ON THE MINIMUM TIME FUNCTION AROUND THE ORIGIN
GIOVANNI COLOMBO AND KHAI T. NGUYEN

ABSTRACT. We deal with finite dimensional linear and nonlinear control systems. If the system
is linear and autonomous and satisfies the classical normality assumption, we improve the well
known result on the strict convexity of the reachable set from the origin by giving a polynomial
estimate. The result is based on a careful analysis of the switching function. We extend this result
to nonautonomous linear systems, provided the time dependent system is not too far from the
autonomous system obtained by taking the time to be 0 in the dynamics.

Using a linearization approach, we prove a bang-bang principle, valid in dimensions 2 and 3 for a
class of nonlinear systems, affine and symmetric with respect to the control. Moreover we show
that, for two dimensional systems, the reachable set from the origin satisfies the same polynomial
strict convexity property as for the linearized dynamics, provided the nonlinearity is small enough.
Finally, under the same assumptions we show that the epigraph of the minimum time function has
positive reach, hence proving the first result of this type in a nonlinear setting. In all the above
results, we require that the linearization at the origin be normal.

We provide examples showing the sharpness of our assumptions.

1. INTRODUCTION

In the theory of autonomous linear control systems, the assumption of normality, i.e., a strong
controllability assumption requiring that if each control component is used separately, then Kalman
rank condition is satisfied, is well known. In particular (see [15, Sections 14, 15, and 16]), normality
implies that the control steering the origin to a point z in minimum time is unique and bang-bang;
moreover the reachable set from the origin, R7, is a strictly convex body for all times 7 > 0. Simple
examples, on the other hand, show that convexity of the reachable set is easily lost when passing to
a nonlinear dynamics, even if the control covers all directions and appears linearly. In particular,

the control system

nt) =—[p®)?+u(t), —-1<u <1
U2(t) = ua(?) —1<us <1

(1.1)

which was analyzed in [6], fails to have convex (and even normally regular, i.e., “without inward
corners”) reachable sets from the origin at any positive time.

Similarly, the minimum time to reach the origin for a linear system is semiconvex, i.e., it is a
quadratic perturbation of a convex function, provided a first order controllability assumption is
satisfied (see [6, 7]), or has epigraph with positive reach, i.e., it satisfies a quite good kind of
generalized convexity, provided Kalman rank condition holds (see [11, 12]). On the other hand, the
same example introduced above shows that such properties may fail even for a simple nonlinear
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dynamics.

We are not aware of any result of semiconvexity type valid for a nonlinear dynamics, where actually
results of semiconcave type are more natural and easier to obtain, provided the target (or the
dynamics) satisfy an inner ball condition (see [7, 3, 13, 17, 4, 5]). Further results on the regularity
of the minimum time function 7', for two dimensional systems with a single input control, are
described in [2, Chapter 3|, where in particular, under generic assumptions, a characterization of
smooth and nonsmooth points of the level sets of T is given.

In this paper, we give a contribution to the understanding of the behavior of the minimum time
function both for linear, autonomous and nonautonomous, and nonlinear control systems. We take
the origin as the target (or as the source, for the reversed dynamics), hence going outside the realm
of semiconcavity, and give results, under easily verifiable assumptions, on the following topics:

e strict convexity of the reachable set from the origin
e uniqueness of the optimal control

e a nonlinear bang-bang principle

e extending backwards optimal trajectories

e positive reach of the epigraph of 7'

Our method is based on new results on linear control systems satisfying the normality condition,
and on linearization at the origin. The underlying idea, in fact, is requiring enough strength to
such linearization, so that examples like (1.1) are ruled out. Our linear results hold in any space
dimension, while the nonlinear part is confined to two or three dimensional spaces. Our arguments
are based essentially on a careful analysis of the switching function, namely the function whose sign
is expected to determine the optimal control, according to Pontryagin’s Maximum Principle. The
point is exactly showing that this sign is well defined, except for at most finitely many zeros. To
this aim, the normality assumption is pivotal, as it permits to split any finite interval into finitely
many sets, each one being a disjoint union of finitely many intervals, where the switching function
or its derivatives are uniformly bounded away from zero (see Lemma 3.2). From this fact we are
able to deduce a quantitative estimate on the strict convexity of the reachable set. More precisely
(see Theorem 3.3), for a linear control system in RY we show that for all 7 > 0 there exists a

positive constant v > 0 such that
(Cy—a) <=¢lllly =« forallz,y € RT, ¢ € Ngr(x)

(here Ng-(x) denotes the normal cone to R” at x). We show through an example that the exponent
N is optimal. Section 3 is devoted to the above topic, together with an auxiliary study for a linear
nonautonomous dynamics.

The nonlinear part starts with a nonlinear bang-bang result (Section 4), valid up to dimension 3. We
consider a nonlinear control system which is affine with respect to the control: if the linearization at
the origin is normal, then every optimal control is bang-bang. The proof is based on Pontryagin’s
Maximum Principle: if the nonlinearity contains only parts which are of order larger or equal to the
space dimension, then we are able to transfer to the switching function all the properties satisfied by
the switching function of the dynamics linearized at the origin. This idea is at the basis also of the
strict convexity of the reachable set for a nonlinear two dimensional dynamics (see Theorem 5.1)
and of proving that all points close enough to the origin are optimal, i.e., any trajectory steering
a point to the origin optimally can be extended backwards still remaining optimal (see Theorem
6.2). In this case, the difficulty is extending the optimal control: our analysis permits to predict
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backwards the sign of the switching function. Finally, we show under the same assumptions that
the epigraph of the minimum time function 7" has positive reach, hence obtaining a rich bunch
of regularity properties for T', as listed in Theorem 2.4. We also show through an example (see
Example 5.3) that the assumptions on the nonlinear part cannot be avoided, while (1.1) shows
that normality at the origin is essential. The restrictions on the space dimension for the nonlinear
results will be explained after the relevant proofs (see Remarks 4.2 and 5.4).

To our knowledge, the results we present here as well as most of the used methods do not trace back
to previous literature. In particular, the nonlinear bang-bang results of Krener [16] and Sussmann
[19] seem to be of a very different nature.

2. PRELIMINARIES

2.1. Nonsmooth analysis and sets with positive reach.
In all the paper, the space dimension N will be supposed larger or equal to 2.
Let K C RY be closed. The distance function to K and the projection mapping onto K are defined
respectively by
dg(r) = min{lly —zf : y € K},
mr(z) = {ye K :|ly—uzl =dx(z)}
The boundary of K is bdry K. Given # € K and v € RY, we say that v is a prozimal normal to K
at = (and we will denote this fact by v € Ng(x)) if there exists o = o(v,x) > 0 such that
(,y—z)<olly—z|* forallyeK;

equivalently v € Ng(x) if and only if there exists p > 0 such that mx(z + pv) = {z}, and in
this case we say that the proximal normal v is realized by a ball of radius p > 0. If K is convex
then Nk (z) coincides with the normal cone of Convex Analysis. The proximal subdifferential of a
function f: Q — R at a point z of its domain, df(z), is the set of vectors v € RY such that

(Uv _1) € Nepi(f)(xv f(ﬂ?)),

where epi(f), the epigraph of f, is defined as

epi(f) ={(z,y) € A xR:y > f(z)}.
For an introduction to nonsmooth analysis we make reference, e.g., to [10, Chapters 1 and 2].
We will make use of the following concepts due to Federer [14]: given an arbitrary set K C RY, we
set
Unp(K) = {z RN : mg(z) is a singleton},
reach(K,z) = sup{r >0 : xz+rB" C Unp(K)},

the latter being defined for x € K. We remark that reach(K,z) is continuous with respect to
re K.

Definition 2.1. We say that a closed K C RN has positive reach if

reach(K) := in}f{ reach(K, z) > 0.
fAS

A locally closed set K has locally positive reach if reach(K,x) > 0 for every x € K.
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The positive reach property is actually an external sphere condition with (locally) uniform radius.
More precisely, it holds (see [14, §4]):

Proposition 2.2. Let K C RY be closed. Then K has positive reach if and only if there exists a
continuous function ¢ : K — [0, +00) such that the inequality

(2.1) (v,y = 2) < p(a)|lv] lly — =]
holds for all x,y € K and v € Ng(z).

We say that f: Q — R is of class C»1(Q) (here Q C RY is open) if its partial derivatives exist

and are Lipschitz.

Remark 2.3. The case when o(x) = 0 in (2.1) is equivalent to the convezity of K, and (2.1) is
in this sense a generalization of convexity. Furthermore, it is easy to see that if the boundary of K
is the graph of a CY'-function, then K has positive reach and o in (2.1) can be taken as constant.

Hence positive reach property generalizes Ct'-manifolds as well.

Lower semicontinuous functions whose epigraph has positive reach enjoy remarkable regularity
properties, which are similar to properties of convex functions. In particular, the following re-
sult holds true (we state it for continuous functions for simplicity). The Lebesgue N-dimensional
measure and the Hausdorff d-dimensional measure are denoted, respectively, by £V and H¢.

Theorem 2.4. Let Q C RY be open, and let f : Q — R be continuous, and such that epi(f) has
locally positive reach. Then there exists a sequence of sets Qp C Q such that €, is compact in Q)
and

(1) the union of Qy covers LN -almost all Q;

(2) for all x € |J,, Qy, there exist § = 6(x) > 0, L = L(z) > 0 such that

f is Lipschitz on B(x,d) with ratio L, and hence semiconver on B(x, ).

