0 in the support of u? The next theorem gives the answer.

Theorem A.1.4. Take u ∈ C∞c (R) and suppose that exist x0 ∈ K = supp (u) such that

f ′(x0) = 0, f ′′(x0) 6= 0 (A.1.2)

and f ′(x) 6= 0 for all x ∈ supp (u)\{x0}. Then there exist for every k ∈ N, a differential operator
A2k(x,D) of order less or equal than 2k such that for all N ∈ N one has∣∣∣∣∣I(ε)−

(
N−1∑
k=1

A2k(x,D)a(x0)εk+ 1
2

)
e

i
ε
f(x0)

∣∣∣∣∣ ≤ CNεN+ 1
2

∑
0≤m≤2N+2

sup |a(m)| (A.1.3)

where the constant CN depends on K.
In particular

A0 = (2π)1/2|f ′′(x0)|−1/2e
iπ
4 sgn f ′′(x0) (A.1.4)
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and as a consequence

I(ε) = (2πε)1/2|f ′′(x0)|−1/2e
iπ
4 sgn f ′′(x0)e

i
ε
f(x0)a(x0) +O(ε3/2) (A.1.5)

Proof. We assume (without loss of generality) x0 = 0 and f(0) = 0. We can write f(x) = 1
2g(x)x2

where
g(x) = 2

∫ 1

0
(1− t)f ′′(tx) dt

Clearly one has g(0) = f ′′(0) 6= 0 and with this condition we can make a change of variables

y = |g(x)|1/2x

near x = 0. Now we take a smooth function χ with 0 ≤ χ ≤ 1 and χ = 1 in a neighborhood of 0
and such that sgn f ′′(x) = sgn f ′′(0) 6= 0 on supp (χ). Then using Proposition (A.1.3) and the
previous change of variables

I(ε) =
∫
R
e

i
ε
f(x)χ(x)a(x) dx+

∫
R
e

i
ε
f(x)(1− χ(x))a(x) dx (A.1.6)

=
∫
R
e

iσ
2εy

2
u(y) dy +O(ε∞) (A.1.7)

where σ = sgn f ′′(0) = ±1 and u(y) = χ(x(y))a(x(y))|∂yx|. Applying Fourier Transform the
integral becomes

I(ε) =
(
ε

2π

)1/2
e

iπσ
4

∫
R
e−

iσεξ2
2 û(ξ) dξ +O(ε∞) (A.1.8)

Now we define
J(ε, u) =

∫
R
e−

iσεξ2
2 û(ξ) dξ

with the “initial” condition J(0, u) = 2πu(0). Then observing that

∂εJ(ε, u) =
∫
R
e−

iσεξ2
2

(
σξ2

2i û(ξ)
)
dξ = J(ε, ∂̃u)

where ∂̃ = σ
2i∂

2. By induction
∂kε J(ε, u) = J(ε, ∂̃ku)

so that, computing Taylor expansion, we have

J(ε, u) =
N−1∑
k=0

εk

k!J(0, ∂̃ku) + εN

N !RN (ε, u)

where the remainder is given by

RN (ε, u) = N

∫ 1

0
(1− t)N−1J(tε, ∂̃Nu) dt
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and the following estimate holds

|RN | ≤ CN‖
̂̃
∂Nu‖L1 ≤ CN

∑
0≤k≤2

sup
R
|∂k(∂̃Nu)|

The last step is to find the expression for the terms in the expansion: from the definition of J we
have

εkJ(0, ∂̃ku) = ε2∂̃ku(0) =
(
ε

2i

)k
u(2k)(0)

and using the fact that u = χ(x(y))a(x(y))|∂yx|, one gets the expansion in (A.1.3).

