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Chapter 1

Introduction

1.1 Tribes

There are three research communities exploring combinatorial optimisation prob-
lems. Within each community there is strong debate and ideas are shared natu-
rally. Between the communities, however, there is a lack of common background
and limited cross-fertilisation.

We belong to one of those communities: the CP community.! The other two
are Mathematical Programming (MP) and Stochastic Search and Metaheuristics
(SSM). Currently SSM seems to be the largest of the three. It has become clear
that such a separation hampers progress towards our common goal, and there
should be one larger community - whose name is a point of contention - which
should include us all.

Hybrid algorithms lie at the boundary between CP, MP and SSM. We will
explore some of the techniques used in MP and SSM, and show how they can be
used in conjunction with CP techniques to build better algorithms. We will not
here be investigating the “frontiers of research” in these communities. However
it is my belief that CP can contribute right now at these frontiers. Hybrid
techniques are not peripheral to the research of any of these communities. They
are the key to real progress in all three.

1.2 Overview

Firstly we explore the mapping of problems to algorithms, the requirement for
problem decomposition, and the need for linking solvers and solver cooperation.
Different ways of linking solvers will be discussed, and some of their benefits
and applications.

Secondly we will investigate different kinds of search, coming from the dif-
ferent communities, and see how they can be used separately, and together.

IThere are also, of course, many people in the CP community who are not exploring
combinatorial optimisation problems.



The objective is to lower the barrier to exploiting hybrid techniques, encour-
aging research at the boundaries of CP, MP and SSM, and finally to help bring
these communities together.



Chapter 2

Hybrid Constraint Solving

2.1 The Conceptual Model and the Design Model

To solve a problem we start with a problem-oriented conceptual model. The
syntax of conceptual models is targeted to clarity, expressive power and ease of
use for people interested in solving the problem.

The conceptual model is mapped down to a design model which is machine-
oriented [Ger01]. The design model specifies the algorithm(s) which will be used
to solve the problem at a level that can be interpreted by currently implemented
programming platforms, like ECLiPSe.

Real problems are complex and, especially, they involve different kinds of
constraints and variables. For example a “workforce scheduling” problem [AAH95]
typically involves the following decision variables:

e For each task, one or more employees assigned to the task.
e For each task, a start time

e For each (group of) employee(s), a route that takes them from task to
task.

e For each (group of) employee(s), shift start, end, and break times

This is in sharp contrast to typical CSP puzzles and benchmarks, such as
graph colouring, where all the variables are of the same “kind” and sometimes
even have the same initial domains.

The constraints and data in real problems are also diverse. The workforce
scheduling problem includes:

e Location and distance constraints on and between tasks
e Skills data and constraints on and between employees and tasks

e Time constraints on tasks and employee shifts



Naturally there are many more constraints in real workforce scheduling problems
on vehicles, road speeds, equipment, team composition and so on.

The consequence is that the algorithm(s) needed to solve real problems
are typically hybrid. The skills constraints are best solved by a different sub-
algorithm from the routing constraints, for example.

2.2 Mapping from the Conceptual to the Design
Model

To map a problem description to an algorithm, it is necessary to decompose the
whole problem into parts that can be efficiently solved. The challenge is to be
able to glue the subproblem solutions together into a consistent solution to the
whole problem. Moreover, for optimisation problems, it is not enough to find
the optimal solution to each subproblem. Glueing these “local” optima together
does not necessarily yield a “global” optimum.

For these reasons we need to ensure that the subproblem algorithms coop-
erate with each other so as to produce solutions that are both consistent with
each other and, as near optimal as possible. The design of hybrid algorithms
that meet these criteria is the topic of this section.

In principle we can map a conceptual model to a design model by

e Associating a behaviour, or a constraint solver, with each problem con-
straint

e Adding a search algorithm to make up for the incompleteness of the con-
straint solvers

In practice the design model produced by any such mapping is strongly influ-
enced by the particular choice of conceptual model. The “wrong” conceptual
model could make it very hard to produce an efficient algorithm to solve the
problem.

For this reason we must map a given conceptual model to an efficient design
model in two steps:

e Transform the conceptual model into another one that is more suitable
for mapping

e Add constraint behaviour and search, to yield an efficient design model

The first step - transforming the conceptual model - is an art rather than a
science. It involves four kinds of transformations:

e Decomposition - separating the constraints and variables into subproblems

e Transformation - rewriting the constraints and variables into a form more
suitable for certain kinds of solving and search

e Tightening - the addition of new constraints whose behaviour will enhance
efficient problem solving



e Linking - the addition of constraints and variables that will keep the sep-
arate subproblem solvers “in step” during problem solving

The decomposition is germane to our concerns. It is therefore worth dis-
cussing briefly here. Firstly, we note that the decomposition covers the original
problem (of course), but it is not a partition: otherwise the subproblems would
have no link whatsoever between them.

Therefore some subproblems share some variables. Each subproblem solver
can then make changes to a shared variable, which can be used by the other
solver. Sometimes constraints are shared by different subproblems. In this
case the same constraint is handled multiple times by different solvers, possibly
yielding different and complementary information within each solver. When the
constraints in different subproblems are transformed in different ways, the result
is that the same constraint may appear several times in several different forms
in the transformed conceptual model. We shall see later a model with a resource
constraint that is written three different ways for three different solvers.

Many of the “tricks of the trade” used in transforming the conceptual model
have been covered in the earlier section on Modelling. We shall now move on to
examine design models for a variety of hybrid algorithms.



Chapter 3

Constraint Solvers

In this section we discuss different constraint solvers, and constraint behaviours.

We investigate what kinds of information can be passed between them, in differ-

ent hybrid algorithms, and how their cooperative behaviour can be controlled.
The solvers we will cover are

e Finite domain (FD) constraint propagation and solving
e Global constraints and their behaviour

e Interval constraints, and bounds propagation

e Linear constraint solving

e Propositional clause (SAT) solving

e Set constraint solving

e One-way constraints (or “invariants”)

Referring back to the three research communities, we can relate these solvers
to the CP and MP communities. Accordingly this work lies on the border of
CP and MP. The hybrids on the border of CP and SSM will be explored in the
next section.

3.1 Constraints which Propagate Domain Infor-
mation

3.1.1 Information Exported

Finite domains and global FD constraints have already been covered earlier.
The relevant issues for hybrid algorithms are

e what information can be extracted from the solver



e under what conditions all the information has been extracted from the
solver: i.e. when can we be sure that a state which appears to be feasi-
ble for the other subproblems and their solvers is also guaranteed to be
consistent with the FD solver.

The answers are as follows:

e Information that can be extracted from the solver includes upper and lower
bounds on the variables, domain size and if necessary precise information
about which values are in the domain of each variable.

e The solver reports inconsistency whenever a domain becomes empty.

e The solver can also report which constraints are entailed by the current
(visible) domain information. This is more usually extractible in the form
of which constraints are still “active”. Active constraints are ones which,
to the FD solvers knowledge, are not yet entailed by the domains of the
variables. Some FD solvers don’t guarantee to detect this entailment
until all the variables have been instantiated. Many FD solvers support
reified constraints, which have a boolean variable to flag entailment or
disentailment (inconsistency with the current variable domains).