Consequently,
(8) f is a.e. Fréchet differentiable and admits a second order Taylor expansion around a.e.
point of its domain.
Moreover, the set of points where the graph of f is nonsmooth has small Hausdorff dimension.
More precisely,
(4) for every k = 1,...,N, the set {x € intdom(f) | the dimension of Of(x) is > k} is
countably HN~F-rectifiable.
Finally,
(5) [ has locally bounded variation in Q.

This result is essentially Theorem 5.1 and Proposition 7.1 in [11]. For properties of semicon-

vex/semiconcave functions we refer to [7].

2.2. Control theory. We will consider control systems linear or nonlinear with respect to the space
variable and affine and symmetric with respect to the control. More precisely, we will consider the

linear control system

y(t) = Ay(t) + Bu(t) ae.
(2.2) u(t) € U =[-1,1]M ae.
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where 1 < M < N and A € Mpyxn, B € Mpyxus, being possibly time dependent, and U =

[~1, UM > (uq,...,upn) =: u, together with the nonlinear control system
y(t) = F(y(t)) + Gy(t))u(t) ae.
(2.3) u(t) € [-1,1M a.e.
y(0) =0,

where F' and G are suitable vector fields (the actual assumptions will be stated later). We will
use also the notation B = (by,...,by) or G = (g1,...,9m), where each entry is an N-dimensional
column. We denote by U,q, the set of admissible controls, i.e., all measurable functions u, such
that u(s) € U for a.e. s. For any u(-) € Uyg, the (unique, as it will follow from the assumptions on
F and G) Carathéodory solution of (2.2) or of (2.3) is denoted by y“(-). In the linear case,

t
y“(t):/ eA=%) Bu(s)ds,
0

so that the reachable set from 0 in time ¢ can be described by
t
(2.4) R = / A Bu(s)ds) | u(?) € Una .
0
It is well known that in the linear case the set R! is convex and compact (see, e.g., [15, Lemma
12.1]), while in the nonlinear case (2.3) R! := {y%(¢) | u(-) € Uaq} is compact and not necessarily
convex (see, e.g., [8, Chapter 10]).
For a fixed z € RY, we define

0(z,u) :==min {t > 0| y™“(t) = 0},
where y**(-) denotes the solution of y = F(y) + G(y)u such that y(0) = z. Of course, §(z,u) €

[0, +00], and O(z,u) is the time taken for the trajectory y**(-) to reach 0, provided 0(x,u) < +oc.
The minimum time T(x) to reach 0 from x is defined by

(2.5) T(x) :=inf {0(z,u) |u(-) € Uaa}-

Observe that the sublevel R; = {x : T'(x) < t} of T(-) equals the reachable set from the origin
within the (same) time ¢ for the reversed dynamics

t=—-F(z)—Gx)u, uelU.

If @ is an admissible control steering x to the origin in the minimum time 7'(z) (i.e., an optimal
control), then the Dynamic Programming Principle (see, e.g., Proposition 2.1, Chapter IV, in
[1]) implies that T'(-) is strictly increasing along the optimal trajectory y™%. Therefore, for all
0 <t < T(x) the point y**(t) belongs to the boundary of R;.

Pontryagin’s Maximum Principle is a fundamental tool for the analysis of optimal control prob-
lems. We state it for points belonging to the boundary of reachable sets. In view of the previous
remark, this will apply also to points belonging to optimal trajectories. We give first its linear

version.

Theorem 2.5 (Pontryagin’s Maximum Principle for linear systems). Consider the problem (2.2),
fir T > 0, and suppose T € RT is realized by the control u(-) € Uy (i.e., y*(T) = ). Then
z € bdry RT if and only if for some ¢ € Npr(z), ( # 0, it holds

(2.6) u;(t) = sign(C, AT b)), a.e. t €[0,T),
foralli=1,2,..., M.
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A well known reference for this result is [15, Lemma 13.1].

Before stating Pontryagin’s principle for the nonlinear case (2.3) (with M = 1), we need to
introduce the Mazimized Hamiltonian.
We define for every triple (z,p,u) € RV x RN x [~1,1]

H(z,p,u) = (p, F(2)) + ulp, G(x))
and
H(z,p) = max{H(z,p,u) : u € [-1,1]}.
Then Pontryagin’s principle reads as follows (see, e.g., [2, Section 2.1] or [9, Theorem 3.5.4]).

Theorem 2.6 (Pontryagin’s Maximum Principle for nonlinear systems). Fiz T' > 0 and let y* be
a trajectory of (2.3) such that y*(T) belongs to the boundary of RT. Then there exist a function
A:[0,T] = RN, never vanishing, and a constant Ao < 0 such that for a.e. t € [0,T] one has:

D) A(t) = =A(6) (DF(y"(t)) + DG(y"(t))u(t)),
11) H(yu(t)a )‘(t)7 U(t)) + X0 =0,
i) H(y"(0), A1), u(t)) = H(y"(t), A(®)).
Furthermore,
A(T) € Npz(y*(T))

where here Npr(y“(T)) denotes the Clarke normal cone.

Definition 2.7. We say that a control u is essentially determined by Pontryagin’s Principle if for
any uy satisfying iii) in Theorem 2.6 (for the adjoint curve \ associated with the trajectory y*) one
has ui(t) = u(t) a.e. in [0,T).

In the following we will make extensive use of the classical concept of normality for linear systems,

which we are now going to introduce.

Definition 2.8. The system (2.2) is normal if and only if for every column b; of B, i=1,..., M,
we have

Rank[b;, Ab;, ..., AN~ 'b;] = N.
The main classical result for normal linear systems is concerned with the reachable set.

Theorem 2.9. Assume that the linear control system(2.2) is normal. Then the reachable set RT
is strictly convex for any T > 0.

Proof. One can find a proof in [15], Sections 14 and 15. O

Remark 2.10. If the system (2.2) is normal then (A, B) satisfies the Kalman rank condition.
Therefore the minimum time function is everywhere finite and continuous (actually Hélder contin-
uous with exponent 1/N, see, e.g., Theorem 17.3 in [15] and Theorem 1.9, Chapter IV, in [1] and

references therein,).
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3. QUANTITATIVE STRICT CONVEXITY OF REACHABLE SETS: THE LINEAR CASE

3.1. Autonomous systems.

This subsection is devoted to improving the classical result on the strict convexity of reachable sets
for normal linear control systems of the type (2.2). We will give an estimate for the boundary of
reachable sets which implies a uniform (polynomial) strict convexity with an optimal exponent.
In the first Lemma we define the switching function and begin studying its behavior under the

normality assumption.

Lemma 3.1. Let A € Myyn and b € RN be such that

(3.1) Rank[b, Ab, ..., AN"1p] = N.
Take ¢ € RN, with ||C|| = 1, and define, for s € [0, +0c)

(3.2) g(s) = (e*b, ().

Then there exists a constant L, depending only on A,b, N such that, for all s € [0, +00),

N-—1
(3.3) Z 199 (s)] > Le1Alls.
=0
Proof. Set
K= (b, Ab, ... AN—lb)

and observe that, by (3.1)

(3.4) L= min (| >0,

Fix ¢ € RY with ||¢]| = 1 and write ¢;(s) = e54" ¢. Observe that ¢ = e=4"5¢;(s) and [|¢1(s)] >

¢S4l We compute now, for i =0,1,...,N — 1,

(3.5) 9 (s) = (eMA'b,¢) = (A'b, (1 (s)).
Therefore,
Kéi(s) = (b, Ab, ... AN*1b> ¢i(s)
= (996), 9M(s), .., gV D))

Using (3.4) we have that
IKG ()] = L4,

On the other hand,
N-1

G ()l < D 19 (s)]

i=0
and the proof is concluded. ]

The next Lemma is crucial for estimating the number of zeros of the switching function g (cor-
responding to the number of switching points of the optimal control associated with g) and for
studying their multiplicity. We recall that the constant £ was defined in (3.4).
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Lemma 3.2. Let A € Myyxy and b € RY be satisfying (3.1). Take ¢ € RY, ||¢|| = 1, and fix
T >0. Let g(s), s € [0,T], be defined as in (3.2).

Then there exist disjoint sets Iy,...,In_1 and numbers N;, depending only on A,b,T and N
such that

N-1
[07T] = U Ii
=0

and, for all i = 0,1,...,N — 1, the set I; is the disjoint union of at most N; intervals. Moreover,
foreachi=0,1,...,N —1, for all s € I;, we have

(36) 90(5)] = el
Proof. We proceed by induction for ¢ from 0 to N — 1. Set
LelAls
(37) C(S) = T,

and
Jo={s€(0,T) | [g(s)] < c(s)}.

Since Jy is open, we can write it as the disjoint union of at most countably many open intervals,
o0

(3.8) Jo=U 7.
k=1

We assume, without loss of generality, that there are at least N such intervals. Fix now any number
N’ > N, and take a subfamily of the intervals J(’f consisting of at most N’ elements. Without loss
of generality, we can rearrange their indexes k so that J(]f = (agk, asgt+1), where 1 < k < N" and
0<as<az<ayg<as< L agk < agkt1 - - < AaNT41 <T.

