A Generalization of the Cellina–Colombo Theorem for a Class of Non-convex Variational Problems

CARLO MARICONDA

Dipartimento di Matematica Pura e Applicata, via Belzoni 7,
35131 Padova, Italy

Submitted by Leonard D. Berkovitz

We state a condition under which the integral functional \(R(x) = \int_0^T L(t, x(t), x'(t)) \, dt \) attains a minimum under the assumption that \(x \mapsto L(t, x, x') \) is concave.

INTRODUCTION

This paper concerns the problem (P) of the existence of a minimum for the integral functional \(I \) defined by

\[
I(x) = \int_0^T L(t, x(t), x'(t)) \, dt
\]

on the set of functions \(x(\cdot) \) belonging to \(W^1, p([0, T], \mathbb{R}^n) \) \((p \geq 1) \) such that \(x(0) = a, x(T) = b \), in the case where \(L \) does not necessarily satisfy Tonelli's classical assumption of convexity with respect to \(x' \).

In this situation, the most general result is the Cellina–Colombo theorem [2] stating that if \(L(t, x, x') = g(t, x) + h(t, x') \) and \(x \mapsto g(t, x) \) is concave for a.e. \(t \) then Problem (P) admits at least one solution. For the case where the integrand is not the sum of two functions whose arguments are \(t, x \) and \(t, x' \) separately, it is not known whether the concavity assumption on the map \(x \mapsto L(t, x, x') \) is sufficient for the existence of a solution to Problem (P). The purpose of this note is to consider this problem.

In Theorem 3 we prove that the functional \(I \) (under the concavity condition) attains a minimum if we assume further the existence of a solution

\[(\tilde{x}, p_1, ..., p_{n+1}, v_1, ..., v_{n+1}) \]

to the associated relaxed problem (PR) satisfying

\[
\bigcap_{i=1}^{n+1} \partial_i (\tilde{x}; -L(t, \tilde{x}(t), v_i(t))) \neq \emptyset \quad \text{a.e.}
\]

(C)
Obviously, each solution to (P) is a solution to (PR') satisfying (C); the cases for which our theorem can be usefully applied are those where the converse does not hold. For instance, condition (C) is automatically satisfied (for each \(x, v_1, \ldots, v_{n+1} \)) when the integrand \(L \) is the sum of two functions whose arguments are \(t, x, t, x' \) separately. In this situation, Theorem 3 yields Cellina and Colombo's existence result; however, it is well known that a solution to the associated relaxed problem is not, in general, a solution to the original one.

As a further application of our condition we show that Problem (P) attains a minimum if \(L(t, x, x') = h(t, x) + f(t, x) g(t, x') \) and its bipolar \(L^{**}(t, x, \cdot) \) is locally constant on \(A(t, x) = \{ \xi : L(t, x, \xi) > L^{**}(t, x, \xi) \} \).

The main tools are basically the arguments of [2]: an extension of Liapunov's theorem on the range of a vector measure and a selection theorem.

Assumptions and Preliminary Results

The following hypothesis is considered:

Hypothesis (H). The set-valued map \(\Phi : [0, T] \to 2^{\mathbb{R}^n} \) is measurable [1, Def. III.1.1] with non-empty closed values. In addition we assume that there exists at least one \(v \in L^p([0, T], \mathbb{R}^n) \) such that \(v(t) \in \Phi(t) \) a.e. and \(\int_0^T v(t) \, dt = b - a \). The Carathéodory function \(L : [0, T] \times \mathbb{R}^n \to \mathbb{R}^n \) satisfies the following growth assumption: if \(p = 1 \), there exist a convex l.s.c. monotonic function \(\psi : \mathbb{R}^n \to \mathbb{R}^n \), a constant \(\beta_1 \), and a function \(\zeta(\cdot) \) in \(L^1 \) such that

\[
L(t, x, \xi) \geq \alpha_1(t) - \beta_1 |x| + \psi(\xi)
\]

for each \(x, \xi \) and for a.e. \(t \). If \(\lim_{r \to +\infty} \frac{\psi(r)}{r} = +\infty \).

