Ordered K-theory

Peter Vámos, Exeter

Padova March 2015

"The task of Algebra is to find Invariants" – Algebraist

"The nicest and most natural invariants are additive and non-negative"

– So say all of us

Examples of Numerical Invariants

Cardinality

Length

Dimension Rank

Probability

Area

Euler Char. Multiplicity

Measure

Volume

State Weight Throughout, by a category \mathcal{C} we'll mean a full small subcategory of an Abelian category, closed under isomorphisms and containing the zero.

Actually, the ambient Abelian category will, with a few exceptions, be a category of (right) modules over a ring.

Definitions

Let F be an Abelian group. A function $f\colon \mathcal{C}\to F$ is additive if it is additive over short-exact sequences in \mathcal{C} . The pair (F,f) is universal if for every other such pair (G,g), there is a unique homomorphism $h\colon F\to G$ such that g factors through f i.e. g=hf.

Let F be a po Abelian group. A function $f\colon \mathcal{C}\to F$ is additive and non-negative if it is additive over short-exact sequences in \mathcal{C} and $f(A)\geq 0$ for all $A\in \mathcal{C}$. The pair (F,f) is universal if for every other such pair (G,g), there is a unique o-homomorphism $h\colon F\to G$ such that g factors through f i.e. g=hf.

Examples

1 Let C be the category of finitely generated vector spaces over a field/division ring.

2 Let C be the category of finite Abelian groups.

Examples

1 Let C be the category of finitely generated vector spaces over a field/division ring.

Then (\mathbb{Z}, \dim) is universal. Here \mathbb{Z} is ordered naturally with \leq .

2 Let C be the category of finite Abelian groups.

Examples

1 Let C be the category of finitely generated vector spaces over a field/division ring.

Then (\mathbb{Z}, \dim) is universal. Here \mathbb{Z} is ordered naturally with \leq .

2 Let C be the category of finite Abelian groups.

Let $\mathbb{Q}_{>}$ denote the multiplicative group of positive rational numbers equipped with the divisibility order. Then $(\mathbb{Q}_{>}, |\cdot|)$ is universal.

The Universal Invariant

Theorem 1

Let \mathcal{C} be a category. Then there is a universal additive invariant $(\mathbf{K_0}(\mathcal{C}), [\cdot])$ such that every additive $g \colon \mathcal{C} \to G$ uniquely factors through $[\cdot] \colon \mathcal{C} \to \mathbf{K_0}(\mathcal{C})$ i.e.

 $\exists ! \ h \colon \mathbf{K_0}(\mathcal{C}) \to G$ group homomorphism such that $g = h[\cdot]$.

There is also a universal additive and non-negative invariant $(\mathbf{KO}(\mathcal{C}), \langle \cdot \rangle)$ such that every additive and non-negative $g \colon \mathcal{C} \to G$ uniquely factors through $\langle \cdot \rangle \colon \mathcal{C} \to \mathbf{K_0}(\mathcal{C})$ i.e.

 $\exists ! h : \mathbf{KO}(\mathcal{C}) \to G$ group o-homomorphism such that $g = h \langle \cdot \rangle$.

KO theory is OK!

Proposition 2

Suppose that the category C satisfies

- (1) every exact sequence in C splits;
- (2) there is a set of pair-wise non-isomorphic objects $\{S_i\}, i \in I$ in C such that every $A \in C$ has a unique representation as a finite direct sum of the S_i :

$$A \approx \bigoplus_{i \in I} S_i^{n_i}, \ n_i \in \mathbb{N}, n_i = 0 \ \text{for almost all } i \in I.$$

Then

$$(\mathbf{K_0}(\mathcal{C}), [\cdot]) = (\mathbf{KO}(\mathcal{C}), \langle \cdot \rangle) =$$
free po-group on I , $[A] = \langle A \rangle = (n_i)$.