A.2 Stationary phase in higher dimensions

Theorem A.2.1. Let K ⊂ Rd be a compact set, X an open neighborhood of K and j, k ∈ Z+.
If u ∈ Ck0 (K), f ∈ Ck+1(X) and Im f ≥ 0 in X, then

ε−(j+k)
∣∣∣∣∫ e

i
ε
f(x)(Im f(x))ju(x) dx

∣∣∣∣ ≤ C ∑
|α|≤k

sup |Dαu|(|∇f |2 + Im f)|α|/2−k (A.2.1)

When f(x) is real valued the previous relation reduces to

ε−k
∣∣∣∣∫ e

i
ε
f(x)u(x) dx

∣∣∣∣ ≤ C ∑
|α|≤k

sup |Dαu||∇f ||α|−2k

The previous theorem asserts that the integral decreases faster than any power of ε for ε→ 0 if
there are no points with ∇f(x) = 0 and Im f = 0 in the support of u.

Lemma A.2.2. (i) Let

I(ε) =
( 1

2πε

)k/2 ∫
Rk
e

i
ε
ϕ(x,θ)a(x, θ)dθ

and assume that Imϕ(x, θ) ≥ 0 and

|a(x, θ)| ≤ C̃N (Imϕ(x, θ))N (A.2.2)

Then we have for ε ≤ 1 ∣∣∣e i
ε
ϕ(x,θ)a(x, θ)

∣∣∣ ≤ CNεN (A.2.3)

(ii) Let

I(ε) =
( 1

2πε

)k/2 ∫
Rk
e

i
ε
ψ(t,x,θ)a(t, x, θ)dθ

and assume that Imψ(t, x, θ) = ϕ(x, θ) Im ζ(t) ≥ 0 and

|a(t, x, θ)| ≤ C̃N (Imψ(t, x, θ))N = C̃N (Im ζ(t))N (ϕ(x, θ))N (A.2.4)
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Then we have for ε ≤ 1 ∣∣∣e i
ε
ψ(t,x,θ)a(t, x, θ)

∣∣∣ ≤ CNεN (Im ζ(t))N (A.2.5)

Proof. (i) We can make the following estimates∣∣∣e i
ε
ϕ(x,θ)a(x, θ)

∣∣∣ ≤ e− 1
ε

Imϕ(x,θ) |a(x, θ)| ≤ C̃N (Imϕ(x, θ))N e−
1
ε

Imϕ(x,θ) (A.2.6)

where in the last inequality we have used (A.2.2). The following simple inequality holds
true for y > 0 and 0 < ε < 1:

e−
1
ε
yyN ≤ max

x≥0
{e−xxN}1

ε

−N

Applying it to (A.2.6) gives the result.

(ii) Use the same arguments as before (but multiplying where necessary by Im ζ(t)).

A.3 Gauss transform

Here we study the problem of estimating integrals of the form∫
e−〈x,Ax〉/2f(x)dx

where ReQ ≥ 0 and f is smooth.

Lemma A.3.1. Let A be a n× n matrix such that ReA ≥ 0 and f ∈ S(Rn) then∫
e−〈x,Ax〉/2f(x)dx = 1√

det(A/2π)
e−〈Dx,A

−1Dx〉/2f(x)|x=0 (A.3.1)

where
e−〈Dx,A

−1Dx〉/2ei〈x,ξ〉 := e−〈ξ,A
−1ξ〉/2ei〈x,ξ〉

Proof. We use the Fourier Transform of a Gaussian

e−〈x,Ax〉/2 = 1
(2π)n

1√
det(A/2π)

∫
e−〈ξ,A

−1ξ〉/2ei〈x,ξ〉dξ
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and the Fourier inversion formula∫
e−〈x,Ax〉/2f(x)dx = 1

(2π)n
1√

det(A/2π)

∫ ∫
e−〈ξ,A

−1ξ〉/2ei〈x,ξ〉f(x)dxdξ

= 1√
det(A/2π)

∫
e−〈ξ,A

−1ξ〉/2f̌(ξ)dξ

= 1√
det(A/2π)

∫
e−〈Dx,A

−1Dx〉/2e−i〈x,ξ〉f̌(ξ)dξ|x=0

= 1√
det(A/2π)

e−〈Dx,A
−1Dx〉/2

∫
e−i〈x,ξ〉f̌(ξ)dξ|x=0

= 1√
det(A/2π)

[e−〈Dx,A−1Dx〉/2f ](0)

A.4 PseudoDifferential Operators (PDO)