If \(p > 1 \), there exist a positive constant \(\gamma_p, \) a constant \(\beta_p (\beta_p/\gamma_p) \) is strictly smaller than the best Sobolev constant in \(W_p^{1,0}([0, T], \mathbb{R}^n) \), a function \(\alpha_p(\cdot) \) in \(L^1 \) such that

\[
L(t, x, \xi) \geq \alpha_p(t) - \beta_p |x|^p + \gamma_p |\xi|^p
\]

for each \(x, \xi \) and for a.e. \(t \).

For each \(t, x \) let us denote by \(L^{**}(t, x, \cdot) \) the bipolar of the map \(\zeta \mapsto L(t, x, \zeta) \) [4, Sect. 1.4.2]. For each function \(L \) satisfying Hypothesis (H), its bipolar fulfills Tonelli's classical assumptions for the existence of a solution to the relaxed problem (PR) associated to (P),

\[
\text{minimize } \int_0^T L^{**}(t, x(t), x'(t)) \, dt \quad \text{(PR)}
\]

on the subset of \(W^{1, p}([0, T], \mathbb{R}^n) \) of those functions \(x \) satisfying \(x(0) = a, x(T) = b \), \(x'(t) \in \Phi(t) \) a.e. Now, consider the problem

\[
\text{minimize } \int_0^T \sum_{i=1}^{n+1} p_i(t) L(t, x(t), v_i(t)) \, dt
\]

\[
p_i : [0, T] \to \mathbb{R}, \quad v_i : [0, T] \to \mathbb{R}^n \text{ measurable}
\]

\[
\sum_i p_i(t) = 1, \quad p_i \geq 0, \quad v_i(t) \in \Phi(t) \text{ a.e.} \quad \text{(PR')}
\]

Clearly,

\[
\min \text{PR} \leq \inf \text{PR'} \leq \inf \text{P}
\]

Moreover, we have the following:

Theorem 1 [4, Th. IX.4.1, Sect. IX.4.5]. Let \(L \) satisfy Hypothesis (H). Then \(\min \text{PR'} = \min \text{PR} = \inf \text{P} \).

Let us denote by \(\chi_E(\cdot) \) the characteristic function of a set \(E \). Theorem 2 is an extension of Liapunov's theorem on the range of a vector measure [3, Chap. 16].

Theorem 2 [2, 6, 9]. Let \(p_1, \ldots, p_n : [0, T] \to [0, 1], f_1, \ldots, f_n : [0, T] \to \mathbb{R}^l (l \geq 1) \) be measurable (\(\sum p_i = 1 \)) and bounded below by an integrable function. Let us further assume that \(\sum p_i f_i \in L^1 \). Then there exists a measurable partition \(E_i, \ldots, E_m \) of \([0, T]\) with the property that \(\sum_i f_i \chi_{E_i} \in L^1 \) and the following equality holds:

\[
\int_0^T \sum_i p_i f_i \, dt = \int_0^T \sum_i f_i \chi_{E_i} \, dt.
\]

Lemma 1 below concerns a property of the subdifferential of a convex function [4, Sect. I.5.1]; its proof follows directly from [2, Lemma 1].

Let us denote by \(\partial \phi(f(t, x, \xi)) \) the subdifferential of the function \(x \mapsto f(t, x, \xi) \). Also, for a subset \(Q \) of \(\mathbb{R}^n \), we write \(\|Q\| \) for the set \(\{ |q| : q \in Q \} \).

Lemma 1. Let \(f : [0, T] \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \) be a Carathéodory function satisfying:
ON NON-CONVEX VARIATIONAL PROBLEMS

(i) \(f(t, x, \xi) \leq \alpha(t) + \beta |x|^p \) \((\beta > 0, x \in L^1) \);
(ii) \(x \mapsto f(t, x, \xi) \) is convex for a.e. \(t \) and for each \(\xi \).

Let \(\hat{\xi} \) be continuous, \(v_1, \ldots, v_{n+1} \) be measurable and such that
\[
\mathcal{P}(t) = \int \partial_x f(t, \hat{\xi}(t), v_i(t)) \neq \emptyset \quad \text{a.e.}
\]

Then, the set-valued map \(\mathcal{P} \) admits an integrable selection.