Categories satisfying the two conditions above include the category of f.g. semi-simple modules over any ring; the category of f.g. free modules over an IBN ring and the category of finite direct sums of indecomposable injectives over any ring.

Remark

Let F be the free po-group of rank |I| as above in Proposition 2. Then there is an o-homomorphism

$$\nabla F \to \mathbb{Z}, \ (n_i) \to \sum_{i \in I} n_i$$

This then yields an integer valued additive and non-negative function on C.

Example 3 (Goldie's Uniform Dimension)

Let C be the category of finite direct sums of indecomposable injectives over a ring, as in Proposition 2 above. Then for any module A, let E(A) denote its injective envelope and define

$$\dim A = \begin{cases} \nabla \langle E(A) \rangle & \text{if } E(A) \in \mathcal{C}, \\ \infty & \text{otherwise.} \end{cases}$$

Definitions

Let A be a module over some ring. A chain σ of submodules of A is of the form

$$\sigma \colon 0 = A_0 \subseteq A_1 \subseteq A_2 \subseteq \dots \subseteq A_n = A. \tag{1}$$

Here n is the length of the chain σ and $A_i/A_{i-1}, \ 1 \le i \le n$ are the chain factors of σ . Let τ be another chain for A:

$$\tau \colon 0 = B_0 \subseteq B_1 \subseteq B_2 \subseteq \cdots \subseteq B_m = A.$$

If τ was obtained from σ by inserting extra submodules in σ then we say that τ is a refinement of σ and write $\sigma \leq \tau$. The chains σ and τ are equivalent if n=m and there is a permutation π on $\{1,\ldots,n\}$ such that $A_i/A_{i-1}\approx B_{\pi(i)}/B_{\pi(i-1)},\ 1\leq i\leq n$.

Theorem 3 (Jordan, Hölder, Schreier)

For a module A any two chains have equivalent refinements.

Definitions

A category \mathcal{C} is said to be semi-closed if it is closed under submodules and factor modules, it is closed (or a Serre category) if, in addition, it is closed under extensions. The category chain \mathcal{C} consists of modules having a chain all whose chain factors are in \mathcal{C} .

Observation (Categories)

If $\mathcal C$ is semi-closed and and σ is a chain of $A \in \mathcal C$ then all the chain factors of σ are in $\mathcal C$ and so are those of any refinement of σ . Hence chain $\mathcal C$ is closed and indeed it is the smallest closed category containing $\mathcal C$, the closed category generated by $\mathcal C$. If A is a module then the segments of A (the sub factors of A) form a semi-closed category so the chain of this category is the closed category generated by A, we'll denote this category by

 $\mathcal{M}(A)$ and its universal po-group by $\mathbf{KO}(A)$.

Extension by Devissage

Theorem 4 (Devissage)

Let $\mathcal C$ be a semi-closed category. Then the homomorphism (resp. o-homomorphism) induced from the inclusion $\mathcal C \subseteq \operatorname{chain} \mathcal C$ are isomorphisms. In other words every additive (resp. additive and non-negative) function on $\mathcal C$ can be uniquely extended to an additive (resp. additive and non-negative) function on $\operatorname{chain} \mathcal C$.

Example 4

Let \mathcal{C} be the category of f.g. semi-simple modules over an arbitrary ring R. Then $\operatorname{chain} \mathcal{C}$ consists of modules with finite composition length (equivalent to being both Noetherian and Artinian) and by Proposition 2, $\operatorname{KO}(\operatorname{chain} \mathcal{C})$ is a free po-group. Then for a module $A \in \operatorname{Mod-} R$ the classical composition length is defined by

$$\ell(A) = \begin{cases} \nabla \langle A \rangle & \textit{if } A \in \operatorname{chain} \mathcal{C}, \\ \infty & \textit{otherwise}. \end{cases}$$

Observation (Functoriality)

Let $F: \mathcal{C} \to \mathcal{D}$ be an exact functor i.e. a functor preserving exact sequences. Then, by the universal property of the groups $\mathbf{K_0}$ and \mathbf{KO} , we obtain the unique

homomorphism $\mathbf{K_0}(F) \colon \mathbf{K_0}(\mathcal{C}) \to \mathbf{K_0}(\mathcal{D})$ and

o-homomorphism $\mathbf{KO}(F) \colon \mathbf{KO}(\mathcal{C}) \to \mathbf{KO}(\mathcal{D})$ respectively.

