Modelling for Constraint Programming

Barbara Smith

2. Implied Constraints, Optimization, Dominance Rules
Implied Constraints

- Implied constraints are logical consequences of the set of existing constraints
 - So are logically redundant (sometimes called redundant constraints)
- They do not change the set of solutions
- Adding implied constraints can reduce the search effort and run-time
Example: Car Sequencing

- Existing constraints only say that the option capacities cannot be exceeded
- Suppose there are 30 cars and 12 require option 1 (capacity 1/2)
- At least one car in slots 1 to 8 of the production sequence must require option 1; otherwise 12 of cars 9 to 30 will require option 1, i.e. too many
- Cars 1 to 10 must include at least two option 1 cars, ... , and cars 1 to 28 must include at least 11 option 1 cars
- These are implied constraints
Useful Implied Constraints

- An implied constraint reduces search if:
 - at some point during search, a partial assignment will fail because of the implied constraint
 - without the implied constraint, the search would continue
 - the partial assignment cannot lead to a solution
 - the implied constraint forbids it, but does not change the set of solutions
- In car sequencing, partial assignments with option 1 under-used could be explored during search, without the implied constraints
Useless Implied Constraints

• The assignments forbidden by an implied constraint may never actually arise
 • depends on the search order
• e.g. in car sequencing,
 • at least one of cars 1 to 8 must require option 1
 • any 8 consecutive cars must have one option 1 car
 • but if the sequence is built up from slot 1, only the implied constraints on slots 1 to \(k \) can cause the search to backtrack
• If we find a \textit{class} of implied constraints, maybe only some are useful
 • adding a lot of constraints that don’t reduce search will increase the run-time
Implied Constraints v. Global Constraints

- Régis and Puget (CP97) developed a global constraint for sequence problems, including the car sequencing problem.
 - “our filtering algorithm subsumes all the implied constraints” used by Dincbas et al.
- Implied constraints may only be useful because a suitable global constraint does not (yet) exist.
- But many implied constraints are simple and quick to propagate.
- Use a global constraint if there is one available and it is cost-effective.
 - but look for useful implied constraints as well.
Implied Constraints Example-Optimizing SONET Rings

- Transmission over optical fibre networks
- Known traffic demands between pairs of client nodes
- A node is installed on a SONET ring using an ADM (add-drop multiplexer)
- If there is traffic demand between 2 nodes, there must be a ring that they are both on
- Rings have capacity limits (number of ADMs, i.e. nodes, & traffic)
- Satisfy demands using the minimum number of ADMs
Simplified SONET Problem

- Split the demand graph into subgraphs (SONET rings):
 - every edge is in at least one subgraph
 - a subgraph has at most 5 nodes
 - minimize total number of nodes in the subgraphs
Implied Constraints on Auxiliary Variables

- The viewpoint variables are Boolean variables, x_{ij}, such that $x_{ij} = 1$ if node i is on ring j.
- Introduce an auxiliary variable for each node: $n_i = \text{number of rings that node } i \text{ is on}$.
- We can derive implied constraints on these variables from subproblems:
 - a node and its neighbours
 - a pair of nodes and their neighbours
Implied Constraints: SONET

- A node with degree in the demand graph > 4 must be on more than 1 ring ($n_i > 1$)
- If a pair of connected nodes have more than 3 neighbours in total, at least one of the pair must be on more than 1 ring ($n_k + n_l > 2$)
Implied Constraints & Consistency

- Implied constraints can often be seen as partially enforcing some higher level of consistency
 - during search, consistency is maintained on single constraints
 - some forms of consistency checking take all the constraints on a subset of the variables and remove inconsistent tuples
- Enforcing consistency on subsets of the constraints is computationally expensive, even if only done before search
 - often no inconsistent tuples would be found
 - any that are found may not reduce search
 - forbidden tuples are hard to handle in constraint solvers
Implied Constraints & Nogoods

- A way to find implied constraints is to see that incorrect compound assignments are being explored
 - e.g. by examining the search in detail
- Implied constraints express & generalize what is incorrect about these assignments
- So implied constraints are like nogoods (inconsistent compound assignments)
 - whenever the search backtracks, a new nogood has been found
 - but the same compound assignment will not occur again
 - if we could learn implied constraints in this way, they do take account of the search heuristics
Finding Useful Implied Constraints

- Identify obviously wrong partial assignments that may/do occur during search
 - Try to predict them by contemplation/intuition
 - Observe the search in progress
 - Having auxiliary variables in the model enables observing/thinking about many possible aspects of the search
- Check empirically that new constraints do reduce both search and running time
Optimization

- A Constraint Satisfaction Optimization Problem (CSOP) is:
 - a CSP \(\langle X, D, C \rangle \)
 - and an optimization function \(f \) mapping every solution to a numerical value
- find the solution \(T \) such that the value of \(f(T) \) is maximized (or minimized, depending on the requirements)
Optimization: Branch and Bound

- Include a variable, say \(t \), for the objective \(f(T) \)
- Include constraints (and maybe new variables) linking the existing variables and \(t \)
- Find a solution with value (say) \(t_0 \)
 - Add a constraint \(t < t_0 \) (if minimizing)
 - Find a new solution
- Repeat last 2 steps
- When there is no solution, the last solution found has been proved optimal
 - (Or if you know a good bound on the optimal value, maybe you can recognise an optimal solution when you find it)
Optimization as a Sequence of CSPs

- Sometimes, optimization problems are solved as a sequence of decision problems
 - e.g. find the matrix with the smallest number of rows that satisfies certain constraints
 - model with variables x_{ij} to represent each entry in the matrix
 - the objective is a parameter of the model, not a variable
 - so solve a sequence of CSPs with increasing matrix size until a solution is found
 - the solution is optimal

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Objective as a Search Variable

• If the objective is a variable, it can be a search variable
 • e.g. in the SONET problem:
 • \(x_{ij} = 1 \) if node \(i \) is on ring \(j \)
 • \(n_i \) = number of rings that node \(i \) is on
 • \(t \) (objective) = sum of \(n_i \) variables = total number of ADMs used
 • search strategy
 • assign the smallest available value to \(t \)
 • assign values to \(n_i \) variables
 • assign values to \(x_{ij} \) variables
 • backtrack to choose a larger value of \(t \) if search fails
 • the first solution found is optimal
Optimization: Dominance Rules

- A compound assignment that satisfies the constraints can be forbidden if it is *dominated*:
 - for any solution that this assignment would lead to, there must be another solution that is equally good or better
- **Dominance rules are similar to implied constraints but**
 - are not logical consequences of the constraints
 - do not necessarily preserve the set of optimal solutions
Finding Dominance Rules

• Useful dominance rules are often very simple and obvious
 • in satisfaction problems, search heuristics should guide the search away from obviously wrong compound assignments
 • in optimization problems, to prove optimality we have to prove that there is no better solution
 • every possibility allowed by the constraints has to be explored

• Examples from the SONET problem
 • no ring should have just one node on it
 • any two rings must have more than 5 nodes in total (otherwise we could merge them)
Summary

- Implied constraints can be very useful in allowing infeasible subproblems to be detected earlier
- Make sure they are useful
 - they do reduce search
 - they do reduce the run-time
 - there is no global constraint that could do the same job
- Optimization requires new solving strategies
 - usually need to find a sequence of solutions
 - to prove optimality, we often have to prove a problem unsatisfiable
 - dominance rules can help