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Abstract

Almost all tree kernels proposed in the lit-
erature match substructures without taking
into account their relative positioning with
respect to one another. In this paper, we pro-
pose a novel family of kernels which explic-
itly focus on this type of information. Specif-
ically, after defining a family of tree kernels
based on routes between nodes, we present an
efficient implementation for a member of this
family. Experimental results on four differ-
ent datasets show that our method is able to
reach state of the art performances, obtaining
in some cases performances better than com-
putationally more demanding tree kernels.

1. Introduction

In many real world applications involving machine
learning tasks, such as supervised classification, data
is naturally represented in structured form, e.g. XML
documents, molecular structures in chemistry, parse
trees in natural language processing, and protein se-
quences in biology, just to name a few. Among all the
learning techniques for dealing with structured data,
kernel methods are recognized to have a strong theo-
retical background and to be effective approaches. On
the other hand, designing fast and good kernels for
structured data is a challenging problem.
In the context of tree structured data, the first pro-
posed kernels were the subtree kernel (Vishwanathan
& Smola, 2002) and the subset tree kernel (Collins &
Duffy, 2002). The first defines a feature space con-
sisting of the set of all proper subtrees, while the sec-
ond enlarges this set by also considering subset trees.
While the subtree kernel is computationally more ef-
ficient than the subset tree kernel, it is less expressive
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and usually returns worse performances than the sub-
set tree kernel.
One problem of the above kernels is that, in the case of
large structures and many symbols, the feature space
implicitly defined by the above kernels is very sparse,
and consequently classification performance is quite
poor, as clearly discussed in (Suzuki & Isozaki, 2006).
Because of that, alternative tree kernels have been pro-
posed, some of which tailored to specific application
domains. For example the elastic tree kernel has been
introduced for XML and HTML data in (Kashima &
Koyanagi, 2002). It extends the subset tree kernel by
allowing matching between nodes with different labels,
and by allowing matchings between substructures built
by combining subtrees with their descendants.
Other extensions of the subset tree kernel have been
proposed, e.g. (Moschitti, 2006) permits a partial
matching between subtrees, (Zhang et al., 2007) de-
fines a grammar-driven convolution tree allowing ap-
proximate substructure and tree node matchings ac-
cording to a given grammar, and (Bloehdorn & Mos-
chitti, 2007) introduces a family of kernels specifically
designed for being used in text categorization tasks,
called Semantic Syntactic Tree Kernels.
Furthermore, the Spectrum Tree Kernel, counting
common tree q-grams, i.e. subtrees isomorphic to
paths with q nodes, was described in (Kuboyama
et al., 2007), while Nicotra, Micheli and Starita (2004)
present an application of the Fisher kernel (Jaakkola
& Haussler, 1999) to labeled rooted positional ρ-ary
trees, exploiting Hidden Tree Markov Models (Dili-
genti et al., 2003) as generative models. Finally, in
(Rieck et al., 2008) the expressivity of the kernel has
been reduced in favor of efficiency, obtaining an ap-
proximated tree kernel with linear time complexity.
In general, for a tree kernel to be effective, a trade-
off between expressivity of the feature space and low
computational complexity has to be found. In this pa-
per, we propose a new tree kernel that we believe is
able to reach a good balance between these two goals.
Specifically, we noticed that almost all the existing tree
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kernels tend to discard explicit information about the
“relative positioning” of the nodes in a tree. Even ker-
nels based on counting the number of common paths
such as the Spectrum Tree Kernel do not take into
account the relative positioning of the nodes in the
original tree. Here we propose a family of tree ker-
nels, based on the definition of routes between nodes
of the tree, that exploits this kind of information. In
particular, we focus on a member of this family that,
while returning state of the art performances on vari-
ous datasets, is computationally not too expensive.

