Easter Exercises

1. Let Q_8 be the quaternion group, that is, the group of order 8 generated by i and j with relations $i^4 = j^4 = 1, i^2 = j^2, ij = ji^3$.

 (a) Describe the conjugacy classes of Q_8 and compute its character table. Compare it with the character table of the dihedral group D_4 of order 8.

 (b) Consider the subgroup $H = \langle i \rangle$ of Q_8, isomorphic to the cyclic group of order 4. Induce all its irreducible representations to Q_8 and decompose the induced representations into irreducible ones.

 (c) Let ρ be any irreducible representation of Q_8. Consider $\text{Res}_{Q_8}^{Q_8}(\rho)$. Tell if it is irreducible and, if not, decompose it into irreducible representations of H.

 (d) Let V and W range among all irreducible representations of Q_8. Decompose $V \otimes W$ into irreducible representations of Q_8.

2. Let V and W be completely reducible finite dimensional representations of a group G over an algebraically closed field. Prove that

 (a) $\text{Hom}_G(V, W) = 0$ if and only if V and W have no common irreducible component.

 (b) $\dim \text{Hom}_G(V, W) = 1$ if and only if they have only one common irreducible component U and U has multiplicity exactly 1 in V and W.

 (c) If V and W have a unique common irreducible component of multiplicity m in V and n in W, then $\dim \text{Hom}_G(V, W) = mn$.

 (d) If $V = \bigoplus_{i \in I} U_i^{m_i}$ and $W = \bigoplus_{i \in I} U_i^{n_i}$ are decompositions into irreducibles of V and W respectively then $\dim \text{Hom}_G(V, W) = \sum_{i \in I} m_i n_i$. Can you figure out how $\text{Hom}_G(V, W)$ looks like?

 Hint: use for all cases a decomposition into irreducibles of both representations, injections of an irreducible into V and projections of W onto an irreducible.

3. Let V be a 1-dimensional representation of G with character χ. Show that $FS(V)$ is never -1 and that $FS(V) = 1$ if and only if $\chi(g)^2 = 1$ for every $g \in G$.

1
4. Let $G = D_4$ the dihedral group of order 8 and let V be the 2-dimensional irreducible representation of G. Does there exist a G-invariant symmetric bilinear form on V? (Hint: use the previous exercise and count the number of involutions). Same question for Q_8.

You can find more exercises in Serre’s book and in Etingof et al lecture notes.