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Abstract. We deal with finite dimensional linear and nonlinear control systems. If the system

is linear and autonomous and satisfies the classical normality assumption, we improve the well

known result on the strict convexity of the reachable set from the origin by giving a polynomial

estimate. The result is based on a careful analysis of the switching function. We extend this result

to nonautonomous linear systems, provided the time dependent system is not too far from the

autonomous system obtained by taking the time to be 0 in the dynamics.

Using a linearization approach, we prove a bang-bang principle, valid in dimensions 2 and 3 for a

class of nonlinear systems, affine and symmetric with respect to the control. Moreover we show

that, for two dimensional systems, the reachable set from the origin satisfies the same polynomial

strict convexity property as for the linearized dynamics, provided the nonlinearity is small enough.

Finally, under the same assumptions we show that the epigraph of the minimum time function has

positive reach, hence proving the first result of this type in a nonlinear setting. In all the above

results, we require that the linearization at the origin be normal.

We provide examples showing the sharpness of our assumptions.

1. Introduction

In the theory of autonomous linear control systems, the assumption of normality, i.e., a strong

controllability assumption requiring that if each control component is used separately, then Kalman

rank condition is satisfied, is well known. In particular (see [15, Sections 14, 15, and 16]), normality

implies that the control steering the origin to a point x in minimum time is unique and bang-bang;

moreover the reachable set from the origin, Rτ , is a strictly convex body for all times τ > 0. Simple

examples, on the other hand, show that convexity of the reachable set is easily lost when passing to

a nonlinear dynamics, even if the control covers all directions and appears linearly. In particular,

the control system

(1.1)

ẏ1(t) = −[y2(t)]2 + u1(t), −1 ≤ u1 ≤ 1

ẏ2(t) = u2(t) − 1 ≤ u2 ≤ 1

which was analyzed in [6], fails to have convex (and even normally regular, i.e., “without inward

corners”) reachable sets from the origin at any positive time.

Similarly, the minimum time to reach the origin for a linear system is semiconvex, i.e., it is a

quadratic perturbation of a convex function, provided a first order controllability assumption is

satisfied (see [6, 7]), or has epigraph with positive reach, i.e., it satisfies a quite good kind of

generalized convexity, provided Kalman rank condition holds (see [11, 12]). On the other hand, the

same example introduced above shows that such properties may fail even for a simple nonlinear
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dynamics.

We are not aware of any result of semiconvexity type valid for a nonlinear dynamics, where actually

results of semiconcave type are more natural and easier to obtain, provided the target (or the

dynamics) satisfy an inner ball condition (see [7, 3, 13, 17, 4, 5]). Further results on the regularity

of the minimum time function T , for two dimensional systems with a single input control, are

described in [2, Chapter 3], where in particular, under generic assumptions, a characterization of

smooth and nonsmooth points of the level sets of T is given.

In this paper, we give a contribution to the understanding of the behavior of the minimum time

function both for linear, autonomous and nonautonomous, and nonlinear control systems. We take

the origin as the target (or as the source, for the reversed dynamics), hence going outside the realm

of semiconcavity, and give results, under easily verifiable assumptions, on the following topics:

• strict convexity of the reachable set from the origin

• uniqueness of the optimal control

• a nonlinear bang-bang principle

• extending backwards optimal trajectories

• positive reach of the epigraph of T .

Our method is based on new results on linear control systems satisfying the normality condition,

and on linearization at the origin. The underlying idea, in fact, is requiring enough strength to

such linearization, so that examples like (1.1) are ruled out. Our linear results hold in any space

dimension, while the nonlinear part is confined to two or three dimensional spaces. Our arguments

are based essentially on a careful analysis of the switching function, namely the function whose sign

is expected to determine the optimal control, according to Pontryagin’s Maximum Principle. The

point is exactly showing that this sign is well defined, except for at most finitely many zeros. To

this aim, the normality assumption is pivotal, as it permits to split any finite interval into finitely

many sets, each one being a disjoint union of finitely many intervals, where the switching function

or its derivatives are uniformly bounded away from zero (see Lemma 3.2). From this fact we are

able to deduce a quantitative estimate on the strict convexity of the reachable set. More precisely

(see Theorem 3.3), for a linear control system in RN we show that for all τ > 0 there exists a

positive constant γ > 0 such that

〈ζ, y − x〉 ≤ −γ‖ζ‖ ‖y − x‖N for all x, y ∈ Rτ , ζ ∈ NRτ (x)

(here NRτ (x) denotes the normal cone to Rτ at x). We show through an example that the exponent

N is optimal. Section 3 is devoted to the above topic, together with an auxiliary study for a linear

nonautonomous dynamics.

The nonlinear part starts with a nonlinear bang-bang result (Section 4), valid up to dimension 3. We

consider a nonlinear control system which is affine with respect to the control: if the linearization at

the origin is normal, then every optimal control is bang-bang. The proof is based on Pontryagin’s

Maximum Principle: if the nonlinearity contains only parts which are of order larger or equal to the

space dimension, then we are able to transfer to the switching function all the properties satisfied by

the switching function of the dynamics linearized at the origin. This idea is at the basis also of the

strict convexity of the reachable set for a nonlinear two dimensional dynamics (see Theorem 5.1)

and of proving that all points close enough to the origin are optimal, i.e., any trajectory steering

a point to the origin optimally can be extended backwards still remaining optimal (see Theorem

6.2). In this case, the difficulty is extending the optimal control: our analysis permits to predict
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backwards the sign of the switching function. Finally, we show under the same assumptions that

the epigraph of the minimum time function T has positive reach, hence obtaining a rich bunch

of regularity properties for T , as listed in Theorem 2.4. We also show through an example (see

Example 5.3) that the assumptions on the nonlinear part cannot be avoided, while (1.1) shows

that normality at the origin is essential. The restrictions on the space dimension for the nonlinear

results will be explained after the relevant proofs (see Remarks 4.2 and 5.4).

To our knowledge, the results we present here as well as most of the used methods do not trace back

to previous literature. In particular, the nonlinear bang-bang results of Krener [16] and Sussmann

[19] seem to be of a very different nature.

2. Preliminaries

2.1. Nonsmooth analysis and sets with positive reach.

In all the paper, the space dimension N will be supposed larger or equal to 2.

Let K ⊂ RN be closed. The distance function to K and the projection mapping onto K are defined

respectively by

dK(x) = min{‖y − x‖ : y ∈ K},

πK(x) = {y ∈ K : ‖y − x‖ = dK(x)}.

The boundary of K is bdryK. Given x ∈ K and v ∈ RN , we say that v is a proximal normal to K

at x (and we will denote this fact by v ∈ NK(x)) if there exists σ = σ(v, x) ≥ 0 such that

〈v, y − x〉 ≤ σ ‖y − x‖2 for all y ∈ K;

equivalently v ∈ NK(x) if and only if there exists ρ > 0 such that πK(x + ρv) = {x}, and in

this case we say that the proximal normal v is realized by a ball of radius ρ > 0. If K is convex

then NK(x) coincides with the normal cone of Convex Analysis. The proximal subdifferential of a

function f : Ω→ R at a point x of its domain, ∂f(x), is the set of vectors v ∈ RN such that

(v,−1) ∈ Nepi(f)(x, f(x)),

where epi(f), the epigraph of f , is defined as

epi(f) = {(x, y) ∈ Ω× R : y ≥ f(x)}.

For an introduction to nonsmooth analysis we make reference, e.g., to [10, Chapters 1 and 2].

We will make use of the following concepts due to Federer [14]: given an arbitrary set K ⊂ RN , we

set

Unp(K) = {x ∈ RN : πK(x) is a singleton},

reach(K,x) = sup{r ≥ 0 : x+ rBn ⊆ Unp(K)},

the latter being defined for x ∈ K. We remark that reach(K,x) is continuous with respect to

x ∈ K.

Definition 2.1. We say that a closed K ⊆ RN has positive reach if

reach(K) := inf
x∈K

reach(K,x) > 0.

A locally closed set K has locally positive reach if reach(K,x) > 0 for every x ∈ K.



4 GIOVANNI COLOMBO AND KHAI T. NGUYEN

The positive reach property is actually an external sphere condition with (locally) uniform radius.

More precisely, it holds (see [14, §4]):

Proposition 2.2. Let K ⊂ RN be closed. Then K has positive reach if and only if there exists a

continuous function ϕ : K → [0,+∞) such that the inequality

(2.1) 〈v, y − x〉 ≤ ϕ(x)‖v‖ ‖y − x‖2

holds for all x, y ∈ K and v ∈ NK(x).

We say that f : Ω → R is of class C1,1(Ω) (here Ω ⊆ RN is open) if its partial derivatives exist

and are Lipschitz.

Remark 2.3. The case when ϕ(x) ≡ 0 in (2.1) is equivalent to the convexity of K, and (2.1) is

in this sense a generalization of convexity. Furthermore, it is easy to see that if the boundary of K

is the graph of a C1,1-function, then K has positive reach and ϕ in (2.1) can be taken as constant.

Hence positive reach property generalizes C1,1-manifolds as well.

Lower semicontinuous functions whose epigraph has positive reach enjoy remarkable regularity

properties, which are similar to properties of convex functions. In particular, the following re-

sult holds true (we state it for continuous functions for simplicity). The Lebesgue N -dimensional

measure and the Hausdorff d-dimensional measure are denoted, respectively, by LN and Hd.

Theorem 2.4. Let Ω ⊂ RN be open, and let f : Ω → R be continuous, and such that epi(f) has

locally positive reach. Then there exists a sequence of sets Ωh ⊆ Ω such that Ωh is compact in Ω

and

(1) the union of Ωh covers LN -almost all Ω;

(2) for all x ∈
⋃
h Ωh there exist δ = δ(x) > 0, L = L(x) > 0 such that

f is Lipschitz on B(x, δ) with ratio L, and hence semiconvex on B(x, δ).

Consequently,

(3) f is a.e. Fréchet differentiable and admits a second order Taylor expansion around a.e.

point of its domain.

Moreover, the set of points where the graph of f is nonsmooth has small Hausdorff dimension.

More precisely,

(4) for every k = 1, . . . , N , the set {x ∈ int dom(f) | the dimension of ∂f(x) is ≥ k} is

countably HN−k-rectifiable.

Finally,

(5) f has locally bounded variation in Ω.

This result is essentially Theorem 5.1 and Proposition 7.1 in [11]. For properties of semicon-

vex/semiconcave functions we refer to [7].