2. Notation

In this paper we focus on labeled rooted positional ρ-
ary trees, i.e. graphs such that (i) the vertices are
connected by exactly one path (a tree); (ii) a node
has been designed to be the root of the tree and the
edges have a natural orientation, i.e. away from the
root; (iii) each node, which is not a leaf node, has at
most ρ children (maximum out-degree); (iv) a unique
positional index Pv[e] ∈ {1, . . . , ρ} can be assigned to
each edge e leaving from a vertex v; (v) a label l from a
fixed alphabet is associated to each vertex, for example
li is the label of vertex vi. For readability, we will refer
to labeled rooted positional ρ-ary trees simply as trees
in the following. Given a tree, we denote by ch(v) the
set of children (or directed successors) of v, by chk(v)
the k-th child of v, and chk(v) = ⊥ (indefinite) when
there are no edges in position k. Similarly, we de-
note by pa(v) the parent (or directed predecessor) of
a vertex v and pa(root) = ⊥. Furthermore, pai(v) will
indicate the ancestor of v obtained by applying the
operator pa(·) exactly i times (assuming pa(⊥) = ⊥).
We also define the operator chpos(v) that returns the
position of a node v with respect to its parent, i.e.
chpos(v) = i if Pu[(u, v)] = i and pa(v) = u. When
pa(v) is undefined, chpos(v) is also undefined. Given
any two nodes and the path p(vi, vj) connecting them,
the label path ξ(vi, vj) is the sequence of labels associ-
ated to the nodes in p(vi, vj). For example, in Figure 1,
ξ(va, ve) = [a, b, e] is the label path connecting nodes
va and ve (labeled a and e respectively). A function
δ(x, x′) will be used for comparing two generic objects.
Specifically, we have δ(x, x′) = 1 whenever objects x
and x′ are both defined and equal, and 0 otherwise.

3. Convolution Tree Kernels

Kernel algorithms, such as the Support Vector Ma-
chine (SVM), require the definition of a kernel func-
tion, i.e. a similarity function between any two ele-
ments of a domain. A common approach to design
kernel functions for tree structured data is the convo-

lution kernel framework firstly introduced by Haussler
(1999), which is a general methodology for computing
kernels on complex discrete objects. By splitting the
original object into parts and assuming to have at dis-
posal a positive semidefinite kernel on the parts (called
local kernel), Haussler (1999) describes a methodology
for combining the kernels on the parts that preserves
positive semidefiniteness. In particular, he proved that
the kernel obtained by summing the local kernels com-
puted on the Cartesian product of the sets of subparts
of the original structures, is positive semidefinite.
Recently, Shin and Kuboyama (2008) have introduced
a more general form of convolution kernel called map-
ping kernel. Basically, the idea of the mapping kernel
is to restrict the set of substructure pairs over which
the local kernel is computed. Formally speaking, the
mapping kernel is defined as follows. Let χ be the
domain of trees and each x ∈ χ be associated with
the finite subset χ

′

x
of substructures associated with

x. Now, let assume to have at disposal a (local) pos-
itive semidefinite kernel k : χ

′ × χ′ → R. Then the
mapping kernel is defined as:

K(xi, xj) =
∑

(x′
i,x

′
j)∈Mxi,xj

k(x′i, x
′
j), (1)

where M is part of a mapping system M defined as:

M=
(
χ,
{
χ

′

x
|x∈ χ

}
,
{
Mxi,xj

⊆χ
′

xi
×χ

′

xj
|xi, xj ∈χ

})
.

M is a triplet composed by the domain of the examples,
the space of the substructures of the examples, and a
functionM specifying for which pairs of substructures
the local kernel has to be computed. M is assumed to
be finite and symmetric, i.e. ∀xi, xj ∈ χ, |Mxi,xj | <∞
and (x′i, x

′
j) ∈ Mxi,xj

⇒ (x′j , x
′
i) ∈ Mxj ,xi

. In (Shin
& Kuboyama, 2008) it is proved that the kernel K
of eq. (1) is positive semidefinite if and only if the
mapping system M is transitive (i.e. ∀x1, x2, x3 ∈
χ.(x′1, x