Ler A : S ′(Rd)→ S ′(Rd) an operator, we want to see its action on a plane wave eξ(x) = ei〈x,ξ〉

where ξ ∈ Rd is the momentum. We will get

Aeξ(x) = a(x, ξ)eξ(x)

where a(x, ξ) ∈ S′(Rd × Rd) is a distribution on the phase space. For a generic function u, we
expand it in plane waves and using the inverse Fourier Transform, we get

Au(x) = 1
(2π)d

∫
ei〈x,ξ〉a(x, ξ)û(ξ) dξ

The distribution a(x, ξ) is usually called the (right) symbol of the operator A. We note here that
the semiclassical limit correspond (in this case) to the limit ‖ξ‖ → ∞. In order for this limit to
exists, we have to impose some conditions on the symbol a(x, ξ).

Definition A.4.1. We will say that the function a ∈ C∞(Rd × Rd) is a symbol of order m if
there exists a constant Cαβ > 0 such that∣∣∣Dα

xD
β
ξ a(x, ξ)

∣∣∣ ≤ Cαβ(1 + |ξ|)m−|β| (A.4.1)

for all α, β ∈ Zd. The space of symbols of order m is denoted by

Sm(Rd × Rd) = {a ∈ C∞(Rd × Rd) | a is a symbol of order m}

We observe here that the smallest constant Cαβ in (A.4.1) define a family of seminorms on the
space of symbols, making it a Fréchet space. We have to extend the previous definition to the
semiclassical symbols.
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Definition A.4.2. We define the set of semiclassical symbols of order m and degree l as

Σm,l = {aε(x, ξ) = εl
∞∑
j=0

εjaj(x, ξ), aj ∈ Σm−j}

The previous definition means that aε is a semiclassical symbol if

aε(x, ξ)− εl
M−1∑
j=0

εjaj(x, ξ) ∈ εl+MΣm−M

for all M and uniformly in ε.

113



Chapter A. Stationary phase method

114



Appendix B

Quantization

B.1 Introduction

On the notations: we will follow [EZ03] and we will work mainly on R2n with coordinates (x, ξ).
We will consider R2n as a symplectic manifold with the bilinear antisymmetric form ω given by

ω(u, v) = 〈ξ, y〉 − 〈x, η〉 (B.1.1)

where u = (x, ξ) and v = (y, η) are two elements of R2n. Useful notations will be

〈x〉 = (1 + |x|)
1
2 (B.1.2)

and
Dα = 1

i|α|
∂α (B.1.3)

We will use functions in the Schwartz space.

Definition B.1.1. The Schwartz space is defined as

S(Rn) = {u ∈ C∞(Rn)| sup
Rn
|xα∂βu| <∞ for all multi-indices α, β} (B.1.4)

and for every pair of α, β, we define the following seminorm

|u|α,β = sup
Rn
|xα∂βu| (B.1.5)

In particular we will say that uj → u in S(Rn) if

|uj − u|α,β → 0

for all α, β.
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Definition B.1.2. If u ∈ S(Rn) we define its Fourier transform as

Fu(ξ) = û(ξ) =
∫
Rn
e−i〈x,ξ〉u(x) dx (B.1.6)

We define also the semiclassical Fourier transform for ε > 0

Fεu(ξ) =
∫
Rn
e

i
ε
〈x,ξ〉u(x) dx (B.1.7)

and its inverse as
F−1
ε v(x) = 1

(2πε)n
∫
Rn
e−

i
ε
〈x,ξ〉v(ξ) dξ (B.1.8)

We recall here some properties of the semiclassical Fourier transform that will be useful in the
following.

Proposition B.1.3. We have

(εD)αFεu = Fh((−x)αu) (B.1.9)

Fε((εDx)αu) = ξαFεu (B.1.10)

‖u‖L2 = 1
(2πε)n/2

‖Fεu‖L2 (B.1.11)

Proof.

Definition B.1.4. Let a ∈ S(Rn), a = a(x, ξ) be a symbol.