The domain, inconsistency and entailment information are all logical conse-
quences of the FD constraints and input variable domains. For this reason, no
matter what other constraints in other subproblems are imposed on the vari-
ables, this information is still correct. In any solution to the whole problem,
the values of the FD variables must belong to the propagated domains. Incon-
sistency of the subproblem, implies inconsistency of the whole problem. If the
variable domains entail the subproblem constraints, then they are still entailed
when the constraints from the rest of the problem are considered.

3.1.2 Global Constraints

Notice that global constraints are often themselves implemented by hybrid tech-
niques, even though the information imported and exported is restricted to the
above. A special case is the use of continuous variables in global constraints.
The classic example is a global constraint for scheduling, where resource vari-
ables are FD, but the task start time variables could be continuous. As far as I
know the hybrid discrete/continuous scheduling constraint is not yet available
in any CP system.!

3.1.3 Interval Constraints

For interval constraint solvers only upper and lower bounds, and constraint en-
tailment are accessible. The problem with continuous constraints is that they
are not necessarily instantiated during search. Since continuous variables can

LCP scheduling will be covered in more detail later.



take infinitely many different values, search methods that try instantiating vari-
ables to all their different possible values don’t necessarily terminate. Instead
search methods for continuous values can only tighten the variable’s bounds,
until the remaining interval associated with the variable becomes “sufficiently”
small.

Not all values within these small intervals are guaranteed to satisfy all the
constraints. Indeed there are common cases where, actually, there are no fea-
sible solutions, even though the final intervals appear prima facie compatible.
One vivid example is Wilkinson’s problem (quoted in [Van98]). It has two con-
straints: Prod??, (X +i) + P x X9 =0 and X € [-20.4.. — 9.4]. When P =0
the constraints have 11 solutions (X = —10...X = —20), but when P differs
infinitesimally from 0 (viz. P = 2723), it has no solutions!

For these reasons “answers” returned by search routines which associate
small intervals with continuous variables are typically conjoined with a set of
undecided constraints, which must be satisfied in any solution.

3.2 Linear Constraints

3.2.1 Underlying Principles

A linear constraint solver can only handle a very restricted set of constraints.
These are linear numeric constraints that can be expressed in the form Expr >
Number or Expr < Number. The expression on the left hand side is a sum of
linear terms, which take the form Coefficient x Variable. The coefficients, and
the number on the right hand side, are either integers or real numbers [Wil99].

Linear constraint solvers are designed not only to find feasible solutions, but
also to optimise against a cost function in the form of another linear expression.

In the examples in this chapter we shall typically write the linear constraints
in the form Fxpr > Number, and assume that the optimisation direction is
minimaisation.

Whilst much less expressive than CP constraints, they have a very important
property: any set of linear constraints can be tested for global consistency in
polynomial time. This means we can throw all the linear constraint of a problem
into the linear solver and immediately determine whether they are consistent.

By adding just one more kind of constraint, an integrality constraint that
requires a variable to take only integer values, we can now expressive any prob-
lem in the class NP. (Of course the consistency problem for mixed linear and
integrality constraints - termed MIP - is NP-hard).

The primary information returned by the linear solver is consistency or in-
consistency among the set of linear constraints. However for building coopera-
tive solvers we will seek more than this.

Firstly the solver can also export an optimal solution. In general there may
be many optimal solutions, but even from a single optimum we now have a
known optimal value for the cost function. No matter how many other con-
straints there may be in other solvers, the optimal value cannot improve when



they are considered, it can only get worse. Thus the linear solver returns a
bound on the cost function.

Linear constraints are special because if S; and S are two solutions (two
complete assignment that satisfy all the linear constraints), then any assignment
that lies on the line between S; and S, is also feasible. For example if X =1,
Y = 1is a solution, and sois X =4 and Y = 7, then we can be sure that X = 2
and Y = 3 is a solution, and so is X = 3 and Y = 5. Moreover since the cost
function is linear, the cost of any solution on the line between S1 and S2 has a
cost between the cost of S1 and the cost of S2.

These properties have some important consequences. Supposing Expr >
Number is a constraint, and that at the optimal solution the value of Expr is
strictly greater than Number. Then the problem has the same optimal value
even if this constraint is dropped (or “relaxed”). Otherwise you could draw a
line between a new optimal solution and the old one, on which all points are
feasible for the relaxed problem. Moreover the cost must decrease continuously
towards the new optimum solution. Therefore at the point where this line
crosses the line Expr = Number (i.e. at the first point where the solution is
also feasible for the original problem) the cost is less than at the old optimal
solution, contradicting the optimality of the original solution.

In short, for a linear problem all the constraints which influence the optimal
cost are binding at an optimal solution, in the sense that the expression on the
left hand side is equal to the number on the right.

3.2.2 Shadow Prices and Dual Costs

If such a binding constraint was dropped, then the relaxed problem typically
would have a new optimum value (with a solution that would have violated the
constraint). Along the line between the old and new optimum, the cost function
steadily improves. Instead of relaxing the constraint we can change the number
on its right hand side so as to partially relax the constraint. As long as the
constraint is still binding, at the new optimum the expression on the left hand
side is equal to the new number on the right hand side. We can measure how
much the optimum value of the cost function improves as we change the number
on the right hand side of the constraint. This ratio is called the “shadow price”
of the constraint.?

Indeed using the shadow price we can relax the constraint altogether, and
effectively duplicate it in the optimisation function. If A is the shadow price
then dropping Expr > Number and adding A x (Number — Expr) to the cost
function, we have a new problem with the same optimum solution as the old
one.

There is another very interesting way to approach the very same thing. If we
have a set of linear constraints of the form Exzpr > Number, we multiply each

2Technically the shadow price only takes into account those constraints which were binding
at the current optimal solution. If at the new optimal solution for the relaxed problem
another constraint became binding, then the shadow price would be an overestimate of the
improvement in the optimum value.



constraint by a positive number and we add all the constraints together, i.e. we
add all the multiplied left hand sides to create a new expression SumFExpr and
we add all the multiplied right hand sides to get a new number SumNumber,
then SumEzpr > SumNumber is again a linear constraint. Surprisingly ev-
erything you can infer from a set of linear constraints you can get by simply
performing this one manipulation: forming a linear combination of the con-
straints.

In particular if you multiply all the constraints by their shadow prices at
the optimum, and add them together the final right hand side is the optimum
cost, and the left hand side is an expression whose value is guaranteed to be
smaller than the expression defining the cost function. Indeed of all the linear
combinations of the constraints whose left hand side is dominated by the cost
function, the one formed using the shadow prices has the highest value on the
right hand side.

We call the multipliers that we use in forming linear combinations of the
constraints dual values. Fixing the dual values to maximize the right-hand-side
expression SumNumber is a way of finding the optimal cost. At the optimal
solution, the dual values are the shadow prices.

3.2.3 Simplex and Reduced Costs

In the section on Underlying Principles, above, we showed that at an optimal so-
lution the set of tight constraints are the only ones that matter. In general if the
problem has n decision variables, then it must have at least n linearly indepen-
dent (i.e. different) constraints otherwise the cost is unbounded. Indeed there
must be an optimal solution with n (linearly independent) tight constraints.
Moreover n such constraints define a unique solution.