′
2) ∈ Mx1,x2 ∧ (x′2, x

′
3) ∈ Mx2,x3 ⇒ (x′1, x

′
3) ∈

Mx1,x3).
Tree kernels which are used as baselines for the ex-
periments of this paper are now sketched. We start
by recalling the partial tree kernel (PT) (Moschitti,
2006). Then we recall the subset tree kernel (SST)
(Collins & Duffy, 2002) and the subtree kernel (ST)
(Vishwanathan & Smola, 2002) as instances of PT.
The PT kernel allows partial matching between sub-
trees (a subset of nodes of a tree which forms a tree).
A recursive formulation can be given as K(T1, T2) =∑
v1∈T1

∑
v2∈T2

C(v1, v2), where C(v1, v2) can be re-
cursively computed according to the following rule:
If the productions1 at v1 and v2 are different then

1A production is defined as the label of a node plus the
labels associated to its children.
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C(v1, v2) = 0; else

C(v1, v2) = λ
(
µ2 +

∑
J1,J2,|J1|=|J2|

µd(J1)+d(J2)·

·
|J1|∏
i=1

(σ + C(chsv1 [J1i], chsv2 [J2i]))
)
(2)

where J11, J12, J13, . . . J21, J22, J23, . . . are index se-
quences associated with the ordered child sequences
chsv1 and chsv2 respectively, J1i and J2i point to the
i-th children in the two sequences, |J1| returns the
length of the sequence J1. d(J1) = J1|J1| − J11 and
d(J2) = J2|J2| − J21. The parameter µ penalizes sub-
trees built on child subsequences that contain gaps.
Note that in our formulation λ and µ are inverted
with respect to (Moschitti, 2006) for being coherent
with the semantic of λ in ST and SST. The partial
tree kernel can be evaluated in O(ρ3|T1||T2|), where ρ
is the maximum out-degree of the two trees and |T | is
the number of nodes of the tree T . The ST and SST
kernels are a special case of the PT kernel. The SST
kernel can be obtained back from eq. (2) by setting
σ = 1, and considering only the contribution of the
longest child sequence from node pairs with same chil-
dren. The computational complexity in time of the
SST kernel is O(|T1| · |T2|). The ST kernel can be
obtained from the SST kernel by setting σ = 0. In
(Vishwanathan & Smola, 2002) an efficient algorithm
for computing the ST kernel is presented. Its compu-
tational complexity is O(|Ti| log |Ti|).

4. Generalized Route Kernel

This section formally describes the proposed General-
ized Route Kernel. In particular, it will be gradually
introduced by starting from a simple formulation, and
then adding pieces with the aim of progressively en-
riching the feature space. In the end, we will obtain a
kernel which is able to match set of routes ending up
on nodes with the same label or production.
Let us start by introducing the concept of route. In-
tuitively, a route in a tree explicitly keeps information
about the position of the nodes with respect to adja-
cent nodes.

Definition 1 (Route) Let T be a (positional) tree,
v1, v2 ∈ T any two nodes in the tree, and p(v1, v2) =
[v1, . . . , v2] the (shortest) path connecting v1 and v2
through the edges of T (not considering edge direction).
Then the route from v1 to v2 in T , denoted by π(v1, v2),
is the sequence of indexes of edges connecting the con-
secutive nodes in the path p(v1, v2). This indexes are
taken positive (or negative) whenever edges are tra-
versed away from (resp. towards) the root.

Figure 1 gives an example of a tree and a route com-
puted between nodes a and e. The nodes connected
by dashed edges represent the shortest path connect-
ing nodes a and e, i.e. p(a, e). The route connecting
nodes a and e is represented by the sequence [2, 3],
since node b is the second child of a and node e is the
third child of b. The route connecting nodes g and b
is [−3, 2]. Given any two trees, a first kernel can be

a

b

c e

g
2

3

31

Figure 1. An example of a route connecting nodes labeled
with a and e. The nodes connected by dashed edges are
the ones comprising the path between the two nodes. The
route is formed by the sequence 2, 3 since node b is the
second child of a and node e is the third child of b.

promptly defined by comparing the set of all routes in
the trees:

Kπ(T1, T2) =
∑

vi,vj∈T1

∑
vl,vm∈T2

kπ((vi, vj), (vl, vm)),

where kπ is a local kernel defined on the routes, e.g.
kπ((vi, vj), (vl, vm)) = δ(π(vi, vj), π(vl, vm)). In this
case, Kπ counts the number of common routes of the
two trees. It is straightforward to show that if kπ is a
valid kernel then Kπ is a valid kernel. Let χ be the set
of trees, χ

′

T
the set of routes in T ,

MT1,T2 = χ
′

T1
× χ

′

T2
(3)

the Cartesian product of the two sets of routes of T1

and T2, then Kπ is an instance of the mapping kernel
(see Section 3). MT1,T2 is clearly a transitive function
and thus Kπ is positive semidefinite.
In order to add expressiveness to the kernel we consider
a different local kernel kξ defined on label paths, i.e.
kξ((vi, vj), (vl, vm)) = δ(ξ(vi, vj), ξ(vl, vm)). A com-
bined local kernel can then be defined based on the
product between kπ and kξ, i.e.

kπξ ((vi, vj) , (vl, vm)) =

kπ((vi, vj) , (vl, vm))kξ((vi, vj) , (vl, vm))

Finally, a further extension can simply be obtained by
considering a polynomial kernel on the previously de-
fined kernel. Interestingly, this would allow to count as
features the simultaneous presence of groups of routes:

Kgr(T1, T2) =

 ∑
((vi,vj),(vl,vm))∈MT1,T2

kπξ ((vi, vj) , (vl, vm)) + e

d,
(4)



Route Kernels for Trees

where e ∈ R, d ∈ N+ and M is defined as in eq. (3).

5. An instantiation of the Generalized
Route Kernel

In this section, we discuss an instance of the general-
ized route kernel and give for it an efficient implemen-
tation. Our purpose here is to obtain a kernel function
matching identical pairs of type (π, l), where l is the la-
bel of the last node in the path associated to the route
π. The following modifications to eq. (4) are needed.
Since kπξ is defined in terms of kπ and kξ, we start by
modifying these two functions:

kπ((vi, vj), (vl, vm)) = δ(π(vi, vj),π(vl, vm))λ|π(vi,vj)|,
(5)

where λ ∈ R is a user defined parameter and |π(vi, vj)|
is the length of the route π(vi, vj), which corresponds
to the length of the corresponding path. kπ in eq. (5)
let match only identical routes. The value of each
match is weighted according to a value λ dependent
on the length of the route. The basic idea motivating
the introduction of the λ is to downweight the influ-
ence of larger routes in the same way as described for
the ST and SST kernels in Section 3. The function kξ
is modified as follows:

kξ((vi, vj), (vl, vm)) = δ(lj , lm). (6)

kξ tests if the labels of the last nodes in the two paths
are identical. Note that the use of the kernel kξ could
have been avoided by imposing the following condition:

((vi, vj), (vl, vm)) ∈MT1,T2 ⇔ lj = lm. (7)

In the following, we also experiment an alternative def-
inition for the kernel kξ based on the production at the
last node of the path:

kprod(ξ(vi, vj), ξ(vl, vm)) = δ(prod(vj), prod(vm)),
(8)

where prod(v) is the subtree rooted at node v and com-
posed by all the children of v, only.
The route kernel, Kr, is thus the following (for sim-
plicity the decay factor λ is omitted):

Kr(T1, T2) =

 ∑
((vi,vj),(vl,vm))∈MT1,T2

δ(π(vi, vj), π(vl, vm)) + e

d.
(9)

We further restrict the set of feasible routes by impos-
ing the following condition to the sets χ

′

T
:

χ
′

T
=
{
p(vi, vj)|vi, vj ∈ T ∧ vj ∈

vi

4
}
, (10)

where vj ∈
vi

4 means that vj is a descendant of vi or vi
itself. In other words routes are allowed only between
a node and its descendants or the node itself.
Given the definition of χ

′

T
in eq. (10), a route π(vi, vj)

can be recursively defined as:

π(vi, vj) =
{
π (vi, pa(vj)) .chpos(vj) if vi 6= vj

ε if vi = vj

where vi, vj are nodes of a tree T , and the “.” operator
creates a sequence from two list of objects, and ε is a
symbol for the empty sequence.
Since matches are allowed only with identical routes, a
node v, at depth o, in the tree has associated at most
o non null features: one feature related to the path
composed only by the same node, one feature related
to the path p(pa(v), v), one feature related to the path
p(pa(pa(v)), v) = p(pa2(v), v), and so on until the fea-
ture related to the path connecting the root of the tree
to the node: p(pao(v), v). The total number of non null
features for a tree with |T | nodes is less than or equal
to
∑|T |
i=1 depth(vi) = avgdepth(T ) · |T |, where depth(v)

is the depth of node v and avgdepth(T ) is the average
depth of a node in T . Note that the total number of
non null features is equal to avgdepth(T )·|T | when the
labels of the nodes in T are all different. Figure 2 gives
an example of the set of features associated with a sim-
ple tree. In the figure, features are grouped according
to their length s.
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Figure 2. A tree (top) and its set of features according to
the route kernel defined in eq. (9). Features are grouped
by their length s.

5.1. Implementation

We now turn our attention to an efficient implemen-
tation of the kernel proposed in eq. (9) and eq. (10).
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Without loss of generality it is assumed that parame-
ters e and d are set to 0 and 1, respectively. Since no
routes of different length can match, the definition of
M given by eq. (7) and eq. (10), can be rewritten as

MT1,T2 =
o⋃
s=0

M(s)
T1,T2

,

where o is the smallest of the maximum depth of the
trees T1 and T2. M(s)

T1,T2
is defined as:

((vi, vj), (vl, vm)) ∈M(s)
T1,T2

⇔
lj = lm ∧ |π(vi, vj)| = |π(vl, vm)| = s.

Clearly ∀i, j, i 6= j, T1, T2.M(i)
T1,T2

∩ M(j)
T1,T2

= ∅.
Eq. (9) can be rewritten as

Kr(T1, T2) =

 ∑
((vi,vj),(vl,vm))∈MT1,T2

δ(π(vi, vj), π(vl, vm))

 =

o∑
s=0

 ∑
((pas(vj), vj), (pa

s(vm), vm)) ∈ Ms
T1,T2

δ (π(pas(vj), vj), π(pas(vm), vm))

=

o∑
s=0

 ∑
vj ∈ T1
vm ∈ T2

C(s)(vj , vm)

 , (11)

where C(s)(vi, vj) can be computed accord-
ing to the following rules: i) if s = 1 then
C(s)(vi, vj) = δ(vi, vj); ii) if s > 1 then C(s)(vi, vj) =
C(s−1)(vi, vj)δ(chpos(pas(vi)), chpos(pas(vj))).
Eq. (11) suggests a strategy for computing the
route kernel: by starting from the set of common
labels of the two trees, identical routes of increasing
length can be looked for. Clearly, since a common
route of length s can have a match only if its subroute
of length s − 1 has a match, the proposed strategy
can be stopped as soon as no more routes of current
length are found.
The algorithm we propose (algorithm 1) assumes
to treat trees with arbitrary but finite out-degree.
It starts by computing the number of nodes with
the same labels. It then proceeds by comparing the
routes of length s, with s going to from 1 to the
minimum of the maximum of the depths of the two
trees. However, when no common routes of length i
are found, the algorithm stops and avoids looking for
routes of length greater than i. In the following the
behavior of the algorithm is analyzed in detail.