(i) Weyl quantization

aW (x, εD)u(x) = 1
(2πε)n

∫
Rn

∫
Rn
e

i
ε
〈x−y|ξ〉a

(
x+ y

2 , ξ

)
u(y)dydξ (B.1.12)

(ii) Standard quantization

a(x, εD)u(x) = 1
(2πε)n

∫
Rn

∫
Rn
e

i
ε
〈x−y|ξ〉a(x, ξ)u(y)dydξ (B.1.13)

(iii) General quantization

Opt(a)u(x) = 1
(2πε)n

∫
Rn

∫
Rn
e

i
ε
〈x−y|ξ〉a(tx+ (1− t)y, ξ)u(y)dydξ (B.1.14)
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Remark B.1.5

(i) It is easy to see that the standard quantization is simply

a(x, εD)u = F−1
ε (a(x, ·)Fεu(·))

(ii) Op 1
2
(a) = aW (x, εD) and Op1(a) = a(x, εD)

The following important theorem is on the composition of pseudodifferential operators. It says
that the composition of two PDO is a PDO.

Theorem B.1.6. Let a, b ∈ S(R2n). Then

aW (x, εD)bW (x, εD) = (a#b)W (x, εD) (B.1.15)

where
a#b(x, ξ) = eiεA(D)(a(x, ξ)b(y, η))|y=x,η=ξ (B.1.16)

and
A(D) = 1

2ω(Dx, Dξ, Dy, Dη) (B.1.17)

Proof.

B.2 Quantization of symbols and Gårding inequalities

First of all we want to understand how the quantization Opt(a) works on various symbols that
we will use.

Proposition B.2.1. (i) If a(x, ξ) = ξα then

Opt(a)u = (εD)αu (B.2.1)

for all t ∈ [0, 1].

(ii) If a(x, ξ) = a(x) then
Opt(a)u = a(x)u (B.2.2)

for all t ∈ [0, 1].

(iii) If a(x, ξ) = |ξ|2
2 + V (x) then

Opt(a)u = |εD|
2

2 u+ V (x)u = −ε
2

2 ∆u+ V (x)u (B.2.3)

117



Chapter B. Quantization

for all 0 ≤ t ≤ 1.

Proof. (i) follows immediately from the definition. (ii) comes from the fact that

Op1(a) = a(x, εD) = a(x)

Then we compute

∂tOpt(a)u = 1
(2πε)n

∫
Rn

∫
Rn
e

i
ε
〈x−y|ξ〉〈∂a(tx+ (1− t)y)|x− y〉u(y)dydξ

= ε

i(2πε)n
∫
Rn

divξ
(∫

Rn
e

i
ε
〈x−y|ξ〉∂a(tx+ (1− t)y)u(y)dy

)
dξ

= ε

i(2πε)n
∫
Rn

divξ
(
e

i
ε
〈x|ξ〉α̂(ξ)

)
dξ

where we have posed α(y) = ∂a(tx+ (1− t)y)u(y). Since a ∈ S(Rn) then α̂(ξ)→ 0 as |ξ| → ∞
and the last expression is zero. Then for all 0 ≤ t ≤ 1 we have Opt(a)u = Op1(a)u = au. (iii) is
obtained using (i) and (ii).

B.3 Quantization on the torus

First of all we identify the n-dimensional torus with the set

Tn = {x ∈ Rn|0 ≤ xi < 1, 1 ≤ i ≤ n}

and we consider as function on Tn the pertiodic functions on Rn:

u(x+ k) = u(x)

where k ∈ Zn. Then, moving to the symbols, we identify a symbol on Tn × Rn with symbols on
Rn × Rn that are periodic in x:

a(x+ k, ξ) = a(x, ξ)

where k ∈ Zn. If we quantize such a symbol then we get

(aW (x, εD)u)(x+ k) = (aW (x, εD)u(·+ k))(x)

so these operators preserve periodicity.

B.4 Defect measures

We consider a bounded sequence {u(ε)}0<ε≤ε0 in L2(Rn), that is

sup
0<ε≤ε0

‖u(ε)‖L2 <∞

118



Chapter B. Quantization

The first important theorem of this section gives us a bound for the norm of a Weyl quantized
operator.