Consequently one way of finding an optimal solution is simply to keep choos-
ing sets of n linearly independent constraints, making them tight (i.e. changing
the inequality to an equality), and computing their solution until there are no
more such sets. Then just record the best solution. In fact this can be made
more efficient by always modifying the current set into a new set that yields a
better solution.

We can rewrite an inequality constraint as an equation with an extra (posi-
tive) variable, called the “slack” variable. The n slack variables associated with
the n tight constraints are set to zero. If there are m inequality constraints, the
total number of variables (decision variables and slack variables) is m + n. The
other m variables are constrained by m equations, and we say they are basic
variables.

An optimal solution can be found by a hill climbing algorithm (the “Simplex”
algorithm) which at each steps swaps one variable out of the basis and another
in. The variables swapped into the basis is computed using a function called
the reduced cost. For each current basis, a reduced cost can be computed for
each non-basic variable, and any variable with a negative reduced cost has the
potential to improve the solution. Another variable is chosen to be swapped
out, and if the swap indeed yields a better solution, then the move is accepted.

10



When no non-basic variable has a negative reduced cost the current solution is
optimal.

3.2.4 Information Exported from the Linear Constraint
Solver

The information that can be extracted from a linear constraint solver is as
follows:

e An optimal bound on the cost variable, a shadow price for each constraint,
and a reduced cost for each problem variable. Additionally one solution
with optimal cost can be extracted from the solver.

e The solver reports inconsistency whenever the linear constraints are in-
consistent with each other

Upper and lower bounds for a variable X can be elicited from a linear solver
by using X and —X in turn as the cost function. However these bounds are
computationally expensive to compute, and even for linear constraints, the FD
solver typically computes bounds much more cheaply.

Unlike the FD solver, there is no problem of consistency of the constraints
inside the solver, but the problem remains how to ensure these are consistent
with the constraints in other solvers.

3.3 Propositional Clause Solvers and Set Solvers

Proposition clause solvers are usually called SAT solvers. SAT solvers are typi-
cally designed to find as quickly as possible an instantiation of the propositional
(i.e. boolean) variables that satisfies all the clauses (i.e. constraints). Many SAT
solvers, such as zChaff [ZMMMO1], generate nogoods, expressed as clauses.

The challenge, for hybridising a SAT solver with other solvers is to interrupt
the SAT solving process - which in general includes an exponential-time search
procedure - before it has necessarily found a solution, to extract useful infor-
mation from it, and to return it to the same state as when the SAT solver was
invoked.

Information that can be extracted from a SAT solver is as follows:

e Nogood clauses

e Feasible solutions (in case the solver terminates with success before being
interrupted)

e Inconsistency (in case the solver terminates with failure before being in-
terrupted)

Set solvers typically only handle finite sets of integers (or atoms). Their be-
haviour is similar to FD solvers, except they propagate upper and lower bounds
(i.e. the set of element that must belong to the set, and the set of elements that

11



could still belong to the set. The set cardinality is typically handled as an FD
variable.
Information that can be extracted from a set solver is as follows:

e Upper and lower bounds
e Set cardinality

e The solver reports inconsistency whenever the upper bound ceases to be
a superset of the lower bound

All the variables in a SAT solver are booleans. Set solvers also can be
transformed into a representation in terms of boolean variables (associate a
boolean variable with each value in the upper bound, setting those already in
the lower bound to one, and setting the cardinality to the sum of the booleans).

3.4 One-way Constraints, or Invariants

Historically constraint programming is related to theorem proving, and con-
straint programs are often thought of as performing very fast logical inferences.
Thus, for example, from the constraints X = 2+ Y and Y = 3 the constraint
program infers X = 5, which is a logical consequence.

Nevertheless there is information exported from constraint solvers which is
very useful for guiding search but has no logical interpretation. One-way solvers
can propagate and update such heuristic information very efficiently.

For many problems it is often useful to export a tentative value for a variable.
This has no logical status, but is also very useful for guiding heuristics. This may
be the value of the variable in a solution to a similar problem, or it may be the
value of the variable in the optimal solution of a relaxed version of the problem.
In a decomposition where the variable belongs to more than new subproblem,
the tentative value may be its value in a solution of one subproblem.?

Now if variable Y has tentative value 3, and the constraint X = 24+ Y is
being handled by a one-way solver, then the tentative value of X will be set by
the solver to 5. If the tentative value of Y is then changed, for some reason, to
8, then the tentative value of X will be updated to 10.

A one-way solver, then, computes the value of an expression, or function,
and uses the result to update the (tentative) value of a variable. A one-way
solver can also handle constraints by reifying them, and then updating the value
of the boolean associated with the constraint. This enables the programmer to
quickly detect which constraints are violated by a tentative assignment of values
to variables.

If a variable becomes instantiated, the one-way solver treats this as its (new)
tentative value, and propagates this to the tentative values of other variables as
usual.

Information that can be extracted from a one-way solver is as follows:

3Indeed a variable may have several tentative values, but we shall only consider a single
tentative value here.
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e Tentative values for variables.

e Constraints violated by the tentative assignment

13



Chapter 4

Communicating Solvers

Constraint solvers can cooperate by sharing lemmas about the problem, or by
sharing heuristic information. A lemma, from the CP viewpoint, is just a redun-
dant constraint that can be used by the other solver to help focus and prune
search. These lemmas can take many different forms: they may be nogoods,
cutting planes, generated rows, fixed variables, tightened domains, propagated
constraints, cost bounds, and even reduced costs [FLMO4].

Some lemmas are logical consequences of the problem definition: these in-
clude global cuts and cost bounds. Other lemmas are valid only on the assump-
tion that certain extra constraints have been imposed (during search). Validity
in this case means that the problem definition conjoined with the specified extra
constraints entail the lemma. A typical example is the information propagated
during search by a bounds consistency algorithm. Naturally this information is
only true for those parts of the search space lying below the search tree node
where the information was inferred.

Heuristic information can also be global or local. Global heuristic informa-
tion includes the number of constraints on a variable, an optimal solution to the
linear relaxation problem at the “root” node of the search tree. Local heuristic
information might include the size of the variables domains at a certain point
during search, or the shadow prices of the linear constraints at the current node
in the branch and bound search tree.

The key difference between lemmas and heuristic information lies in the
consequences of errors.

If the heuristic information is out of date, or wrong, then the algorithm
performance may be affected but the solution produced by the algorithm remains
correct. However if lemmas are wrong, then the algorithm will generally yield
some wrong answers.

14



4.1 Channeling Constraints

The same problem often needs to be modelled using different variables and
constraints for efficient handling in different solvers. The n-queens problem for
example can be modelled by n variables each with domain 1..n, where each vari-
able represents a queen in a different row, and each value represents the column
in which that queen is placed. This is ideal for FD solvers, and disequations.
It can also be modelling by n? zero-one variables, one for each square on the
board. This is best for integer linear constraints where a constraint that two
queens cannot share a line is encoded by constraining the sum of all the boolean
variables along the line to be less than or equal to one.