Algorithm 1 Pseudo-Code for computing Kr(T1, T2)
Input: trees T1 and T2, Kr parameter λ.
k = 0; maxout =max{outdegree(T1),outdegree(T2)};
List1 = sort {v ∈ T1}; //nodes sorted according to their labels
List2 = sort {v ∈ T2}; //nodes sorted according to their labels

5: for j = 1 to 2 do
vj= 0; // vector of dimension ρ
for all v ∈ Listj do
v.label= l(v); vj += v.label;

end for
10: end for

k += λvT
1v2; λ2 = λ · λ;

create array F[] of dimension maxout;
while |List1| > 0 ∧ |List2| > 0 do

for i = 1 to maxout do
15: v1,i= 0, F[1,i] = 0;

end for
for all node ∈ List1 do

F[chpos(v)]= 1; v1,chpos(v) += v.label;
end for

20: for i = 1 to maxout do
v2,i= 0; F[2,i] = 0;

end for
for all v ∈ List2 do

if F[1,chpos(v)]= 0 then
25: remove v from List2;

else
F[2,i] = 1;v2,chpos(v) += v.label;
substitute v with w s.t. w ≡ pa(v) and w.label= v.label;

end if
30: end for

for all v ∈ List1 do
if F[2,chpos(v)]= 0 then

remove v from List1;
else

35: substitute v with w s.t. w ≡ pa(v) and w.label= v.label;
end if

end for
for i = 1 to maxout do

k += λ2v
T
1,iv2,i;

40: end for
λ2 = λ2 · λ;

end while
Return k;

Lines from 1 to 4 initialize internal variables and cre-
ate a sorted list of nodes for each tree. The procedure
costs O(|T | log |T |). Lines from 5 to 11 compute the
number of matchings due to the routes of length 1,
i.e. the number of common labels. The computational
complexity of the procedure is O(ρ|T |). Line 12 cre-
ates an array which will contain information about the
matchings between routes at current level. Its cost
is O(maxout). Each while iteration (lines 13 to 42)
costs O(|T |), since L lists may not contain more than
O(|T |) elements and for each list O(1) operations are
performed. Lines 14 − 16 have a computational com-
plexity of O(maxout). However, it can be skipped by
making use of a variable and an array of the same size
of F . The variable, say t, is initially set to 0 and it
is incremented every time the while loop is entered.
Whenever F is written to (lines 18 and 27), the cur-
rent value of t is recorded in the auxiliary array, say
F ′. When values from F are read (lines 24 and 32),
they are considered valid if the corresponding value of
F ′ is equal to t, otherwise the read operation returns
a value of 0. Each while iteration counts the number
of common routes of length s. Initially s = 1; If at
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least one common route of length s is found (there is
a non empty list L), then, in the next while iteration,
routes of length s + 1 are looked for. Clearly, there
are no more than the length of the longest path in the
smallest tree, i.e. min(maxdepth(T1),maxdepth(T2)),
of such paths. By summing up the cost of all lines, the
total cost of the algorithm in the worst case becomes:
O(|T | ∗ avgdepth(T ) + |T | log |T |). Note that the av-
erage depth of a node can be at most O(|T |), thus the
complexity of the algorithm can be at most O(|T |2).

5.2. Relationship with other Kernels

It is known that, with respect to the feature space,
ST ⊆ SST ⊆ PT . Given a tree T , ST associates to T
at most a linear number of non-null features. SST and
PT, with respect to T , have at most an exponential
number of non-null features. The number of non-null
features of the Route kernel is at most avgdepth(T )|T |.
The features space of the Route kernel is not directly
comparable with the one of the PT kernel. However if
all labels of a tree were identical, the feature space of
the Route kernel would properly be included into the
feature space of the PT kernel. This is not the common
case: two matching nodes for the Route kernel having
different ascendants would not match for the PT ker-
nel. Regarding computational complexity, ST is faster
than SST, which in turn is faster than PT. The Route
kernel has a lower computational complexity than the
PT kernel and, in the worst case, the same quadratic
complexity of the SST. Note that, when avgdepth(T )
is O(1), the computational complexity of the Route
kernel is equivalent to the one of the ST kernel. The
sparsity of the kernel, with respect to a dataset, has
been analyzed by considering the percentage of null
entries of the Gram matrix. The sparsity of ST (those
of SST are similar) is 54.71% on INEX 2005, 0.0024%
on INEX 2006, 96.12% on LOGML, 44.45% on Prop-
bank. The sparsity of the partial tree kernel is 0% for
all datasets but Propbank (0.4388%). The sparsity of
the route kernel, we consider here the version giving
best results on each dataset, is 45.64% on INEX 2005,
44.50% on Propbank and 0% on all other datasets.
Apart from INEX 2005 and Propbank, the sparsity of
the route kernel is identical to the one of the partial
tree. Thus, sparsity alone can not explain the differ-
ence in accuracy (see Section 6). We hypothesize that
this different is due to the nature of the feature space
of the route kernels.