Theorem B.4.1. Suppose that a ∈ S(Rn). Then

‖aW (x, εD)‖L2→L2 ≤ C sup
R2n
|a|+O(

√
ε ) (B.4.1)

Proof.

The next theorem implies the existence of the so called microlocal defect measures.

Theorem B.4.2. There exists a Radon measure µ on R2n and a sequence εj → 0 such that

〈aW (x, εD)u(εj)|u(εj)〉 →
∫
R2n

a(x, ξ)dµ (B.4.2)

for every symbol a ∈ C∞c (R2n).

Proof. We choose a sequence {ak}∞k=0 ⊂ C∞c (R2n) that is dense in Cc(R2n). Then we select
ε1
j → 0 such that

〈aW1 (x, ε1
jD)u(ε1

j )|u(ε1
j )〉 → α1

Now we choose a subsequence {ε2
j} ⊂ {ε1

j} such that

〈aW2 (x, ε2
jD)u(ε2

j )|u(ε2
j )〉 → α2

and going further in this way, we use a standard diagonal argumet to get a sequence {εj}, where
εj = εjj → 0, such that

〈aWk (x, εjD)u(εj)|u(εj)〉 → αk

for all k. We define Φ(ak) := αk. Then for every k we have

|Φ(ak)| = |αk| = lim
εj→0

|〈aWk (x, εjD)u(εj)|u(εj)〉| ≤ C lim sup
εj→0

‖awk ‖ ≤ C sup
R2n
|ak|

So Φ is defined on a dense subset of Cc(R2n), is linear and bounded: we can extend it to a
bounded linear functional on Cc(R2n) and it holds

|Φ(a)| ≤ C sup
R2n
|a|

for all a ∈ Cc(R2n). The last step is to apply Riesz representation Theorem that implies the
existence of a complex valued Radon measure on R2n such that

Φ(a) =
∫
R2n

a(x, ξ) dµ
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Definition B.4.3. We call µ a microlocal defect measure associated with the family {u(ε)}0<ε≤ε0 .

Theorem B.4.4. The measure µ is real and non negative, i.e.

µ ≥ 0

Proof. We have to show that if a ≥ 0 than∫
R2n

a(x, ξ) dµ ≥ 0

Now if a ≥ 0 one has
〈aW (x, εD)u(ε)|u(ε)〉 ≥ −Cε‖u(ε)‖2L2

(using the sharp Gårding inequality). Then if we take the limit ε→ 0 we have∫
R2n

a(x, ξ) dµ = lim
ε→0
〈aW (x, εD)u(ε)|u(ε)〉 ≥ 0

as required.

Example B.4.5. The following example is about stationary phase and defect measures. We
consider

u(ε;x) = b(x)e
i
ε
ϕ(x)

where we suppose ϕ, b ∈ C∞ and ‖b‖L2 = 1. For ε→ 0 we have

〈aW (x, εD)u(ε;x)|u(ε;x)〉 →
∫
Rn
a(x, ∂ϕ(x))|b(x)|2dx =

∫
Rn
a(x, ξ)dµ

once we choose µ = |b(x)|2δ{ξ=∂ϕ(x)}Ln.

120



Bibliography

[AAG00] S. T. Ali, J. P. Antoine, and J. P. Gazeau. Coherent states, wavelets and their
generalizations. Springer, 2000.

[AIPSM05] N. Anantharaman, R. Iturriaga, P. Padilla, and H. Sanchez-Morgado. Physical
solutions of the Hamilton-Jacobi equation. Discrete and Continuous Dynamical
Systems - Series B, 5(3):513 – 528, 2005.

[BB97] R. K. Bhaduri and M. Brack. Semiclassical Physics. Addison-Wesley Publishing
Company, Inc., 1997.

[BD97] M. Bardi and I. Capuzzo Dolcetta. Optimal Control and Viscosity Solutions of
Hamilton-Jacobi-Bellman Equations. Springer, 1997.

[BT95] R. Bott and L. W. Tu. Differential Forms in Algebraic Topology (Graduate Texts in
Mathematics). Springer, 1995.

[CR97] M. Comberscue and D. Robert. Semiclassical spreading of quantum wave packets
and applications near unstable fixed points of the classical flow. Asymptotic Analysis,
14(4):337 – 404, 1997.