Now, fix k and consider the N intervals (agk, a2x+1);-- -, (@2k+N—1)> G2(kn)—1)- Set, for j =
0,1,..., N —1,

(@2(k+4)> G2(krg)+1) = 15,
and, for j =0,1,...,N — 2

[@2(k45)+15 Q2(ktj1)] = I
Observe that

N—-1 N-2
U v U I = (ask asgesny—1)-
=0 =0

We are going to give a lower bound on |a2(k FN)-1 — ask| which will turn out to be independent
of both k and N’. From this fact it will follow automatically that the intervals (agy,asgr1) are
nonempty only for finitely many k.

Observe that for each 7 = 0,1,..., N — 2, there exists at least one point cjl el ]+ such that
g’(c}) = 0. Therefore, there exist at least N — 2 points, say c]z, for j=0,1,...,N — 3, such that

2 11 2
¢; € (¢j,¢i4q) and g"(c5) = 0.

Proceeding by induction we see that, for each i = 1,..., N — 1, there exists at least one point
¢i € (@2k41, ag(k+N)—1) such that g (c;) = 0.
Pick any sg € (agg, ask+1). We have

(3.9) l9(s0)| < c(s0)s
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and, fort=1,...,N — 1,

90l = 197 0) gl =| [ g s)ds
50

a2(k+N)—1 . .
/ 19" (s)|ds < (ag(usn)—1 — ask)el AT A,

a2

where the last inequality is due to (3.5). Therefore,

N-1 N-1
(3.10) S 19 (50)] < (@)1 — ase)el 41T 3 4+

i=1 1=1
On the other hand, recalling (3.3), (3.7), and (3.9) we have

N-1
, N -1 N -1
11 (@) > LelIAllso _ — 2 e llAlso > —1AIT,

(3.11) ; 19 (s0)| > Le e(s0) = —y—Le 10 = ——Le

From (3.10) and (3.11) we obtain

(N — 1) £e-2IAIT

N YA

which is the desired estimate. Observe that the right hand side of (3.12) depends only on A,b, T

and N.
We set now Ny to be the number of nonempty intervals contributing to the union in (3.8), and

(3.12) a2(k+N)—1 — G2k =

recall that we have just proved that Ny depends only on A,b,T and N, and actually

N2 N-1

T %
(3.13) No € —— 1262”AHT > A+ N -1,
=1

Set Iy = [0, T]\Jo and observe that we have completed the proof of the lemma for i = 0.
After this step, we formulate our induction process. We are going to construct, for each i =
0,...,N — 1, two disjoint sets I;, J; with the following properties
(ind1) for every s € I;, [g)(s)| > ¢(s);
(ind2) for every s € J;, Zj\[:—z}rl 199 (5)] > (N —i—1)e(s);
(ind3) Ji UIi = Ji—l;
(ind4) J; is a finite union of open intervals whose number is at most N;, and A; depends only on
T7 E? A’ b? N7 2.;
(ind5) I; is the finite union of at most N; + N;_1 intervals.

For i@ = 0 the above construction was already performed (take J_; = (0,7)). Pick any i =
1,..., N —2 (the case i = N — 1 will be treated separately) and assume that (ind1), ..., (ind5) hold
up to ¢« — 1. We wish to show that the above statements hold for ¢ as well. To this aim, consider

the set

Jii={s € Ji_1 | |9V (s)] < e(s)}-
For every connected component (a,b) of J;_1, we are going to prove that Ji(a’b) = J;N(a,b) is a
finite union of intervals, and give a bound on their number ./\/'Z-(a’b).
So, fix a connected component (a,b) of J; and represent the open set Ji(a’b) as a disjoint union of
at most countably many intervals JZ-’C , k € N (for simplicity of writing we drop the dependence on
(a,b)). Assume without loss of generality that there are at most N —i intervals J¥, fix any number

N" > N — i, and take any subfamily of {JF} consisting of at most N” intervals. We can write
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JF = (agk, agk11), where 1 <k < N” anda < az < a3 < ag < as < ... < agyry1 < b. Fix k and
consider the intervals (agg, a2k+1), - -5 (@2(k+N—i—1)> G2(k+N—i)—1)- Set, for j =0,..., N —i—1,
(a2(k+j) a2(k+y)+1) I] )
and, for 7 =0,...,N — ¢ — 2,
[@2(k45)+15 Q2(ktj1)] = I

Observe that
N—i—1 N—i—2

U I @] U I+ agk,ag(k,JrN i)— )

Foreach j =0,..., N—i—2 there exists at least one point c € I+ such that g( )( ) = 0. Proceeding
by induction we see that for each m =0,...,N—7—2 there ex1sts a point ¢, € (a2k+1, CLQ(k+N_Z)_1)
such that g™ (c,,) = 0. Pick any sq € (agk, aa(k+1)). By arguing as for i = 0, we obtain on one
hand

(3.14) 19 (s0)| < e(s0)

and, for allm=0,...N —7—1,

|g(i+m)(80)’ < (a2(k+N7i)fl _ a2k)6||A||THAi+m+1bH7

the latter inequality being due to (3.5). Thus

N-1 N-1
(3.15) > 19" (s0)] < (aagesn—iy—1 — agr)el TN~ lam ).
m=i+1 m=i+1

On the other hand, owing to (ind2) and (3.14), we obtain

N-1

S 19 (s)] = (N =i = e(so).

m=1+1

By combining the above inequality with (3.15) we now obtain

N-—-i-—-1 1
TV 2 e lAIT
A(k+N—i)—1 — A2k = Le
Zm i+1 HAm—Hb”
Therefore, Ji(a’b) is the union of finitely many disjoint open intervals (al;lgl, a;*k‘;il) E=1,... ,/\fi(a’b),
where
(ap) - N(N —i)[b—al -
ab - —al oyayr m+1 i
(3.16) N < g Z |A™ || + N —d — 1.
m=i+1
We define

1 = {s € (@) | 18] > e(s)}

(a.0) + 1 intervals.

and observe that I i(a’ ) is the union of at most N,
We finally set I; to be the union of the I Z-(a” i) over all the (at most N;_1) connected components
(aj,b;) of Ji_1. Therefore, I; is the union of at most N; + N;_; intervals, where

aby) - NN =) T = ,
(3.17) N; = ZN _ﬁﬁ AT N AT + NGy (N =i = 1).

7=1 m=i+1
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Finally we observe that J; is the union of at most N; open intervals.
If i = N — 1, we observe that for each s € Jy_o, recalling (ind2) we have [¢gV=D(s)| > ¢(s).
Therefore we set Jy_1 = 0 and In_1 = Jy_2. The proof is concluded. O

We are now going to prove the main result of this subsection.

Theorem 3.3. Consider the linear control system
(3.18) & = Ax + Bu,

where 1 < M < N, A€ Myxn, B €Mpxar, and u = (u,...,up) € [—1,1]M.
Assume that (3.18) is normal, i.e., for every column b;, j=1,...,M, of B,

rank [bj, Abj,..., AN7'b] = N.

Let RT be defined according to (2.4). Then for all T > 0 there exists a constant v > 0, depending
only on N, M, A, B, T such that for all z,y € RY, for all ( € Ngr(x), the inequality

(3.19) (CGy—az) <= [IK] lly — 2™
holds. Moreover, there exists another constant ', depending only on N, M, A, B, T, such that
(3.20) the ball B(0,+'T™) is contained in RT.
for all T > 0. Finally, the constants v and ' are bounded away from zero as T — 0.
Proof. We consider first the case M = 1, so (3.18) reads as
T=Azx+bu , |u| <1,

for a suitable b € RY. Fix # € bdry R” together with an optimal control @(-) steering 0 to Z in
time 7" and ¢ € Nz (), ||| = 1. We assume first that ¢ satisfies Pontryagin’s maximum principle,
ie., for a.e. t €[0,7],

a(t) = sign(¢, e 1p)

and prove (3.19) for such ¢. The general case will then follow using Proposition 7.3.

So, we take § € RT together with a control u(-) steering 0 to 4 and compute:
T
G- = [ eI ) - aw)de
0
(recalling (2.6))
T
=~ [ HCAT ) fute) — (o) dr
0

Set K (t) = $|u(t) — u(t)| and observe that 0 < K(t) <1 for a.e. t € [0,7], and

T T
(3.21) ¢, g—1) = —2/0 (¢, eAT=D0) | K (t)dt = —2/0 (¢, e K (T — t)dt.
Moreover,

T T
(3.22) 17— Z| = H/O eAT=p(u(t) — u(t))dtH < 2eTAHb||/O K (t)dt.

Set, for s € [0, +00),
g(s) = (™D, ¢).
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By Lemma 3.2 there exist disjoint sets I, I1, ..., Iy—1 and numbers N; such that [0,7] = Ui]\i_ol I;,
each I; is the disjoint union of at most N; intervals and (3.6) holds. Observe that, in particular, it
follows that g may vanish at most at finitely many times, and so, recalling (2.6), the control @ is
piecewise constant and equal to either 1 or to —1.