All CSP problems can be transformed to SAT problems, using the same
mapping of FD variables to booleans. Some researchers hope to achieve such
high performance for SAT solvers that this transformation will prove the best
way to solve all CSP problems [AdVD™04]

SAT can perform very competitively on some typical puzzles and simple
benchmarks. However the programmer has a great deal of control over FD
search which is both a disadvantage (because SAT search is automatic) and an
advantage because the programmer can tune the search to the problem at hand.

CSP problems can also be transformed to integer/linear problems, and some
mathematical programmers believe that all such problems can be formulated (as
a design model) in such a way that the integer/linear solver offers the fastest
solution method. Whilst there is some truth in this claim, there are many
problems and puzzles for which CP outperforms the best integer/linear models
designed to date.

The point here is that all the different kinds of solvers - FD, interval, inte-
ger/linear, SAT, set - are sometimes more suitable and sometimes not so suitable
as other solvers, and to date we have discovered no way of inferring from the
conceptual model which will be the best.

Indeed it is our experience that, although for a specific problem instance
one solver will be fastest, for most problem classes different solvers do better
on different problem instances. Moreover in solving a single problem instances,
there are different stages of the problem solving process when different solvers
make the fastest progress.

Consequently the most robust algorithm, achieving overall good performance
with the best worst-case performance, is a combination of all the solvers, where
constraints are posted to all the solvers which can handle them. Good per-
formance is achieved because the solvers communicate information with each
other. To make this communication possible we require channeling constraints
that enable information exported by one solver, expressed in terms of the vari-
ables handled by the solver, to be translated into information expressed in terms
of a different set of variables that occur in another solver [CLW96].

The behaviour of a channeling constraint between an FD variable and its
related boolean variables is not very mysterious. If variable V' has domain
1..n, and there are n boolean variables, B; which represents V' = 1, By which
represents V' = 2 etc., then we have the following propagation behaviour:

15



If B; is instantiated to 1 then propagate V =i

If B; is instantiated to 0 then propagate V # i

If V is instantiated to ¢ then propagate B; = 1
e If the value 7 is removed from the domain of V, then propagate B; =0

To complete the channeling constraints we add the constraint ), B; = 1, which
reflects that V takes one, and only one, value from its domain.!

Channeling constraints support communication between FD, interval, linear,
SAT and set solvers. Note that they can also be useful when two design models
of the same problem are mapped to the same solver. As a simple example the
same n-queens problem can be modelled with a queen for every row, and a queen
for every column. Let QR; denote the position (i.e. column) of the queen in
row i, and let QC,, denote the position (i.e. row) of the queen in column m.
The channeling constraints are as follows:

If QR; takes the value m, then propagate QC), = 1.

If QC; takes the value n, then propagate QR, = j

If m is removed from the domain of QR;, then propagate QC,, # i
o If n is removed from the domain of QC}, then propagate QR,, # j

For standard models and FD implementations, the combined model, with chan-
neling constraints, has better search behaviour than either of the original or
dual model.

4.2 Propagation and Local Cuts

Let us now assume that we have one search routine which posts constraints
on the variables at each node of the search tree. These constraints are then
communicated to all the solvers through channeling constraints, and each solver
then derives some information which it exports to the other solvers. The other
solvers then use this information to derive further information which is in turn
exported, and this continues until no more new information is produced by any
of the solvers.

In this section we shall discuss what information is communicated between
the solvers, and how it is used.

4.2.1 Information Communicated to the Linear Solver

When the domain of an FD variable changes, certain boolean variables become
instantiated (either to 1 or to 0), and this values can be passed in to the linear
solver.

1For mathematical programmers, the B; comprise an SOS set of type one.
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The importance of this communication is worth illustrating with a simple
example. Consider the constraints X € 1.2, Y € 1.2 and Z € 1..2, and
alldifferent([X,Y,Z]). In the linear solver this information is represented using six
boolean variables X1, Xo,Y1,Y2, Z1, Z5 and five constraints ) . X; =1, . Y; =
LY, Zi=1, X1+Y1+ 271 <1, Xo4+ Y+ Z < 1. This immediately fails
in both the FD and the linear solvers. Suppose now we change the problem,
and admit Z = 3. The linear solver determines that there is a solution (e.g.
X = 1,Y = 2,Z = 3), but infers nothing about the values of X, Y or Z.2
The FD solver immediately propagates the information that Z = 3, via the
channeling constraint which adds Z3 = 1 to the linear solver.

Sometimes FD variables are represented in the linear solver as continuous
variables with the same bounds. In this case only bound updates on the FD
variables are passed to the linear solver. An important case of this is branch and
bound search, when one of the solvers has discovered a feasible solution with a
certain cost. Whilst linear solvers can often find good cost lower bounds - i.e.
optimal solutions to relaxed problems that are at least as good as any feasible
solution - they often have trouble finding cost upper bounds - i.e. feasible but
not necessarily optimal solutions to the real problem. The FD solution exports
a cost upper bound to the linear solver. This can be used later to prune search
when, after making some new choices, the linear cost lower bound becomes
greater than this upper bound. This is the explanation why hybrid algorithms
are so effective on the Progressive Party Problem [SBHW95, RWH99]. CP
quite quickly finds a solution with cost 13, but cannot prove its optimality.
Integer /linear programming easily determines the lower bound is 13, but cannot
find a feasible solution. 3

Not all constraints can immediately be posted to an individual solver. A
class of constraints identified by Hooker [HO99] are constraint with the form
FD(X) — LP(Y). In this simplified form the X are discrete variables, and F'D
is a complex non-linear constraint on these variables. Finding an assignment
of the variables that violates this constraint is assumed to be a hard problem
for which search and FD propagation may be suitable. Once the variables in X
have been instantiated in a way that satisfies F'D, however, the linear constraint
LP(Y) is posted to the linear solver. If at any point the linear constraints
become inconsistent, then the F'D search fails the current node and alternative
values are tried for the F'D variables. Assuming the class of FD constraints is

closed under negation, we can write -FD(X) for the negation of the constraint

FD(X). This syntax can be used both to express standard F D constraints, by

writing -FD(X)— 1 <0, (i.e. -FD(X) — false), and standard LP constraints
by writing true — LP(Y).

Constraints involving non-linear terms (in which two variables are multi-
plied together), can be initially posted to the interval solver, but as soon as
enough variables have become instantiated to make all the terms linear the con-

straint can be sent to the linear solver as well. In effect the linear constraint

2The linear solver can be persuaded to infer more information only by trying to maximise
and minimise each boolean in turn, as mentioned earlier.
3Though Kalvelagen subsequently modelled this problem successfully for a MIP solver.
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is information exported from the interval solver and sent to the linear solver.
Naturally this kind of example can be handled more cleverly by creating a ver-
sion of the original nonlinear constraint where the non-linear terms are replaced
by new variables, and posting it to the linear solver. When the constraint be-
comes linear, this should still be added to the linear solver as it is logically, and
mathematically, stronger than the version with the new variables.

For the workforce scheduling problem we can use several hybrid design mod-
els linking finite domain and integer/linear constraints. We can, for example,
use the FD solver to choose which employees perform which tasks.

