Modelling for Constraint Programming

Barbara Smith

3. Symmetry, Viewpoints
Symmetry in CSPs

- A symmetry transforms any solution into another
 - Sometimes symmetry is inherent in the problem (e.g. chessboard symmetry in n-queens)
 - Sometimes it’s introduced in modelling
- Symmetry causes wasted search effort: after exploring choices that don’t lead to a solution, symmetrically equivalent choices may be explored
Example: SONET Rings

- Split the demand graph into subgraphs (SONET rings):
 - every edge is in at least one subgraph
 - a subgraph has at most 5 nodes
 - minimize total number of nodes in the subgraphs
- Modelled using Boolean variables, x_{ij}, such that $x_{ij} = 1$ if node i is on ring j
- Introduces symmetry between the rings
 - in the problem, the rings are interchangeable
Symmetry between Values: Car sequencing

- A natural model has individual cars as the values
 - introduces symmetry between cars requiring the same option
- The model instead has *classes* of car
 - needs constraints to ensure the right number of cars in each class

<table>
<thead>
<tr>
<th>cars</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>option 1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>option 2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>option 3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>option 4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>option 5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>classes</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>option 1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>option 2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>option 3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>option 4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>option 5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>no. of cars</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Symmetry between Variables: Golfers Problem

• 32 golfers want to play in 8 groups of 4 each week, so that any two golfers play in the same group at most once. Find a schedule for \(n \) weeks.

• One viewpoint has 0/1 variables \(x_{ijkl} \):
 - \(x_{ijkl} = 1 \) if player \(i \) is the \(j \)th player in the \(k \)th group in week \(l \), and 0 otherwise.

• The players within each group could be permuted in any solution to give an equivalent solution.
 - also the groups within each week, the weeks within the schedule and the players themselves.
Reformulating to avoid symmetry: Set Variables

- Eliminate the symmetry between players within a group by using set variables to represent the groups
 - G_{kl} represents the kth group in week l
 - the value of G_{kl} represents the set of players in the group.

- The constraints on these variables are that:
 - the cardinality of each set is 4
 - the sets in any week do not overlap: for all l, the sets $G_{kl}, k = 1,\ldots,8$ have an empty intersection
 - any two sets in different weeks have at most one member in common

- Constraint solvers that support set variables allow constraints of this kind
Symmetry Breaking

- Often, not all the symmetry can be eliminated by remodelling
- Remaining symmetry should be reduced or eliminated:
 - dynamic symmetry breaking methods (SBDS, SBDD, etc.)
 - symmetry-breaking constraints
 - unlike implied constraints, they change the set of solutions
 - can lead to further implied constraints
Example: Template Design

- Plan layout of printing templates for catfood boxes
- Each template has 9 slots
 - 9 boxes from each sheet of card
- Choose best layout for 1, 2, 3,... templates to minimize waste in meeting order
 - templates are expensive

<table>
<thead>
<tr>
<th>Flavour</th>
<th>Order (1000s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver</td>
<td>250</td>
</tr>
<tr>
<td>Rabbit</td>
<td>255</td>
</tr>
<tr>
<td>Tuna</td>
<td>260</td>
</tr>
<tr>
<td>Chicken Twin</td>
<td>500</td>
</tr>
<tr>
<td>Pilchard Twin</td>
<td>500</td>
</tr>
<tr>
<td>Chicken</td>
<td>800</td>
</tr>
<tr>
<td>Pilchard</td>
<td>1,100</td>
</tr>
</tbody>
</table>
One Template Solution

Could meet the order using only one template
- print it 550,000 times
- but this wastes a lot of card

<table>
<thead>
<tr>
<th>Flavour</th>
<th>Order (1000s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver</td>
<td>250</td>
</tr>
<tr>
<td>Rabbit</td>
<td>255</td>
</tr>
<tr>
<td>Tuna</td>
<td>260</td>
</tr>
<tr>
<td>Chicken Twin</td>
<td>500</td>
</tr>
<tr>
<td>Pilchard Twin</td>
<td>500</td>
</tr>
<tr>
<td>Chicken</td>
<td>800</td>
</tr>
<tr>
<td>Pilchard</td>
<td>1,100</td>
</tr>
</tbody>
</table>

CP Summer School September 2005
CP Model for Template Design

- For a fixed number of templates:
 - $x_{ij} =$ number of slots allocated to design j in template i
 - $r_i =$ run length for template i (number of sheets printed from this template)
 - $\sum_i x_{ij} r_i \geq d_j \quad j = 1, 2, \ldots, 7$
 - minimize $p = \sum_i r_i \quad (p =$ total sheets printed)
Symmetry Breaking & Implied Constraints