2.2. Control theory. We will consider control systems linear or nonlinear with respect to the space

variable and affine and symmetric with respect to the control. More precisely, we will consider the

linear control system

(2.2)


ẏ(t) = Ay(t) +Bu(t) a.e.

u(t) ∈ U = [−1, 1]M a.e.

y(0) = 0,



ON THE MINIMUM TIME FUNCTION AROUND THE ORIGIN 5

where 1 ≤ M ≤ N and A ∈ MN×N , B ∈ MN×M , being possibly time dependent, and U =

[−1, 1]M 3 (u1, . . . , uM ) =: u, together with the nonlinear control system

(2.3)


ẏ(t) = F (y(t)) +G(y(t))u(t) a.e.

u(t) ∈ [−1, 1]M a.e.

y(0) = 0,

where F and G are suitable vector fields (the actual assumptions will be stated later). We will

use also the notation B = (b1, . . . , bM ) or G = (g1, . . . , gM ), where each entry is an N -dimensional

column. We denote by Uad, the set of admissible controls, i.e., all measurable functions u, such

that u(s) ∈ U for a.e. s. For any u(·) ∈ Uad, the (unique, as it will follow from the assumptions on

F and G) Carathéodory solution of (2.2) or of (2.3) is denoted by yu(·). In the linear case,

yu(t) =

∫ t

0
eA(t−s)Bu(s)ds,

so that the reachable set from 0 in time t can be described by

(2.4) Rt =
{∫ t

0
eA(t−s)Bu(s)ds) | u(·) ∈ Uad

}
.

It is well known that in the linear case the set Rt is convex and compact (see, e.g., [15, Lemma

12.1]), while in the nonlinear case (2.3) Rt := {yu(t) | u(·) ∈ Uad} is compact and not necessarily

convex (see, e.g., [8, Chapter 10]).

For a fixed x ∈ RN , we define

θ(x, u) := min {t ≥ 0 | yx,u(t) = 0},

where yx,u(·) denotes the solution of ẏ = F (y) + G(y)u such that y(0) = x. Of course, θ(x, u) ∈
[0,+∞], and θ(x, u) is the time taken for the trajectory yx,u(·) to reach 0, provided θ(x, u) < +∞.

The minimum time T (x) to reach 0 from x is defined by

(2.5) T (x) := inf {θ(x, u) | u(·) ∈ Uad}.

Observe that the sublevel Rt = {x : T (x) ≤ t} of T (·) equals the reachable set from the origin

within the (same) time t for the reversed dynamics

ẋ = −F (x)−G(x)u, u ∈ U .

If ū is an admissible control steering x to the origin in the minimum time T (x) (i.e., an optimal

control), then the Dynamic Programming Principle (see, e.g., Proposition 2.1, Chapter IV, in

[1]) implies that T (·) is strictly increasing along the optimal trajectory yx,ū. Therefore, for all

0 < t < T (x) the point yx,ū(t) belongs to the boundary of Rt.
Pontryagin’s Maximum Principle is a fundamental tool for the analysis of optimal control prob-

lems. We state it for points belonging to the boundary of reachable sets. In view of the previous

remark, this will apply also to points belonging to optimal trajectories. We give first its linear

version.

Theorem 2.5 (Pontryagin’s Maximum Principle for linear systems). Consider the problem (2.2),

fix T > 0, and suppose x̄ ∈ RT is realized by the control ū(·) ∈ Uad (i.e., yū(T ) = x̄). Then

x̄ ∈ bdryRT if and only if for some ζ ∈ NRT (x̄), ζ 6= 0, it holds

(2.6) ūi(t) = sign〈ζ, eA(T−t)bi〉, a.e. t ∈ [0, T ],

for all i = 1, 2, . . . ,M .
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A well known reference for this result is [15, Lemma 13.1].

Before stating Pontryagin’s principle for the nonlinear case (2.3) (with M = 1), we need to

introduce the Maximized Hamiltonian.

We define for every triple (x, p, u) ∈ RN × RN × [−1, 1]

H(x, p, u) = 〈p, F (x)〉+ u〈p,G(x)〉

and

H(x, p) = max{H(x, p, u) : u ∈ [−1, 1]}.

Then Pontryagin’s principle reads as follows (see, e.g., [2, Section 2.1] or [9, Theorem 3.5.4]).

Theorem 2.6 (Pontryagin’s Maximum Principle for nonlinear systems). Fix T > 0 and let yu be

a trajectory of (2.3) such that yu(T ) belongs to the boundary of RT . Then there exist a function

λ : [0, T ]→ RN , never vanishing, and a constant λ0 ≤ 0 such that for a.e. t ∈ [0, T ] one has:

i) λ̇(t) = −λ(t)
(
DF (yu(t)) +DG(yu(t))u(t)

)
,

ii) H(yu(t), λ(t), u(t)) + λ0 = 0,

iii) H(yu(t), λ(t), u(t)) = H(yu(t), λ(t)).

Furthermore,

λ(T ) ∈ NRT (yu(T ))

where here NRT (yu(T )) denotes the Clarke normal cone.

Definition 2.7. We say that a control u is essentially determined by Pontryagin’s Principle if for

any u1 satisfying iii) in Theorem 2.6 (for the adjoint curve λ associated with the trajectory yu) one

has u1(t) = u(t) a.e. in [0, T ].

In the following we will make extensive use of the classical concept of normality for linear systems,

which we are now going to introduce.

Definition 2.8. The system (2.2) is normal if and only if for every column bi of B, i = 1, . . . ,M ,

we have

Rank
[
bi, Abi, . . . , A

N−1bi
]

= N.

The main classical result for normal linear systems is concerned with the reachable set.

Theorem 2.9. Assume that the linear control system(2.2) is normal. Then the reachable set RT

is strictly convex for any T > 0.

Proof. One can find a proof in [15], Sections 14 and 15. �

Remark 2.10. If the system (2.2) is normal then (A,B) satisfies the Kalman rank condition.

Therefore the minimum time function is everywhere finite and continuous (actually Hölder contin-

uous with exponent 1/N , see, e.g., Theorem 17.3 in [15] and Theorem 1.9, Chapter IV, in [1] and

references therein).
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3. Quantitative strict convexity of reachable sets: the linear case

3.1. Autonomous systems.

This subsection is devoted to improving the classical result on the strict convexity of reachable sets

for normal linear control systems of the type (2.2). We will give an estimate for the boundary of

reachable sets which implies a uniform (polynomial) strict convexity with an optimal exponent.

In the first Lemma we define the switching function and begin studying its behavior under the

normality assumption.

Lemma 3.1. Let A ∈MN×N and b ∈ RN be such that

(3.1) Rank
[
b, Ab, . . . , AN−1b

]
= N.

Take ζ ∈ RN , with ‖ζ‖ = 1, and define, for s ∈ [0,+∞)

(3.2) g(s) = 〈eAsb , ζ〉.

Then there exists a constant L, depending only on A, b,N such that, for all s ∈ [0,+∞),

(3.3)

N−1∑
i=0

|g(i)(s)| ≥ Le−‖A‖s.

Proof. Set

K =
(
b, Ab, . . . , AN−1b

)
and observe that, by (3.1)

(3.4) L = min
‖ζ‖=1

‖Kζ‖ > 0.

Fix ζ ∈ RN with ‖ζ‖ = 1 and write ζ1(s) = esA
T
ζ. Observe that ζ = e−A

T sζ1(s) and ‖ζ1(s)‖ ≥
e−s‖A‖. We compute now, for i = 0, 1, . . . , N − 1,

(3.5) g(i)(s) = 〈eAsAib, ζ〉 = 〈Aib, ζ1(s)〉.

Therefore,

Kζ1(s) =
(
b, Ab, . . . , AN−1b

)
ζ1(s)

=
(
g(0)(s), g(1)(s), . . . , g(N−1)(s)

)
.

Using (3.4) we have that

‖Kζ1(s)‖ ≥ Le−s‖A‖.

On the other hand,

‖Kζ1(s)‖ ≤
N−1∑
i=0

|g(i)(s)|

and the proof is concluded. �

The next Lemma is crucial for estimating the number of zeros of the switching function g (cor-

responding to the number of switching points of the optimal control associated with g) and for

studying their multiplicity. We recall that the constant L was defined in (3.4).
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Lemma 3.2. Let A ∈ MN×N and b ∈ RN be satisfying (3.1). Take ζ ∈ RN , ‖ζ‖ = 1, and fix

T > 0. Let g(s), s ∈ [0, T ], be defined as in (3.2).

Then there exist disjoint sets I0, . . . , IN−1 and numbers Ni, depending only on A, b, T and N

such that

[0, T ] =

N−1⋃
i=0

Ii

and, for all i = 0, 1, . . . , N − 1, the set Ii is the disjoint union of at most Ni intervals. Moreover,

for each i = 0, 1, . . . , N − 1, for all s ∈ Ii, we have

(3.6) |g(i)(s)| ≥ L
N
e−‖A‖s.

Proof. We proceed by induction for i from 0 to N − 1. Set

(3.7) c(s) =
Le−‖A‖s

N
,

and

J0 = {s ∈ (0, T ) | |g(s)| < c(s)}.

Since J0 is open, we can write it as the disjoint union of at most countably many open intervals,

(3.8) J0 =
∞⋃
k=1

Jk0 .

We assume, without loss of generality, that there are at least N such intervals. Fix now any number

N ′ ≥ N , and take a subfamily of the intervals Jk0 consisting of at most N ′ elements. Without loss

of generality, we can rearrange their indexes k so that Jk0 = (a2k, a2k+1), where 1 ≤ k ≤ N ′ and

0 ≤ a2 < a3 ≤ a4 < a5 ≤ . . . ≤ a2k < a2k+1 . . . < a2N ′+1 ≤ T .

Now, fix k and consider the N intervals (a2k, a2k+1), . . . , (a2(k+N−1), a2(k+N)−1). Set, for j =

0, 1, . . . , N − 1,

(a2(k+j), a2(k+j)+1) := I−j ,

and, for j = 0, 1, . . . , N − 2

[a2(k+j)+1, a2(k+j+1)] := I+
j .

Observe that
N−1⋃
j=0

I−j ∪
N−2⋃
j=0

I+
j = (a2k, a2(k+N)−1).

We are going to give a lower bound on |a2(k+N)−1 − a2k| which will turn out to be independent

of both k and N ′. From this fact it will follow automatically that the intervals (a2k, a2k+1) are

nonempty only for finitely many k.

Observe that for each j = 0, 1, . . . , N − 2, there exists at least one point c1
j ∈ I+

j such that

g′(c1
j ) = 0. Therefore, there exist at least N − 2 points, say c2

j , for j = 0, 1, . . . , N − 3, such that

c2
j ∈ (c1

j , c
1
j+1) and g′′(c2

j ) = 0.

Proceeding by induction we see that, for each i = 1, . . . , N − 1, there exists at least one point

ci ∈ (a2k+1, a2(k+N)−1) such that g(i)(ci) = 0.

Pick any s0 ∈ (a2k, a2k+1). We have

(3.9) |g(s0)| < c(s0),
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and, for i = 1, . . . , N − 1,

|g(i)(s0)| = |g(i)(s0)− g(i)(ci)| =
∣∣∣ ∫ ci

s0

g(i+1)(s)ds
∣∣∣

≤
∫ a2(k+N)−1

a2k

|g(i+1)(s)|ds ≤ (a2(k+N)−1 − a2k)e
‖A‖T ‖Ai+1b‖,

where the last inequality is due to (3.5). Therefore,

(3.10)

N−1∑
i=1

|g(i)(s0)| ≤ (a2(k+N)−1 − a2k)e
‖A‖T

N−1∑
i=1

‖Ai+1b‖.