Now suppose that $\phi \colon R \to S$ is a homomorphism of rings and $_RS$, regarded as a left R module is flat.

Let $\mathcal{M}(R)$ and $\mathcal{M}(S)$ be the closed categories generated by R and S respectively and let F be the functor $-\otimes_R S$. Since $F(R)=S,\ F$ is an exact functor $\mathcal{M}(R)\to\mathcal{M}(S)$.

Example 5 (Torsion-free and Goldie ranks)

Let S be a (right) Goldie ring e.g. a semiprime right Noetherian ring. Then by Goldie's Theorem S has a classical quotient ring T which is semi-simple Artinian and flat as a left R-module. Let F, as above, be the exact functor $-\otimes_S T$. Since $\mathcal{M}(T)$ is the category of f.g. semi-simple T-modules the function

$$\operatorname{rk} \colon \mathcal{M}(S) \to \mathbb{Z}, \operatorname{rk}(A) = \ell(\mathbf{KO}(F)(A))$$

is a well-defined additive and non-negative function. In the special case when S is on Ore domain (all commutative domains are Ore domains), this is the torsion-free rank of A.

Now let R be a right Noetherian ring and N it's nil radical. Then S=R/N is a Goldie ring and $N^k=0$ for some k>0. For an R-module A the chain factors of the chain

$$A \supseteq AN \supseteq AN^2 \supseteq \dots \supseteq AN^k = 0$$

can be viewed as S modules, so by devissage rk extends to $\mathcal{M}(S)$. This is Goldie's rank function on a (right) Noetherian ring.

Extension by Resolution

Let \mathcal{C} be a category closed under finite direct sums and assume that whenever $A \to A''$ is an epimorphism and $A, A'' \in \mathcal{C}$ then so is $\operatorname{Ker}(A \to A'')$. An exact sequence of the form

$$0 \to A_n \to \cdots \to A_1 \to A_0 \to 0, \ A_i \in \mathcal{C}, \ 1 \le i \le n$$
 (2)

is called a C-resolution of (of length n) of A_0 . If $A_0 \in C$ as well, then $[A_0] - [A_1] + \cdots + (-1)^n [A_n] = 0$ in $\mathbf{K_0}(C)$. Let res C denote the category of those (modules) which admit a C-resolution.

Theorem 5 (Grothendieck's Resolution Theorem)

Let C be as above. Then the natural homomorphism $\mathbf{K_0}(C) \to \mathbf{K_0}(\operatorname{res} C)$ induced by the inclusion $C \subseteq \operatorname{res} C$ is an isomorphism with an inverse given by

$$[A_0]_{\text{res}} \to [A_1]_{\mathcal{C}} - [A_2]_{\mathcal{C}} + \dots + (-1)^{n-1} [A_n]_{\mathcal{C}}.$$

where $A_0 \in \text{res } \mathcal{C}$ with a \mathcal{C} -resolution as in (2) above. Hence any additive map from \mathcal{C} can be uniquely extended to $\text{res } \mathcal{C}$.

Euler Characteristic

Let R be a ring with IBN and $\mathcal C$ the category of f.g. free R-modules so $\mathbf K_0(\mathcal C) = \mathbf K \mathbf O(\mathcal C) = (\mathbb Z, \leq)$. By the Resolution Theorem above $\mathbf K_0(\operatorname{res}\mathcal C) = \mathbb Z$. This is called the Euler characteristic $\chi(A)$ of a module A of finite free resolution. Further, if R is commutative, then $\chi(A) \geq 0$, so $\mathbf K \mathbf O(\operatorname{res}\mathcal C) = \mathbb Z$ as well.

