Modelling for Constraint Programming

Barbara Smith

1. Definitions, Viewpoints, Constraints
Background Assumptions

• A well-defined problem that can be represented as a finite domain constraint satisfaction or optimization problem
 • no uncertainty, preferences, etc.
• A constraint solver providing:
 • a systematic search algorithm
 • combined with constraint propagation
 • a set of pre-defined constraints
 • e.g. ILOG Solver, Eclips, SICStus Prolog, ...
Solving CSPs

- **Systematic search:**
 - choose a variable x_i that is not yet assigned
 - create a *choice point*, i.e. a set of mutually exclusive & exhaustive choices, e.g. $x_i = a \lor x_i \neq a$
 - try the first & backtrack to try the other if this fails

- **Constraint propagation:**
 - add $x_i = a$ or $x_i \neq a$ to the set of constraints
 - re-establish local consistency on each constraint
 - → remove values from the domains of future variables that can no longer be used because of this choice
 - fail if any future variable has no values left
Representing a Problem

- If a CSP $M = <X, D, C>$ represents a problem P, then every solution of M corresponds to a solution of P and every solution of P can be derived from at least one solution of M.
- More than one solution of M can represent the same solution of P, if modelling introduces symmetry.
- The variables and values of M represent entities in P.
- The constraints of M ensure the correspondence between solutions.
- The aim is to find a model M that can be solved as quickly as possible.
 - NB shortest run-time might not mean least search.
Interactions with Search Strategy

- Whether $M1$ is better than $M2$ can depend on the search algorithm and search heuristics.
- I’m assuming the search algorithm is fixed.
- We could also assume that choice points are always $x_i = a \lor x_i \neq a$.
- Variable (and value) order still interact with the model a lot.
- Is variable & value ordering part of modelling?
 - I think it is, in practice.
 - But here I will pretend it isn’t.
Viewpoints

- A viewpoint is a pair \(\langle X,D \rangle \), i.e. a set of variables and their domains.
- Given a viewpoint, the constraints have to restrict the solutions of \(M \) to solutions of \(P \).
 - So the constraints are (to some extent) decided by the viewpoint.
 - Different viewpoints give very different models.
- We can combine viewpoints - more later.
- Good rule of thumb: choose a viewpoint that allows the constraints to be expressed easily and concisely.
 - will propagate well, so problem can be solved efficiently.
Example: Magic Square

- Arrange the numbers 1 to 9 in a 3 x 3 square so that each row, column and diagonal has the same sum.
- $V1$: a variable for each cell, domain is the numbers that can go in the cell.
- $V2$: a variable for each number, domain is the cells where that number can go.
- Constraints on row, column & diagonal sums are easy to express in $V1$:
 - $x_1 + x_2 + x_3 = x_4 + x_5 + x_6 = x_1 + x_4 + x_7 = ...$
- but not in $V2$.

\[
\begin{array}{ccc}
4 & 3 & 8 \\
9 & 5 & 1 \\
2 & 7 & 6 \\
\end{array}
\]

\[
\begin{array}{ccc}
x_1 & x_2 & x_3 \\
x_4 & x_5 & x_6 \\
x_7 & x_8 & x_9 \\
\end{array}
\]
Constraints

• Given a viewpoint, the role of the constraints is:
• To ensure that the solutions of the CSP match the solutions of the problem
• To guide the search, i.e. to ensure that as far as possible, partial solutions that will not lead to a solution fail immediately
Expressing the Constraints

- For efficient solving, we need to know:
 - the constraints provided by the constraint solver
 - the level of consistency enforced on each
 - the complexity of the constraint propagation algorithms
 - Not very declarative!

- There is often a trade-off between time spent on propagation and time saved on search
 - which choice is best often depends on the problem
Auxiliary Variables

- Often, the constraints can be expressed more easily/more efficiently if more variables are introduced
- Example: car sequencing (Dincbas, Simonis and van Hentenryck, ECAI 1988)
Car Sequencing Problem

- 10 cars to be made on a production line, each requires some options
- Stations installing options have lower capacity than rest of line e.g. at most 1 car out of 2 for option 1
- Find a feasible production sequence

<table>
<thead>
<tr>
<th>classes</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option 1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1/2</td>
</tr>
<tr>
<td>Option 2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2/3</td>
</tr>
<tr>
<td>Option 3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1/3</td>
</tr>
<tr>
<td>Option 4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2/5</td>
</tr>
<tr>
<td>Option 5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1/5</td>
</tr>
<tr>
<td>No. of cars</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Car Sequencing - Model