On the other hand, recalling (3.3), (3.7), and (3.9) we have

N−1∑
i=1

|g(i)(s0)| ≥ Le−‖A‖s0 − c(s0) =
N − 1

N
Le−‖A‖s0 ≥ N − 1

N
Le−‖A‖T .(3.11)

From (3.10) and (3.11) we obtain

(3.12) a2(k+N)−1 − a2k ≥
(N − 1)Le−2‖A‖T

N
∑N−1

i=1 ‖Ai+1b‖
,

which is the desired estimate. Observe that the right hand side of (3.12) depends only on A, b, T

and N .

We set now N0 to be the number of nonempty intervals contributing to the union in (3.8), and

recall that we have just proved that N0 depends only on A, b, T and N , and actually

(3.13) N0 ≤
N2

N − 1

T

L
e2‖A‖T

N−1∑
i=1

‖Ai+1b‖+N − 1.

Set I0 = [0, T ]\J0 and observe that we have completed the proof of the lemma for i = 0.

After this step, we formulate our induction process. We are going to construct, for each i =

0, . . . , N − 1, two disjoint sets Ii, Ji with the following properties

(ind1) for every s ∈ Ii, |g(i)(s)| ≥ c(s);
(ind2) for every s ∈ Ji,

∑N−1
j=i+1 |g(j)(s)| ≥ (N − i− 1)c(s);

(ind3) Ji
⋃
Ii = Ji−1;

(ind4) Ji is a finite union of open intervals whose number is at most Ni, and Ni depends only on

T,L, A, b,N, i;
(ind5) Ii is the finite union of at most Ni +Ni−1 intervals.

For i = 0 the above construction was already performed (take J−1 = (0, T )). Pick any i =

1, . . . , N−2 (the case i = N−1 will be treated separately) and assume that (ind1), . . . , (ind5) hold

up to i − 1. We wish to show that the above statements hold for i as well. To this aim, consider

the set

Ji := {s ∈ Ji−1 | |g(i)(s)| < c(s)}.

For every connected component (a, b) of Ji−1, we are going to prove that J
(a,b)
i := Ji ∩ (a, b) is a

finite union of intervals, and give a bound on their number N (a,b)
i .

So, fix a connected component (a, b) of Ji and represent the open set J
(a,b)
i as a disjoint union of

at most countably many intervals Jki , k ∈ N (for simplicity of writing we drop the dependence on

(a, b)). Assume without loss of generality that there are at most N − i intervals Jki , fix any number

N ′′ ≥ N − i, and take any subfamily of {Jki } consisting of at most N ′′ intervals. We can write
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Jki = (a2k, a2k+1), where 1 ≤ k ≤ N ′′ and a ≤ a2 < a3 ≤ a4 < a5 ≤ . . . < a2N ′′+1 ≤ b. Fix k and

consider the intervals (a2k, a2k+1), . . . , (a2(k+N−i−1), a2(k+N−i)−1). Set, for j = 0, . . . , N − i− 1,

(a2(k+j), a2(k+j)+1) := I−j ,

and, for j = 0, . . . , N − i− 2,

[a2(k+j)+1, a2(k+j+1)] := I+
j .

Observe that
N−i−1⋃
J=0

I−j ∪
N−i−2⋃
j=1

I+
j = (a2k, a2(k+N−i)−1).

For each j = 0, . . . , N−i−2 there exists at least one point cij ∈ I
+
j such that g(i)(cij) = 0. Proceeding

by induction we see that for each m = 0, . . . , N−i−2 there exists a point cm ∈ (a2k+1, a2(k+N−i)−1)

such that g(i+m)(cm) = 0. Pick any s0 ∈ (a2k, a2(k+1)). By arguing as for i = 0, we obtain on one

hand

(3.14) |g(i)(s0)| < c(s0)

and, for all m = 0, . . . N − i− 1,

|g(i+m)(s0)| ≤ (a2(k+N−i)−1 − a2k)e
‖A‖T∥∥Ai+m+1b

∥∥,
the latter inequality being due to (3.5). Thus

(3.15)

N−1∑
m=i+1

|g(m)(s0)| ≤ (a2(k+N−i)−1 − a2k)e
‖A‖T

N−1∑
m=i+1

∥∥Am+1b
∥∥.

On the other hand, owing to (ind2) and (3.14), we obtain

N−1∑
m=i+1

|g(m)(s)| ≥ (N − i− 1)c(s0).

By combining the above inequality with (3.15) we now obtain

a2(k+N−i)−1 − a2k ≥
N − i− 1

N
Le−‖A‖T 1∑N−1

m=i+1 ‖Am+1b‖
.

Therefore, J
(a,b)
i is the union of finitely many disjoint open intervals

(
ai+1

2k , a
i+1
2k+1

)
, k = 1, . . . ,N (a,b)

i ,

where

(3.16) N (a,b)
i ≤ N(N − i)

N − i− 1

|b− a|
L

e2‖A‖T
N−1∑
m=i+1

‖Am+1b‖+N − i− 1.

We define

I
(a,b)
i = {s ∈ (a, b) | |g(i)(s)| ≥ c(s)}

and observe that I
(a,b)
i is the union of at most N (a,b)

i + 1 intervals.

We finally set Ii to be the union of the I
(aj ,bj)
i over all the (at most Ni−1) connected components

(aj , bj) of Ji−1. Therefore, Ii is the union of at most Ni +Ni−1 intervals, where

(3.17) Ni =

Ni−1∑
j=1

N (aj ,bj)
i ≤ N(N − i)

N − i− 1

T

L
e2‖A‖T

N−1∑
m=i+1

‖Am+1b‖+Ni−1(N − i− 1).
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Finally we observe that Ji is the union of at most Ni open intervals.

If i = N − 1, we observe that for each s ∈ JN−2, recalling (ind2) we have |g(N−1)(s)| ≥ c(s).

Therefore we set JN−1 = ∅ and IN−1 = JN−2. The proof is concluded. �

We are now going to prove the main result of this subsection.

Theorem 3.3. Consider the linear control system

(3.18) ẋ = Ax+Bu,

where 1 ≤M ≤ N , A ∈MN×N , B ∈MN×M , and u = (u1, . . . , uM ) ∈ [−1, 1]M .

Assume that (3.18) is normal, i.e., for every column bj, j = 1, . . . ,M , of B,

rank [bj , Abj , . . . , A
N−1bj ] = N.

Let RT be defined according to (2.4). Then for all T > 0 there exists a constant γ > 0, depending

only on N,M,A,B, T such that for all x, y ∈ RT , for all ζ ∈ NRT (x), the inequality

(3.19) 〈ζ, y − x〉 ≤ −γ ‖ζ‖ ‖y − x‖N

holds. Moreover, there exists another constant γ′, depending only on N,M,A,B, T , such that

(3.20) the ball B(0, γ′TN ) is contained in RT .

for all T > 0. Finally, the constants γ and γ′ are bounded away from zero as T → 0+.

Proof. We consider first the case M = 1, so (3.18) reads as

ẋ = Ax+ bu , |u| ≤ 1,

for a suitable b ∈ RN . Fix x̄ ∈ bdryRT together with an optimal control ū(·) steering 0 to x̄ in

time T and ζ ∈ NRT (x̄), ‖ζ‖ = 1. We assume first that ζ satisfies Pontryagin’s maximum principle,

i.e., for a.e. t ∈ [0, T ],

ū(t) = sign〈ζ, eA(T−t)b〉

and prove (3.19) for such ζ. The general case will then follow using Proposition 7.3.

So, we take ȳ ∈ RT together with a control u(·) steering 0 to ȳ and compute:

〈ζ, ȳ − x̄〉 =

∫ T

0
〈ζ, eA(T−t)b〉(u(t)− ū(t)) dt

(recalling (2.6))

= −
∫ T

0
|〈ζ, eA(T−t)b〉| |u(t)− ū(t)| dt.

Set K(t) = 1
2 |u(t)− ū(t)| and observe that 0 ≤ K(t) ≤ 1 for a.e. t ∈ [0, T ], and

(3.21) 〈ζ, ȳ − x̄〉 = −2

∫ T

0
|〈ζ, eA(T−t)b〉|K(t)dt = −2

∫ T

0
|〈ζ, eAtb〉|K(T − t)dt.

Moreover,

(3.22) ‖ȳ − x̄‖ =

∥∥∥∥∫ T

0
eA(T−t)b(u(t)− ū(t))dt

∥∥∥∥ ≤ 2eT‖A‖‖b‖
∫ T

0
K(t)dt.

Set, for s ∈ [0,+∞),

g(s) = 〈eAsb , ζ〉.
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By Lemma 3.2 there exist disjoint sets I0, I1, . . . , IN−1 and numbers Ni such that [0, T ] =
⋃N−1
i=0 Ii,

each Ii is the disjoint union of at most Ni intervals and (3.6) holds. Observe that, in particular, it

follows that g may vanish at most at finitely many times, and so, recalling (2.6), the control ū is

piecewise constant and equal to either 1 or to −1.

We rewrite

(3.23) 〈ζ, ȳ − x̄〉 = −2
N−1∑
i=0

∫
Ii

|g(s)|K1(s)ds

where K1(s) = K(T − s). We are now going to estimate separately the integrals
∫
Ii
|g(s)|K1(s)ds,

for all i = 0, 1, . . . , N − 1.

For i = 0, we have

(3.24)

∫
I0

|g(s)|K1(s)ds ≥ L
N
e−‖A‖T

∫
I0

K1(s)ds.

Fix now i = 1, 2, . . . , N − 1, and write, recalling Lemma 3.2,

Ii =

Ni⋃
j=1

[aij , bij ]

where all open intervals (aij , bij) are disjoint. Recalling (3.6), we have, for all s ∈ Ii, |g(i)(s)| ≥
L
N e
−‖A‖T . Fix j ∈ {1, 2, . . . ,Ni}. We are now going to apply inductively Lemma 7.2 on [aij , bij ]

with the functions g(i−k−1) in place of f , for k = 0, . . . , i− 1. Let k = 0 and set f = g(i−1). Then

the assumption (7.1) is satisfied with C = L
N e
−‖A‖T , thanks to (3.6), and Lemma 7.2 yields that

for some point c0
ij ∈ [aij , bij ] we have

|g(i−1)(s)| ≥ C|s− c0
ij | ∀s ∈ [aij , bij ].

Let k = 1. By applying Lemma 7.2 on each of the two (possibly degenerate) intervals aij , c
0
ij ,

c0
ij , bij to the function f = g(i−2) with C = L

N e
−‖A‖T , we find suitable points c1

ij ∈ [aij , c
0
ij ] and

c2
ij ∈ [c0

ij , bij ] such that we have both

|g(i−2)(s)| ≥ C

2
(s− c1

ij)
2 ∀s ∈ [aij , c

0
ij ]

and

|g(i−2)(s)| ≥ C

2
(s− c2

ij)
2 ∀s ∈ [c0

ij , bij ].