Lemma 6

Let R be a commutative ring.

- (a) Let A be an R-module. If P is maximal among the annihilators of non-zero elements of A then P is a prime ideal.
- (b) Let P be a prime ideal in R and let C be a closed category of R-modules containing R/P. Then $\langle R/I \rangle = 0$ for an ideal $I \supset P$ in $\mathbf{KO}(C)$.

Modules with Chain Conditions or Krull Dimension

Lemma 7

Let A be a Noetherian module over a commutative ring R. Then A has a chain of submodules so that all the chain factors are of the form R/P, P a prime ideal of R.

Let R be a commutative ring and let C be a category of R-modules. Recall that $\operatorname{Spec} R$ denotes the set of prime ideals of the ring R. We write $\operatorname{Spec} C = \{P \in \operatorname{Spec} R \mid R/P \in C\}$.

Theorem 8

Let R be a commutative ring and let C be a closed category of Noetherian R-modules. Then $\mathbf{KO}(C)$ is a free po-group with basis $\langle R/P \rangle, P \in \min \operatorname{Spec} C$.

The proof uses the following additive, non-negative functions as a 'dual basis'. For $P \in \operatorname{Spec} R$ let the additive function ℓ_P be given by $\ell_P(A) = \ell_{R_P}(A \otimes R_P)$. Then for $P, Q \in \operatorname{Spec} R$:

$$\ell_P(R/Q) = \begin{cases} 0 & \text{if } Q \nsubseteq P, \\ 1 & \text{if } Q = P, \\ \infty & \text{otherwise.} \end{cases}$$

Example 6

Let R be a discrete valuation domain with maximal ideal P, K its quotient field, L a separable extension field of K of finite dimension [L:K]=n and let S be the integral closure of R in L. Then the valuation on R has t extensions to S i.e. there are exactly t maximal ideals of S lying over P; let their respective ramification indices and residue degrees be $e_i, f_i, 1 \leq i \leq t$ respectively. Then

$$e_1f_1 + \dots + e_tf_t = n.$$

Non-Discrete Valuation Domain

Let R be a rank-one non-discrete valuation domain with valuation $v\colon R\to\mathbb{R}_{\geq}\cup\infty$. For a non-zero ideal $I\subseteq R$ set $v(I)=\inf\{v(r)\mid r\in I\}$.

Lemma 9

Let the situation be as above and $0 \neq I \subseteq J, \ 0 \neq I' \subseteq J'$ be non-zero ideals of R. If $J/I \approx J'/I'$ then v(I) - v(J) = v(I') - v(J').

Example 7 (Northcott-Reufel)

Let the situation be as above, let \mathcal{T} be the torsion modules in $\mathcal{M}(R)$ and let \mathcal{S} be the semi-closed category of torsion segments of R i.e. modules isomorphic to $J/I, 0 \neq I \subseteq J \subseteq R$. Then $L \colon \mathcal{S} \to \mathbb{R}, \ L(J/I) = v(I) - v(J)$ defines an additive and non-negative function on \mathcal{S} which uniquely extends to $\operatorname{chain} \mathcal{S} = \mathcal{T}$.

Length Functions

Let L be a non-negative function on a category $\mathcal C$ with values in the real numbers and ∞ so $L\colon \mathcal C\to\mathbb R\cup\{\infty\}$. It is a length function if it is additive and it is sub-additive if $L(A)\leq L(A')+L(A'')$ whenever $0\to A'\to A\to A''\to 0$ is an exact sequence in $\mathcal C$. The advantage of allowing ∞ to be a value is that we can always consider length functions on all modules of a ring by extending these functions trivially: defining the values outside a closed category to be ∞ . However, there is a better way.

Theorem 10

Let L be a sub-additive function on $\operatorname{Mod-} R$. Then there is a unique additive function \hat{L} on $\operatorname{Mod-} R$, called the continuous extension of L, which is minimal among the length functions dominating L.

