Motivate every answer

1. We will construct the character table of S_4, the symmetric group on 4 letters. Recall that conjugacy classes in S_4 are in bijection with partitions of 4.

(a) Prove that S_4 has 5 irreducible representations, of dimension 1, 1, 2, 3, 3 respectively. Let us label their characters by $\chi_0, \chi_1, \chi_2, \chi_3$ and χ_4, respectively.

(b) Consider the permutation representation $\rho: S_4 \to GL_4(\mathbb{C})$ given, on the vectors of the canonical basis by $\rho(\sigma)(e_i) = e_{\sigma(i)}$ for every $\sigma \in S_4$. Compute its character χ and show that χ is the sum of the trivial representation χ_0 and an irreducible representation χ_3 of dimension 3.

(c) Compute χ_1 (hint: divide the permutations into even and odd ones).

(d) Deduce from (c) that $\chi_2((12)) = \chi_2((1234)) = 0$.

(e) Deduce all values of χ_4 from (c).

(f) Write down the complete character table of S_4.

(g) Describe the kernel of all irreducible representations of S_4.

(h) Show that the Frobenius-Schur indicator of every irreducible representations is equal to 1.

2. Let p be a prime number, and let G be a group of order p^3.

(a) Show that all complex irreducible representations of G have dimension 1 or p.

(b) Show that if G is not abelian, then $|[G,G]| = p$.

(c) Show that the number of conjugacy classes of G is either p^3 or $p^2 + p - 1$.