By continuing the induction process until k = i − 1, we split the interval [aij , bij ] into at most 2i

intervals [aij = c0
ij , c

1
ij ], [c

1
ij , c

2
ij ], . . . , [c

2i−1
ij , bij = c2i

ij ] (some of them being possibly degenerate) such

that for all l = 0, 1, . . . , 2i − 1 and s ∈ [clij , c
l+1
ij ] one has

(3.25) either |g(s)| ≥ C

i!
(s− clij)i or |g(s)| ≥ C

i!
(cl+1
ij − s)

i.

Recalling (3.23) and the above discussion, we have

〈ζ, ȳ − x̄〉 = −2

N−1∑
i=0

∫
Ii

|g(s)|K1(s) ds

= −2

[∫
I0

|g(s)|K1(s) ds+
N−1∑
i=1

Ni−1∑
j=0

2i−1∑
l=0

∫ cl+1
ij

clij

|g(s)|K1(s) ds

]
.
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Recalling (3.24) and (3.25), and C = L
N e
−‖A‖T , we obtain from the above expression that

(3.26) 〈ζ, ȳ − x̄〉 ≤ −2L
N
e−‖A‖T

[∫
I0

K1(s) ds+
N−1∑
i=1

Ni−1∑
j=0

2i−1∑
l=0

∫ cl+1
ij

clij

|s− c̄lij |i

i!
K1(s) ds

]

where c̄lij is either clij or cl+1
ij , according to the two possibilities appearing in (3.25). Applying

Lemma 7.1 to each summand of (3.26) we therefore obtain

〈ζ, ȳ − x̄〉 ≤ −2
L
N
e−‖A‖T

[∫
I0

K1(s) ds+

N−1∑
i=1

Ni−1∑
j=0

2i−1∑
l=0

( ∫ cl+1
ij

clij
K1(s) ds

)i+1

(i+ 1)!

]
(using the convexity of x 7→ xi+1 on the positive half line)

≤ −2L
N
e−‖A‖T

[∫
I0

K1(s) ds+
N−1∑
i=1

Ni−1∑
j=0

1

(i+ 1)! 2i2

(∫ bij

aij

K1(s) ds
)i+1

]

≤ −2L
N
e−‖A‖T

[∫
I0

K1(s) ds+
N−1∑
i=1

1

(i+ 1)! 2i2N i
i

(∫
Ii

K1(s) ds
)i+1

]
.

Thus, recalling that 0 ≤ K1(s) ≤ 1 a.e.,

〈ζ, ȳ − x̄〉 ≤ −2L
N
e−‖A‖T

[
1

|I0|N−1

(∫
I0

K1(s) ds
)N

+

N−1∑
i=1

1

(i+ 1)! 2i2N i
i |Ii|N−i−1

(∫
Ii

K1(s) ds
)N]

.

(3.27)

Owing to (3.13) and (3.17), we see that N0 < N1 < . . . < NN ≤ C(A, b,N)e2‖A‖T where C(A, b,N)

depends only on A, b,N . Therefore, we obtain finally from (3.27) and the definition of K1 that

(3.28) 〈ζ, ȳ − x̄〉 ≤ −C(A, b,N, T )e−‖A‖T
(∫ T

0
|u(t)− ū(t)|

)N
,

where C(A, b,N, T ) is a positive constant, depending only on A, b,N, T such that

(3.29) lim inf
T→0

C(A, b,N, T ) > 0.

Recalling (3.22), we complete the proof for the case M = 1 (i.e., a scalar control) by setting

γ = 2−Ne−‖A‖(N+1)T ‖b‖−NC(A, b,N, T ).

Let now M > 1. Take x̄ ∈ bdryRT together with an optimal control ū(·) = (ū1(·), . . . , ūM (·))
steering the origin to x̄ in the optimal time T , and ȳ ∈ RT with a control u(·) = (u1(·), . . . , uM (·))
steering the origin to ȳ in time T . Then, for each ζ ∈ NRT (x̄), ‖ζ‖ = 1, we can write

(3.30) 〈ζ, ȳ − x̄〉 ≤
∫ T

0

〈
ζ, eA(T−s)Bw(s)

〉
ds =

M∑
i=1

∫ T

0

〈
ζ, eA(T−s)bi

〉
(ui(s)− ūi(s)) ds,

where B =
(
bi
)
i=1,2,...,M

. Recalling (2.6) we have also

(3.31) 〈ζ, ȳ − x̄〉 = −
M∑
i=1

∫ T

0

∣∣〈ζ, eA(T−s)bi
〉∣∣ ∣∣ui(s)− ūi(s)∣∣ ds.
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Moreover,

(3.32) ‖ȳ − x̄‖ ≤ e‖A‖T
M∑
i=1

‖bi‖
∫ T

0
|ui(s)− ūi(s)|ds.

We now apply the same argument leading to (3.28) to each summand of the right hand side of

(3.30). Therefore we obtain, using (3.31), that

(3.33) 〈ζ, ȳ − x̄〉 ≤ −C ′(A,B, T,N,M)e−||A‖T
M∑
i=1

(∫ T

0
|ui(s)− ūi(s)| ds

)N
,

where the positive constant C ′ depends only on A,B, T,N,M and

lim inf
T→0

C ′(A,B, T,N,M) > 0.

We conclude the proof of (3.19) by applying (3.32) and setting

γ = 2Ne−(N+1)‖A‖TC ′′(A,B, T,N,M),

where C ′′ is a constant enjoying the same properties as C ′.

In order to prove the statement concerning the ball contained in RT , observe that the inequality

(3.33) with u ≡ 0 and ȳ = 0, taking into account that the control ū is necessarily bang-bang,

becomes

〈ζ, x̄〉 ≥ C ′(A,B, T,N,M)e−‖A‖TMTN ,

from which (taking ‖ζ‖ = 1) we obtain

(3.34) ‖x̄‖ ≥ C ′(A,B, T,N,M)e−‖A‖TMTN := γ′TN .

The above inequality yields in particular that 0 belongs to the interior of RT . Since RT is convex

and (3.34) holds for all x̄ ∈ bdryRT , (3.20) follows.

The last statement follows from (3.29) and the explicit expressions for γ and γ′. The proof is

concluded. �

Remark 3.4. The exponent N in (3.19) is optimal.

In fact, consider the dynamics

x(N) = u, u ∈ [−1, 1].

Let x1(·) be the solution corresponding to the control u ≡ 1. Fix s > 0 and let xs(·) be the solution

corresponding to the control

us(t) =

1 0 < t < s

−1 s < t.

Fix any T > 0 and observe that x1(T ) = TN/N !, while, for 0 < s < T ,

xs(T )− x1(T ) =
−2

N !
(T − s)N .

Observe also that |x(N−1)
s (T ) − x(N−1)

1 (T )| = 2|T − s|, so that setting Xi = (xi, x
′
i, . . . , x

(N−1)
i ),

i = 1, s, one obtains

〈e1, Xs(T )−X1(T )〉 =
−2

N !
(T − s)N ≥ −γ

∥∥Xs(T )−X1(T )
∥∥N ,

for a suitable positive constant γ. If s → T , then Xs(T ) → X1(T ), and this shows that N is the

smallest exponent allowed in (3.19). �
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3.2. Nonautonomous systems.

The following Lemma is a first step for studying the reachable sets in the case of nonlinear

control systems by using the linearization approach which we design in this paper. We will prove

that under the rank condition (normality) at 0 of the linear nonautonomous control system (3.35),

the strict convexity of the reachable sets is preserved up to a sufficiently small time, provided A(t)

and B(t) are not too far from A(0), B(0). Sufficient conditions for the validity of the assumptions

if N = 2 will be given below. In Section 4 sufficient conditions in the case where A and B come

from a linearization around a trajectory will also be given.

Let A : R+ →MN×N and B : R+ →MN×M , 1 ≤M ≤ N , be measurable and consider the linear

nonautonomous control system

(3.35) ẋ(t) = A(t)x(t) +B(t)u(t),

together with

(3.36) ẋ(t) = A(0)x(t) +B(0)u(t),

where u = (u1, . . . , uM ) ∈ [−1, 1]M . We denote by M>(·, ·) the matrix solution of

(3.37)

{
∂
∂tX(t, s) = X(t, s)A(t) for t, s ≥ 0

M(s, s) = I

and by M>0 (·, ·) the matrix solution of

(3.38)

{
∂
∂tX(t, s) = X(t, s)A(0) for t, s ≥ 0

M0(s, s) = I.

Let b(·) be a column of B(·), let T > 0 and define, for any ζ ∈ RN ,

(3.39) g(t) = 〈ζM>(T , t), b(t)〉,

and

(3.40) g0(t) = 〈ζM>0 (T , t), b(0)〉.

Observe that g and g0 can be seen as the switching functions related to (3.35) and (3.36), respec-

tively.

We state now an abstract result which permits to transfer to g some properties of g0 and to establish

the quantitative strict convexity estimate for the reachable set from the origin of (3.35). Sufficient

conditions in order to apply the following lemma to suitable linearizations in dimension 2 and 3

will be given in Section 4.

Lemma 3.5. Fix ζ ∈ RN , ‖ζ‖ = 1, and let g and g0 be defined according to (3.39) and (3.40),

respectively. Assume that

(i) rank[b(0), A(0)b(0), . . . , AN−1(0)b(0)] = N ;

(ii) g is N − 2 times differentiable and g(N−2) is absolutely continuous;

(iii) there exists a constant K = K(A,B) and a time T ′ such that for all i = 0, . . . , N − 1 one

has

|g(i)(t)− g(i)
0 (t)| ≤ Kt for all 0 ≤ t ≤ T ′.
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Let L be defined by (3.4), with A(0), b(0) in place of A, b, respectively.

Then there exists T = T (A,B,N, T ′) with the following property:

for every 0 < τ < T there exist disjoint sets Ii and numbers Ni, i = 0, . . . , N − 1, depending only

on A(0), B(0), τ , such that

(a) [0, T ] =
⋃N−1
i=0 Ii;

(b) each Ii, i = 0, . . . , N − 1 is the disjoint union of at most Ni intervals;

(c) for each i = 0, . . . , N − 2 and each s ∈ Ii

|g(i)(s)| ≥ L
2N

e−‖A(0)‖s;

(d) g(N−1) has constant sign in every connected component of IN−1 and, for each s ∈ IN−1

|g(N−1)(s)| ≥ L
2N

e−‖A(0)‖s.

Remark 3.6. I0, . . . , IN−1 are exactly the intervals constructed in Lemma 3.2 with g0 in place of

g.

Proof of Lemma 3.5. Let I0, . . . , IN−1 be the sets appearing in the statement of Lemma 3.2,

with g0 in place of g, so that, in particular, (a) and (b) hold. Moreover, for each s ∈ Ii we have

|g(i)
0 (s)| ≥ L

N
e−‖A(0)‖τ .