6. Experiments

Experiments were performed to test the effectiveness
of the proposed kernel with respect to ST, SST, the

polynomial version of SST (obtained by exponentiat-
ing the kernel value in the same way as described for
the route kernel in eq. (4)) and the PT kernel. The im-
plementation of these kernels is available as part of the
SVM-Light software2. Our approach has been tested
on the INEX 2005 dataset (Section 6.1), the INEX
2006 dataset (Section 6.2), on part of the Propbank
dataset (Section 6.3), and the LOGML dataset (Sec-
tion 6.4). In some cases the training procedure was
stopped due to excessive training times. Specifically
we set a 24 hours time out for each single learning
procedure. The time out was necessary because of the
number of parameters evaluated.

6.1. Experiments on INEX 2005

We have used a modified version of the 2005 INEX
Competition dataset(Denoyer & Gallinari, 2007),
processed in order to reduce its maximum out-degree.
The 2005 INEX Competition corpus we have used is
the (m-db-s-0), which consists of 9, 640 documents
containing XML tags only. All documents belong
to one out of 11 possible classes. For the learning
phase, we used 3397 documents as training examples,
while 1423 documents constitute the validation set.
All remaining documents form the test set. For
each setting of the hyper-parameters, SVM-based
multi-class classification was performed by using the
one-against-all methodology. Best hyper-parameters
for the different methods were selected comparing
classification accuracies on the validation set. The
model related to the best hyper-parameters setting
was trained on the union of the train and validation
sets, and finally tested on the test set.
Only a subspace of the parameters of the kernels were
evaluated. Specifically, experiments were performed
with both normalized and not normalized kernels.
The e parameter in eq. (9) was set to 0 in all experi-
ments. The parameter d in eq. (9) was set to 1, 2, 3.
The PT kernel has an additional parameter, µ, which
has been set to 0.1, 0.5, 1.0. Route kernel experiments
were carried out with the local kernel defined on
node labels, eq. (6) and with the local kernel defined
on productions, eq. (8). For each combination of
the previous parameters, the λ and c parameter
of the SVM were selected in validation among the
values: λ = {0.05, 0.1, 0.25, 0.50, 0.75, 1.0, 2.0} and
c = {0.001, 0.01, 0.1, 1, 10, 100, 1000}. Table 1 summa-
rizes the results obtained. The PT kernel has lowest
classification error, 2.96%, while the route kernel
with local kernel defined on labels places second with
3.06% classification error. A significance test shows
that the difference between PT and route accuracies

2http://www.math.unipd.it/∼dasan/routekernel.htm
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Table 1. Comparison between the classification error of ST, SST, the polynomial SST, the Partial Tree kernel and the
Route kernel, respectively. Data refer to four different datasets: INEX 2005 and 2006, Propbank (sec. 23 and 24),
and LOGML. The columns represent, respectively, the type of kernel, the lowest classification error on validation, the
corresponding classification error on the test set. The last column refers to 3-fold cross-validation error over the LOGML
dataset.

Kernel Type INEX 2005 INEX 2006 Propbank LOGML
validation test validation test validation test cross-valid.
error % error % error % error % error % error % error %

ST 13.15 11.27 68.32 67.98 5.43 5.71 16.72
SST 12.79 11.21 56.55 59.56 4.65 4.62 16.84
Polynomial SST 12.09 10.67 55.55 59.88 4.65 4.62 16.82
Partial Tree 2.96 2.96 57.83 58.87 4.71 4.55 16.40
Route, kξ ≡ eq. (6) 3.10 3.06 58.72 59.94 5.07 4.90 16.20
Route, kξ ≡ eq. (8) 3.31 3.52 55.55 58.09 4.92 4.76 16.79

is not significant.

