Mathematical Modeling: Forward and Inverse Problems in Seismology

Michael A. Slawinski¹

¹Department of Earth Sciences, Memorial University of Newfoundland, Canada email: mslawins@mun.ca

Timetable: 16 hrs. First lecture on June 3, 2019, 16:00, (dates already fixed, see calendar), Torre Archimede, Room 2BC/30.

Course requirements: Students are expect to have a comfortable familiarity with

- Linear algebra
- Tensor algebra and calculus
- Distributions
- Ordinary and partial differential equations
- Differential geometry
- Continuum mechanics
- Numerical issues of nonlinear processes.

However, each subject will be sufficiently reviewed—based on the course needs—to provide the necessary background.

Examination and grading: Brief presentation on a course-pertinent subject, Oral examination/discussion

SSD: MAT/07-08: Mathematical Modeling

Aim:

- To familiarize the students with the mathematical wealth and complexities of problems encountered in quantitative seismology.
- To examine the meaning of mathematical entities and models used as analogies for physical objects and phenomena
- To understand limitations imposed by assumptions and approximations on predictions provided by forward problems
- To recognize, and deal with, unavoidable issues of inverse problems, such as singularities and nonuniqueness

Course contents:

- 1. Rudiments of continuum mechanics
 - Reference and current configurations
 - Finite and infinitesimal elasticity theory
 - Balance principles
 - Constitutive equations
 - Material symmetry
- 2. Equations of motion in isotropic homogeneous continua
 - Wave equations

- Solutions of wave equations (including weak solutions)
- Surface, guided and interface waves
- 3. Equations of motion in anisotropic inhomogeneous continua
 - Christoffel equations
 - Hamilton equations
 - Lagrange equations
 - Legendre transformation and its singularities
 - Characteristic equations of linear and nonlinear PDEs
 - Caustics
- 4. Variational principles in seismology
 - Fermat's principle
 - Hamilton's principle
- 5. Foundational issues of modeling
 - Prediction versus explanation
 - Underdetermination of theory by evidence
 - Falsicationism