- Variables: $s_1, s_2, ..., s_{10}$
- Value of s_i is the class of car in position i in the sequence
- Constraints:
 - Each class occurs the correct number of times
 - Option capacities are respected - ?
Car Sequencing – Auxiliary Variables

- Introduce variables o_{ij}:
 - $o_{ij} = 1$ iff the car in the ith slot in the sequence requires option j
- Option 1 capacity is one car in every two:
 - $o_{i,1} + o_{i+1,1} \leq 1$ for $1 \leq i < 10$
- Relate the auxiliary variables to the s_i variables:
 - $\lambda_{jk} = 1$ if car class k requires option j
 - $o_{ij} = \lambda_{jsi}$, $1 \leq i \leq 10$, $1 \leq j \leq 5$
Global Constraints

- A range of global constraints is provided by any constraint solver
- A global constraint replaces a set of simpler constraints on a number of variables
- The solver provides an efficient propagation algorithm (often enforcing GAC, sometimes less)
- A global constraint *should* reduce search, *may* reduce run-time (or may increase it)
The AllDifferent Constraint

- Commonest global constraint?
- allDifferent(x_1, x_2, ..., x_n) replaces the binary \neq constraints $x_i \neq x_j$, $i \neq j$
- There are efficient GAC & BC algorithms for allDifferent
 - i.e. more efficient than GAC on a general n-ary constraint
- Usually, using allDifferent gives less search than \neq constraints
 - but is often slower
- Advice:
 - use allDifferent when the constraint is tight
 - i.e. the number of possible values is n or not much more
 - try BC rather than GAC
Graceful Labelling of a Graph

- A labelling \(f \) of the nodes of a graph with \(q \) edges is graceful if:
 - \(f \) assigns each node a unique label from \(\{0,1,\ldots, q\} \)
 - when each edge \(xy \) is labelled with \(|f(x) - f(y)| \), the edge labels are all different

![Graph with edge labels from 1 to 16]
Graceful Labelling: Constraints

A CSP model has:
- a variable for each node, $x_1, x_2, ..., x_n$ each with domain $\{0, 1, ..., q\}$
- auxiliary variables for each edge, $d_1, d_2, ..., d_q$ each with domain $\{1, 2, ..., q\}$

$d_k = |x_i - x_j|$ if edge k joins nodes i and j

$x_1, x_2, ..., x_n$ are all different
$d_1, d_2, ..., d_q$ are all different

It is efficient to enforce GAC on the constraint
\[\text{allDifferent}(d_1, d_2, ..., d_q) \]

but not on \[\text{allDifferent}(x_1, x_2, ..., x_n) \]

in the example, $n = 9$, $q = 16$
One Constraint is Better than Several (maybe)

- If there are several constraints all with the same scope, rewriting them as a single constraint will lead to more propagation...
 - **if** the same level of consistency is maintained on the new constraint
- ... more propagation means shorter run-time
 - **if** enforcing consistency on the new constraint can be done efficiently
Example: n-queens

- A variable for each row, x_1, x_2, \ldots, x_n
- Values represent the columns, 1 to n
- The assignment (x_i, c) means that the queen in row i is in column c
- Constraints for each pair of rows i, j:
 - $x_i \neq x_j$
 - $x_i - x_j \neq i - j$
 - $x_i - x_j \neq j - i$
Propagating the Constraints

- A queen in row 5, column 3 conflicts with both remaining values for x_3
- But the constraints are consistent
 - $x_i \neq x_i$ thinks that $(x_3, 1)$ can support $(x_5, 3)$
 - $x_i - x_i \neq i - j$ thinks that $(x_3, 3)$ can support $(x_5, 3)$
- Enforcing AC on the conjunction $(x_i \neq x_i) \land (x_i - x_i \neq i - j) \land (x_i - x_i \neq j - i)$ would remove 3 from the domain of x_5
 - but how would you do it?
Summary

- The viewpoint (variables, values) largely determines what the model looks like
- Choose a viewpoint that will allow the constraints to be expressed easily and concisely
- Be aware of global constraints provided by the solver, and use them if they reduce run-time
- Introduce auxiliary variables if necessary to help express the constraints