Anno Accademico 2014-2015


Istituzioni di Analisi Matematica (Matricole PARI)

Corsi di laurea in Statistica.

Paola Mannucci
mannucci@math.unipd.it




(17 settembre 2015) Il testo e lo svolgimento della parte B del tema 1 del 16 settembre.


(9 luglio 2015) Il testo e lo svolgimento della parte B del tema 1 del 9 luglio.


(23 giugno 2015) I testi e gli svolgimenti della parte B del tema 1 del 23 giugno.


(20 febbraio 2015) I testi e gli svolgimenti della parte B del 20 febbraio.

(4 febbraio 2015) I testi e gli svolgimenti della parte B del 4 febbraio.
Lo svolgimento del Tema 1 è completo, gli altri sono meno precisi, soprattutto nelle parti facoltative.



(19 gennaio 2015) Il programma FINALE per la PARTE A (parte di teoria) dal quale prenderemo le domande dello scritto.
Siete pregati di segnalarmi se ci sono imprecisioni.

(14 gennaio 2015) Il programma DEFINITIVO svolto a lezione. Siete pregati di segnalarmi se ci sono imprecisioni.


Regole Esami IAM (ord. 2014)

L' esame consiste in una prova scritta più, per alcuni, come verrà spiegato sotto, in una prova orale.

PROVA SCRITTA La prova scritta è suddivisa in due parti inscindibili, con un'unica valutazione, Parte A e Parte B.
Parte A: 2 o 3 domande di teoria sul programma d'esame (una definizione, 2 enunciati + dimostrazione di Teorema).
Durata: 20 minuti.
Non è ammesso utilizzare libri, appunti o il formulario che servirà solo per la parte B.
Parte B: 4 o 5 esercizi del tipo di quelli proposti a lezione e nei fogli di autovalutazione proposti durante il corso.
Durata: 2 ore, immediatamente a seguire dopo la Parte A.
È ammesso l'uso di un formulario costituito da un unico foglio formato A4 (fronte-retro), contenente qualsiasi cosa lo studente ritenga opportuno. Il foglio deve contenere nome, cognome e numero di matricola dello studente.
Niente libri, telefoni (neanche spenti), calcolatrici o altro ausilio.

RISULTATI ED EVENTUALE ORALE Una volta corrette le prove (A+B) pubblicheremo i risultati.
La prova scritta sarà ritenuta sufficiente per il superamento dell'esame o per essere ammessi all'orale solo se si avrà riportato un voto sufficiente in entrambe le prove A e B.
Qualora una delle due parti non risultasse sufficiente, lo studente dovrà ripetere totalmente l'esame: non è possibile superare la Parte A ad un appello e la Parte B ad un' altro.
Per gli studenti che hanno superato la prova scritta: specificheremo i nomi di coloro che dovranno sostenere la prova orale e di quelli che possono verbalizzare l'esame (con il voto dello scritto), dopo aver sostenuto un breve colloquio con il docente di commento sulla prova scritta.
Gli studenti convocati per l'orale devono presentarsi nello stesso appello dello scritto e verranno chieste loro una o due domande di teoria.
Gli studenti convocati che non superino la prova orale (o che non si presentino alla convocazione) dovranno rifare lo scritto.
Tutti gli studenti che hanno superato la prova scritta possono richiedere (mandando una e-mail al docente quando escono i risultati) di sostenere una prova orale per cercare di migliorare il proprio voto.
Il docente valuteràł tale richiesta caso per caso.
Si ricorda che, se la prova orale non va bene, il voto finale può peggiorare.

REGISTRAZIONE Per la sessione invernale (gennaio/febbraio). Tutti gli studenti che non hanno superato il primo appello possono iscriversi al secondo appello.
Gli studenti che hanno superato l'esame al primo appello possono decidere di ripresentarsi allo scritto del secondo appello.
Se in tale scritto si ritirano, rimane valido il voto finale d'esame del primo appello; se consegnano, la validitłà dell'esame del primo appello decade.
Si ribadisce che i convocati a sostenere l'orale con lo scritto del primo appello, devono presentarsi all'orale che verrà fissato per il primo appello e non all'orale dell'appello successivo.
Per le altre sessioni: La prova scritta e la prova orale devono avvenire nello stesso appello.