Definitions

Let $L, L_i, i \in I$ be length functions on a category $\mathcal C$ and $0 \neq c \in \mathbb R$ Then for all $A \in \mathcal C$ we define the functions (cL)(A) = cL(A) and $(\sum_i L_i)(A) = \sup\{\sum_{i \in F} L_i(A)\}$ where F runs through the finite subsets of I. It is immediate that cL and $\sum_i L_i$ are again length functions on $\mathcal C$. A length function whose only values are 0 or ∞ is called trivial.

If $L \geq L'$ then we can define their difference by setting

$$(L-L')(A) = \begin{cases} L(A) - L'(A) & \text{if } L(A) < \infty, \\ \infty & \text{otherwise.} \end{cases}$$

Then L-L' is again a length function.

The length function L is irreducible if it isn't trivial and if $L=L_1+L_2$ for any two length functions L_1,L_2 implies that either $L_1=cL$ or $L_2=cL$ for some $0\neq c\in\mathbb{R}$.

It is routine to check that the continuous extension (the ^operation) commutes with linear combinations and sums and preserves irreducibility.

Let \mathcal{C} be a semi-closed category and let L be a length function whose domain of definition include \mathcal{C} . Let the function $L_{\mathcal{C}}$ be defined on Mod-R by restricting it to \mathcal{C} and then taking the 0-extension:

$$L_{\mathcal{C}}(A) = \begin{cases} L(A) & \text{if } A \in \mathcal{C}, \\ 0 & \text{otherwise.} \end{cases}$$

Then $L_{\mathcal{C}}$ is subadditve on Mod-R.

Corollary 11

Let the situation be as described above and let $\hat{L}_{\mathcal{C}}$ (or just \hat{L} if there is no ambiguity about \mathcal{C}) denote the continuous extension of $L_{\mathcal{C}}$. Then $\hat{L} \leq L$, \hat{L} and L agree on \mathcal{C} and L can be decomposed $L = \hat{L} + (L - \hat{L})$.

Dimension

We now define a dimension in an Abelian category, as an ordinal number similar to the Gabriel-Rentschler dimension (hereinafter just Kdim). On Noetherian modules it will agree with latter but it also provides a useful ordinal for Artinian modules since the definition is self-dual. Nevertheless, the category of objects (modules) having either dimension will be the same.

Let \mathcal{C} be a closed (Serre) category. For a subcategory \mathcal{B} of \mathcal{C} let \mathcal{B}' be the closed subcategory generated by \mathcal{B} and the objects which become simple in \mathcal{C}/\mathcal{B} .

The dimension-series, $(\mathcal{C}_{\alpha}, \mathbf{KO}_{\alpha}(\mathcal{C}))$ of \mathcal{C} , is defined transfinitely:

$$C_{-1} = \{0\} \qquad \langle \ \rangle_{-1} = 0$$

$$C_{\beta} = (C_{\alpha})' \qquad \langle \ \rangle_{\beta} = \langle \ \rangle_{C_{\beta}} \colon C_{\beta} \to \mathbf{KO}(C_{\beta}) \quad \beta = \alpha + 1$$

$$C_{\beta} = \left(\bigcup_{\alpha < \beta} C_{\alpha}\right)' \quad \langle \ \rangle_{\beta} = \langle \ \rangle_{C_{\beta}} \colon C_{\beta} \to \mathbf{KO}(C_{\beta}) \quad \beta \text{ limit ordinal.}$$

The dimension of \mathcal{C} and that of an object $A \in \mathcal{C}$ is given by $\dim \mathcal{C} = \inf\{\alpha \mid \mathcal{C}_{\alpha} = \mathcal{C}\}$ if there is such an ordinal and ∞ otherwise $\dim A = \inf\{\alpha \mid A \in \mathcal{C}_{\alpha}\}$ if there is such an ordinal and ∞ otherwise.