We can link these decisions to the linear solver using Hooker’s framework,
by writing “If task ¢ and task j are assigned to the same employee then task
¢ must precede task j”. We also need a time period of t;; to travel from the
location of task ¢ to that of task j. Thus if task i precedes task j we can write
S; > S; + tij, where S; is the start time of task ¢, and S; that of task j.

Now the linking constraint FD(X) — LP(Y) has

o FD(X) = assign(task;, Emp) A assign(task;, Emp), and

° LP(Y) = Sj > 5; + tij

More realistically for the workforce scheduling problem we want to put a
disjunction constraint, “task ¢ must precede task j or task j must precede task
1”7, on the right hand side of the implication. To encode the disjunction in the
integer linear solver we can use a boolean variable B and a big number, say M.
The whole disjunction is encoded as the following two constraints:

° Sj—I—BXMZSi—Ftij
° Si-l—(].—B)XMZSj-l—tij

If B =1 the first constraint is always true, whatever values are assigned to .S;
and S;, so only the second constraint is enforced, that task j precedes task 7. If
B = 0 the second constraint is relaxed, and we have task i preceding task j.

Now the linking constraint FD(X) — LP(Y) has

o FD(X) = assign(task;, Emp) A assign(task;, Emp), and

[ LP(Y):S]—FBXMzsz—Ft”/\Sz—f—(l—B)XMESJ—f—f,”

Note that the integrality of the boolean variable B is enforced separately,
assuming that eventually B will be instantiated to either 1 or 0 during search.

4.2.2 Information Exported from the Linear Solver
Cost Lower Bounds

For minimisation problems, we have seen that cost upper bounds passed to the
linear solver from the FD solver can be very useful. Cost lower bounds returned
from the linear solver to the FD solver are equally important.
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Hoist scheduling is a cyclic scheduling problem where the aim is to minimise
the time for one complete cycle [RW98]. FD can efficiently find feasible schedules
of a given cycle, but requires considerable time to determine that if the cycle
time is too short, there is no feasible schedule. Linear programming, on the
other hand, efficiently returns a good lower bound on the cycle time, so by
running the LP solver first an optimal solution can be found quite efficiently by
the FD solver. Tighter hybridisation yields even better algorithm efficiency and
scalability [RYS02].

Returning to the workforce scheduling example, another approach is to use
the full power of integer/linear programming to solve TSPTW (Traveling Sales-
man Problem with Time Windows) subproblems and return the shortest route
covering a set of tasks. In this case we have a linking constraint for each em-
ployee, emp,,. Whenever a new task is added to the current set assigned to
empy, the implication constraint sends the whole set to the integer/linear solver
which returns an optimal cost (shortest route) for covering all the tasks.

This is an example of a global optimisation constraint ( see [FLMO04]). Global
optimisation constraints are ones for which special solving techniques are avail-
able, and from which not only cost lower bounds can be extracted, but also
other information.

Reduced Costs

One very useful type of information is reduced costs. As we have seen, a single
FD variable can be represented in the linear solver as a set of boolean variables.
When computing an optimal solution, the LP solver also computes reduced costs
for all those booleans which are 0 at an optimum. The reduced costs provide an
estimate of how much worse the cost would become if the boolean was set to 1.
This estimate is conservative, in that it may underestimate the impact on cost.

If there is already a cost upper bound, and the reduced cost shows that
setting a certain boolean to 1 would push the cost over its upper bound, then
we can conclude that this boolean must be 0. Via the channeling constraints
this removes the associated value from the domain of the associated FD variable.
Reduced costs therefore enable us to extract FD domain reductions from the
linear solver.

Reduced costs can also be used for exporting heuristic information. A useful
variable choice heuristic termed max regret is to select the variable with the
greatest difference between its “preferred” value, and all the other values in its
domain. This difference is measured in terms of its estimated impact on the
cost, which we can take as the minimum reduced cost of all the other booleans
representing values in the domain of this variable.

Relaxed Solution

The most valuable heuristic information exported from the linear solver is the
relaxed solution which it uses to compute the cost lower bound. This assignment
of values to the variables is either feasible for the whole problem - in which case
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it is an optimal solution to the whole problem - or it violates some constraints.
This information can then focus the search on “fixing” the violated constraints.
Most simply this can be achieved by instantiating one of the variables in the
violated constraints to another value (perhaps the one with the smallest reduced
cost). However a more general approach is to add new constraints that prevent
the violation occurring again without removing any feasible solutions.

Fixing Violations by adding cuts To fix the violation we seek a logical
combination of linear constraints which exclude the current infeasible assign-
ment, but still admits all the assignments which are feasible for this constraint.

If this is a conjunction of constraints, then we have a global cut which can
be added to the design model for the problem. An example of this is a subtour
elimination constraint, which rules out assignments that are infeasible for the
travelling salesman problem.

If it is a disjunction, then different alternative linear constraints can be
posted on different branches of a search tree. When, for example, an integer
variable is assigned a non-integer value, say 1.5, by the linear solver, then on
one branch we post the new bound X < 1 and on the other branch we post
X >2

The challenge is to design these constraints in such a way that the alternation
of linear constraint solving and fixing violations is guaranteed, eventually, to
terminate.

Fixing violations by imposing penalties There is another quite different
way to handle non-linear constraints within a linear constraint store. Instead
of posting a new constraint, modify the cost function so that the next optimal
solution of the relaxed problem is more likely to satisfy the constraint. For this
purpose we need a way of penalising assignments that violate the constraint,
in such a way the penalty reduces as the constraint becomes closer to being
satisfied, and becomes 0 (or negative) when it is satisfied.

With each new relaxed solution the penalty is modified again, until solutions
are produced where the penalty function makes little, or no, positive or negative
contribution, but the constraint is satisfied. In case the original constraint was
linear, we can guarantee that the optimum cost for the best penalty function
is indeed the optimum for the original problem. This approach of solving the
original problem by relaxing some constraints and adding penalties to the cost
function is called “Lagrangian relaxation”.

4.2.3 Information Imported and Exported from the One-
Way Solver

The one-way solver is an important tool in our problem solving workbench.
The solver is used to detect constraint conflicts, and thus help focus search on
hard subproblems. A simple example of this is for scheduling problems where
the objective is to complete the schedule as early as possible. FD propagation
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is used to tighten the bounds on task start times. After propagation, each
start time variable is assigned a tentative value, which is the smallest value
in its domain. The one-way solver then flags all violated constraints, and this
information is used to guide the next search choice.

For many scheduling problems tree search proceeds by posting at each node
an ordering constraint on a pair of tasks: i.e. that the start time of the second
task is greater than the end time of the first task. We can reify this ordering
constraint with a boolean that is set to 1 if and only if the ordering constraint
holds between the tasks. We can use these booleans to infer the number of
resources required, based on the number of tasks running at the same time.

