a) Piani per \(n \): \(\lambda x + \lambda y + (\mu - \lambda) z - (\lambda + \mu) = 0 \), \(\lambda, \mu \in \mathbb{R} \).

\[
4 = d(\overrightarrow{n}, 0) = \frac{|-(\lambda + \mu)|}{\sqrt{\lambda^2 + \lambda^2 + (\mu - \lambda)^2}}
\]

\[
\begin{align*}
\delta &= 0 \quad \lambda^2 + \lambda^2 + 2\lambda\mu = 2\lambda^2 + 2\lambda^2 + 2\lambda\mu \\
\delta &= 4\lambda^2 - 2\lambda^2 = 0 \\
\Rightarrow \lambda(2\mu - \lambda) &= 0
\end{align*}
\]

2 soluzioni:

\[
\lambda = 0; \quad 2 - 1 = 0
\]

\[
\lambda = 2\mu; \quad 2\lambda + 2\lambda - 2 - 3 = 0
\]

b) E.q. parametriche per \(n \):

\[
\begin{align*}
x &= 2 - t \\
y &= t \\
z &= 1
\end{align*}
\]

il piano coordinato \(y = t \) ha vettore gianitura \(\overrightarrow{e} = (1, 0, 0) \).

Ora \(\overrightarrow{v}_{n} \cdot \overrightarrow{e} = \frac{-1}{\sqrt{2}} \), quindi \(\overrightarrow{v}_{n} \cdot \overrightarrow{e} = \arccos \left(-\frac{1}{\sqrt{2}}\right) = \frac{3\pi}{4} \).

Dunque l'angolo tra \(n \) ed il piano coordinato \(y = t \) è pari a \(\frac{3\pi}{4} \).

c) Calcoliamo \(R = \left\{ \begin{array}{c}
x + y + z - 1 = 0 \\
z - 1 = 0 \\
x = 0
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}
y + z + 1 = 2 \\
z = 1 \\
x = 0
\end{array} \right\} \Rightarrow R = (0, 2, 1) \]

Per determinare \(Q \), minimizziamo equazioni parametriche per la retta \(s \) di punto origine \(P \) e direzione perpendicolare a \(\overrightarrow{n} \) (che passa a \(\overrightarrow{v}_{n} = (1, 1, 0) \)).

\[
\begin{align*}
x &= t \\
y &= t \\
z &= 1 + t - 2 = 0
\end{align*}
\]

Il punto \(Q \) si ottiene quando sulla retta s con origine \(t = 0 \),

dunque \(Q = (2, 2, 1) \).

Osserviamo:

\[
\begin{align*}
\overrightarrow{PQ} &= (2, 2, 0) \\
\overrightarrow{PR} &= (0, 2, 0)
\end{align*}
\]
ed allora

\[
\text{Aree di } \triangle \text{ PQR } = \frac{1}{2} |\overrightarrow{PA} \times \overrightarrow{PR}| = \frac{1}{2} |\det \begin{pmatrix} 2 & 2 & 0 \\
0 & 2 & 0 \\
1 & 0 & 0 \end{pmatrix}|
\]

\[
= \frac{1}{2} |(0, 0, 4)| = \frac{1}{2} \cdot 4 = 2.
\]
\[z = f(x,y) = (x^2 - y) e^{y-x} \]

\[\frac{\partial z}{\partial x} = e^{y-x} (2x - (x^2 - y)) = e^{y-x} (-x^2 + 2x + y) \]

\[\frac{\partial z}{\partial y} = e^{y-x} (-1 + (x^2 - y)) = e^{y-x} (x^2 - y - 1) \]

Il piano tangente \(T \) al punto coordinato \(y \) è e solo se

\[T = 0 , \quad \text{è una curva solo se} \]

\[\begin{cases} -x^2 + 2x + y = 0 \\ x^2 - y - 1 = 0 \end{cases} \iff \begin{cases} 2x = 1 \\ x^2 - y - 1 = 0 \end{cases} \iff \begin{cases} x = \frac{1}{2} \\ y = x^2 - 1 \end{cases} \]

\(\iff \begin{cases} y = \frac{1}{4} - 1 = -\frac{3}{4} \end{cases} \)

Pertanto, \(T = 0 \iff P = \left(\frac{1}{2}, -\frac{3}{4} \right) \).