We rewrite

N-—1
(3.23) G- =23 [ lg@)Ki(s)ds
i=0 Y 1i

where K(s) = K(T — s). We are now going to estimate separately the integrals [, [g(s)|K1(s)ds
foralli=0,1,...,N — 1.
For ¢ = 0, we have
L
(3.24) 19(s)|K1(s)ds > = AT [ K (s)ds.
1o N I

Fix now i =1,2,..., N — 1, and write, recalling Lemma 3.2,

U azg; zg

where all open intervals (a;j,b;;) are disjoint. Recalling (3.6), we have, for all s € I;, |¢(s)| >
LelAIT Fix j € {1,2,...,N;}. We are now going to apply inductively Lemma 7.2 on [aij, bij]
with the functions ¢(~%=1) in place of f, for k =0,...,i — 1. Let k = 0 and set f = g1, Then
the assumption (7.1) is satisfied with C' = %B_HA”T, thanks to (3.6), and Lemma 7.2 yields that
for some point c,?j € [aij, bi;j] we have

190 (s)| > Cls — | Vs € [ai;, byj)-

Let K = 1. By applying Lemma 7.2 on each of the two (possibly degenerate) intervals aij,cgj,

Zj,b” to the function f = ¢(—2?) with C' = e ~II4IT we find suitable points cilj € [aij,c?j] and

c e [c? cij» bij] such that we have both
(i—2) ¢ 142 0
g (s) > 5(3 =) Vs € lai;, ¢
and

~ C
i—2 22
9D 2 S(s— )P Vs e )byl

By continuing the induction process until k = i — 1, we split the interval [a;;, b;;] into at most 2°

intervals [a;; = c?j, cllj] [czlj, czzj} . [c?; Lbij = cfj] (some of them being possibly degenerate) such
that for all [ = 0,1,...,2" — 1 and s € [c U,cﬁjl] one has

. C ; c ;
(3.25) either |g(s)| > ?(s — céj)l or |g(s)| > —'(c H_ )t

Recalling (3.23) and the above discussion, we have

N—-1
j—7) = -2 Ki(s)d
(€7 —7) ; /1 l9(s) [ (5) ds
1N;—12"—1 l+1

- _2[/ l9(s)| KL (s ds+NlNil§;/ $)| K1 (s)d ]

) 7=0
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Recalling (3.24) and (3.25), and C = %e_HAHT, we obtain from the above expression that

1201 L+l —l %

(3.26)  (Gp-m) <= "'A"T[/ Kas dS+ZZZ/ ) ds

i=1 j=0 [=0

=l I+1
;; is either cm or ¢,

Lemma 7.1 to each summand of (3.26) we therefore obtain

where C; according to the two possibilities appearing in (3.25). Applying

I4+1

1201 fcl” Ki(s)ds i
¢y-z) < —2 AT!/Kl ds+ZZZ G+ 1) | ]

zlgOlO

+1

(using the convexity of z — 2" on the positive half line)

or N-1N;—1 bij i
2L Ayt
< -y /K1 d8+zg z+1'212< | 1(s)ds) ]
N-1
2L i+1
2L e | L
< -Te Kl ds+; ZH,QZQM /K1 yds)' ]

Thus, recalling that 0 < K;(s) <1 a.e.,

o 2L 1 N
(Cy—1) < — e ”A”lezv—l< [OKl(S)dS)

(3.27) o

1 N
* ; (i +1)! 2° NF| ;[N i1 </1 Ki(s) dS) ]

Owing to (3.13) and (3.17), we see that No < N1 < ... < Ny < C(A,b, N)e2AIT where C(A, b, N)
depends only on A, b, N. Therefore, we obtain finally from (3.27) and the definition of K that

T N

(3.29) (€.5- ) < ~CAb NI ([ un) —a)])
0
where C'(A,b, N, T) is a positive constant, depending only on A, b, N,T such that
(3.29) liminf C(A4,b, N, T) > 0.
T—0
Recalling (3.22), we complete the proof for the case M =1 (i.e., a scalar control) by setting
y =2 N IINVEDT I =N C(A, b, N, T).

Let now M > 1. Take # € bdry RT together with an optimal control @(-) = (@1(-),...,unm(-))
steering the origin to Z in the optimal time T, and 7 € R” with a control u(-) = (u1(-),...,un ("))
steering the origin to ¢ in time 7. Then, for each ¢ € Nz (Z), ||(]| = 1, we can write

T M- .7
(330)  (C.j-7) < /0 (¢, M=) Bu(s)yds = 3 /0 (¢, AT g (s) — a(s)) ds,
=1

where B = (bi)izl 5 - Recalling (2.6) we have also

S T
= [E — _ e T—s bl
(3a1) cr-n=-3 [ le

s)’ ds.
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Moreover,

M T
(3.32) g — 2 < AT o) / |ui(s) — ui(s)|ds.
i=1 0

We now apply the same argument leading to (3.28) to each summand of the right hand side of
(3.30). Therefore we obtain, using (3.31), that

M T
(3.33) (¢, —7) < —C'(A, B, TN, M) MIT Y~ ( /0 ui(s) — a(s)] ds)
i=1

where the positive constant C’ depends only on A, B,T, N, M and
liminf C'(A, B,T,N, M) > 0.
T—0
We conclude the proof of (3.19) by applying (3.32) and setting
v = 2Ne=WHDIAITC" (A B, T, N, M),

where C” is a constant enjoying the same properties as C’.

In order to prove the statement concerning the ball contained in R”, observe that the inequality
(3.33) with w = 0 and § = 0, taking into account that the control @ is necessarily bang-bang,
becomes

(¢,z) > C"(A, B, T,N, M)e AT prpN
from which (taking ||¢|| = 1) we obtain
(3.34) |Z| > C"(A, B, T, N, M)e AT pprN .= 4'TN.

The above inequality yields in particular that 0 belongs to the interior of R”. Since R is convex
and (3.34) holds for all z € bdry RT, (3.20) follows.

The last statement follows from (3.29) and the explicit expressions for v and 4/. The proof is
concluded. O

Remark 3.4. The exponent N in (3.19) is optimal.

In fact, consider the dynamics
= u, u e [—1,1].

Let x1(-) be the solution corresponding to the control u = 1. Fix s > 0 and let z5(-) be the solution
corresponding to the control

1 O<t<s

us(t) =
-1 s<t.
Fix any 7' > 0 and observe that x1(T) = TV /N!, while, for 0 < s < T,
-2
2s(T) — 21 (T) = W(T —s)V.

Observe also that |¢§"~(T) — 2N V(1) = 2|T 5|, so that setting X; = (zi,2},..., 2" V),

i =1, s, one obtains

{e1, Xs(T) — Xa(T)) 2(T — )N > || Xu(T) - X:(D)|| Y,

TN
for a suitable positive constant v. If s — T, then X (T') — X1(7), and this shows that IV is the
smallest exponent allowed in (3.19). O
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3.2. Nonautonomous systems.

The following Lemma is a first step for studying the reachable sets in the case of nonlinear
control systems by using the linearization approach which we design in this paper. We will prove
that under the rank condition (normality) at 0 of the linear nonautonomous control system (3.35),
the strict convexity of the reachable sets is preserved up to a sufficiently small time, provided A(t)
and B(t) are not too far from A(0), B(0). Sufficient conditions for the validity of the assumptions
if N = 2 will be given below. In Section 4 sufficient conditions in the case where A and B come
from a linearization around a trajectory will also be given.

Let A:RT — Mpyyy and B : RT — Myxar, 1 < M < N, be measurable and consider the linear

nonautonomous control system
(3.35) z(t) = A(t)x(t) + B(t)u(t),

together with

(3.36) (1) = A(0)2(t) + BO)u(?),

where u = (uy, ..., up) € [-1,1]™. We denote by M ' (-, ) the matrix solution of
0
51X =X A(t) f >

(3.37) DX (t,s) = X(t,s)A(t) for t,s >0
M(S’ S) — ]I

and by M, (-,-) the matrix solution of

2 s) = S ort,s
(3.38) {?\Zj‘it;)): Hf((t, )A(0) for t,s > 0

Let b(+) be a column of B(-), let T > 0 and define, for any ¢ € RY,

(3.39) g(t) = (CM (T, t),b(t)),
and
(3.40) go(t) = ((My (T, t),b(0)).

Observe that g and gy can be seen as the switching functions related to (3.35) and (3.36), respec-
tively.

We state now an abstract result which permits to transfer to g some properties of gg and to establish
the quantitative strict convexity estimate for the reachable set from the origin of (3.35). Sufficient
conditions in order to apply the following lemma to suitable linearizations in dimension 2 and 3
will be given in Section 4.

Lemma 3.5. Fiz ¢ € RN, ||¢|| = 1, and let g and gy be defined according to (3.39) and (3.40),
respectively. Assume that
(i) rank[b(0), A(0)b(0),..., AN=L(0)b(0)] = N;
(ii) g is N — 2 times differentiable and gN=2) s absolutely continuous;
(iii) there exists a constant K = K(A, B) and a time T’ such that for alli =0,...,N — 1 one
has

9@ — g5’ O <Kt forall 0<t<T.
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Let L be defined by (3.4), with A(0), b(0) in place of A, b, respectively.

Then there exists T = T (A, B, N, T") with the following property:

for every 0 < 7 < T there ewist disjoint sets I; and numbers Ni, i =0,...,N — 1, depending only
on A(0), B(0), 7, such that

N—

(a) [0.7] = Ui I

(b) each I;, i =0,...,N — 1 is the disjoint union of at most N; intervals;
(¢) for each i =0,...,N —2 and each s € I;

; L
(@) > o~ [1A0)]s.