- The templates are indistinguishable
- So add $r_1 \leq r_2 \leq \ldots \leq r_t$
- If there are 2 templates:
 - at most half the sheets are printed from one template, at least half from the other
 - so $r_1 \leq p/2; r_2 \geq p/2$
- For 3 templates:
 - $r_1 \leq p/3; r_2 \leq p/2; r_3 \geq p/3$
- These are useful constraints
 - they allow tighter constraints on the objective to propagate to the search variables
Changing Viewpoint

- We can *improve* a CSP model of a problem
 - express the constraints better
 - break the symmetry
 - add implied constraints
- But sometimes it’s better just to use a different model
 - i.e. a different viewpoint
Different Viewpoints

- Reformulate in a standard way, e.g.
 - non-binary to binary translations
 - dual viewpoint for permutation problems
 - Boolean to integer or set viewpoints

- Find a new viewpoint by viewing the problem from a different angle
 - the constraints may express different insights into the problem
Permutation Problems

- A CSP is a permutation problem if:
 - it has the same number of values as variables
 - all variables have the same domain
 - each variable must be assigned a different value
- Any solution assigns a permutation of the values to the variables
- Other constraints determine which permutations are solutions
- There is a dual viewpoint in which the variables and values are swapped
Example: \(n \)-queens

- **Standard model**
 - a variable for each row, \(x_1, x_2, \ldots, x_n \)
 - values represent the columns, 1 to \(n \)
 - \(x_i = j \) means that the queen in row \(i \) is in column \(j \)
 - \(n \) variables, \(n \) values, \text{allDifferent}(x_1, x_2, \ldots, x_n)

- **Dual viewpoint**
 - a variable for each column, \(d_1, d_2, \ldots, d_n \); values represent the rows

- **In this problem, both viewpoints give the same CSP**
Example: Magic Square

- First viewpoint:
 - variables \(x_1, x_2, \ldots, x_9 \)
 - values represent the numbers 1 to 9
 - The assignment \((x_i,j)\) means that the number in square \(i\) is \(j\)

- Dual viewpoint
 - a variable for each number, \(d_1, d_2, \ldots, d_9 \)
 - values represent the squares

- Constraints are much easier to express in the first viewpoint
 - see earlier
Boolean Models

• Permutation problems: another viewpoint has a Boolean variable b_{ij} for every variable-value combination
 • e.g. in the n-queens problem, $b_{ij} = 1$ if there is a queen on the square in row i and column j, 0 otherwise

• A Boolean viewpoint can be derived from a CSP viewpoint with integer or set variables (or v.v.)
 • in an integer viewpoint, $b_{ij} = 1$ is equivalent to $x_i = j$
 • in a set-variable viewpoint, $j \in X_i$ is equivalent to $b_{ij} = 1$

• The Boolean viewpoint often gives a less efficient CSP than the integer or set model
 • the reverse translation can be useful
Different Perspectives: Example

- Constraint Modelling Challenge, IJCAI 05
- “Minimizing the maximum number of open stacks”
- A manufacturer has a number of orders from customers to satisfy
 - each order is for a number of different products, and only one product can be made at a time
 - once a customer's order is started (i.e. the first product in the order is made) a stack is created for that customer
 - when all the products that a customer requires have been made, the stack is closed
 - the number of stacks that are in use simultaneously i.e. the number of customer orders that are in simultaneous production, should be minimized
Minimizing Open Stacks – Example

- The product sequence shown needs 4 stacks.
- But if customer 3’s products are made before (or after) customer 4’s, only 3 are needed.
- 3 is the minimum possible because product 2 is for 3 customers.

<table>
<thead>
<tr>
<th>products</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>customer 1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>customer 2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>customer 3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>customer 4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Open Stacks – Possible Viewpoints

- **Variables are positions in production sequence, values are products**
 - a permutation problem
 - so has a dual viewpoint

- **In constructing the product sequence, at any point, products that are only for customers that already have open stacks can be inserted straightaway**
 - e.g. if product 1 is first, products 3 & 4 can follow
 - the next *real* decision is whether to open a stack for customer 1 or 4 next (or both)
 - leads to a viewpoint based on customers

<table>
<thead>
<tr>
<th>products</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>customer 1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>customer 2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>customer 3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>customer 4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Open Stacks – Customer Viewpoints

- Variables are positions in *customer* sequence, values are customers
 - \(r_i = j \) if the \(i \)th customer to have their order completed is \(j \)
- A variable for each customer, values are stack locations
 - customers ordering the same product cannot share a stack location
 - a graph colouring problem with additional constraints
- A Boolean variable for each *pair* of customers
 - 0 means they share a stack location, 1 means that they don’t
 - NB we want to maximize the number of customers that can share a stack location
Summary

• Symmetry
 • Look out for symmetry in the CSP
 • avoid it if possible by changing the model
 • eliminate it e.g. by adding constraints
 • does this allow more implied constraints?

• Viewpoints
 • don’t stick to the first viewpoint you thought of, without considering others
 • think of standard reformulations
 • think about the problem in different ways