Poiché \(f \left(\frac{1}{2}, -\frac{3}{4} \right) = e^{-\frac{5}{4}} \), otteniamo un unico punto nel \(\mathbb{R}(f) \):

\[G = \left(\frac{1}{2}, -\frac{3}{4}, e^{-\frac{5}{4}} \right) \]

\[L_0 : (x^2-y) e^{y-x} = 0 \quad \Rightarrow \quad x^2 - y = 0 \quad \Rightarrow \quad y = x^2 \]

Il gradiente di \(f \) nei punti di \(L_0 \) è dato da \(T_{f|_{L_0}} = \left. e^{y-x}(2x-1) \right|_{L_0} \).

Perciò, \(T_{f|_{L_0}} \mid (-1,1) = 0 = \left. e^{y-x}(2x-1) \right|_{(-1,1)} = -e^{-1-n} (2x+1) \)

\(\Rightarrow \ 2x+1 = 0 \iff x = -\frac{1}{2} \)

Si ottiene quindi in \(L_0 \) l'unico punto \(P_0 = \left(-\frac{1}{2}, \frac{1}{4} \right) \).

Poiché la retta tangente ad \(L_0 \) in \(P_0 \) ha coefficiente angolare pari a \(2x \mid_{x=-\frac{1}{2}} = -1 \), la retta \(r \) normale ha coefficiente angolare pari a \(1 \). Dunque \(r \) ha equazione \(y - \frac{1}{4} = x + \frac{1}{2} \), cioè \(y = x + \frac{3}{4} \).

Perciò, \(T_{f|_{L_0}} = \left. e^{y-x}(x^2 + 3x + \frac{3}{4}, x^2 - x - 7/4) \right|_{\text{allineare deve essere}} \)

\(0 = \frac{\partial f}{\partial x} (P_0) = T_{f|_{L_0}} (1,1) = \frac{1}{12} (-x^2 + 3x + \frac{3}{4} + x^2 - x - 7/4) \quad \text{allineare deve essere} \ 2x = 1 \)

Allineare, \(P = \left(\frac{1}{2}, \frac{3}{4} \right) \).
$\mathcal{D} = \{(x,y) \in \mathbb{R}^2 \mid n \leq 1, n-y \geq 0, n+y \geq 0\}$

\[
\begin{align*}
\frac{\partial f}{\partial x} &= e^{n^2-y^2}(1-2x(n-y)) = e^{n^2-y^2}(2n^2-2ny+1) \\
\frac{\partial f}{\partial y} &= e^{n^2-y^2}(-1-2y(n-y)) = e^{n^2-y^2}(2y^2-2ny-1)
\end{align*}
\]

\[\nabla f = 0 \implies \begin{cases} 2n^2-2ny+1 = 0 \\ 2y^2-2ny-1 = 0 \end{cases} \implies \begin{cases} n^2+2y^2-4ny = 0 \\ 2y^2-2ny-1 = 0 \end{cases} \implies \begin{cases} n+y^2-2ny = 0 \\ 2y^2-2ny-1 = 0 \end{cases} \implies \begin{cases} n^2+y^2-2ny = 0 \\ 2n^2-2ny-1 = 0 \end{cases}
\]

NESSUNA SOLUZIONE, dunque nessun punto critico interno a D.

\[\partial \mathcal{D} = \{3\} \cup \{2\} \cup \{3\}\]

- \(f_3 = 2n, n \in [0,1]\)
 - \(P_0 = (0,0) \rightarrow f(P_0) = 0\)
 - \(P_1 = (1,2) \rightarrow f(P_1) = 2\)

- \(f_2 = 0, n \in [0,2]\)
 - Aunque \(f(P_0) = f(P_2) = 0\) co \(P_2 = (4,2)\)

- \(f_3 = (1-y)e^{-y^2}, y \in [-1,1]\)
 - \(f'_3 = e^{-y^2}(-1-2y(1-y)) = e^{-y^2}(2y^2-2y^2-1)\)
 - A.

\[\begin{align*}
P_3 &= \left(1, \frac{1-\sqrt{3}}{2}\right) \quad \implies f(P_3) = 1+\sqrt{3} e^\frac{\sqrt{3}}{2}
\end{align*}\]

L'andamento di f su \(\partial \mathcal{D}\) è riconosciuto nel disegno e "opima di pene."

In definitiva \(\{2\}\) è costituito da punti di minimo, con \(\text{min} = 0\)

\[P_3 = \left(1, \frac{1-\sqrt{3}}{2}\right)\] è punto di Massimo, con \(\text{Max} = 1+\sqrt{3} e^\frac{\sqrt{3}}{2}\)