[CR12] M. Comberscue and D. Robert. Coherent States and Applications in Mathematical
Physics. Springer, 2012.

[DS06] A. Davini and A. Siconolfi. A generalized dynamical approach to the large time
behavior of solutions of hamilton–jacobi equations. SIAM J. Math. Anal., 38(2):478–
502, 2006.

[Dui96] J. Duistermaat. Fourier Integral Operators. Birkhauser, 1996.

[Ein17] A. Einstein. Zum quantensatz von sommerfeld und epstein. Verhandlungen der
Deutschen Physikalischen Gesellschaft, 19:82–92, 1917.

[Eva07] L. C. Evans. Towards a quantum analog of Weak KAM theory. Preprint, 2007.

[EZ03] L.C. Evans and M. Zworski. Semiclassical Analysis. Notes online, 2003.

121



BIBLIOGRAPHY

[Fat05] A. Fathi. Weak KAM Theorem in Lagrangian Dynamics (Seventh Preliminary
Version). Preprint, 2005.

[GM83] F. Guerra and L. M. Morato. Quantization of dynamical systems and stochastic
control theory. Phys. Rev. D (3), 27(8):1774–1786, 1983.

[GZ10] S. Graffi and L. Zanelli. Geometric approach to the Hamilton-Jacobi equation and
global parametrices for the Schrödinger propagator. ArXiv e-prints, June 2010.

[Hag80] G. A. Hagedorn. Semiclassical quantum mechanics. I. The ~→ 0 limit for coherent
states. Comm. Math. Phys., 71(1):77–93, 1980.

[Hel88] B. Hellfer. Semi-Classical Analysis for the Schrodinger operator and Applications.
Springer-Verlag, 1988.

[HR83] B. Helffer and D. Robert. Calcul fonctionnell par la transformée de mellin. J. of
Funct. Anal., 53(3):246–268, 1983.

[ISM09] R. Iturriaga and H. Sánchez-Morgado. Hyperbolicity and exponential convergence of
the Lax-Oleinik semigroup. J. Differential Equations, 246(5):1744–1753, 2009.

[Laz93] V. F. Lazutkin. KAM theory and semiclassical approximations to eigenfunctions.
Springer, 1993.

[Lio83] P. L. Lions. Generalized solutions of hamilton-jacobi equations. Bull. Amer. Math.
Soc. (N.S.), 2(9):252–256, 1983.

[Pau07a] T. Paul. A propos du formalisme Mathématique de la Mécanique Quantique. Preprint,
2007.

[Pau07b] T. Paul. Echelles de temps pour l’évolution quantique à petite constante de Planck.
Preprint, 2007.

[Pau09] T. Paul. Semiclassical analysis and sensitivity to initial conditions. Information
and Computation, 207(5):660 – 669, 2009. From Type Theory to Morphological
Complexity: Special Issue dedicated to the 60th Birthday Anniversary of Giuseppe
Longo.

[Per86] A. Perelomov. Generalized Coherent States and their applications. Springer-Verlag,
1986.

[Rob87] D. Robert. Autour de l’Approximation Semi-Classique. Birkhäuser, 1987.

[Rob98] D. Robert. Semi-Classical Approximation in Quantum Mechanics. a survey of old
and recent Mathematical results. Helvetica Physica Acta, 71(1):44 – 116, 1998.

122



BIBLIOGRAPHY

[Rob07] D. Robert. Propagation of coherent states in quantum mechanics and applications.
Séminaires et Congrès, 15:181 – 252, 2007.

[Sch26] E. Schrödinger. Der stetige übergang von der mikro-zur makromechanik. Naturwis-
senschaften, 14:664–666, 1926.

[Sch01] R. Schubert. Semiclassical localization in phase space. PhD thesis, Universitat Ulm,
2001.

[Sib04] K. F. Siburg. The Principle of Least Action in Geometry and Dynamics (Lecture
Notes in Mathematics). Springer, 2004.

[Vit08] C. Viterbo. Symplectic Homogenization. ArXiv e-prints, December 2008.

123