Therefore, if KT < L
2N e

−‖A(0)‖s, also (c) and (d) hold, owing to (iii). �

Remark 3.7. Sufficient conditions for the validity of the assumptions of Lemma 3.5 in the case

N = 2.

Let N = 2. Sufficient conditions for the validity of assumptions (ii) and (iii) in the above Lemma

are the following:

(C0) A(·) is measurable and

‖A(t)−A(0)‖ ≤ Lt for all t ≥ 0;

(C1) B(·) is absolutely continuous and∥∥∥ d
dt
B(t)

∥∥∥ ≤ 2Lt for all t ≥ 0,

where L is a positive constant.

Observe that condition (C0) implies that t = 0 is a continuity point for A(·), so that A(0) in (C0)

is meaningful. �

As an immediate corollary of Lemma 3.5 we obtain the following

Theorem 3.8. Consider the linear nonautonomous control system (3.35) under the assumptions

of Lemma (3.5). Let Rτ denote the reachable set at time τ > 0 from the origin for (3.35). Then

there exist a time T = T (A,B,N) > 0 and a constant γ = γ(A,B,N) > 0 such that for every

0 ≤ τ ≤ T , for every x, y ∈ Rτ , for every ζ ∈ NRτ (x), we have

〈ζ, y − x〉 ≤ −γ‖ζ‖‖y − x‖N .

Moreover, there exists another constant γ′ = γ′(A,B,N) > 0 such that for every 0 < τ ≤ T

(3.41) the ball B(0, γ′τN ) is contained in Rτ .
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Proof. The argument developed in the proof of Theorem 3.3 can be used also in this case. Indeed,

fix x̄ ∈ bdryRτ together with a control ū(·) steering 0 to x̄ in time τ and let ζ ∈ NRτ (x̄), ‖ζ‖ = 1,

be such that

(3.42) ū(t) = sign〈ζ, b(t)M(τ, t)〉 for a.e. t ∈ (0, τ)

(here, as at the beginning of the proof of Theorem 3.3, we assume that B = b is a vector, i.e., the

control is scalar).

Then the proof proceeds exactly as for Theorem 3.3, provided that g is given by

g(t) = 〈ζ, b(t)M(τ, t)〉,

so that for all ȳ ∈ Rτ one has

〈ζ, ȳ − x̄〉 = −2

N−1∑
i=0

∫
Ii

|g(s)|K1(s) ds,

where K1(s) = 1
2 |u(τ − s)− ū(τ − s)|, u(·) is the control which steers the origin to ȳ, and the sets

Ii are those appearing in the statement of Lemma 3.5. �

4. A nonlinear bang bang principle in dimensions 2 and 3

Starting from the present section we will deal with nonlinear control systems, which are affine

and symmetric with respect to the control. This section is devoted to giving sufficient conditions

so that controls steering the origin to the boundary of the reachable set are always bang-bang,

provided the final time is sufficiently small. More precisely, the following result holds.

Theorem 4.1. Let N = 2 or N = 3. Consider the control system

(4.1)

ẋ(t) = F (x(t)) +G(x(t))u(t),

x(0) = 0,

where 1 ≤ M ≤ N , u(·) = (u1(·), . . . , uM (·)) ∈ [−1, 1]M a.e., and F : RN → RN and G =

(G1, . . . , GM ) : RN →MN×M satisfy the following assumptions:

(i) F and G are of class CN−1 and all partial derivatives are Lipschitz with constant L;

(ii) F (0) = 0;

(iii) rank[Gi(0), DF (0)Gi(0), . . . , (DF (0))N−1Gi(0)] = N for i = 1, . . . ,M ;

(iv) if N = 3, then DG(0) = 0 and D2F (0) = 0.

Let Rτ denote the reachable set of (4.1) at time τ > 0. Then there exists T > 0, depending only

on DF (0), G(0), L,N , such that for every 0 < τ < T the following properties hold:

(a) every admissible control u(·) such that the corresponding trajectory yu(·) of (4.1) at time τ

belongs to the boundary of Rτ is essentially determined by the curve λ(·), the solution of

the adjoint equation

(4.2)

λ̇(t) = −λ(t)
(
DF (yu(t)) +DG(yu(t))u(t)

)
λ(τ) = ζ ∈ NRτ (yu(τ)), ‖ζ‖ = 1,

through the identity

(4.3) u(t) = sign 〈λ(t), G(yu(t))〉 a.e.;

(b) u is bang-bang, i.e., u(t) ∈ {−1, 1}M a.e., and is piecewise constant;
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(c) the maximum number of discontinuities of u depends only on DF (0), G(0), L, and N .

Proof. We consider first the case where M = 1, i.e., G(x) is a vector and the control u is scalar.

Fix τ > 0 and an admissible control u such that x̄ := yu(τ) ∈ bdryRτ . By the Maximum Principle

(see Theorem 2.6) there exist ζ ∈ NRτ (x̄), ‖ζ‖ = 1, and an adjoint curve λ(·), a solution of (4.2),

such that u satisfies (4.3). Proving (a), (b), and (c) amounts to showing that the switching function

〈λ(t), G(yu(t))〉 vanishes at most finitely many times in [0, τ ] and the number of its zeros depends

only on DF (0), G(0), L, and N .

For convenience we rewrite the switching function in the following way. Let M>(·, ·) denote the

matrix solution of (3.37), with A(t) = DF (yu(t)) + DG(yu(t))u(t), and set b(t) = G>(yu(t)),

t ∈ [0, τ ]. Then

g(t) := 〈λ(t), b(t)〉 = 〈ζ, b(t)M(τ, t)〉.
Let also M>0 (·, ·) be defined by (3.38), where A(0) = DF (0), and let g0 be defined according to

(3.40). We wish to apply Lemma 3.5 to the above introduced mappings g and g0.

First of all, we compute g′ and observe that it is continuous. Indeed,

g′(t) =
〈
ζ, b′(t)M(τ, t)〉+ 〈ζ, b(t) ∂

∂t
M(τ, t)

〉
=

〈
ζ,DG>(yu(t))ẏu(t)M(τ, t)

〉
+
〈
ζ,−b(t)A>(t)M(τ, t)〉

=
〈
ζ,DG>(yu(t))

(
F (yu(t)) +G(yu(t))u(t)

)>
M(τ, t)

〉
+
〈
ζ,−G>(yu(t))

(
DF (yu(t)) +DG(yu(t))u(t)

)>
M(τ, t)

〉
=

〈
ζ,
(
DG>(yu(t))F>(yu(t))−DF>(yu(t))G>(yu(t))

)
M(τ, t)

〉
=

〈
λ(t), [F>, G>](yu(t))

〉
,

where [F>, G>](x) := DG>(x)F>(x)−DF>(x)G>(x) denotes the Lie bracket.

Moreover, if N = 3 g′ is a.e. differentiable and we have

g′′(t) =
〈
λ̇(t), [F>, G>](yu(t))

〉
+
〈
λ(t),

d

dt
[F>, G>](yu(t))

〉
.

Finally, observing that g′0(t) =
〈
ζ,−DF>(0)G>(0)M0(τ, t)

〉
=
〈
ζM>0 (τ, t), [F>, G>](0)

〉
, we have

g′(t)− g′0(t) =
〈
ζ
(
M>(τ, t)−M>0 (τ, t)

)
, [F>, G>](yu(t))

〉
+
〈
ζM>0 (τ, t), DG>(yu(t))F>(yu(t))

〉
+
〈
ζ,
(
DF>(0)−DF>(yu(t))

)
G>(yu(t))

〉
+
〈
ζ,DF>(0)

(
G>(0)−G>(yu(t))

)〉
= I + II + III + IV.

We are now going to estimate separately each summand of the above expression.

First, we observe that, thanks to the assumptions (i) and (ii), we have

‖M(τ, t)−M0(τ, t)‖ ≤
∫ t

0

(
‖A(s)‖ ‖M0(τ, s)−M(τ, s)‖+ ‖M0(τ, s)‖ ‖A(0)−A(s)‖

)
ds

≤ K1

∫ t

0
‖M(τ, s)−M0(τ, s)‖ ds+K2t

2,

where K1 and K2 are suitable constants depending only on DF (0), G(0), L, and τ . Gronwall’s

lemma therefore yields

‖M(τ, t)−M0(τ, t)‖ ≤ K3t
2 for all t ∈ [0, τ ],



ON THE MINIMUM TIME FUNCTION AROUND THE ORIGIN 19

where the constant K3 depends only on K1, K2. Therefore, there exists a constant KI , depending

only on DF (0), G(0), L, and τ such that

(4.4) |I| ≤ KIt
2 for all t ∈ [0, τ ].

Assumptions (i) and (ii) yield in turn

(4.5) |II| ≤ KIIt for all t ∈ [0, τ ],

for a suitable constant KII depending only on DF (0), L, and τ , and

(4.6) |III| ≤ KIIIt for all t ∈ [0, τ ],

(4.7) |IV | ≤ KIV t for all t ∈ [0, τ ],

where again KIII and KIV depend only on DF (0), G(0), L, and τ .

Therefore, summing (4.4), (4.5), (4.6), and (4.7), we obtain that there exist K and T ′ > 0, depend-

ing only on DF (0), G(0), and L, such that

(4.8) |g′(t)− g′0(t)| ≤ Kt for all 0 ≤ t ≤ T ′.

Let now N = 3, and observe that owing to assumption (iv) each summand I, II, III, IV , divided

by t2, is bounded and a.e. differentiable, so that

|g′′(t)− g′′0(t)| ≤ K ′t for a.e. t ∈ [0, T ′],

where the constant K ′ depends only on DF (0), G(0), and L and so does T ′.
Observe that all the above constants do not depend on ζ. Therefore, invoking assumption (iii),

we can apply Lemma 3.5 (for N = 2, 3), thus obtaining that there exists T > 0, depending only

on G(0), DF (0), L, and N with all the properties (a), (b), (c), and (d), which are exactly those

required to complete the proof.

In the general case (i.e., 1 < M ≤ N), it suffices to apply the above argument to each column of

G. The proof is concluded. �

Remark 4.2. On the assumption N = 2 or N = 3.

The restriction N ≤ 3 depends on our method for comparing the switching function g for

the nonautonomous system coming from the linearization along an optimal trajectory, with the

switching function for autonomous system obtained by linearizing at the origin. This comparison

requires higher order derivatives of g, whose existence we are not able to insure if N > 3. �

5. Quantitative strict convexity of reachable sets and uniqueness of optimal

controls: the nonlinear two dimensional case

In this subsection, we will show that, provided the linearization at 0 satisfies the normality

condition and the nonlinear part is smooth and small enough, the reachable set is strictly convex

up to a sufficiently small time.

Theorem 5.1. Consider the control system

(5.1)

{
ẋ(t) = F (x(t)) +G(x(t))u(t),

x(0) = 0,
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under the following assumptions (in the following M is either 1 or 2):

u(·) = (u1(·), uM (·)) ∈ [−1, 1]M a.e., F : R2 → R2, G : R2 →M2×M are of class C1,1 (with Lipschitz

constant L) and

(i) F (0) = 0,

(ii) Rank [Gi(0), DF (0)Gi(0)] = 2 for i = 1,M where G = (G1, GM ),

(iii) DG(0) = 0.