Proposition 12

Let A be a Noetherian or Artinian object in a closed category \mathcal{C} . Then $\dim A < \infty$. It follows that $\dim A < \infty$ if and only if $\operatorname{Kdim} A < \infty$ but in general, these two ordinals are not the same. Let L be a length function on a closed category \mathcal{C} . Then

$$\operatorname{Ker} L = \{ A \in \mathcal{C} \mid L(A) = 0 \}$$
 and $\operatorname{Fin} L = \{ A \in \mathcal{C} \mid L(A) < \infty \}$

are again closed categories. Also, L is called locally discrete if for all $A \in \mathcal{C}$ there are only finitely many values for segments of A i.e. the set $\{L(B) \mid B \text{ is a segment of } A\}$ is finite. For example, if L is integer valued then it is locally discrete.

Proposition 13

Let L be a length function on a closed category. Then L is locally discrete if and only if $\dim(\operatorname{Fin} L/\operatorname{Ker} L) \leq 0$.

The Main Decomposition Theorem

Let $\mathcal C$ be a closed category and L be a length function on $\mathcal C$. Suppose that $\dim(\operatorname{Fin} L/\operatorname{Ker} L)=\gamma<\infty$. We want to show that L decomposes, uniquely, as a sum of irreducible length functions. By passing to the quotient category $\mathcal C/\operatorname{Ker} L$, we may assume that $\operatorname{Ker} L=\{0\}$. Let $\mathcal C_\alpha,\ \alpha\leq\gamma$ be the dimension series of $\mathcal C$ as defined above, $\mathcal C_\gamma=\mathcal C$.

We proceed by transfinite induction. For $\alpha=0,\mathcal{C}_0$ consists of objects of finite composition length. Let Ω_0 be the set of representatives of the isomorphism classes of simple \mathcal{C}_0 objects, one from each isomorphism class. Then the restriction of L to \mathcal{C}_0 is the unique linear combination of the irreducible length function associated to the elements of Ω_0 , let L^0 be the continuous extension of this to $\operatorname{Fin} L$ (or indeed to \mathcal{C}). Then by Corollary 11 $L=L^0+(L-L^0)$, note that $L-L^0$ vanishes on \mathcal{C}_0 . Now repeat this for $L-L^0$ on $\operatorname{Fin} L/\mathcal{C}_0$ and continue this way by transfinite induction to obtain

Theorem 14 (Main Decomposition Theorem)

Let the situation be as described above. Then

$$L = \sum_{\alpha \leq \gamma} L^{\alpha}, \ L^{\alpha} = \sum_{i \in \Omega_{\alpha}} c_{i}^{\alpha} L_{i}^{\alpha}, \ \alpha \leq \gamma, \ L^{\alpha} \ \textit{vanishes on } \mathcal{C}_{\beta}, \beta < \alpha$$

and each L_i^{α} is the irreducible length function corresponding to an object in $A_i^{\alpha} \in \Omega_{\alpha}$, $L_i^{\alpha}(A_i^{\alpha}) = 1$, $c_i^{\alpha} = L^{\alpha}(A_i^{\alpha})$. Moreover, this representation of L as a sum of irreducible length functions is unique and L is irreducible if and only if it is a positive constant multiple of one of the L_i^{α} .

Corollary 15

Suppose that $\dim(A) < \infty, A \in \mathcal{C}$ (in particular if A is Noetherian or Artinian). Then there is a length function L on \mathcal{C} such that $0 < L(A) < \infty$.

Theorem 16

With the same notation as in the Main Decomposition Theorem above, assume additionally, that $\operatorname{Fin} L$ (or $\mathcal C$) consists of Noetherian objects. Then each A_i^α can be chosen so that every proper factor of it belongs to some $\mathcal C_\beta, \beta < \alpha$ so its injective envelope, $E(A_i^\alpha)$ is indecomposable and $L_i^\alpha(-) = \ell_S(\operatorname{Hom}_{\mathcal C}(-, E(A_i^\alpha)))$ where S is the endomorphism ring of $E(A_i^\alpha)$.