Interestingly this constraint can be handled be handled by three solvers: the
one-way solver, the FD solver and the linear solver. The linear solver relaxes
the integrality of the boolean, and simply finds optimum start times. The FD
solver propagates the current ordering constraints, setting booleans between
other pairs of tasks, and ultimately failing if there are insufficient resources. The
one-way solver propagates tentative start time values exported from the linear
solver to the booleans. This information reveals resource bottlenecks, so at the
next search node an ordering constraint can be imposed on two bottleneck tasks.
The ordering constraint is imposed simply by setting a boolean, which constrains
the FD, linear and one-way solvers. This approach was used in [EW00].

The one way solver propagates not only tentative values, but also other
heuristic, or meta-information. It allows this information to be updated effi-
ciently by updating summary information rather than recomputing from scratch.
This efficiency is the key contribution of invariants in the Localizer system
[VMO00].

For example if Sum is the sum of a set of variables V;, then whenever the
tentative value of a variable Vj, is updated, from say m to n, the one way solver
can efficiently update Sum by changing its tentative value by an amount n —m.

Earlier we discussed reduced costs. The “max regret” heuristic can be sup-
ported by using the one-way solver to propagate the reduced costs for the
booleans associated with all the different values in the domain of a variable.
MaxRegret for the variable is efficiently maintained as the difference between
the lowest and the second lowest reduced cost.

4.3 Subproblems Handled with Independent Search
Routines

4.3.1 Global Cuts and Nogoods

A loose form of hybrid algorithm is to solve two subproblems with their own
separate search routines. KEach solution to one subproblem is tested against
the other by initialising the common variables with the solution to the first
subproblem, and then trying to solve the constrained version of the second one.
Each time the second subproblem solver fails to find a solution, this is reported
back to the first subproblem solver as a nogood. The idea is that future solutions
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to the first subproblem will never instantiate the common variables in the same
way.

This simple idea can be enhanced by returning not just a nogood, but a
more generic explanation for the failure in the second subproblem. If the second
subproblem is linear, then the impossibility of finding a solution to the second
subproblem is witnessed by a linear combination of the constraints SumFExpr >
SumNumber where SumFExpr is positive or zero, but SumNumber is negative.

The actual dual values which yield this inconsistency not only show the in-
consistency of the given subproblem, but may witness the inconsistency of other
assignments to the shared variables. By replacing the values of the shared vari-
ables with new variables, and combining the linear constraints in the second
subproblem using the same dual values we get a new linear constraint called
a Benders Cut which can be posted to the first subproblem as an additional
constraint. Benders Cuts can be used not only to exclude inconsistent subprob-
lems, but also subproblems which cannot participate in an optimal solution to
the whole problem [HO03, EWO01].

4.3.2 Constraining the Second Subproblem - Column Gen-
eration

Curiously there is a form of hybridisation where an optimal solution to the
first problem can be used to generate “nogood” constraints on the second prob-
lem. This is possible when any solution to the first problem is created using a
combination of solutions to the second problem.

This is the case, for example where a number of tasks have to be completed
by a number of resources. Each resource can be used to perform a subset of the
tasks: finding a set of tasks that can be performed by a single resource (a “line
of work”) is the subproblem. Each line of work has an associated cost. The
master problem is to cover all the tasks by combining a number of lines of work
at minimal cost. Given an initial set of lines of work, the master problem is to
find the optimal combination. The shadow prices for this solution associate a
price with each task. A new line of work can only improve the optimum if its
cost is less than the sum of the shadow prices of its set of tasks. Such lines of
work are then added to the master problem. They appear as columns in the
internal matrix used to represent the master problem in the LP solver. This is
the reason for the name Column Generation. This is the requirement that is
added as a constraint on the subproblem.

This technique applies directly to the workforce scheduling problem. A pre-
liminary solution is computed where each employee performs just one task, for
which he/she is qualified. This solution is then improved by seeking sets of
tasks that can feasibly be performed by an employee, at an overall cost which
is less than the sum of the shadow prices associated with the tasks. The master
problem then finds the best combination of employee lines of work to cover all
the tasks. This optimal solution yields a modified set of shadow prices which are
used to constraint the search for new improving lines of work. This continues
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until there are no more lines of work that could improve the current optimal
solution to the master problem.
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Chapter 5

Applications

Perhaps the first hybrid application using the CP framework was an engineering
application involving both continuous and discrete variables [VC88]. The advan-
tages of a commercial linear programming system in conjunction with constraint
programming was discovered by the Charme team, working on a transportation
problem originally tackled using CP. Based on this experience we used a com-
bination of Cplex and ECLiPSe on some problems for BA [THG198]. This
worked and we began to explore the benefits of the combination on some well
known problems [RWT99].

Hybrid techniques proved particularly useful for hybrid scheduling applica-
tions [DDLMZ97, JG01, Hoo05, BR03, RW98, EW00]. Hybridisation techniques
based on Lagrangian relaxation and column generation were explored, as a way
of combining LP and CP [SZSF02, YMdS02, SF03].

Finally these techniques began to be applied in earnest for real applications
at Parc Technologies in the area of networking [EWO01, CF05, OB04] and else-
where for sports scheduling [ENT02, Hen01].
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Chapter 6

Hybrid Search

6.1 Context

Search is needed to construct solutions to the awkward part of any combinatorial
problem. When the constraint solvers have done what inferences they can, and
have reached a fixpoint from which no further information can be extracted,
then the system resorts to search. Because of this context it is impossible to say
a priori that one search algorithm is more appropriate for a certain problem than
another. There is always a chance that the non-recommended search algorithm
happens to chance on an optimal solution straightaway.

Moreover there are almost endless possibilities for search hybridisation. In-
deed having read and forgotten many research papers on search hybrids, I am
aware that I cannot hope to survey them all.

My objective here is simply to paint the big picture, or create a global
map, so that different techniques can be located, and their relationships can be
understood.

6.2 Overview

We distinguish two main search methods:

e Constructive search, which adds constraints incrementally to partial solu-
tions

e Local search, which seeks to improve a (set of) complete assignments of
values to the variables by making small “local” changes

6.2.1 Constructive Search

The simplest form of constructive search is greedy search, which constructs a
solution incrementally by adding constraints, but never reconsiders any alter-
natives in the light of new information (such as a dead-end).
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Another form of constructive search is labelling, where the constraint added
at each step equates a variable to a specific value. Clearly labelling can also be
“greedy”.

The general form of constructive search is tree search. Under each node
of the tree, except the leaf nodes, there are several branches, and a different
constraint is added at each branch. Each branch ends at another node.

The tree is complete if the disjunction of the constraints added on the
branches under a node is entailed by the subproblem at the node. The subprob-
lem at a node is a conjunction of the original problem with all the constraints
added on its ancestor branches.

Optimisation can be achieved using tree search. This could be achieved
by finding all solutions and keeping the best. However the branch and bound
method improves on this by adding, after each new solution is found, a constraint
that requires future solutions to be better than the current best one. After
adding a new constraint like this, search can continue on the original search
tree - since the constrained search tree is a subtree - or it can restart with a new
search tree.

A search tree can be explored completely, or incompletely. Indeed greedy
search can be seen as a form of incomplete tree search. The are many ways of
limiting the search effort, to yield an incomplete tree search. The simplest is to
stop after a specified maximum time. Similarly the number of backtracks can
be limited, or a limited amount of search credit can be allocated to the search
algorithm, and the algorithm can share that credit - which represents search
effort - in different ways among the subtrees. For example beam search allows
only a limited number of branches to be explored at each level of the search
tree.