Let Rτ denote the reachable set at time τ > 0 for (5.1). Then there exists T > 0, depending only

on L,DF (0), G(0), with the following properties:

(a) for every τ ≤ T and every x ∈ bdryRτ there exists one and only one admissible control u

steering the origin to x in time τ (and u is bang-bang with finitely many switchings).

(b) For every 0 < τ < T the reachable set Rτ is strictly convex. More precisely, for every

x1 ∈ bdryRτ and x2 ∈ Rτ , for every ζ ∈ NP
Rτ (x1), one has

(5.2) 〈ζ, x2 − x1〉 ≤ −γ‖ζ‖‖x2 − x1‖2.

where γ is a positive constant depending only on L, DF (0), G(0).

(c) There exist another time T ′ > T , depending only on L, DF (0), G(0), such that for every

0 < τ < T ′ the reachable set Rτ has positive reach. More precisely, for every x1 ∈ bdryRτ

and x2 ∈ Rτ , for every ζ ∈ NP
Rτ (x1), one has

(5.3) 〈ζ, x2 − x1〉 ≤ γ′‖ζ‖‖x2 − x1‖2,

where γ′ is a nonnegative constant depending only on L, DF (0), G(0).

(d) There exist another positive constant γ′′ and a positive time T ′′ ≤ T , depending only on L,

DF (0), G(0), such that the ball B(0, γ′′τ2) is contained in Rτ for all 0 < τ < T ′′.
(e) The minimum time function is continuous in Rτ , for all 0 < τ < T ′′.

Proof. We begin proving the result for M = 1, i.e., for a scalar control.

Fix τ > 0 and x1 ∈ bdryRτ , together with an optimal control u1(·) steering 0 to x1 and the

associate trajectory x1(·). Take any x2 ∈ Rτ together with u2(·) steering 0 to x2 and the associate

trajectory x2(·), and set x(t) = x2(t)− x1(t). Then, for a.e. t ∈ [0, τ ],

(5.4) ẋ(t) = A1(t)x(t) +G(x1(t))w(t),

where w(t) = u2(t)− u1(t) and

A1(t) =

∫ 1

0
DF (x1(t) + τx(t))dτ + u2(t)

∫ 1

0
DG(x1(t) + τx(t))dτ.

Let z(·) be the solution of the linear system which is defined by linearizing along the optimal

trajectory x1(·):

(5.5)

{
ż(t) = A(t)z(t) +G(x1(t))w(t),

z(0) = 0,

where A(t) = DF (x1(t)) +DG(x1(t))u1(t).

We have

d

dt
‖x(t)− z(t)‖ ≤ ‖A1(t)x(t)−A(t)z(t)‖

≤ ‖A(t)‖‖x(t)− z(t)‖+ ‖A1(t)−A(t)‖‖x(t)‖

≤ L1‖x(t)− z(t)‖+ L‖x(t)‖2,
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where L1 = ‖DF (0)‖+ 2Le2Lτ .

Thus, by Gronwall’s inequality we get

(5.6) ‖x(t)− z(t)‖ ≤ eL1tL

∫ t

0
‖x(s)‖2 ds.

On the other hand, observing that

d

dt
‖x(t)‖ ≤ L2‖x(t)‖+ L3|w(t)|,

(where L2 = ‖DF (0)‖+ 4Le2Lτ and L3 = |G(0)|+ e2Lτ ) we also have

(5.7) ‖x(t)‖ ≤ L3e
L2t

∫ t

0
|w(s)|ds.

From (5.6) and (5.7), one obtains

(5.8) ‖x(t)− z(t)‖ ≤ L4t
(∫ t

0
|w(s)|ds

)2
,

where L4 = LL2
3e

(L1+2L2)τ .

Since x̄1 ∈ bdryRτ , by Pontryagin’s maximum principle there exists an absolutely continuous

function λ : [0, τ ]→ R2 with the following properties

λ̇(t) = −λ(t)A(t), λ(τ) = ζ ∈ NRτ (x̄1), ζ 6= 0,

(5.9) u1(t) = sign〈λ(t), G(x1(t))〉.

We set now b(t) = G(x1(t)) and consider the linear nonautonomous control system

(5.10)

{
ẏ(t) = A(t)y(t) + b(t)u(t),

y(0) = 0,

together with the trajectory y1(·), corresponding to the control u1(·). Observe first that, thanks

to (5.9), x1 belongs to the boundary of the reachable set at time τ for (5.10). Observe moreover

that A(·) is measurable, and, since both F and G are Lipschitz with constant L and DG(0) = 0,

we have

‖A(t)−A(0)‖ = ‖DF (x1(t)) +DG(x1(t))u1(t)−DF (0)‖

≤ 2L‖x1(t)‖ ≤ 2L‖G(0)‖e2Ltt.

Finally, b′(t) = DG(x1(t))ẋ1(t) so that

‖b′(t)− b(0)‖ = ‖b′(t)‖ ≤ L‖x1(t)‖
(
2L‖x1(t)‖+ ‖G(0)‖

)
≤ Kt,

where K = Le2Lτ
(
2Le2Lτ + 1

)
‖G(0)‖2.

Therefore, all assumptions of Theorem 3.8 are satisfied by (5.10), so that there exists a time T0 > 0

depending only on L,DF (0), G(0) such that if 0 ≤ τ < T0 the following properties hold:

i) u1(t) is uniquely determined by (5.9) on (0, τ),

ii) there exists a constant γ(τ) > 0, depending only on L,DF (0), G(0), τ such that, for all

trajectories y(·) of (5.10), 〈ζ, y(τ)−y1(τ)〉 ≤ −γ(τ)‖y(τ)−y1(τ)‖2. More precisely, recalling

(3.28),

(5.11) 〈ζ, y2(τ)− y1(τ)〉 ≤ −γ1(τ)
(∫ τ

0
|w(s)|ds

)2
,
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where y2(·) is the trajectory of (5.10) associated with the control u2(·) and γ1 enjoys the

same properties of γ.

We remark (see (3.29)) that γ1(τ) is bounded away from 0 as τ → 0+. Moreover, one can see that

z(t) = y2(t)− y1(t). Therefore

〈ζ, x2 − x1〉 = 〈ζ, x(τ)− z(τ)〉+ 〈ζ, z(τ)〉

≤ ‖x(τ)− z(τ)‖+ 〈ζ, z(τ)〉.(5.12)

Recalling (5.8) and (5.11), we obtain

(5.13) 〈ζ, x2 − x1〉 ≤ (L4τ − γ1(τ))
(∫ τ

0
|w(s)|ds

)2
.

Thus if τ ≤ 1
2L4

lim infτ→0+ γ(τ) =: T1 then

〈ζ, x2 − x1〉 ≤ −
γ1(τ)

2

(∫ τ

0
|w(s)|ds

)2
.

From this inequality the uniqueness of the control steering the origin to x1 in time τ follows

immediately by contradiction. Setting T = min{T0, T1} and recalling (5.7) we obtain (5.2). The

proof of the strict convexity is completed by applying Proposition 7.3.

The proof of (5.3) is entirely analogous, where it suffices to take T ′ = T0.

We consider now the statement concerning the ball contained in the reachable set. To this aim,

take u2 ≡ 0 and set y1 to be the solution of (5.5) with u1 in place of w. Then (5.8) yields, for all

t > 0,

‖x1(t)− y1(t)‖ ≤ L4t
3.

Recalling (3.41), we obtain from the previous inequality that

‖x1(t)‖ ≥ ‖y1(t)‖ − L4t
3 ≥ γ̃t2 − L4t

3,

for a suitable constant γ̃, which yields in particular that 0 belongs to the interior of Rt, 0 ≤ t ≤ T .

Since the above argument can be repeated for every point in the boundary of Rt and the constant

L4 is independent of the reference point, the statement follows by recalling that we already proved

that Rt is convex for all 0 ≤ t ≤ T .

The continuity of T follows easily from the the fact that reachable sets contain a ball (see, e.g.,

Propositions IV.1.2 and IV.1.6 in [1]).

In the case M = 2, it suffices to apply the above arguments to each control. �

The following Remark follows immediately from the proof of Theorem 5.1.

Remark 5.2. Let x1(·) and λ(·) be as in the proof of Theorem 5.1. For all 0 < t ≤ τ = T (x1), one

has λ(t) ∈ NRt(x1(T (x1 − t))). More precisely,

〈λ(t), y − x1(T (x1)− t)〉 ≤ −γ‖λ(t)‖‖y − x1(T (x1)− t)‖2

for all y ∈ Rt, where γ is the constant appearing in (5.2).

In fact, put λ(t) in place of ζ in (5.12). Then the first summand can be estimated in the same way,

while the upper bound on the second summand, namely the analogue of (5.11), can be obtained

through the same arguments leading to (5.11). �

We conclude this section with a counterexample showing the sharpness of assumption (iii) in The-

orem 5.1.
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Remark 5.3. An example of a two dimensional nonlinear control system satisfying assumptions

(i) and (ii) of Theorem 5.1 such that the reachable set Rτ is not convex for all τ > 0.

Consider the control system

(5.14)

ẋ1 = x2(1 + u)

ẋ2 = u, u ∈ [−1, 1].

Set F (x1, x2) = (x2, 0), G(x1, x2) = (x2, 1), and observe that the assumptions (i) and (ii) of

Theorem 5.1 are satisfied, while (iii) is not. The Hamiltonian for this system is

H
(
(x1, x2), (p1, p2), u

)
= x2p1 + u(p1x2 + p2),

and Pontryagin’s Maximum Principle states that if x̄(·) is an optimal trajectory corresponding to

the control ū(·), then there exists a function λ = (λ1, λ2), never vanishing, and a constant λ0 ≤ 0

such that, for a.e. t,

λ1(t) ≡ λ1 6= 0

λ̇2(t) = −(1 + ū(t))λ1

x̄2(t)λ1 + ū(t)(λ1x̄2(t) + λ2(t)) + λ0 = 0

ū(t)(λ1x̄2(t) + λ2(t)) = max
|u|≤1

u(λ1x̄2(t) + λ2(t)).

Now, observe that

λ1x̄2(t) + λ2(t) = λ1

∫ t

0
ū(s) ds− λ1t− λ1

∫ t

0
ū(s) ds+ λ2(0)

= −λ1t+ λ2(0).

Therefore the function λ1x̄2(t)+λ2(t) has at most one zero, so that the optimal control ū is unique,

bang-bang, and has at most one switching.

Fix now τ > 0 and 0 < s < 1 and consider the control

us(t) =

1 0 < t < sτ

−1 sτ < t < τ.

The trajectory of (5.14) emanating from the origin and corresponding to the control u2 is, at time

τ ,

x̄1
s := x1

s(τ) = s2τ2, x̄2
s := x2

s(τ) = τ(2s− 1).