(d) gV has constant sign in every connected component of In_1 and, for each s € In_q

gD ()] > e~ lIA0)s

— 2N
Remark 3.6. Iy,...,In_1 are exactly the intervals constructed in Lemma 3.2 with go in place of
g.
Proof of Lemma 3.5. Let Iy,...,In_1 be the sets appearing in the statement of Lemma 3.2,

with go in place of g, so that, in particular, (a) and (b) hold. Moreover, for each s € I; we have
9 (5)| = e MO
Therefore, if KT < %e‘”A(O)”S, also (c) and (d) hold, owing to (iii). O

Remark 3.7. Sufficient conditions for the validity of the assumptions of Lemma 3.5 in the case
N =2.

Let N = 2. Sufficient conditions for the validity of assumptions (ii) and (iii) in the above Lemma
are the following:

(Cp) A(-) is measurable and
|A(t) — A(0)|| < Lt for all t > 0;

(C1) B(:) is absolutely continuous and
H%B(t)” < 2Lt for all ¢ > 0,

where L is a positive constant.

Observe that condition (Cp) implies that ¢ = 0 is a continuity point for A(-), so that A(0) in (Cp)
is meaningful. O

As an immediate corollary of Lemma 3.5 we obtain the following

Theorem 3.8. Consider the linear nonautonomous control system (3.35) under the assumptions
of Lemma (3.5). Let R™ denote the reachable set at time T > 0 from the origin for (3.35). Then
there exist a time T = T(A,B,N) > 0 and a constant v = y(A, B, N) > 0 such that for every
0<7<T, for every x,y € R”, for every ( € Nr-(x), we have

Gy —a) < =llChly — =™
Moreover, there exists another constant v' = ~'(A, B, N) > 0 such that for every 0 <7 < T

(3.41) the ball B(0,+'mY) s contained in R7.
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Proof. The argument developed in the proof of Theorem 3.3 can be used also in this case. Indeed,
fix z € bdry R” together with a control u(-) steering 0 to Z in time 7 and let ( € Ng-(2), ||¢|| =1,
be such that

(3.42) u(t) = sign(¢, b(t)M(r,t)) for a.e. t€(0,7)

(here, as at the beginning of the proof of Theorem 3.3, we assume that B = b is a vector, i.e., the
control is scalar).

Then the proof proceeds exactly as for Theorem 3.3, provided that g is given by

g(t) = (¢, b(t)M(,1)),

so that for all ¥ € R™ one has

N—-1
G- =23 /I o) s) ds

where K1(s) = 4|u(r — s) — a(r — )|, u(-) is the control which steers the origin to ¥, and the sets
I; are those appearing in the statement of Lemma 3.5. O

4. A NONLINEAR BANG BANG PRINCIPLE IN DIMENSIONS 2 AND 3

Starting from the present section we will deal with nonlinear control systems, which are affine
and symmetric with respect to the control. This section is devoted to giving sufficient conditions
so that controls steering the origin to the boundary of the reachable set are always bang-bang,
provided the final time is sufficiently small. More precisely, the following result holds.

Theorem 4.1. Let N =2 or N = 3. Consider the control system

#(t) = F(z@) + Gz(t)ud),

(4.1) (0 - o

where 1 < M < N, u(-) = (u1(),...,upm()) € [-1, 1" ace., and F : RY — RN and G =
(G1,...,Gu) : RN — Myyxar satisfy the following assumptions:

(i) F and G are of class CN~1 and all partial derivatives are Lipschitz with constant L;

(if) F(0) =

(iii) rank[G ( ) DF(0)G;(0),...,(DF(0)N1G;(0)] = N for i=1,...,M;

(iv) if N =3, then DG(0) = 0 and D?*F(0) = 0.
Let R™ denote the reachable set of (4.1) at time 7 > 0. Then there exists T > 0, depending only
on DF(0),G(0), L, N, such that for every 0 < 7 < T the following properties hold:

(a) every admissible control u(-) such that the corresponding trajectory y*“(-) of (4.1) at time T
belongs to the boundary of R is essentially determined by the curve \(-), the solution of
the adjoint equation

At) = =At)(DF(y"(1)) + DG(y"(1))u(t))
A(T) =¢eNr-(y"(7), [I<I=1,

through the identity

(4.3) u(t) = sign (A(t), G(y“(t))) a.e;

(b) w is bang-bang, i.e., u(t) € {—1,1}M a.e., and is piecewise constant;
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(c) the mazimum number of discontinuities of u depends only on DF(0), G(0), L, and N.

Proof. We consider first the case where M =1, i.e., G(x) is a vector and the control u is scalar.
Fix 7 > 0 and an admissible control u such that z := y*(7) € bdry R”. By the Maximum Principle
(see Theorem 2.6) there exist ( € Ng-(Z), ||¢|| = 1, and an adjoint curve A(-), a solution of (4.2),
such that u satisfies (4.3). Proving (a), (b), and (c) amounts to showing that the switching function
(A(t),G(y*(t))) vanishes at most finitely many times in [0, 7] and the number of its zeros depends
only on DF'(0), G(0), L, and N.

For convenience we rewrite the switching function in the following way. Let M ' (-,-) denote the
matrix solution of (3.37), with A(t) = DF(y“(t)) + DG(y"(t))u(t), and set b(t) = G (y*(t)),
t € [0,7]. Then

g(t) == (M),b(1)) = (¢, bE)M(T.1)).
Let also M (-,-) be defined by (3.38), where A(0) = DF(0), and let go be defined according to
(3.40). We wish to apply Lemma 3.5 to the above introduced mappings g and go.
First of all, we compute ¢’ and observe that it is continuous. Indeed,

gt = (GV®M(r,1)) + <C,b(t) M(r,t))
= (¢.DG'(y ())y“(t)M( )> (¢, =b(t)A ()M, 1))
t

= (DG (v (1) (F(y“(1) + < “()u(t)) " M(r,t))
(¢, =G (4" (1) (DF(y*(t)) + DG(y"(t))u(t))  M(r,t))
= (¢, (DGT(y (1) FT (y(¢)) — DFW )T (Y () M (7, 1))

ot
= (A0, [FT.GT(y" (1)),
where [F'T,G"](x) := DG (z)F"(z) — DF " (2)GT (x) denotes the Lie bracket.
Moreover, if N = 3 ¢ is a.e. differentiable and we have
d

g"(t) = (A0, [FT,GT](y" (1)) + (A(®) FT LGy (1))
Finally, observing that gj(t) = (¢, —DFT(O)GT YMo(T,t > ((My (,t),[FT,GT](0)), we have
gt —go(t) = (C(MT(r,t) = Mg (.1)), [F,GT](y"(1)))
+(¢CMq (7,1), DG (y ()) Tyt))
+(¢,(DFT(0) - DF " (y )GT(y“ )
+(¢, DET(0)(GT(0) = GT(y(1))))

= I+0+ 0+ 1V.

We are now going to estimate separately each summand of the above expression.
First, we observe that, thanks to the assumptions (i) and (ii), we have

IM(7.8) = My(r )] < /O (1A 1Mo (7, 5) = M(7, )l + | Mo(, ) 4(0) = A(s)]]) ds

IN

t
K / | M (7,s) — Moy(T, s)|| ds + Kot

0
where K7 and K are suitable constants depending only on DF(0), G(0), L, and 7. Gronwall’s
lemma therefore yields

|M(7,t) — Mo(,t)|| < Kst>  forall t€[0,7],
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where the constant K3 depends only on K7, Ko. Therefore, there exists a constant K7, depending
only on DF(0), G(0), L, and 7 such that

(4.4) 11| < Kgt? for all ¢ € [0, 7).
Assumptions (i) and (ii) yield in turn

(4.5) |II| < Kyt for all ¢t € [0, 7],
for a suitable constant Ky depending only on DF(0), L, and 7, and

(4.6) ’III’ < Kt for all t € [O,T],

(4.7) |V < Kp/t for all ¢t € [0, 7],

where again Ky and Kjy depend only on DF(0), G(0), L, and 7.
Therefore, summing (4.4), (4.5), (4.6), and (4.7), we obtain that there exist K and 7’ > 0, depend-
ing only on DF(0), G(0), and L, such that

(4.8) lg'(t) — go(t)| < Kt forall 0<t<T.

Let now N = 3, and observe that owing to assumption (iv) each summand I, II, III, IV, divided
by t2, is bounded and a.e. differentiable, so that

19" (t) — go(t)]| < K't for a.e. t € [0,77],

where the constant K’ depends only on DF(0), G(0), and L and so does T".

Observe that all the above constants do not depend on (. Therefore, invoking assumption (iii),
we can apply Lemma 3.5 (for N = 2,3), thus obtaining that there exists 7 > 0, depending only
on G(0), DF(0), L, and N with all the properties (a), (b), (c), and (d), which are exactly those
required to complete the proof.

In the general case (i.e., 1 < M < N), it suffices to apply the above argument to each column of
G. The proof is concluded. O

Remark 4.2. On the assumption N =2 or N = 3.