If our category is Noetherian modules over a commutative ring then we can recover Theorem 8.

Proposition 17

Let R be a commutative ring. Then there is a one-to-one correspondence between those prime ideals P of R for which R/P is Noetherian and indecomposable injective R-modules containing a non-zero Noetherian module given by $P \leftrightarrow E(R/P)$. Moreover, if P is such a prime ideal then the length functions $\ell_{R_P}(-\otimes R_P)$ and $\ell_S(\operatorname{Hom}_R(-,E(R/P)))$, $S=\operatorname{End}_R(E(R/P))$ are equal.

Example 8

Let V be a countable dimensional vector space over some field F with basis $\{b_i\}_{i=1}^{\infty}$. Define linear transformations $\{\phi_j\}_{j=1}^{\infty}$ of V by

$$\phi_{j}(b_{i}) = \begin{cases} b_{i} & i < j, \\ b_{i+1} & i = j, \\ 0 & i > j, \end{cases} \quad 1 \le i, j \le \infty.$$

Let R be the subring of $\operatorname{End}_F(V)$ generated by F and the ϕ_j^s . Then V is an R-module and its only submodules are: $Rb_1 \supset Rb_2 \supset \cdots \supset Rb_n \supset \cdots$. Hence $_RV$ is Noetherian and $S_i = Rb_i/Rb_{i+1} \not\approx Rb_j/Rb_{j+1} = S_j, i \neq j$ are non-isomorphic simple segments of $_RV$. Let $\mathcal{C} = \mathcal{M}(_RV), \ \ell_i$ the classical length function associated to S_i and $L = \sum_i 2^{-i}\ell_i$. Then $L(_RV) = 1$, $\operatorname{Ker} L = \{0\}$, $\operatorname{Fin} L = \mathcal{C}$ and $\operatorname{dim} \operatorname{Fin} L/\operatorname{Ker} L = 1 > 0$.

Proposition and Definition 18

For a length function L on $\operatorname{Mod-} R$ the following are equivalent:

- (i) $L(A) = \sup\{L(F) \mid F \subseteq A \text{ finitely generated }\};$
- (ii) if $A = \bigcup_{i \in I} A_i$ for a direct system $\{A_i\}_{i \in I}$ of submodules of A then $L(A) = \sup_i L(A_i)$;
- (iii) if $A = \bigcup_{i \in I} A_i$ for submodules $\{A_i\}_{i \in I}$ totally ordered by inclusion, then $L(A) = \sup_i L(A_i)$.

If L satisfies the equivalent conditions above then it is said to be upper continuous. In this case L is completely determined by its values on finitely generated modules.

Theorem 19

If $\dim R < \infty$ then an upper continuous length function on $\operatorname{Mod-} R$ can be uniquely written as a linear combination of length functions associated to indecomposable injective R-modules as in Theorem 16.

Rank Rings

Recall that for an object/module $A, \mathcal{M}(A)$ is the closed category generated by A consisting of those object which have a chain where every chain factor is a segment of A, see Observation (Categories). This means that for all $x \in \mathbf{KO}(A)$ there is a natural number n such that $-n\langle A\rangle \leq x \leq n\langle A\rangle$. In this situation we say that $\langle A\rangle$ is an order-unit in $\mathbf{KO}(A)$.

We say that the ring R is a rank-ring if there is a non-trivial length function L on $\mathcal{M}(R)$ (equivalently, if L(R)=1). From our previous results we see that R is a rank ring if it has Krull-dimension, in particular if it is (right) Noetherian, or a (Ore) domain or a factor ring of a non-discrete rank one valuation domain.

Proposition 20

The ring R is a rank ring if, and only if, $KO(R) \neq 0$.