Remark. The proof of [2, Lemma 1] points out the fact that an integrable selection of \(\mathcal{P} \) exists if, instead of (i), we assume that there exists a function \(\alpha(-) \) in \(L^1 \) and a function \(c : \mathbb{R}^+ \to \mathbb{R} \) such that
\[
|\partial_x f(t, x, \xi)| \leq \alpha(t) + c(A) \quad \text{for each } t, \xi, |x| \leq A.
\]

Lemma 2. Let \(f, g : [0, T] \times \mathbb{R}^n \to \mathbb{R} \) and set \(h(t, x, \xi) = f(t, x) g(t, \xi) \).
Then for each \(t, x, \xi \),
\[
h^{**}(t, x, \xi) = f(t, x) G(t, \xi),
\]
where
\[
G(t, \xi) = \begin{cases}
\varepsilon^{**}(t, \xi) & \text{if } f(t, x) \geq 0; \\
-(\varepsilon^{**}(t, \xi)) & \text{if } f(t, x) < 0.
\end{cases}
\]

Proof. Let us suppose \(f(t, x) < 0 \), the other case \(f(t, x) \geq 0 \) being similar. In this situation, the inequality
\[
-(\varepsilon^{**}(t, \xi)) \leq -g(t, \xi)
\]
implies
\[
-f(t, x)(-\varepsilon^{**}(t, \xi)) \leq f(t, x) g(t, \xi),
\]
whence
\[
f(t, x) G(t, \xi) \leq h^{**}(t, x, \xi).
\]

Conversely, let \(t, x \) be fixed and \(\hat{\xi} \) be any convex function satisfying
\[
\hat{\xi}(\xi) \leq f(t, x) g(t, \hat{\xi}) \quad \text{for each } \xi.
\]
Then
\[
-\frac{1}{f(t, x)} \hat{\xi}(\xi) \leq -g(t, \xi) \quad \text{for each } \xi,
\]
whence
\[
-\frac{1}{f(t, x)} \hat{\xi}(\xi) \leq (-g^{**}(t, \xi)).
\]

In particular, for \(\psi(\xi) = h^{**}(t, x, \xi) \),
\[
h^{**}(t, x, \xi) \leq f(t, x) G(t, \xi).
\]

The conclusion follows from (1) and (2).

Main Result

Theorem 3. Let \(L \) satisfy Hypothesis (H). Let us further suppose that the function \(x \mapsto L(t, x, \xi) \) is concave for each \(t, \xi \). Then, the problem
\[
\begin{align*}
\min & \int_0^T L(t, x(t), x'(t)) \, dt \\
\text{subject to} & x(0) = a, \ x(T) = b,
\end{align*}
\]
on the subset of \(W^{1,p} \) of those functions satisfying \(x(0) = a, \ x(T) = b, \ x'(t) \in \Phi(t) a.e. \) in \([0, T] \) admits a solution if and only if there exists a solution \((\hat{x}, p_1, \ldots, p_{n+1}, v_1, \ldots, v_{n+1}) \) to the associated relaxed problem (PR') satisfying
\[
\bigcap_{i=1}^{n+1} \partial_x (L(t, \hat{x}(t), v_i(t))) \neq \emptyset \quad \text{a.e.}
\]
Note that, when \(L(t, x, \xi) \) is differentiable in \(x \), condition (C) reduces to
\[
\frac{\partial L}{\partial x} (t, \hat{x}(t), v_i(t)) = \frac{\partial L}{\partial x} (t, \hat{x}(t), v_i(t)) \quad \text{for each } i, j.
\]

Proof of Theorem 3. The necessity is due to the fact that each solution to (P) satisfies (C).

Conversely, let \((\hat{x}, p_1, \ldots, p_{n+1}, v_1, \ldots, v_{n+1}) \) be a solution to (PR') satisfying condition (C). By Lemma 1, let \(\delta(-) \in L^1 \) be a selection to
\[
t \mapsto \bigcap_{i=1}^{n+1} \partial_x (L(t, \hat{x}(t), v_i(t))).
\]