Finally the branches in a search tree can be explored in different orders.
So even for complete search we can distinguish depth-first search, breadth-first,
best-first, and others.

6.2.2 Local Search

For local search we need to associate with each complete assignment a value
which we will call its price. The simplest form of local search is Monte Carlo
search, which just tries different complete assignments at random, and just
keeps the ones with the highest price. Hill climbing introduces the concept of a
neighbour. Each neighbour of a complete assignment A is nearly the same as A
up to a local change. The hill climbing algorithm moves from an assignment A
to one of its neighbours B if B has a higher price than A. Hill-climbing stops
when the current assignment has no neighbours with a higher price. There are
variants of hill climbing where “horizontal” moves are allowed, and variants
where at each step the neighbour with the highest price is chosen.

The simplest kind of local change is to change the value of a single variable.
(This can be seen as the local search equivalent of labelling.)

For constrained problems special local changes are introduced which main-
tain the constraint, such as the two- and three- swaps used for the travelling
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salesman problem.

Sometimes complex changes are used which involve several sequential local
changes, for example in Lin and Kernighan’s TSP algorithm [LK73].

Ultimately, as for example in variable neighbourhood search the change may
not be local at all [MH97].

The drawback of hill climbing is that it stops on reaching a “local optimum”
which may be far worse than the global optimum. Many forms of local search
have been introduced which are designed to escape from local optima.

Some of these can work with just one complete assignment, such as Simulated
Annealing and Tabu search. Others work on a whole population of solutions,
combining them in various ways to yield (hopefully) better solutions. Examples
include genetic algorithms, ant colony optimisation and several other methods
which are inspired by nature.

6.3 Forms of Search Hybridisation

The benefits of hybrid search are similar to the benefits of hybrid constraint
solving:

e Derive more information about feasibility
e Derive more information about optimality
e Derive more heuristic information

In principle tree search is useful for providing information about feasibility, and
local search for providing information about optimality. Local search is also an
excellent source of heuristic information.

6.4 Hybrid Solvers and Search

In this section, however, we will start by exploring how hybrid constraint solvers
feed information to a non-hybrid constructive and local search.

6.4.1 Constructive Search

Clearly all the active solvers perform inference at each node of the search tree,
inferring new information from the extra constraint posted on the previous
branch.

In addition to inferring logical information, the solvers can export heuristic
information. The FD solver can export domain sizes and the linear solver can
export reduced cost information to be used for a max regret variable choice
heuristic.

Moreover the linear relaxed solution exported from the linear solver, may be
propagated onto other variables by the one-way solver, and the new tentative
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values can contribute to constraint violations of measurable size. This can serve
as another variable choice heuristic.

To this point we have made little mention of value choice heuristics. One
source of value choice heuristics is the previous solution, in a changed problem
which results from modifying the previous one. Another source is a solution to
a relaxed (typically polynomial) subproblem, such as the subproblem defined
by the linear constraints only. Let us suppose there are different value choice
heuristics exported to the solver. When the heuristics agree, this is a pretty
powerful indicator that the heuristic value is the best one.

Limited Discrepancy Search [HG95] is an incomplete constructive search
method where only a limited number of variables are allowed to take non-
preferred values. An idea due to Caseau is only to count the preferences when
we are confident about the heuristic [CLPRO1]. Using multiple value choice
heuristics, we only count discrepancies from the heuristic suggestion when the
different value choice heuristics agree. This agreement can also be used as a
value choice heuristic: label first those variables whose value choices we are
confident of.

6.4.2 Local Search

One important mechanism for escaping from local optima, in a local search
algorithm, is to increase the penalty of all constraints violated at this local
optimum. This changes the optimisation function until the assignment is no
longer a local optimum [VT99]. The global optimum can hopefully be found
when the constraint penalties have the right penalties.

We have already encountered the requirement to find the right penalties in
an LP framework: Lagrangian relaxation. The penalty optimisation is often
performed by a local improvement technique termed subgradient optimisation.

We have essentially the same technique within a local search setting [SW98,
CLS00]. It would be interesting to characterise the class of problems for which
ideal constraint penalties exist, that ensure there are no local optima, since all
local optima are “globally” optimal. Clearly LP problems have this property,
but are there larger classes?

6.5 Loose Search Hybridisation

6.5.1 Constructive then Local Search

The simplest and most natural form of search hybridisation is to use a construc-
tive search to create an initial solution, and then to use local search to improve
it. Local search routines need an initial solution to start with, and the quality
of the initial solution can have a very significant impact on the performance of
the local search. Constructive search is the only way an initial solution can be
constructed, of course! Typically a greedy search is used to construct the initial
solution, and constraint propagation plays a very important role in maximising

28



the feasibility of the initial solution. However when the domain of a variable
becomes empty instead of failing the greedy search method chooses for that
variable a value in conflict and continues with the remaining variables.

For industrial applications where constructive search is used as the heart of
the algorithm, because of its suitability for dealing with hard constraints, there
is a risk that the final solution suffers from some obvious non-optimality. If
any users of the system can see such “mistakes” in the solution constructed by
the computer, there is a loss of confidence. To avoid this, for many industrial
applications which are handled using constructive search, a local search is added
at the end to fix the more obvious non-optimalities.

For example in a workforce scheduling problem, the final solution can be
optimised by trying all ways of swapping a single task from one employee to
another and accepting any swap that improves the solution.

6.5.2 Local Search then Constructive

This is a rarer combination. The idea is that the local search procedure reaches
a “plain” - an area where further improvement is hard to achieve. Indeed
statistical analysis of local improvement procedures show a rate of improvement
which decreases until new, better, solutions are rarely found.

At this point a change to a complete search procedure is possible. Indeed, by
learning which variable values have proven their utility during the local search
procedure, the subsequent complete search can be restricted only to admit values
with a higher utility, and can converge quickly on better solutions than can be
found by local search [Li97].

More generally, constructive branch and bound algorithms typically spend
more time searching for an optimal solution than on proving optimality. Often
after finding an intermediate best solution, the search “goes down a hole” and
takes a long time to find a better solution. After a better solution is found,
then the added optimisation constraint enables a number of better and better
solutions are found quite quickly, because a large subtree has been pruned by the
constraint. Consequently, using local search to quickly elicit a tight optimisation
constraint can be very useful for accelerating the constructive branch and bound
search.

This combination is typically used where a proof of optimality is required.

6.6 Master-Slave Hybrids

A variety of master/slave search hybrids are applied to a didactic transportation
problem in an interesting survey paper [FLLO04].

6.6.1 Constructive search aided by local search

As a general principle, the inference performed at each node in a constructive
search may be achieved using search itself. For example when solving problems
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involving boolean variables, one inference technique is to try instantiating future
boolean variables to 1 and then to 0, and for each alternative applying further
inference to determine whether either alternative is infeasible. If so, the boolean
variable is immediately instantiated to the other value. This kind of inference
can exploit arbitrarily complex subsearches.