Simple computations show that any other bang-bang control with at most one switching cannot

reach (x̄1
s, x̄

2
s) at a time τ ′ < τ , for all 0 < s < 1. Thus us is optimal. In particular, the curve

γ(s) := (x̄1
s, x̄

2
s) belongs to the boundary of the reachable set Rτ . The unique unit normal to the

curve γ(s) at s = 1/2 which points outside Rτ is

ζ =
(2,−τ)√

4 + τ2
.

We compute: 〈
ζ, γ(s)− γ(

1

2
)
〉

=
2τ2(s− 1

2)2

√
4 + τ2

,
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which implies that Rτ is not convex. Observe however that Rτ has positive reach at γ(1
2) for every

τ > 0, since 〈
ζ, γ(s)− γ(

1

2
)
〉
≤ 8

(16 + τ4)
√

4 + τ2

∥∥∥γ(s)− γ(
1

2
)
∥∥∥2
.

�

Remark 5.4. On the assumption N = 2.

Motivations for the restriction N = 2 are twofold. First of all, our analysis is based on the

switching function of the nonautonomous system obtained by linearizing around an optimal trajec-

tory, and this method requires N ≤ 3 (see Remark 4.2). Second, the distance between trajectories

of the nonlinear system (5.1) and of the linearized system (5.5) is of order two with respect to the

control (see (5.8)), and this quadratic perturbation can be balanced by the strict convexity of the

reachable set of the linearized system only if N = 2 (see (5.13)). �

6. Further results for the nonlinear two dimensional case

This section is devoted to proving that the epigraph of the minimum time function has positive

reach, under the assumptions of Theorem 5.1. To this aim, a results of optimal points, i.e., on

points which are crossed by an optimal trajectory, is needed.

6.1. Optimal points.

The classical definition of optimal point reads as follows.

Definition 6.1. Let x ∈ RN\{0}. We say that x is optimal if and only if there exists a point x1

such that T (x1) > T (x) and a control u with the property that yx1,u(·) steers x1 to 0 in the optimal

time T (x1) and x = yx1,u(T (x1)− T (x)).

The following is the result on optimal points which will be used in the next subsection in order

to ensure the positive reach of the epigraph of the minimum time function. It is based on the

same estimates which lead to the strict convexity of the reachable set, and so it is restricted to two

dimensional control systems.

Theorem 6.2. Let N = 2 and let the assumptions of Theorem 5.1 be satisfied. Let T > 0 be such

that, according to Theorem 5.1, for all 0 ≤ τ < T , the reachable set Rτ of (5.1) satisfies (5.2) for

all 0 < τ < T . Let x̄ be such that T (x̄) < T . Then x̄ is an optimal point.

Proof. We consider first the case where G is a vector and the control u is one-dimensional. Set

τ = T (x̄) and let ū(·) be the admissible control steering x̄ to 0 in the optimal time τ , together with

the associate trajectory x̄(·). Set, for all t ∈ [0, τ ],

A(t) = DF (x̄(t)) +DG(x̄(t))ū(t), b(t) = G(x̄(t))

We assume preliminarily that x̄ belongs to the boundary of Rτ and let, by the Maximum Principle,

λ be a solution of

(6.1)

{
λ̇(t) = −λ(t)A(t),

λ(τ) = ζ,

where ζ ∈ NRτ (x̄), ζ 6= 0, and, for a.e. t ∈ [0, τ ],

(6.2) ū(t) = sign〈λ(t), b(t)〉.
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Set, for t ∈ [0, τ ],

g(t) = 〈λ(t), b(t)〉.

We are now going to extend ū(·) in an interval [τ, τ + δ] for a suitable δ > 0, with the property

that the extended control and its associate trajectory satisfy the Maximum Principle.

Three cases may occur:

(i) g(τ) > 0,

(ii) g(τ) < 0,

(iii) g(τ) = 0.

In the first case, we set ū(t) = 1 for all t > τ and let x̄(·) be the associate trajectory satisfying

x̄(τ) = x̄. We extend analogously A(·), b(·), λ(·) and g(·) for t > τ . Set g(τ) := δ1. Observe that g

is locally Lipschitz, so that, for t > τ ,

g(t) = g(τ) + g(t)− g(τ) > δ1 − L1(t− τ)

for a suitable constant L1. Therefore we can find δ > 0 such that 0 ≤ τ + δ < T and g(t) > 0 for

all t ∈ [τ, τ + δ], i.e.,

ū(t) = sign g(t) ∀t ∈ [τ, τ + δ].

The second case is entirely analogous, by substituting 1 with −1.

We consider now the third case. Let the I0, I1 be given by Lemma 3.5 for the function g in the

interval [0, τ ]. Observe that necessarily τ ∈ I1, so that, in particular, g′(τ) 6= 0. We set, for t > τ

ū(t) = 1 if g′(τ) > 0

or

ū(t) = −1 if g′(τ) < 0

and let x̄(·) be the associate trajectory satisfying x̄(τ) = x̄. We extend analogously A(·), b(·), λ(·)
and g(·) for t > τ . Observe that

ġ(t) = 〈λ(t), [F,G](x̄(t))〉,

where [F,G](x) = DG(x)F (x) − DF (x)G(x) denotes the Lie bracket of F and G. Therefore ġ

is continuous, so that there exists δ > 0 such that the sign of ġ(t) equals the sign of ġ(τ) for all

t ∈ [τ − δ, τ + δ]. Therefore our construction of ū(·) on [0, τ + δ] is such that for a.e. t ∈ [0, τ + δ],

ū(t) = sign g(t).

Consequently, all conclusions of Theorem 5.1 hold up to the time τ + δ. In particular, for all

t ∈ [0, τ + δ], x̄(t) ∈ bdryRt. Since T (·) is continuous in a neighborhood of the trajectory x̄(·), we

obtain that ū(·) steers the origin optimally to x̄(τ + δ) in time τ + δ. Since the above argument can

be applied also to the reversed dynamics ẋ = −F (x)+G(x)u, u ∈ [−1, 1], then T (x̄(τ +δ)) = τ +δ.

Let us now drop the assumption x̄ ∈ bdryRτ . Since T is strictly decreasing along the optimal

trajectory x̄(·), and so x̄(t) ∈ bdryRτ−t for all 0 < t < τ , there exists a nontrivial adjoint vector

λ(·) which uniquely determines ū(t) as in (6.2) up to the time τ . Thus the above argument can be

applied also to x̄.

If G is a 2 × 2 matrix, it suffices to perform the above construction for each column of G. The

proof is concluded. �

We conclude the section with two corollaries. The first one is an immediate consequence of the

proof of Theorem 6.2.
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Corollary 6.3. Under the same assumptions of Theorem 6.2, let τ = T (x̄) < τ1 < T . Then there

exists x1 ∈ bdryRτ1 and a control u1 : [τ, τ1] → [−1, 1] such that the trajectory x̃(·) corresponding

to the control

ũ(t) =

{
ū(t) 0 ≤ t ≤ τ,
u1(t) τ < t ≤ τ1.

and such that x̃(0) = x1 reaches 0 in the optimal time τ1 and moreover x̃(τ1 − τ) = x̄.

From Corollary 6.3 we obtain that x̄(·) and λ(·) in the proof of Theorem 6.2 can be extended up

to the time T . Therefore, we obtain the following further corollary.

Corollary 6.4. Under the assumptions of Theorem 5.1, the maximized Hamiltonian along x̄(·)
associated with λ(·) is constant in [0, T ), i.e.,

H(x̄(t), λ(t)) = C ∀t ∈ [0, T ).

Proof. Let G be a vector and so the control u be scalar. Then

H(x̄(t), λ(t)) = 〈λ(t), F (x̄(t))〉+ |〈λ(t), G(x̄(t))〉|.

Observe that the switching function g(t) = 〈λ(t), G(x̄(t))〉 vanishes at most on a countable subset

of [0, T ). Therefore, for a.e. t ∈ [0, T ), we have

d

dt
H(x̄(t), λ(t)) =

(
− 〈λ(t), [F,G](x̄(t))〉+ 〈λ(t), [F,G](x̄(t))〉

)
sign g(t) = 0.

If G is a 2× 2 matrix, it suffices to perform the above computation for each column. The proof is

concluded. �

6.2. The epigraph of the minimum time function has positive reach.

The present section is devoted to studying the “convexity type” of the minimum time function T (·),
in the case where the dynamics satisfies a weak controllability condition, i.e., the function T (·) is

merely continuous. The statement is two dimensional, since it is based on Theorem 6.2.

Theorem 6.5. Let N = 2 and let the assumptions of Theorem 5.1 hold. Let T be given by Theorem

5.1. Then for every 0 < τ < T the epigraph of the minimum time function T (·) on Rτ has positive

reach.

Corollary 6.6. Under the same assumptions of Theorem 6.5 the minimum time function T satisfies

all the properties listed in Theorem 2.4.

Before beginning the proof of Theorem 6.5 we introduce the minimized Hamiltonian and study

its sign.

Definition 6.7. Let x, ζ ∈ RN . We define the minimized Hamiltonian for the control system in

(5.1) as

h(x, ζ) = 〈ζ, F (x)〉+ min
u∈U
〈ζ,G(x)u〉.

Proposition 6.8. Let x belong to the boundary of the reachable set Rτ for (5.1) for some τ > 0.

Let ζ ∈ NF
Rτ (x)1. Then h(x, ζ) ≤ 0.

1here NF
Rτ (x) denotes the Fréchet normal cone to Rτ at x, i.e., all vectors v such that lim supRτ3y→x〈v, (y −

x)/‖y − x‖〉 ≤ 0
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Proof. Let ū(·) be an admissible control steering x to 0 in time τ , together with the associate

trajectory x̄(·). Then, for all 0 ≤ t ≤ τ the point x̄(t) belongs to Rτ , so that, by definition of

Fréchet normal we have

lim sup
t→0+

〈
ζ,

x̄(t)− x
‖x̄(t)− x‖

〉
≤ 0.

Observing that ‖x(t)− x‖ ≤ Kt for a suitable constant K, we have

lim sup
t→0

〈
ζ,
x̄(t)− x

t

〉
≤ 0.

In other words,

0 ≥ lim sup
t→0

〈
ζ,

1

t

∫ t

0

(
F (x̄(s)) +G(x̄(s))ū(s)

)
ds
〉

= 〈ζ, F (x)〉+ lim sup
t→0

〈
ζ,G(x)

∫ t
0 ū(s)ds

t

〉
.

Let tn → 0 be a sequence such that limn→∞
1
tn

∫ tn
0 ū(s)ds := ũ exists. By the convexity of U , ũ ∈ U ,

and so h(x, ζ) ≤ 〈ζ, F (x)〉+ 〈ζ,G(x)ũ〉 ≤ 0. �

We are now ready to prove Theorem 6.5.