Then, for each \(y \in \mathbb{R}^n \) and \(i \in \{1, \ldots, n+1\} \), we have
\[
L(t, \hat{x}(t), v_i(t)) \geq L(t, v_i(t)) + \langle \delta(t), y - \hat{x}(t) \rangle,
\]
(\(\langle \cdot, \cdot \rangle \)) being the usual scalar product in \(\mathbb{R}^n \). Set
\[
B(t) = \int_0^t \delta(s) \, ds, \quad f_i(t) = (v_i(t), L(t, \hat{x}(t), v_i(t)), \langle v_i(t), B(t) \rangle).
\]
The growth assumptions on L (Hypothesis (H)) imply that the condition concerning the functions f_i stated in Theorem 2 are satisfied: let E_1, \ldots, E_{n+1} be a measurable partition of $[0, T]$ such that

$$\sum_{i} v_{i, E} \in L^p, \quad \int_0^T \sum_i p_i(t) v_i(t) dt = \int_0^T \sum_i v_i(t) \chi_{E_i}(t) dt,$$

$$\int_0^T \sum_i p_i(t) \langle v_i(t), B(t) \rangle dt = \int_0^T \sum_i \langle v_i(t), B(t) \rangle \chi_{E_i}(t) dt,$$

$$\int_0^T \sum_i p_i(t) L(t, \bar{x}(t), v_i(t)) dt = \int_0^T \sum_i L(t, \bar{x}(t), v_i(t)) \chi_{E_i}(t) dt,$$

and set $\bar{x}(t) = a + \int_0^t \sum_i v_i(s) \chi_{E_i}(s) ds$.

We show that \bar{x} is a solution to (P). Clearly, by (4), $\bar{x}(T) = \bar{x}(T) = b$ and $\bar{x} \in W^{1, r}$. Furthermore, by (3),

$$\sum_i L(t, \bar{x}(t), v_i(t)) \chi_{E_i}(t) \geq \sum_i L(t, \bar{x}(t), v_i(t)) \chi_{E_i}(t) + \langle \delta(t), \bar{x}(t) - \bar{x}(t) \rangle.$$

The integration of the above inequality and (4) yield

$$\min(PR') = \int_0^T \sum_i L(t, \bar{x}(t), v_i(t)) \chi_{E_i}(t) dt \geq \int_0^T \sum_i L(t, \bar{x}(t), v_i(t)) \chi_{E_i}(t) dt + \int_0^T \langle \delta(t), \bar{x}(t) - \bar{x}(t) \rangle dt.$$

Let us remark that

$$\sum_i L(t, \bar{x}(t), v_i(t)) \chi_{E_i}(t) = L(t, \bar{x}(t), \bar{x}'(t))$$

and that the Tonelli–Fubini theorem and integration by parts give

$$\int_0^T \langle \delta(t), \bar{x}(t) \rangle dt = \int_0^T \sum_i (\chi_{E_i}(t) - p_i(t)) \langle v_i(t), B(t) \rangle dt.$$

Then, (4) and (5) together yield

$$\min(P) \geq \min(PR') \geq \int_0^T L(t, \bar{x}(t), \bar{x}'(t)) dt \geq \min(P);$$

the conclusion follows.

THEOREM 4 (Cellina and Colomba [2]). Let $L(t, x, x') = g(t, x) + h(t, x)$ satisfy Hypothesis (H) and $x \rightarrow g(t, x)$ be concave for a.e. t. Then Problem (P) admits at least one solution.

Proof. Since we have $\tilde{\varphi}(a - L(t, x, \xi)) = \tilde{\varphi}(a - g(t, x))$ for each t, x, ξ, then condition (C) trivially holds. Theorem 3 yields the conclusion.

We shall assume the following hypotheses:

HYPOTHESIS (A). Set $A(t) = a + \int_0^t \sum_i \Phi(s) ds$ (see [7]). We assume that:

1. The functions $l, f, g : [0, T] \times \mathbb{R}^n \rightarrow \mathbb{R}$ are such that $L(t, x, \xi) = l(t, x) + f(t, x) g(t, \xi)$ satisfies Hypothesis (H) for a.e. t, for each ξ, and for each $x \in A(t)$;
2. Either for a.e. t, $l(t, x) > 0$ for each $x \in A(t)$
3. or for a.e. t, $l(t, x) < 0$ for each $x \in A(t)$;
4. for a.e. t and $x \in A(t)$, the set $A(t, x) = \{ \xi \in \Phi(t) : L^{**}(t, x, \xi) < L(t, x, \xi) \}$ is open and, on it, the function $\xi \mapsto L^{**}(t, x, \xi)$ is locally constant;
5. There exist a function $z(.)$ in L^1 and a function $c : \mathbb{R}^+ \rightarrow \mathbb{R}$ such that for a.e. t:

$$|\tilde{\varphi}(f(t, x, \xi))| \leq z(t) + c(|\xi|)$$

for each $\xi \in \Phi(t), x \in A(t), |x| \leq A$.