6.2. Experiments on INEX 2006

The INEX 2006 dataset (Denoyer & Gallinari, 2007)
is derived from the IEEE corpus composed of 12000
scientific articles from IEEE journals in XML format.
It includes XML formatted documents, each from one
of 18 different journals. In this case the training, vali-
dation and test sets consisted of 4237, 1816 and 6054
documents, respectively. Each document belongs to
1 out of 18 classes. By applying the same method-
ology as in the previous experiment and keeping the
same experimental setting, the results summarized in
Table 1 were obtained.
The lowest classification error is obtained by the route
kernel with local kernel defined on node productions,
58.09%. The partial tree kernel reaches a 58.17%.
Other kernels have a classification error going from
1.47% worse than the route kernel to 9.89%. The
INEX 2006 is a harder task than INEX 2005. Nonethe-
less the route kernel, in conjunction with the local ker-
nel defined on productions, is able to improve on the
classification error of all the other techniques we com-
pared to. A significance test shows that the improve-
ment is indeed significant.

6.3. Experiments on Propbank

The Propbank dataset (Kingsbury & Palmer, 2002) is
derived from a set of Dow-Jones news articles. It pro-
poses argument structures to encode shallow semantics
from texts. Only verbs are considered as predicates
whereas arguments are labeled sequentially from Arg0
to Arg5 plus ArgMs including several type of adjuncts.
The corpus is divided into sections. In order to reduce
the computational complexity of the task, we derived
the training (75314 examples) and validation (40495

examples) sets from section 24 and the test set from
section 23 (184273 examples). The task is a binary
classification problem. By applying the same method-
ology as in the previous experiment and keeping the
same experimental setting, the results summarized in
Table 1 were obtained.
The lowest classification error is obtained by the PT
kernel, 4.55%. The route kernel with local kernel de-
fined on node productions reaches a 4.76% and places
4th.

6.4. Experiments on LOGML

The LOGML dataset consists of user sessions of the
Rensselaer Polytechnic Institute Computer Science
Department website3, collected over a period of three
weeks. Each user session consists of a graph and con-
tains the websites a user visited on the Computer Sci-
ence domain. These graphs were transformed to trees
by only enabling forward edges starting from the root
node. The goal of the classification task is to discrim-
inate between users who come from the edu domain
and users from other domains, based upon the users
browsing behavior. Three datasets are available. They
comprises 8074, 7409 and 7628 examples, respectively.
The maximum out-degree of the trees is 137.
Because of the availability of the three datasets, it was
natural to compute the classification error of the ker-
nels by performing a 3-fold cross-validation consider-
ing, in each round, one of the dataset as the test set.
The set of parameters involved is the same as the one
for the INEX 2005 experiments (see Section 6.1). Ta-
ble 1 summarizes the result obtained. The values listed
are the mean of the classification error on the three
folds. Note that the Route kernel with local kernel de-
fined on node labels has the lowest mean classification

3http://www.cs.rpi.edu
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error, 16.20%.

7. Conclusions

We have proposed Tree Route kernels, a new family
of tree kernels based on the definition of route be-
tween nodes. A member of this family where routes
are matched if and only if the label of the arriving
node is the same, has been studied in detail. The com-
putational complexity of the procedure for computing
the kernel is O(avgdepth · |T | + |T | log(|T |)). Experi-
mental results obtained on supervised classification for
four non-trivial datasets have shown that the feature
space induced by the proposed kernel is rich enough to
give state of the art performances with respect to the
most widely used tree kernels. The proposed kernel is
thus able to reach quite good results while keeping a
reasonable computational complexity. In addition to
that, the proposed algorithm for computing the ker-
nel can be easily adapted to parallel computation. In
fact, each tread of computation could take responsibil-
ity for computing the contribution to the kernel given
by the matchings between routes that end up on spe-
cific nodes (of the two trees) with identical label. The
same approach cannot be applied to the other kernels
because of the strong dependencies among nodes.
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