The restriction N < 3 depends on our method for comparing the switching function ¢ for
the nonautonomous system coming from the linearization along an optimal trajectory, with the
switching function for autonomous system obtained by linearizing at the origin. This comparison
requires higher order derivatives of g, whose existence we are not able to insure if N > 3. O

9. QUANTITATIVE STRICT CONVEXITY OF REACHABLE SETS AND UNIQUENESS OF OPTIMAL
CONTROLS: THE NONLINEAR TWO DIMENSIONAL CASE

In this subsection, we will show that, provided the linearization at 0 satisfies the normality
condition and the nonlinear part is smooth and small enough, the reachable set is strictly convex
up to a sufficiently small time.

Theorem 5.1. Consider the control system

i(t) = F(x(t)) + G(x(t))u(t),
o fs0-r
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under the following assumptions (in the following M is either 1 or 2):
u(-) = (u1(-),up () € [, 1M ace., F: R? — R%, G : R?2 — May s are of class CH' (with Lipschitz
constant L) and
(i) F(0) =0,
(i) Rank [G;(0), DF(0)G;(0)] =2 fori =1, M where G = (G1,Gn),
(iii) DG(0) = 0.
Let R™ denote the reachable set at time T > 0 for (5.1). Then there exists T > 0, depending only
on L, DF(0),G(0), with the following properties:
(a) for every T < T and every x € bdry R” there exists one and only one admissible control u
steering the origin to x in time T (and u is bang-bang with finitely many switchings).
(b) For every 0 < 7 < T the reachable set R” is strictly convex. More precisely, for every
21 € bdryR™ and xo € R7, for every ¢ € Nf; (1), one has

(5:2) (¢ x2 — 1) < —A[Cllx2 — 2|

where v is a positive constant depending only on L, DF(0), G(0).

(¢c) There exist another time T' > T, depending only on L, DF(0), G(0), such that for every
0 <7 < T’ the reachable set R™ has positive reach. More precisely, for every 1 € bdry R”
and 9 € R™, for every ¢ € Nk, (x1), one has

(5:3) (¢ w2 — 1) <A [ICIlw2 — a1,

where ' is a nonnegative constant depending only on L, DF(0), G(0).
(d) There exist another positive constant v" and a positive time T" < T, depending only on L,
DF(0), G(0), such that the ball B(0,~"72) is contained in RT for all0 < 7 < T".

(e) The minimum time function is continuous in R™, for all0 <7 < T".

Proof. We begin proving the result for M =1, i.e., for a scalar control.

Fix 7 > 0 and x; € bdry R7, together with an optimal control u;(-) steering 0 to x; and the
associate trajectory x1(-). Take any zo € R” together with us(-) steering 0 to zo and the associate
trajectory xa(-), and set x(t) = xo(t) — x1(¢). Then, for a.e. t € [0, 7],

(5.4) i(t) = Ai(t)z(t) + Gl () w(t),
where w(t) = ua(t) — u1(t) and
1 1
Ar(t) = / DF(21(t) + 72(8))dr + us(t) / DG(a1(t) + 72(t))dr.
0 0

Let z(-) be the solution of the linear system which is defined by linearizing along the optimal
trajectory x1(-):

(5.5) { £(1) = A(t)2(t) + Glai (1) w(t),

z(0) =0,
where A(t) = DF(z1(t)) + DG (z1(t))us(t).
We have
%Hx(t) -zl < [A(@)x(t) — A@)z()]]
< [[A@le() = 2@ + 1AL (E) — A=)l
< Liflz(t) — 2(0)]| + Lilz(@)],
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where L; = ||DF(0)|| + 2Le?™.
Thus, by Gronwall’s inequality we get

¢
(56) lo(®) = 2(0] <L [ o) ds.
0
On the other hand, observing that
d
G le@l < Lallz @] + Lslw(@)],

(where Ly = ||[DF(0)|| 4+ 4Le?E™ and L3 = |G(0)| + €2L7) we also have

6.7 o) < Lae™' [ fu(s)as.
From (5.6) and (5.7), one obtains

t
(58) Jote) = (0 < Lat( [ fw(s)ids)”

where Ly = LL3e(l1+2L2)T,
Since Z; € bdryR™, by Pontryagin’s maximum principle there exists an absolutely continuous
function X : [0, 7] — R? with the following properties

At) = =ABA(t),  A(T) = € Nre(#1), ¢ #0,

(5.9) ui(t) = sign(A(t), G(z1(1)))-
We set now b(t) = G(z1(t)) and consider the linear nonautonomous control system
5.0 i(t) = AWy(e) + b(eyu(r),

y(0) =0,

together with the trajectory yi(-), corresponding to the control u;(-). Observe first that, thanks
to (5.9), x1 belongs to the boundary of the reachable set at time 7 for (5.10). Observe moreover
that A(-) is measurable, and, since both F' and G are Lipschitz with constant L and DG(0) = 0,

we have

1A(t) = AQO)]

|[DF(z1(t)) + DG(z1(t))ua(t) — DF(O)
< 2Ll (t)]] < 2L||G(0)[[e*H ¢,
Finally, b/(t) = DG(x1(t))21(t) so that
16'(t) = bO)[ = ') < Lllzs @) 2Lz ()] + 1GO)]]) < Kt,
where K = Le?t™ (2Le*E™ + 1) [|G(0)]2.

Therefore, all assumptions of Theorem 3.8 are satisfied by (5.10), so that there exists a time 7o > 0
depending only on L, DF(0),G(0) such that if 0 < 7 < 7Ty the following properties hold:
i) uq(t) is uniquely determined by (5.9) on (0,7),
ii) there exists a constant y(7) > 0, depending only on L, DF(0),G(0), 7 such that, for all
trajectories y(-) of (5.10), (¢, y(7)—y1(7)) < —y(7)||y(T) —y1(7)||?. More precisely, recalling
(3.28),

(511) (€)= () < =) [ woias)”
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where ya(+) is the trajectory of (5.10) associated with the control us(-) and 7, enjoys the

same properties of .

We remark (see (3.29)) that 1 (7) is bounded away from 0 as 7 — 0F. Moreover, one can see that
z(t) = y2(t) — y1(t). Therefore

Gz —a1) = (Ga(r) = 2(7)) + (¢, 2(7))
(5.12) < le(r) = 2()lH (¢ 2(7)
Recalling (5.8) and (5.11), we obtain
(5.1 Gz =) < (Lar = () [ hotolas)”

Thus if 7 < ﬁ liminf,_,o+ y(7) =: 71 then

(C a0 —a1) < —”“é” (/0 yw(s)yds>2.

From this inequality the uniqueness of the control steering the origin to z; in time 7 follows
immediately by contradiction. Setting 7 = min{7y, 71} and recalling (5.7) we obtain (5.2). The
proof of the strict convexity is completed by applying Proposition 7.3.

The proof of (5.3) is entirely analogous, where it suffices to take 7' = 7Tj.

We consider now the statement concerning the ball contained in the reachable set. To this aim,
take ug = 0 and set y; to be the solution of (5.5) with u; in place of w. Then (5.8) yields, for all
t >0,

21 () = y1.(8)]| < Lat®.

Recalling (3.41), we obtain from the previous inequality that
lz1 () = llyr (6] = Lat® > 5> = Lat?,

for a suitable constant 7, which yields in particular that 0 belongs to the interior of R*, 0 <t < T.
Since the above argument can be repeated for every point in the boundary of R! and the constant
L4 is independent of the reference point, the statement follows by recalling that we already proved
that R? is convex for all 0 <t < T.

The continuity of T follows easily from the the fact that reachable sets contain a ball (see, e.g.,
Propositions IV.1.2 and IV.1.6 in [1]).

In the case M = 2, it suffices to apply the above arguments to each control. ]

The following Remark follows immediately from the proof of Theorem 5.1.

Remark 5.2. Let x1(-) and \(-) be as in the proof of Theorem 5.1. For all 0 <t <71 =T(x1), one
has A(t) € Npt(x1(T(x1 —t))). More precisely,
AB),y — 21(T(x1) — 1)) < =1 [AO Iy — 21(T (1) — 1)

for all y € R, where ~ is the constant appearing in (5.2).

In fact, put A(¢) in place of  in (5.12). Then the first summand can be estimated in the same way,
while the upper bound on the second summand, namely the analogue of (5.11), can be obtained
through the same arguments leading to (5.11). O

We conclude this section with a counterexample showing the sharpness of assumption (iii) in The-

orem H.1.
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Remark 5.3. An example of a two dimensional nonlinear control system satisfying assumptions
(i) and (i) of Theorem 5.1 such that the reachable set R” is not convex for all T > 0.

Consider the control system

T :x2(1+u)

(5.14)
iy =u, wel-1,1].

Set F(z1,x2) = (x2,0), G(z1,22) = (x2,1), and observe that the assumptions (i) and (ii) of
Theorem 5.1 are satisfied, while (iii) is not. The Hamiltonian for this system is

H((z1,22), (p1,p2), u) = zap1 + u(prz2 + p2),

and Pontryagin’s Maximum Principle states that if Z(-) is an optimal trajectory corresponding to
the control u(-), then there exists a function A = (A1, A2), never vanishing, and a constant Ao < 0
such that, for a.e. t,

A1 (t) AL #0
Xo(t) = —(1+a(t)\
Zo(D)A1 + @) MiZa(t) + Aa(t) £ Ao = 0
() (MZ2(t) + Aa(t)) = maxu(MT2(t) + Aa(t)).

lul<1

Now, observe that

M) + dlt) = A /O Ca(s) ds — At — Ay /0 "a(s) ds + 2(0)
= =it + A2(0).