Let us remark that the class of non-trivial functions satisfying the hypothesis quoted above is non-empty.

EXAMPLE. $\Phi(t) = \mathbb{R}^+, a = 0, L(t, x, \xi) = -y^2 + (1 + x)\xi - \phi(t)|\xi - \psi(t)|$ $(\phi, \psi \in \mathbb{R}^+, \phi, \psi \geq 0, \gamma$ being strictly smaller than the best Sobolev constant) satisfies Hypothesis (A).

As a further application of Theorem 3, we have the following

THEOREM 5. Let f, g, Φ satisfy Hypothesis (A). Then the problem

$$\minimize \quad I(x) = \int_0^T l(t, x(t)) dt + \int_0^T f(t, x(t)) g(t, x(t)) dt$$

(P)
on the subset of $W^{1,p}$ of those $x(\cdot)$ satisfying $x(0) = a$, $x(T) = b$, $x'(t) \in \Phi(t)$ a.e. in $[0, T]$ admits at least one solution.

Proof. Clearly, in view of Theorem 3, it is enough to prove the existence of a solution $(\tilde{x}, p_1, \ldots, p_{n+1}, v_1, \ldots, v_{n+1})$ to (PR') satisfying

$$L(t, \tilde{x}(t), v_j(t)) = L(t, \tilde{x}(t), v_j(t))$$

for each t, x and $i, j \in \{1, \ldots, n+1\}$. For this purpose, let $(\tilde{x}, p_1, \ldots, p_{n+1}, w_1, \ldots, w_{n+1})$ be an arbitrary solution to (PR'). Then, by Theorem 1

$$L^{**}(t, \tilde{x}(t), \tilde{x}'(t)) = \sum_i p_i(t) L(t, \tilde{x}(t), w_i(t)).$$

(6)

The map $\xi \mapsto L^{**}(t, \tilde{x}(t), \xi)$ being convex, we can assume

$$L^{**}(t, \tilde{x}(t), w_i(t)) = L(t, \tilde{x}(t), w_i(t))$$

a.e. (7)

Set $A = \{ t : L^{**}(t, \tilde{x}(t), \tilde{x}'(t)) < L(t, \tilde{x}(t), \tilde{x}'(t)) \} \cap \{ t : \tilde{x}'(t) \in A(t, \tilde{x}(t)) \}$. By $A(t)$, for a.e. $t \in A$, the convex function $L^{**}(t, \tilde{x}(t), \cdot)$ is constant in a neighbourhood of $\tilde{x}'(t)$. As a consequence

$$L^{**}(t, \tilde{x}(t), \xi) \geq L^{**}(t, \tilde{x}(t), \tilde{x}'(t))$$

for a.e. $t \in A$ and each $\xi \in \mathbb{R}^n$. In particular

$$L^{**}(t, \tilde{x}(t), w_i(t)) \geq L^{**}(t, \tilde{x}(t), \tilde{x}'(t))$$

for a.e. $t \in A$;

hence, by (6), we can assume

$$L^{**}(t, \tilde{x}(t), w_i(t)) = L^{**}(t, \tilde{x}(t), \tilde{x}'(t))$$

a.e. $t \in A$. (8)

Equalities (7) and (8) prove that, if we set

$$v_i = w_i \xi_A + \tilde{x}'(t) \xi_{[0, T] \setminus A}$$

then $(\tilde{x}, p_1, \ldots, p_{n+1}, v_1, \ldots, v_{n+1})$ is a solution to (PR') satisfying

$$L(t, \tilde{x}(t), v_i(t)) = L^{**}(t, \tilde{x}(t), \tilde{x}'(t))$$

a.e. (9)

By Lemma 2, there exists a function $G : [0, T] \times \mathbb{R}^n \rightarrow \mathbb{R}$ such that

$$L^{**}(t, x, \xi) = h(t, x) + f(t, x) G(t, \xi).$$

Thus (9) yields

$$g(t, v_i(t)) = G(t, \tilde{x}'(t))$$

a.e.

The claim is proved.