È obbligatorio iscriversi nelle liste d' esame tramite UNIWEB (le liste chiudono qualche giorno prima dello svolgimento della prova). È anche necessario cancellarsi qualora si decida di non presentarsi.

Regole Esami IAM1 e IAM2 VECCHIO ORDINAMENTO (ord. 2009) (SGI, SEF, STI)
Gli esami di Istituzioni di Analisi Matematica 1 e 2, IAM1 e IAM2 (vecchio ordinamento (2009)) si terranno in contemporanea agli esami di Istituzioni di Analisi Matematica IAM (nuovo ordinamento, 2014).
Le regole d'esame sono quelle scritte per l'esame di IAM (si veda qua sopra) con la differenza che il tempo a disposizione per svolgere la parte B (parte di esercizi) sarà di 1 ora e 15 minuti anziché due ore perché saranno assegnati meno esercizi.
Gli studenti di SGI svolgeranno l'esame con la prof.ssa Mannucci, quelli di SEF e STI con il prof. Sommariva.
Saranno aperte le liste per tali esami, rispettivamente SGI (Mannucci) e SEF e STI (Sommariva).
Le aule saranno comunicate il giorno prima.
Il programma di riferimento per la parte scritta (teoria e esercizi) sia di IAM1 che di IAM2 è incluso nel programma del corso di quest'anno reperibile al sito
http://www.math.unipd.it/~mannucci/didattica/IAM14.html
per IAM1 : fino al punto 5 compreso (derivate e calcolo differenziale).
per IAM2: dal punto 6 compreso in poi.
Le lezioni svolte dai docenti si possono trovare nel sito del prof. Sommariva
http://www.math.unipd.it/~alvise/didattica.html
e/o si può richiedere la chiave d'accesso con una mail alla prof.ssa Mannucci, per il sito di Moodle, dove ci sono le lezioni svolte e gli esercizi assegnati.

(1 dicembre) Una raccolta di temi d'esame svolti di Istituzioni di Analisi Matematica 2 (vecchio ordinamento) del prof. Vittone.
Questi esercizi sono solo indicativi e potrebbero contenere esercizi relativi ad argomenti non svolti quest'anno.

(16 ottobre) Il link alla piattaforma CONNECT legata al libro di testo. Dovete registrarvi. Il corso si chiama Istituzioni di Analisi Matematica.


Attenzione!! L'esame di istituzioni di Analisi Matematica è propedeutico per tutti gli esami del secondo anno.
Se non lo si supera entro l'anno non si può iscriversi a nessun esame del secondo anno.


Testo di riferimento:
M. Bertsch, Dal Passo, L. Giacomelli, Analisi Matematica, Seconda Edizione, McGraw-Hill (consigliato con la Piattaforma CONNECT, per fare esercizi, con tale piattaforma si può trovare solo in libreria)
Appunti di lezione visibili e scaricabili al sito MOODLE di Statistica
(Serve la chiave di accesso detta a lezione che potete chiedermi via mail) .
ESERCIZIARI:
Esercitazioni di Analisi Matematica 1 , Marco Bramanti, Esculapio Editore (2011)
Esercizi di Analisi Matematica 1, Sandro Salsa, Annamaria Squellati, Zanichelli 2011;
Esercitazioni di Matematica, primo volume parte prima e seconda e secondo volume parte prima, P.Marcellini e C.Sbordone, ed. Liguori (Napoli).

Esercizi degli esami passati:
Potete accedere agli esercizi degli anni passati dei corsi di Istituzioni di Analisi Matematica 1 e 2, dei quali questo corso è l'unione al sito dei rispettivi corsi sul MOODLE di Statistica.