Therefore the function A1Z2(t) + A2(t) has at most one zero, so that the optimal control @ is unique,
bang-bang, and has at most one switching.
Fix now 7 > 0 and 0 < s < 1 and consider the control

1 0<t<sT
us(t) =
-1 sT<it<T.
The trajectory of (5.14) emanating from the origin and corresponding to the control us is, at time
7—7

(1) = s*7%, z2:=2%(r) =7(25s — 1).

Simple computations show that any other bang-bang control with at most one switching cannot
reach (:Z“i,:fz) at a time 7 < 7, for all 0 < s < 1. Thus ug is optimal. In particular, the curve
v(s) := (#L,22%) belongs to the boundary of the reachable set R™. The unique unit normal to the

curve y(s) at s = 1/2 which points outside R” is
C _ (27 _T)
VA2

We compute:
272 (s — %)2

(Cs) =(5)) = A2
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which implies that R” is not convex. Observe however that R” has positive reach at ’y(%) for every
7 > 0, since

(CAs) = (3)

IN

T LORECI] B

Remark 5.4. On the assumption N = 2.

Motivations for the restriction N = 2 are twofold. First of all, our analysis is based on the
switching function of the nonautonomous system obtained by linearizing around an optimal trajec-
tory, and this method requires N < 3 (see Remark 4.2). Second, the distance between trajectories
of the nonlinear system (5.1) and of the linearized system (5.5) is of order two with respect to the
control (see (5.8)), and this quadratic perturbation can be balanced by the strict convexity of the
reachable set of the linearized system only if N =2 (see (5.13)). O

6. FURTHER RESULTS FOR THE NONLINEAR TWO DIMENSIONAL CASE

This section is devoted to proving that the epigraph of the minimum time function has positive
reach, under the assumptions of Theorem 5.1. To this aim, a results of optimal points, i.e., on
points which are crossed by an optimal trajectory, is needed.

6.1. Optimal points.
The classical definition of optimal point reads as follows.

Definition 6.1. Let x € RVN\{0}. We say that = is optimal if and only if there exists a point x

such that T(x1) > T(x) and a control u with the property that y*"(-) steers x1 to 0 in the optimal
time T(x1) and © = y*»*“(T(z1) — T(x)).

The following is the result on optimal points which will be used in the next subsection in order
to ensure the positive reach of the epigraph of the minimum time function. It is based on the
same estimates which lead to the strict convexity of the reachable set, and so it is restricted to two
dimensional control systems.

Theorem 6.2. Let N = 2 and let the assumptions of Theorem 5.1 be satisfied. Let T > 0 be such
that, according to Theorem 5.1, for all 0 < 7 < T, the reachable set R™ of (5.1) satisfies (5.2) for
all0 <7 < T. Let T be such that T(z) < T. Then T is an optimal point.

Proof. We consider first the case where G is a vector and the control u is one-dimensional. Set
7 =T(Z) and let u(-) be the admissible control steering Z to 0 in the optimal time 7, together with
the associate trajectory Z(-). Set, for all ¢ € [0, 7],

A(t) = DF(z(t)) + DG(z(t))u(t), b(t) = G(z(t))

We assume preliminarily that & belongs to the boundary of R™ and let, by the Maximum Principle,
A be a solution of

(6.1) { M) = XD AW,

where ( € Ng-(z), ¢ # 0, and, for a.e. t € [0, 7],

(6.2) a(t) = sign(A(t),b(t)).
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Set, for t € [0, 7],
g(t) = (A(),b(t)).
We are now going to extend u(-) in an interval [r,7 + §] for a suitable § > 0, with the property
that the extended control and its associate trajectory satisfy the Maximum Principle.
Three cases may occur:

(i) g(7) >0,
(i) g(7) <0,
(iii) g(7) = 0.
In the first case, we set @(t) = 1 for all ¢ > 7 and let Z(-) be the associate trajectory satisfying
Z(1) = . We extend analogously A(-), b(:), A(-) and g(-) for t > 7. Set g(7) := ;. Observe that g
is locally Lipschitz, so that, for ¢ > 7,

g9(t) = g(1) + g(t) — g(7) > 01 — L1(t — 7)
for a suitable constant L;. Therefore we can find § > 0 such that 0 <7+ < 7T and g(t) > 0 for
all t € [r, 7+ 9], i.e.,
u(t) = sign g(t) Vte [r,7+4].
The second case is entirely analogous, by substituting 1 with —1.
We consider now the third case. Let the Iy, I be given by Lemma 3.5 for the function g in the
interval [0, 7]. Observe that necessarily T € I, so that, in particular, ¢’(7) # 0. We set, for ¢t > 7

at)y=1 if ¢(r)>0
or

a(t)y=-1 if ¢(r)<0
and let Z(-) be the associate trajectory satisfying z(7) = z. We extend analogously A(-), b(), A(+)
and g(-) for ¢ > 7. Observe that

9(t) = (A®), [F, G1(z(1))),
where [F,G|(x) = DG(x)F(z) — DF(z)G(x) denotes the Lie bracket of F' and G. Therefore ¢

is continuous, so that there exists § > 0 such that the sign of §(t) equals the sign of g(7) for all
t € [T — 0,7+ 6]. Therefore our construction of @(-) on [0, 7 + d] is such that for a.e. ¢t € [0,7 + 4],
u(t) = sign g(t).

Consequently, all conclusions of Theorem 5.1 hold up to the time 7 + 4. In particular, for all
t € [0,7 + 6], z(t) € bdry Rt. Since T'(-) is continuous in a neighborhood of the trajectory Z(-), we
obtain that u(-) steers the origin optimally to Z(7+¢) in time 74 §. Since the above argument can
be applied also to the reversed dynamics & = —F(z) + G(z)u, u € [—1,1], then T'(z(7+9)) = 7+4.
Let us now drop the assumption & € bdryR”. Since T is strictly decreasing along the optimal
trajectory Z(-), and so Z(t) € bdry R7 ! for all 0 < ¢t < 7, there exists a nontrivial adjoint vector
A(+) which uniquely determines @(t) as in (6.2) up to the time 7. Thus the above argument can be
applied also to .

If G is a 2 x 2 matrix, it suffices to perform the above construction for each column of G. The
proof is concluded. O

We conclude the section with two corollaries. The first one is an immediate consequence of the
proof of Theorem 6.2.
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Corollary 6.3. Under the same assumptions of Theorem 6.2, let T =T (z) < 11 < T. Then there
exists x1 € bdry R™ and a control uy : [t,71] — [—1,1] such that the trajectory &(-) corresponding
to the control

a(t):{ at) 0<t<r,

ur(t) 7<t<m.

and such that (0) = z1 reaches 0 in the optimal time 11 and moreover (T4 — T) = Z.

From Corollary 6.3 we obtain that Z(-) and A(-) in the proof of Theorem 6.2 can be extended up
to the time T. Therefore, we obtain the following further corollary.

Corollary 6.4. Under the assumptions of Theorem 5.1, the mazximized Hamiltonian along Z(-)

associated with \(-) is constant in [0,T), i.e.,
H(z(t),\(t))=C Vtel0,T).
Proof. Let G be a vector and so the control u be scalar. Then

H(z(t), A()) = (A1), F(2(1))) + [(A(#), G(2(2)))]-

Observe that the switching function g(t) = (A(t), G(Z(t))) vanishes at most on a countable subset
of [0, 7). Therefore, for a.e. t € [0,7T), we have

d__ _ _ _ .

ZH(@(t), A1) = (= A0, [F.Gl(@(0) + (A®), [F, Gl(@ (1)) )sign g(t) = 0.

If G is a 2 x 2 matrix, it suffices to perform the above computation for each column. The proof is
concluded. 0

6.2. The epigraph of the minimum time function has positive reach.

The present section is devoted to studying the “convexity type” of the minimum time function 7°(-),
in the case where the dynamics satisfies a weak controllability condition, i.e., the function 7°(-) is
merely continuous. The statement is two dimensional, since it is based on Theorem 6.2.

Theorem 6.5. Let N = 2 and let the assumptions of Theorem 5.1 hold. Let T be given by Theorem
5.1. Then for every 0 < 7 < T the epigraph of the minimum time function T'(-) on R™ has positive
reach.

Corollary 6.6. Under the same assumptions of Theorem 6.5 the minimum time function T satisfies
all the properties listed in Theorem 2.4.

Before beginning the proof of Theorem 6.5 we introduce the minimized Hamiltonian and study
its sign.

Definition 6.7. Let z,( € RN. We define the minimized Hamiltonian for the control system in
(5.1) as

h(z, ¢) = (¢, F(x)) + min(¢, G(z)u).