States and von Neumann Regular Rings

Let R be a ring, we now focus on $\mathcal{M}(R)$ and $\mathcal{P}(R)$, the category of f.g. projective R-modules. A length function L (on either categories) is a state if L(R)=1. Let $\mathbf{S}(\mathcal{C})$ be the set of states on \mathcal{C} where \mathcal{C} stands for either of these categories. Then $\mathbf{S}(\mathcal{C})$ is a convex compact subset of a real topological vector space. Moreover, a length function with $\mathcal{C}\subseteq \operatorname{Fin} L$ is irreducible precisely when its normalised state is an extreme point in $\mathbf{S}(\mathcal{C})$.

States and von Neumann Regular Rings

Let R be a ring, we now focus on $\mathcal{M}(R)$ and $\mathcal{P}(R)$, the category of f.g. projective R-modules. A length function L (on either categories) is a state if L(R)=1. Let $\mathbf{S}(\mathcal{C})$ be the set of states on \mathcal{C} where \mathcal{C} stands for either of these categories. Then $\mathbf{S}(\mathcal{C})$ is a convex compact subset of a real topological vector space. Moreover, a length function with $\mathcal{C}\subseteq \operatorname{Fin} L$ is irreducible precisely when its normalised state is an extreme point in $\mathbf{S}(\mathcal{C})$.

Definition

Let R be a ring. A function $\rho \colon R \to [0,1]$ is a pseudo-rank function if it satisfies:

- (a) $\rho(1) = 1$;
- (b) $\rho(ab) \leq \min(\rho(a), \rho(b));$
- (c) $\rho(e+f)=\rho(e)+\rho(f)$ for orthogonal idempotents $e,f\in R$. If, in addition, ρ satisfies
- (d) $\rho(a) > 0$ for all $0 \neq a \in R$ then ρ is a rank function on R.

Theorem 21 (Goodearl - Handelman, Bergman)

Let R be a von Neumann regular ring. Then every pseudo-rank function on R is induced by a unique state on $\mathcal{P}(R)$ (i.e. every pseudo-rank function can be uniquely extended to a state on $\mathcal{P}(R)$). In fact the set of pseudo-rank functions on R is affinely homeomorhic to the states on $\mathcal{P}(R)$.

Theorem 21 (Goodearl - Handelman, Bergman)

Let R be a von Neumann regular ring. Then every pseudo-rank function on R is induced by a unique state on $\mathcal{P}(R)$ (i.e. every pseudo-rank function can be uniquely extended to a state on $\mathcal{P}(R)$). In fact the set of pseudo-rank functions on R is affinely homeomorhic to the states on $\mathcal{P}(R)$.

Theorem 22

Let R be a von Neumann regular ring. Then every state on $\mathcal{P}(R)$ can be uniquely extended to a state on $\mathcal{M}(R)$. In fact the set of states on $\mathcal{P}(R)$ is affinely homeomorhic to the states on $\mathcal{M}(R)$. Moreover, these states on $\mathcal{M}(R)$ are upper continuous. Also, in view of Theorem 21 above, every pseudo-rank function comes from a sate on $\mathcal{M}(R)$.

Bibliography

Hyman Bass, Algebraic K-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR MR0249491 (40 #2736)

Pierre Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323-448. MR 0232821 (38 #1144)

K. R. Goodearl, von Neumann regular rings, Pitman (Advanced Publishing Program), Boston, Mass., 1979. MR 80e:16011

Irving Kaplansky, *Commutative rings*, revised ed., The University of Chicago Press, Chicago, III.-London, 1974. MR 49 #10674

D. G. Northcott and M. Reufel, *A generalization of the concept of length*, Quart. J. Math. Oxford Ser. (2) **16** (1965), 297–321. MR 33 #4101

Peter Vámos, Additive functions and duality over Noetherian rings, Quart. J. Math. Oxford Ser. (2) $\bf 19$ (1968), 43–55. MR 0223434 (36 #6482)

_____, Length functions on modules, Ph.D. thesis, Department of Pure mathematics, The University of Sheffield, July 1968.