Università di Padova

Ernesto C. Mistretta

PUBLICATIONS


Papers


[8] E. C. Mistretta, S. Urbinati: Iitaka Fibrations for Vector Bundles, to appear in International Mathematics Research Notices, Journal, arXiv:1611.09585, PDF.

[7] T. Bauer, S. J. Kovacs, A. Kuronya, E. C. Mistretta, T. Szemberg, S. Urbinati: On positivity and base loci of vector bundles, Eur. J. Math. 1 (2015), no. 2. Journal, arXiv:1406.5941, PDF.

[6] E. C. Mistretta, L. Stoppino: Linear series on curves: stability and Clifford index, Internat. J. Math. 23 (2012), no. 12. Journal, arXiv:1111.0304, PDF.

[5] E. C. Mistretta, F. Polizzi: Standard isotrivial fibrations with p_g=q=1, II, J. Pure Appl. Algebra 214 (2010), no. 4. Journal, arXiv:0805.1424, PDF.

[4] A. C.López Martín, E. C. Mistretta, D.Sánchez Gómez: A Characterization of Jacobians by the Existence of Picard Bundles, Le Matematiche (Catania), 63 (2008), no. 1. arxiv:0802.3691, PDF.

[3] E. C. Mistretta: Stability of line bundles transforms on curves with respect to low codimensional subspaces, J. Lond. Math. Soc. (2) 78 (2008), no. 1. Journal, arxiv:math/0703465, PDF.

[2] A. Del Padrone, E. C. Mistretta: Families of curves and variation in moduli, Le Matematiche (Catania), 61 (2006), no. 1. PDF.

[1] E. C. Mistretta: Stable vector bundles as generators of the Chow ring, Geom. Dedicata 117 (2006). Journal, arxiv:math/0310185, PDF.

Preprints


[2] E. C. Mistretta, S. Urbinati: Iitaka fibrations for vector bundles. arXiv:1611.09585, PDF.

[1] E. C. Mistretta: Stable vector bundles as generators of the Chow ring. PREPRINT VERSION: one section added on "Bounded families of stable vector bundles generating the Chow group of a surface", arxiv:math/0310185v2, PDF.

Theses


[4] (Ph.D Thesis) E. C. Mistretta: Some constructions around stability of vector bundles on projective varieties (PDF), University of Paris 7, Ph.D Thesis, under the direction of D. Huybrechts, December 6th, 2006.

[3] ("Magistère" Degree Thesis) E. C. Mistretta: Le Groupe Fondamental et les Théories Cohomologiques de Weil (PDF), École Normale Supérieure of Paris (France) - "Magistère", October 11th, 2002.

[2] (Master Degree Thesis) E. C. Mistretta: Le Groupe Fondamental des Variétés Unirationnelles (PDF), University of Paris 7, DEA Degree Thesis, under the direction of Y. Laszlo, September 15th, 2002.

[1] (1st year "Magistère") A. Chadozeau, E. C. Mistretta: Le polynôme de Bernstein-Sato (PDF), École Normale Supérieure of Paris (France), 1st year "Magistère" Thesis, June 7th, 2000.