Proposition 6.8. Let x belong to the boundary of the reachable set R™ for (5.1) for some T > 0.
Let ¢ € N5, (x)t. Then h(z,¢) <O0.

lhere NE-(x) denotes the Fréchet normal cone to R” at x, i.e., all vectors v such that lim SUPR 5y 0 (Vs (Y —
z)/lly —=l) <0
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Proof. Let u(-) be an admissible control steering x to 0 in time 7, together with the associate
trajectory Z(-). Then, for all 0 < t < 7 the point Z(¢) belongs to R”, so that, by definition of

Fréchet normal we have
() —
lim sup <C, M> <0.
10+ 1Z(t) — =]
Observing that ||z(t) — z|| < Kt for a suitable constant K, we have
()
lim sup <C, z( )t x> <0.

t—0

In other words,
1 t
0 > limsup <C,t/ (F(z(s)) + G(
0

t—0
La(s)ds
. t )

Kl
—~~
[
N
S—
I
—
'
N—
SN—
IS8
»
>

= (¢ F(@)) +limsup (¢, G(z)
t—0
Let t,, — 0 be a sequence such that lim,,_, i fo" u(s)ds := u exists. By the convexity of U, u € U,
and so h(z,¢) < (¢, F()) + (¢, Glx)i) < 0. 0
We are now ready to prove Theorem 6.5.

Proof of Theorem 6.5. Let = # 0 be such that T'(x) < T and let (u(-),Z(-)) be an optimal pair
for z. By Maximum Principle® there exists 0 # ¢ € Npr()(2) such that the adjoint arc ), with

{ A(t) = A(t) (DF(2()) + DG(Z(t))u(t)),

satisfies

(X(t), F(z(t)) + G(z(t)u(t)) = h(Z(t),\) for a.e. t € (0,T(z)).
We claim that
(6.3) (¢, h(x,€)) € Negiry (2, T(2)),

i.e., there exists a constant o > 0 such that, for all y € RY with 0 < T'(y) < 7 and for all 8 > T(y),

we have

(6.4) (60, (9. 8) = (@.T(@)) < ol GO (ly = =) + 18 - T()]),
where 6 = h(z, (), and, moreover,

(6.5) o is independent of z and (.

Indeed, we consider two cases:
(a) T(y) < T(x);
(b) T(y) > T(x).
In the first case, y € RT(®) so that by Theorem 5.1

If 8 > T'(x) then (6.4) is automatically satisfied, since # < 0 by Proposition 6.8. If instead 8 < T'(x),

we set 1 = Z(0).

2observe that we are applying Theorem 2.6 for the reversed dynamics © = —F(z) — G(z)u
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We estimate first (¢, — x1). Since y € RP, recalling Remark 5.2, we have for suitable constants
Ki, Ky given by Gronwall’s Lemma,

AB),y — 1) + AMT (@) = A(B),y — 21)

AT(z)) = A(B),y — x1) < K [[MT ()| |T () — Bl lly — =1 ]|
K MT @) T () = Bl (ly — Il + llz1 — =)

K |[SINT (@) = Bl (lly — @Il + K2|T(x) — B])

Ksllcl (ly = 2] + |T(z) - 8I)

(C,y — 1)

VAN VAN VAN

IN

for another suitable constant Ks.

Second, we estimate (¢, z1 — x). We have

T(x)
(Can—a) = /ﬂ (MT(2)), F(z(s)) + G(a(s))als)) ds

T(x)

- /B (X(s), F((s)) + G(z(s))a(s)) ds
T(x)

@) = M), P + Gt d

< (T(x) = B)h(x,¢) + Ka|lClI|T(x) — B,

for a suitable constant K4, owing to Corollary 6.4 (applied to the reversed dynamics & = —F(z) —

G(z)u). Therefore, since h(z(¢) <0,

((¢,0), (y, ) — (2, T(2)) < (K + K¢ (ly — 2l” + 1 T(2) - BI?),

and the proof for the case (a) is concluded by observing that K3 and K4 are independent of ¢ and
x.

In the second case we need to use the optimality of x. We observe first that, since 6 < 0, we only
need to prove (6.4) for 5 = T'(y). Recalling Corollary 6.3, we can extend the control @ up to the
time T'(y) so that the associated trajectory (still denoted by Z(-)) remains optimal. Let also A be
the extended adjoint vector and denote by Z(-) the trajectory of the reversed dynamics associated

with the extended control u, i.e.,

{ () = —F(E(t) — G(&(t))a(t),

where u(t) = a(T(y) — t).
Set x1 = (T (y)). We estimate first ((,y — x1). We have, by arguing similarly as before,

Cy—o) = Ty —21) + AT (@) - AT@),y — 1)

(the first summand is < 0 by the construction in Theorem 6.2)
AT(2)) = AT(y)),y — 21)

< KsllCI(1T() = @)1 + ly — 21]%).

IN
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On the other hand,

T'(y)
((,r1 —x) = / (¢, —F(&(s)) — G(z(s))u(s))ds

T(x)

T(y)
_ / (M), —F(#(s)) — G(&(s))a(s))ds

T(x)

T(y)
b [T @) = M) F ) - Gal)ils)ds

T(x)

IN

T(y)
/ ' max (A(s), = F(Z(s)) — G(&(s))u)ds + K[| (T(y) — T())*

T(z) uel
(for a suitable constant Kg given by Gronwall’s Lemma).

Recalling Corollary 6.4, the maximized Hamiltonian in the integral of the first summand is
constant. Therefore we obtain

(Coar — ) < —h(z, () (T(y) — T(x)) + Kol |T(y) — T(x)*.

Combining the above estimates we obtain finally

((¢,0), (4, T(y)) — (2, T(x))) < (K5 + Ko)lIC(lly — =[I” + | T(y) — T(2) ),
and the proof of the claim is concluded, by observing, again, that K5, K¢ are independent of x and

C.
In order to conclude the proof we observe that N P oi(T) is pointed at every point (x,T(x)), z € R7,

since it is easy to see that the projection of every (C 0) € Né’n( )(m,T(x)) onto RV is normal to

the strictly convex set R”. Therefore, we can apply Corollary 3.1 in [17], with Qp = intR”, which
shows that epi(T") has positive reach. O

7. APPENDIX

This section is devoted to some technical lemmas which are used in the proof of the main results.

Lemma 7.1. Let K : (a,b) — [0,1] be measurable and let k € N. Then

/ab(t—a)kK( t>7 /K k“,

bbtkK )dt > K(t k“
[io- o ([ o)

b b rb b
/(t—a)kK(t)dt:k!/ / .| K(to)dty...dt
a a Jit t1

Since K (t) € [0, 1] for a.e. t € [0, 1], we obtain that

/b(t— )P K (8)dt > k!/bK(tk) bK(tk1).../bK(t0)dt0...dtk

tr t1

and

Proof. Indeed,

One can easily prove that

b b b b
/aK(tk) Kty 1)... | K(to)dto...dty = (kil)!(/a K(t)dt)kH

tr t1

The proof is complete. O]
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Lemma 7.2. Let f : [a,b] — R be absolutely continuous and monotone. Fiz k > 0 and assume
that there exists C € Rt such that

(7.1) 1(s)] > C(s —a)* Vs € la,b].
Then, either f has no zeros in (a,b) and then, for all s € (a,b) either

£ 2 (= or [f(5)] 2 o (-9,

or there exists ¢ € (a,b) such that f(c) =0 and then, for all s € [a,b],

S|k+1

IO
The same conclusions hold if (7.1) is substituted by
1f/(s)] > C(b—s)* Vs € [a,b].

Proof. We treat the case where f is nondecreasing, while the other one can be handled by
taking —f. So (7.1) now reads as

f(5) > C(s —a)f Vs e a,b].

If f has no zeros, we have two cases, namely f(s) > 0 for all s € (a,b) or f(s) <0 for all s € (a,b).

For the first case
S S C
/Gf(t)dt_C/G(t a)dt k:+1(8 a)®",

so that

£5) 2 £ s — )

In the second case,

f(b) = f(s) = /f dt>C/ (t — a)rdt

= @t (st 2 o)

Therefore,
< = _ k+1 < -
F) < FB) = g (b= ) < —

Assume now that there exists ¢ € (a, b) such that f(c) = 0. Then, for all s € [a, ] we have

—ﬂ@=f@%<ﬂ$=/mf®

while for all s € [c, b] we have

(b _ 8)k+1.

(C _ S)k—l—l7

O o= [ £z Sl - - - 0]

c k
> —c)ktL
_— ]{;_'_1(8 C) Y

and the proof is complete. ]
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Proposition 7.3. Let K C RN be compact and assume that there exist v > 0 and p > 1 with the
following property: for every x € bdry K, there exists ( # 0 such that for every y € K one has

(7.2) €y —a) < =y — |-

Then K is convex (with nonempty interior) and, for each x € bdry K, (7.2) is satisfied by all
¢ € Nkg(z).

Proof. We show first that K is strictly convex. To this aim, assume by contradiction that there
exist points x; # x9 € K such that the segment |1, z2[ is not contained in the interior of K. Let
0 <t <1 be such that x; = (1 — t)z1 + tzo € bdry K and let ¢ # 0 be such that (7.2) holds with
x; in place of x. Obviously, (¢,z2 — x1) = 0, and this is a contradiction. Since K is convex with
nonempty interior, for each = € bdry K the normal cone Ny (x) is pointed and so it is the convex
hull of its exposed rays (see [18]).

We now use Theorem 4.6 in [11] and see that for every unit vector w belonging to an exposed

ray of Nk (z), there exists a sequence z, — x such that
Ni(xn) = RTw,, ||w,| =1 and w, — w.

Of course (7.2) holds with x,, (resp., wy) in place of = (resp., ¢), so that by passing to the limit, w
also satisfies (7.2). By taking convex combinations, we conclude the proof. ([l
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