Modelling for Constraint Programming

Barbara Smith

4. Combining Viewpoints, Modelling Advice
Which Viewpoint to Choose?

- Sometimes one viewpoint is clearly better, e.g. if we can’t express the constraints in one.
- But different perspectives often allow different expression of the constraints and different implied constraints.
 - can be hard to decide which is better.
- We don’t need to choose one viewpoint – we can use two (or more) at once.
- We need *channelling constraints* to link the variables.
Combining Viewpoints: Permutation Problems

- Dual viewpoints of a permutation problem with variables x_1, x_2, \ldots, x_n and d_1, d_2, \ldots, d_n
- Combine them using the channelling constraints $(x_i = j) \equiv (d_j = i)$
- The channelling constraints are sufficient to ensure that x_1, x_2, \ldots, x_n are all different
 - but might be beneficial to have a specific allDifferent constraint as well and enforce GAC
Combining Viewpoints: Integer & Set Variables

- In a nurse rostering problem, we can allocate shifts to nurses or nurses to shifts
- First viewpoint:
 - an integer variable n_{ij} for each nurse i and day j
 - its value is the shift that nurse i works on day j
- Second viewpoint:
 - a set variable S_{kj} for each shift k and day j
 - its value is the set of nurses that work shift k on day j
- Channelling constraints: $(n_{ij} = k) \equiv (i \in S_{kj})$
- Constraints on nurse availability are stated in the first viewpoint; constraints on work requirements in the 2nd (e.g. no. of nurses required for each shift)
The Golomb Ruler Problem

- A Golomb ruler with \(m \) marks consists of:
 - a set of \(m \) integers \(0 = x_1 < x_2 < \ldots < x_m \)
 - the \(m (m - 1)/2 \) differences \(x_j - x_i \) are all different
 - Objective: find a ruler with minimum length \(x_m \)

- First viewpoint: variables \(x_1, x_2, \ldots, x_m \)
 - \(x_j - x_i \neq x_l - x_k \) for all distinct pairs
 - \(x_1 < x_2 < \ldots < x_m \)

- Second viewpoint: variables \(d_{ij}, 1 \leq i < j \leq m \)
 - allDifferent\((d_{11}, d_{12}, \ldots, d_{m-1,m}) \)
 - \(d_{ik} = d_{ij} + d_{jk} \) for \(1 \leq i < j < k \leq m \)
 - Channelling constraints: \(d_{ij} = x_j - x_i \)
 - not always binary
Constraints in Combined Viewpoints

- It is safe to combine two complete models of a problem, with channelling constraints.
- But often unnecessary and inefficient.
- If some constraints are more easily expressed in one viewpoint, we don’t need them in both.
 - e.g. nurse rostering.
 - Constraints on nurse availability are stated in the ‘nurse’ viewpoint.
 - Constraints on work requirements (e.g. no. of nurses required for each shift) are stated in the ‘shift’ viewpoint.
- Or if they propagate better in one viewpoint.
 - e.g. $x_j - x_i \neq x_l - x_k$ v. allDifferent($d_{11}, d_{12}, ..., d_{m-1,m}$) in the Golomb ruler problem.
Choosing the Search Variables

- We need to choose a set of variables such that an assignment to each one, satisfying the constraints, is a complete solution to the problem.
- Assume we pass the search variables to the search algorithm in a list or array:
 - the order defines a static variable ordering
 - though we can still use a dynamic ordering
Search Variables

- When a model combines two (or more) viewpoints of a problem, which variables should drive the search?
- Assigning values to either set of variables would be sufficient to solve the problem
 - even if we did not express the problem constraints on those variables
 - the channelling constraints ensure that we can assign values to one set of variables but define the constraints in the other viewpoint, if we want
Search Variables – Permutation Problems

- We can use both sets of variables as search variables
 - e.g. use a dynamic variable order e.g. variable with smallest domain in either viewpoint
 - combines variable and value ordering: dual variable with smallest domain corresponds to the value occurring in fewest domains (in the other viewpoint)
Search Variables – Golomb Ruler

- Search strategy assigns values to x_1, x_2, \ldots, x_m in that order
- NB there are only m of these variables and $m(m-1)/2$ difference variables
 - heuristic: prefer the smaller set of search variables
SONET Problem: Viewpoints

- Whether a given node is on a given ring:
 - \(x_{ij} = 1 \) if node \(i \) is on ring \(j \)
- Which ring(s) each node is on:
 - \(N_i \) = set of rings node \(i \) is on
- Which nodes are on each ring
 - \(R_j \) = set of nodes on ring \(j \)
- In principle, any of these viewpoints could be the basis of a complete CSP model
 - channelling constraints \((x_{ij} = 1) \equiv (i \in R_j) \equiv (j \in N_i) \)
- There are also auxiliary variables
 - \(n_i \) = the number of rings each node is on (= \(|N_i| \))
Possible Choices

- Use just one set of variables, e.g. x_{ij} – the others are just for constraint propagation
- Use two (or more) sets of variables (of the same type) e.g. R_{j}, N_{i}
 - interleave them in a sensible (static) order
 - or use a dynamic ordering applied to both sets of variables
- Use an incomplete set of variables first, to reduce the search space before assigning a complete set
 - e.g. decide how many rings each node is on (search variables n_{i}) and then which rings each node is on (x_{ij})
 - another strategy adds assigning the objective variable first – see earlier
Automating Modelling

- There are lots of choices to make in modelling a problem as a CSP
 - difficult even with experience
- Can it be automated?
 - some initial steps so far
 - e.g. systems that propose models given a high-level specification
 - descriptions of common patterns in modelling
Advice from the Folklore

• **Reduce the number of variables**

 • if we only use one viewpoint:

 • a model which needs fewer variables to describe the solutions to the problem is likely to be a better model

 • e.g. an integer model is probably better than a Boolean model

 • But only if the variables allow the constraints to be expressed in a way that propagates well

 • artificially reducing the number of variables by inventing a single variable to replace a pair of variables will not give a better model
Advice from the Folklore 2

• Reduce the number of constraints
 • rewriting a set of constraints in a more compact form is likely to be beneficial, if the resulting constraints can propagate efficiently
 • e.g. combine constraints with the same scope
 • use a global constraint to replace a set of constraints
 • But simply conjoining constraints for the sake of reducing their number will not give a better model if the new constraints cannot propagate efficiently
More Advice

- **Add more variables**
 - auxiliary variables to allow constraints to be expressed
 - new viewpoints allowing a different perspective on the problem

- **Add more constraints**
 - implied constraints
 - channelling constraints to link new variables

- **Check empirically**
 - that a change does reduce run-time
Conclusion

• Aim for a rich model
 • multiple viewpoints
 • auxiliary variables
 • implied constraints

• Understand the problem as well as you can
 • build that insight into the model
 • the better you can understand a problem, the better you can solve it

THE END