Risultati di apprendimento previsti: Alla fine del corso gli studenti avranno acquisito le nozioni fondamentali dell'analisi matematica legate alle proprietà dei numeri reali e al concetto di limite.Dal punto di vista operativo acquisiranno la capacita di calcolare limiti di funzioni di una variabile utilizzando sia i limiti notevoli che la formula di Taylor. Conosceranno il concetto di derivata, sapranno calcolare le derivate delle funzioni di una variabile e sapranno utilizzarle per risolvere problemi con parametro e per tracciare grafici di funzioni. Sapranno calcolare integrali definiti e indefiniti, studiare la convergenza di serie numeriche, studiare il comportamento dei massimi e minimi di funzioni in due variabili. Avranno gli strumenti matematici necessari ai corsi di Probabilità e Statistica, quali il calcolo integrale, le serie numeriche e i fondamenti dello studio di funzioni reali di due variabili reali.

Programma : Contenuti: - Insiemi numerici.- Funzioni reali.- Limiti di funzioni, proprietà e teoremi relativi; limiti di successioni; funzioni continue e teoremi relativi.- Derivazione di funzioni: tecniche di calcolo, proprietà e teoremi sulle derivate.- Formula di Taylor e di MacLaurin.- Applicazione delle derivate allo studio di funzioni e alla determinazione del loro grafico. - Integrali definiti e indefiniti; funzioni primitive; Teorema Fondamentale del Calcolo Integrale; integrazione per parti e per sostituzione; tecniche di integrazione. Integrali impropri e criteri di convergenza. - Serie numeriche: definizioni e proprietà. Serie geometrica, armonica e armonica generalizzata. Criteri di convergenza (confronto, confronto asintotico, rapporto, radice). Convergenza assoluta. Serie a termini di segno alterno, con Teorema di Leibnitz. - Funzioni di due variabili reali: elementi di topologia, limiti e continuità. Derivate parziali, con teorema di Schwarz. Massimi e minimi locali e globali, liberi e vincolati. Teorema dei moltiplicatori di Lagrange.
ATTENZIONE: questo è un programma di massima.  Il Programma dettagliato degli argomenti svolti verrà messo in rete ogni 15 giorni circa.

Prerequisiti : - Il linguaggio della matematica, con elementi di logica e di teoria degli insiemi. - I numeri, dai naturali ai reali, con il loro ordinamento, operazioni e proprietà- I polinomi; divisione di polinomi; Teorema di Ruffini; scomposizione in fattori.- Le funzioni elementari (polinomiale, potenza, esponenziale, logaritmo e funzioni trigonometriche) con le loro proprietà ed i grafici di alcune di esse- Equazioni e disequazioni, razionali e trascendenti e sistemi di disequazioni.

Attività di apprendimento previste e metodologie di insegnamento: : Sono impartite 108 ore di lezione frontale, di cui circa metà dedicate allo svolgimento di esercizi di tipo numerico e teorico.
Le lezioni seguiranno, sia come notazioni che come argomenti, il libro di testo e si svolgeranno con il tablet e alla lavagna.
L'uso del tablet e della piattaforma MOODLE serve a favorire la miglior comprensione degli argomenti trattati e a permettere agli studenti di avere disposizione quanto pi¨ materiale didattico possibile.
Agli studenti si richiede di seguire con attenzione le lezioni e di dedicare una buona quantità di tempo al lavoro autonomo. Quest'ultimo è di fondamentale importanza per sviluppare sia le capacità logiche che le abilità pratiche connesse con il programma d'esame.Al fine di sostenere gli studenti che ne sentano l'esigenza saranno organizzate attività di tutorato coordinate dal docente.
Ogni settimana, durante il corso, la docente sarà disponibile a ricevere gli studenti per dubbi riguardanti il corso.
Sarà attivo e aggiornato quotidianamente il sito del corso che sarà comunicato il primo giorno di lezione.