A simple multi-objective optimization problem
Introduction

Let’s introduce a geometrical optimization problem, named **cones problem**, with the following characteristics:

- **multi-objective** problem (two objective functions): the solution is not a single optimum design, but instead it is represented by the set of designs belonging to the *Pareto frontier*
- **simple** mathematical formulation: easy and quick implementation from scratch of the relevant modeFRONTIER project
- **constrained** problem: objectives space and designs space present *feasible* and *unfeasible* regions
Problem definition

Right circular cone:

\[r = \text{base radius} \]
\[h = \text{height} \]
\[s = \text{slant height} \]

\(V = \text{volume} \)
\(B = \text{base area} \)
\(S = \text{lateral surface area} \)
\(T = \text{total area} \)

\[
s = \sqrt{r^2 + h^2}
\]

\[
V = \frac{\pi}{3} r^2 h
\]

\[
B = \pi r^2
\]

\[
S = \pi r s
\]

\[
T = B + S = \pi r (r + s)
\]
Cones problem

- two input variables: \(r, h \)
 \[
 r \in [0, 10] \text{ cm} , \quad h \in [0, 20] \text{ cm}
 \]
- two objectives:
 \[
 \text{min } S \\
 \text{min } T
 \]
- one constraint:
 \[
 V > 200 \text{ cm}^3
 \]

The cone shape (i.e. the design) is defined univocally when both \(r \) and \(h \) are given.

We want to minimize both the lateral surface area and the total surface area.

A constraint for the cone volume is given, in order to guarantee a minimum volume.
Project building

Let’s build from scratch the pertinent modeFRONTIER project:

1. Work Flow setup: fill the work canvas with the project’s building blocks
2. Script Node setup: use your favourite math tool
 - Jython script
 - Matlab node
 - Excel Workbook node
 - OpenOffice Spreadsheet node
Work Flow setup

Cones: Two-objective Optimization Problem

- **Two input variables**: \(r \) and \(h \)
- **Two design variables**: \(r \) and \(h \)
- **DOE Sequence**
- **Three output variables**: volume, minimum_volume, lateral, min_lateral, base, min_total
- **Two objectives**: min_total
- **One constraint**: one constraint

Logic Flow

For more information visit: www.esteco.com or send an e-mail to: modeFRONTIER@esteco.com
Work Flow setup

cones: two-objective optimization problem

two design variables

DOE Sequence

DOE
Script node: Jython

Jython (Python) script case:

Write down the formulae

Load math module

Note the syntax of mathematical functions and constants

\[V = \frac{\pi}{3} r^2 h \]

\[s = \sqrt{r^2 + h^2} \]

\[S = \pi r s \]

\[B = \pi r^2 \]
Script node: Matlab

Matlab case:

Write down the formulae:

\[V = \frac{\pi}{3} r^2 h \]

\[s = \sqrt{r^2 + h^2} \]

\[S = \pi r s \]

\[B = \pi r^2 \]

Check Matlab version

Load the matlab file
Script node: Excel

Excel Workbook case:

Build the spreadsheet

Load the xls file

Link variables to cells

Insert the formulae

$$s = \sqrt{r^2 + h^2}$$

$$V = \frac{\pi}{3} r^2 h$$

$$S = \pi rs$$

$$B = \pi r^2$$
Script node: OpenOffice

OpenOffice Spreadsheet case:

Build the spreadsheet

Load the sxc file

Link variables to cells

Insert the formulae

\[s = \sqrt{r^2 + h^2} \]

\[V = \frac{\pi}{3} r^2 h \]

\[S = \pi r s \]

\[B = \pi r^2 \]
Runs examples

Let’s see some examples of runs with different DOEs and/or schedulers:

- **Full Factorial** DOE
- random samplings: **Random Sequence** and **Sobol** DOEs
- genetic algorithms: **MOGA-II**, **NSGA-II**
- **MOSA**
- **NBI-NLPQLP**
Full Factorial DOE
10 levels per variable
100 eval. designs
Random Sequence

Random Sequence DOE
1000 eval. designs
Sobol

Sobol DOE
1000 eval. designs
MOGA-II

20 individuals (Sobol)
50 generations
1000 eval. designs
MOGA-II

20 individuals (Sobol)
50 generations
1000 eval. designs
NSGA-II

20 individuals (Sobol)
50 generations
1000 eval. designs
MOSA

10 points (Sobol)
100 iterations
1000 eval. designs
NBI-NLPQLP

NBI-NLPQLP
(DOE: 10 Sobol)
20 NBI-subproblems
346 eval. designs
Final considerations

Let’s consider the difference between

- single-objective problem solutions: two different minima
- multi-objective problem solutions: the Pareto frontier
Single-objectives minima

Each design represents the optimum solution for its corresponding single-objective problem.

...but what about the in between designs?

...we would like to get a compromise solution. A trade-off of the two objectives...

What we want is the Pareto frontier!

\[\begin{align*}
\min S \\
r &= 5.131 \text{ cm} \\
h &= 7.256 \text{ cm} \\
V &= 200 \text{ cm}^3 \\
S &= 143.23 \text{ cm}^2 \\
T &= 225.92 \text{ cm}^2
\end{align*} \]

\[\begin{align*}
\min T \\
r &= 4.072 \text{ cm} \\
h &= 11.518 \text{ cm} \\
V &= 200 \text{ cm}^3 \\
S &= 156.28 \text{ cm}^2 \\
T &= 208.38 \text{ cm}^2
\end{align*} \]
The Pareto frontier