Local search can be used in the same way to extract heuristic information.
One use is as a variable labelling heuristic in satisfiability problems. At each
node in the constructive search tree, use local search to extend the current par-
tial solution as far as possible towards a complete solution. The initial solution
used by local search can be the local search solution from a previous node. The
variable choice heuristic is then to choose a variable in conflict in this local
search solution [WS02].

Another use as a value choice heuristic is to extend each value choice to an
optimal solution using local search, and choose the value which yields he best
local search optimum. Combining this with the above variable choice heuristic
results in a different local search optimum being followed at each node in the
constructive search tree.

A quite sophisticated example of this hybridisation form is the “local prob-
ing” algorithm of [KE(02]. The master search algorithm is a constructive search
where at each node a linear temporal constraint is added to force apart two
tasks at a bottleneck. This is similar to the algorithm mention in Section 4.2.3
above [EW00]. However the slave algorithm is a local algorithm which performs
simulated annealing to find a good solution to the temporal subproblem. The
resource constraints are handled in the optimisation function of the subprob-
lem. Moreover this is a three-level hybridisation, because the local move used
by the simulated annealing algorithm is itself a constructive algorithm. This
bottom level algorithm creates a move by first arbitrarily changing the value of
one variable. It then finds a feasible solution as close as possible to the previous
one, but keeping the new value for the variable. If their is a single feasible
solution constructible from the initial value assignment, then the move operator
is guaranteed to find it. This algorithm is therefore complete in the sense that
it guarantees to find a consistent solution if there is one, but it sacrifices any
proof of optimality.

6.6.2 Local search aided by constructive search

When neighbourhoods are large, or if the search for the best neighbour is non-
trivial, then constructive search can be used effectively for finding the next move
in a local search algorithm.

One method is to use constraint propagation to focus the search for the
best neighbour [PG99]. A more specialised, but frequently occurring, problem
decomposition is to have local search find values for certain key variables, and
allow constructive search to fill in the remaining ones. Indeed the simplex
algorithm is an example of this kind of hybrid. For workforce scheduling we
might use local search to allocate tasks to employees and constructive search to
create an optimal tour for each employee. In this hybrid form the constructive
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search is, in effect, calculating the cost function for the local search algorithm.

An example of this kind of decomposition is the very efficient tabu search
algorithm for job shop scheduling described in [NS96]. A move is simply the
exchange of a couple of tasks on the current solution’s critical path. This is
extended to a complete solution using constructive search.

The “combine and conquer” algorithm [BB98] is an example of this hybrid
where a genetic algorithm is used for local search. The genetic algorithm works
not on complete assignments, but on combinations of subdomains, one for each
variable. A crossover between two candidates is a mixing and matching of the
subdomains. The quality of a candidate is determined by a constructive search
which tries to find the best solution possible for the given candidate within a
limited time.

6.7 Complex Hybrids of Local and Constructive
Search

There has been an explosion of research in this area over the last decade. Papers
have been published in the SSM research community, the SAT community, the
management science community and others. Some interesting collections include
The Knowledge Engineering Review, Vol 16, No. 1 and the CPAIOR annual
conference.

In this section we will review two main approaches to integrating constructive
and local search:

e Interleaving construction and repair

e Local search in the space of partial solutions

6.7.1 Interleaving Construction and Repair

Earlier we discussed how to apply local search to optimise an initial solution
produced by a constructive search. However during the construction of the ini-
tial solution, the search typically reaches a node where all alternative branches
lead to inconsistent subnodes. Instead of completing the construction of a com-
plete infeasible assignment, some authors have proposed repairing the partial
solution using local search [JLOO].

This is applicable in case labelling used for the constructive search: ex-
tending the approach to other forms of constructive search is an open research
problem. The local search is initiated with the first constructed infeasible par-
tial assignment, and stops when a feasible partial assignment has been found.
Then constructive search is resumed until another infeasible node cannot be
avoided. This interleaved search continues until a feasible solution is found.

I have applied this technique in a couple of industrial applications. Each
time the neighbourhood explored by the local search has been designed in
an application-specific way. An assignment involved in the conflict has been
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changed, so as to remove the conflict, but this change often causes a further
conflict, which has to be fixed in turn. This iterated fixing is similar to ejection
chains used in vehicle routing problems [RR96].

Caseau noted that this interleaving of construction and local search yields
faster optimisation and better solutions than is achieved by constructing a com-
plete (infeasible) assignment first and then applying local search afterwards
[CL99]. Again this observation is borne out by my experience in an industrial
crew scheduling problem, where previous approaches using simulated annealing
produced significantly worse solutions in an order of magnitude longer execution
time.

6.7.2 Local Search with Consistent Partial Solutions

There is a long line of research driven by the problem of what to do when
a constructive search reaches a node whose branches all lead to inconsistent
subnodes.

Weak commitment search [Yok94] stops the constructive search, and records
the current partial assignment as tentative values. Constructive search then
restarts at the point of inconsistency, minimising conflicts with the tentative
values, but where conflict cannot be avoided, assigning new values to them. Each
time a dead-end is reached the procedure iterates. Theoretical completeness of
the search procedure is achieved by recording nogoods. An incomplete variant is
to forget the nogoods after a certain time, effectively turning them into a tabu
list.

Another related approach - which was introduced at the same conference -
is to commit to the first value when restarting, and then try to label variables,
as before, in a way consistent with the tentative variables. In this way all the
variables eventually become committed, and completeness is achieved by trying
alternatives on backtracking [VS94].

More recently, however, researchers have been prepared to sacrifice complete-
ness, but have kept the principle of maintaining consistent partial solutions. In
this framework a local move is as follows

1. Extend the current partial solution consistently by instantiating another
variable

2. If no consistent extension can be found, uninstantiate a variable in the
current partial solution

This approach was used in [Pre02], and termed decision repair in [JLOO].
This framework can be explored in many directions:

e What variable and value choice heuristics to use when extending consistent
partial solutions

e What propagation and inference techniques to use when extending con-
sistent partial solutions
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e What explanations or nogoods to record when a partial solution cannot
be extended

e What variable to uninstantiate when a partial solution cannot be extended

In principle this framework can be extended to allow inconsistent partial
solutions as well. With this tremendous flexibility almost all forms of search

can be represented in the framework, from standard labelling to hill climbing
[PVO04].
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Chapter 7

Summary

Hybrid techniques are exciting and an endless source of interesting research
possibilities. Moreover they are enabling us to take great strides in efficiency and
scalability for solving complex industrial combinatorial optimisation problems.

Unpredictability is perhaps the greatest practical problem we face when
solving large scale combinatorial optimisation problems. When we first tackled
the hoist scheduling problem using a hybrid FD/linear solver combination, what
really excited me was the robustness of the algorithm for different data sets.

The downside is that it is hard to develop the right hybrid algorithm for the
problem at hand. The more tools we have the harder it is to choose the best
combination [WS02].

I believe that after an explosion of different algorithms, frameworks such as
that of [PV04] will emerge and we will have a clear oversight of the different
ways of combining algorithms. Eventually, a very long time in the future, we
may even be able to configure them automatically. That is the holy grail for
combinatorial optimisation.
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