Proof of Theorem 6.5. Let x 6= 0 be such that T (x) < T and let (ū(·), x̄(·)) be an optimal pair

for x. By Maximum Principle2 there exists 0 6= ζ ∈ NRT (x)(x) such that the adjoint arc λ, with{
λ̇(t) = λ(t)

(
DF (x̄(t)) +DG(x̄(t))ū(t)

)
,

λ(T (x)) = ζ

satisfies 〈
λ(t), F (x̄(t)) +G(x̄(t))ū(t)

〉
= h(x̄(t), λ) for a.e. t ∈ (0, T (x)).

We claim that

(6.3) (ζ, h(x, ζ)) ∈ NP
epi(T )(x, T (x)),

i.e., there exists a constant σ > 0 such that, for all y ∈ RN with 0 < T (y) < T and for all β ≥ T (y),

we have

(6.4)
〈
(ζ, θ), (y, β)− (x, T (x))

〉
≤ σ‖(ζ, θ)‖

(
‖y − x‖2 + |β − T (x)|

)
,

where θ = h(x, ζ), and, moreover,

σ is independent of x and ζ.(6.5)

Indeed, we consider two cases:

(a) T (y) ≤ T (x);

(b) T (y) > T (x).

In the first case, y ∈ RT (x), so that by Theorem 5.1

〈ζ, y − x〉 ≤ 0.

If β ≥ T (x) then (6.4) is automatically satisfied, since θ ≤ 0 by Proposition 6.8. If instead β < T (x),

we set x1 = x̄(β).

2observe that we are applying Theorem 2.6 for the reversed dynamics ẋ = −F (x)−G(x)u
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We estimate first 〈ζ, y− x1〉. Since y ∈ Rβ, recalling Remark 5.2, we have for suitable constants

K1,K2 given by Gronwall’s Lemma,

〈ζ, y − x1〉 = 〈λ(β), y − x1〉+ 〈λ(T (x))− λ(β), y − x1〉

≤ 〈λ(T (x))− λ(β), y − x1〉 ≤ K1‖λ(T (x))‖ |T (x)− β| ‖y − x1‖

≤ K1‖λ(T (x))‖ |T (x)− β|
(
‖y − x‖+ ‖x1 − x‖

)
≤ K1‖ζ‖ |T (x)− β|

(
‖y − x‖+K2|T (x)− β|

)
≤ K3‖ζ‖

(
‖y − x‖2 + |T (x)− β|2

)
for another suitable constant K3.

Second, we estimate 〈ζ, x1 − x〉. We have

〈ζ, x1 − x〉 =

∫ T (x)

β

〈
λ(T (x)), F (x̄(s)) +G(x̄(s))ū(s)

〉
ds

=

∫ T (x)

β

〈
λ(s), F (x̄(s)) +G(x̄(s))ū(s)

〉
ds

+

∫ T (x)

β

〈
λ(T (x))− λ(s), F (x̄(s)) +G(x̄(x))ū(s)

〉
ds

≤ (T (x)− β)h(x, ζ) +K4‖ζ‖|T (x)− β|2,

for a suitable constant K4, owing to Corollary 6.4 (applied to the reversed dynamics ẋ = −F (x)−
G(x)u). Therefore, since h(xζ) ≤ 0,

〈(ζ, θ), (y, β)− (x, T (x))〉 ≤ (K3 +K4)‖ζ‖
(
‖y − x‖2 + |T (x)− β|2

)
,

and the proof for the case (a) is concluded by observing that K3 and K4 are independent of ζ and

x.

In the second case we need to use the optimality of x. We observe first that, since θ ≤ 0, we only

need to prove (6.4) for β = T (y). Recalling Corollary 6.3, we can extend the control ū up to the

time T (y) so that the associated trajectory (still denoted by x̄(·)) remains optimal. Let also λ be

the extended adjoint vector and denote by x̃(·) the trajectory of the reversed dynamics associated

with the extended control ū, i.e.,{
˙̃x(t) = −F (x̃(t))−G(x̃(t))ũ(t),

x̃(0) = 0,

where ũ(t) = ū(T (y)− t).
Set x1 = x̃(T (y)). We estimate first 〈ζ, y − x1〉. We have, by arguing similarly as before,

〈ζ, y − x1〉 = 〈λ(T (y)), y − x1〉+ 〈λ(T (x))− λ(T (y)), y − x1〉

(the first summand is ≤ 0 by the construction in Theorem 6.2)

≤ 〈λ(T (x))− λ(T (y)), y − x1〉

≤ K5‖ζ‖
(
|T (y)− T (x)|2 + ‖y − x1‖2

)
.
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On the other hand,

〈ζ, x1 − x〉 =

∫ T (y)

T (x)

〈
ζ,−F (x̃(s))−G(x̃(s))ũ(s)

〉
ds

=

∫ T (y)

T (x)

〈
λ(s),−F (x̃(s))−G(x̃(s))ũ(s)

〉
ds

+

∫ T (y)

T (x)

〈
λ(T (x))− λ(s),−F (x̃(s))−G(x̃(s))ũ(s)

〉
ds

≤
∫ T (y)

T (x)
max
u∈U

〈
λ(s),−F (x̃(s))−G(x̃(s))u

〉
ds+K6‖ζ‖(T (y)− T (x))2

(for a suitable constant K6 given by Gronwall’s Lemma).

Recalling Corollary 6.4, the maximized Hamiltonian in the integral of the first summand is

constant. Therefore we obtain

〈ζ, x1 − x〉 ≤ −h(x, ζ)(T (y)− T (x)) +K6‖ζ‖ |T (y)− T (x)|2.

Combining the above estimates we obtain finally

〈(ζ, θ), (y, T (y))− (x, T (x))〉 ≤ (K5 +K6)‖ζ‖
(
‖y − x‖2 + |T (y)− T (x)|2

)
,

and the proof of the claim is concluded, by observing, again, that K5,K6 are independent of x and

ζ.

In order to conclude the proof we observe that NP
epi(T ) is pointed at every point (x, T (x)), x ∈ Rτ ,

since it is easy to see that the projection of every (ζ, θ) ∈ NP
epi(T )(x, T (x)) onto RN is normal to

the strictly convex set Rτ . Therefore, we can apply Corollary 3.1 in [17], with ΩP = intRτ , which

shows that epi(T ) has positive reach. �

7. Appendix

This section is devoted to some technical lemmas which are used in the proof of the main results.

Lemma 7.1. Let K : (a, b)→ [0, 1] be measurable and let k ∈ N. Then∫ b

a
(t− a)kK(t)dt ≥ 1

k + 1

(∫ b

a
K(t)dt

)k+1
,

and ∫ b

a
(b− t)kK(t)dt ≥ 1

k + 1

(∫ b

a
K(t)dt

)k+1
.

Proof. Indeed, ∫ b

a
(t− a)kK(t)dt = k!

∫ b

a

∫ b

tk

. . .

∫ b

t1

K(t0)dt0 . . . dtk.

Since K(t) ∈ [0, 1] for a.e. t ∈ [0, 1], we obtain that∫ b

a
(t− a)kK(t)dt ≥ k!

∫ b

a
K(tk)

∫ b

tk

K(tk−1) . . .

∫ b

t1

K(t0)dt0 . . . dtk

One can easily prove that∫ b

a
K(tk)

∫ b

tk

K(tk−1) . . .

∫ b

t1

K(t0)dt0 . . . dtk =
1

(k + 1)!

(∫ b

a
K(t)dt

)k+1

The proof is complete. �
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Lemma 7.2. Let f : [a, b] → R be absolutely continuous and monotone. Fix k ≥ 0 and assume

that there exists C ∈ R+ such that

(7.1) |f ′(s)| ≥ C(s− a)k ∀s ∈ [a, b].

Then, either f has no zeros in (a, b) and then, for all s ∈ (a, b) either

|f(s)| ≥ C

k + 1
(s− a)k+1 or |f(s)| ≥ C

k + 1
(b− s)k+1,

or there exists c ∈ (a, b) such that f(c) = 0 and then, for all s ∈ [a, b],

|f(s)| ≥ C

k + 1
|c− s|k+1

The same conclusions hold if (7.1) is substituted by

|f ′(s)| ≥ C(b− s)k ∀s ∈ [a, b].

Proof. We treat the case where f is nondecreasing, while the other one can be handled by

taking −f . So (7.1) now reads as

f ′(s) ≥ C(s− a)k ∀s ∈ [a, b].

If f has no zeros, we have two cases, namely f(s) > 0 for all s ∈ (a, b) or f(s) < 0 for all s ∈ (a, b).

For the first case

f(s)− f(a) =

∫ s

a
f ′(t)dt ≥ C

∫ s

a
(t− a)kdt =

C

k + 1
(s− a)k+1,

so that

f(s) ≥ C

k + 1
(s− a)k+1.

In the second case,

f(b)− f(s) =

∫ b

s
f ′(t)dt ≥ C

∫ b

s
(t− a)kdt

=
C

k + 1

[
(b− a)k+1 − (s− a)k+1

]
≥ C

k + 1
(b− s)k+1.

Therefore,

f(s) ≤ f(b)− C

k + 1
(b− s)k+1 ≤ − C

k + 1
(b− s)k+1.

Assume now that there exists c ∈ (a, b) such that f(c) = 0. Then, for all s ∈ [a, c] we have

−f(s) = f(c)− f(s) =

∫ c

s
f ′(t)dt ≥ C

k + 1
(c− s)k+1,

while for all s ∈ [c, b] we have

f(s) = f(s)− f(c) =

∫ s

c
f ′(t)dt ≥ C

k + 1

[
(s− a)k+1 − (c− a)k+1

]
≥ C

k + 1
(s− c)k+1,

and the proof is complete. �
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Proposition 7.3. Let K ⊂ RN be compact and assume that there exist γ > 0 and p > 1 with the

following property: for every x ∈ bdryK, there exists ζ 6= 0 such that for every y ∈ K one has

(7.2) 〈ζ, y − x〉 ≤ −γ‖ζ‖‖y − x‖p.

Then K is convex (with nonempty interior) and, for each x ∈ bdryK, (7.2) is satisfied by all

ζ ∈ NK(x).

Proof. We show first that K is strictly convex. To this aim, assume by contradiction that there

exist points x1 6= x2 ∈ K such that the segment ]x1, x2[ is not contained in the interior of K. Let

0 < t < 1 be such that xt = (1 − t)x1 + tx2 ∈ bdryK and let ζ 6= 0 be such that (7.2) holds with

xt in place of x. Obviously, 〈ζ, x2 − x1〉 = 0, and this is a contradiction. Since K is convex with

nonempty interior, for each x ∈ bdryK the normal cone NK(x) is pointed and so it is the convex

hull of its exposed rays (see [18]).

We now use Theorem 4.6 in [11] and see that for every unit vector w belonging to an exposed

ray of NK(x), there exists a sequence xn → x such that

NK(xn) = R+wn, ‖wn‖ = 1 and wn → w.

Of course (7.2) holds with xn (resp., wn) in place of x (resp., ζ), so that by passing to the limit, w

also satisfies (7.2). By taking convex combinations, we conclude the proof. �
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