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Reticoli di sottospazi.
Sia V uno spazio vettoriale su C di dimensione finita. Defini-
amo S(V ):={W |W6V }, P(V ):={W |W6V, dimCW=1} e I(V ):=
{W |W6V, dimCW=dimCV−1} rispettivamente gli insiemi
dei sottospazi, delle rette e degli iperpiani di V , che si dicono
rispettivamente spazi proiettivi completo, punteggiato, iperi-
gato associati a V .

S(V ) ha struttura di reticolo con le operazioni di intersezione
e somma di sottospazi e l’ordine dell’inclusione. Osservazioni:
W1⊆W2⇐⇒W1+W2=W2⇐⇒W1∩W2=W1,
(W1+W2)∩W3⊇(W1∩W3)+(W2∩W3),
(W1∩W2)+W3⊆(W1+W3)∩(W2+W3)
(in particolare il reticolo non è distributivo).

Se W6V è un sottospazio, allora S(W )⊆S(V ) si dice il sot-
toreticolo completo (o sottospazio proiettivo completo) di sos-
tegnoW ; S(V/W )∼={W ′∈S(V )|W6W ′}⊆S(V ) si dice la stella
(proiettiva) completa di sostegno W , P(W )⊆P(V ) si dice il sot-
tospazio proiettivo punteggiato di sostegno W .

La dualità canonica tra V e V ∗ induce un antiisomorfismo
di reticoli τV :S(V )−→S(V ∗) dato da W 7→W⊥ ed induce un

antiisomorfismo S(V/W )−→S(W⊥)∼=S((V/W )∗). La dualità
scambia sottospazi con stelle.

Un’applicazione lineare f :V −→V ′ induce una applicazione (in-
siemistica) S(f):S(V )−→S(V ′) data daW 7→f(W ), soddisfacente
alle seguenti proprietà:
S(f)(0)=0; dimCS(f)(W )6dimC (W );
S(f)(W∩W ′)⊆S(f)(W )∩S(f)(W ′);
S(f)(W+W ′)=S(f)(W )+S(f)(W ′).

Se F :S(V )−→S(V ′) è una funzione avente le proprietà di di-
minuire le dimensioni e di rispettare la somma (di sottospazi),
allora esiste f :V −→V ′ tale che F=S(f).

Geometria Proiettiva.
Spazi Proiettivi. Uno spazio proiettivo completo di spazio
vettoriale sovrastante V (dimC (V )=n+1) è un insieme S dotato
di una biiezione αS :S(V )−→S. Per trasporto risulta data una
struttura di reticolo su S (le operazioni si indicano con ∨,
∧ e la relazione con 6); dunque se s=α(W ) e s′=α(W ′) è
s∨s′=α(W∩W ′), s∧s′=α(W+W ′) e s6s′⇐⇒W6W ′. Lo
spazio proiettivo punteggiato associato P è il sottinsieme di S
dato da {s∈S |α(s)∈P(V )}; lo spazio proiettivo degli iperpiani
associato I è il sottinsieme di S dato da {s∈S |α(s)∈I(V )}.
Lo spazio proiettivo duale S∗ è costituito dallo stesso insieme S

dotato della biiezione α∗
S

=α◦τ−1
V

:S(V ∗)−→S. Lo spazio proi-

ettivo punteggiato P∗ di S∗ si identifica con lo spazio proiettivo
degli iperpiani I associato a S

Per t=α(W )∈S, conW∈S(V ), poniamo dim(t):=dimC (W )−1.
In particolare: dimα(0)=−1 e α(0)∈S di dice il vuoto proiet-
tivo; t∈S si dice punto, retta, piano, iperpiano se dim(t)=
0,1,2,n−1 rispettivamente. Se dim(t)=m per t∈S, allora la

sua dimensione considerato come t∈S∗ (elemento dello spazio
proiettivo duale) risulta dim(t)=n−m−1.

Formula di Grassmann: se s,t∈S allora
dim(s)+dim(t)=dim(s∨t)+dim(s∧t).
Teorema di Dualità Proiettiva: ogni asserzione scritta in ter-
mini di elementi generici di uno spazio proiettivo coinvolgendo
solo la struttura di reticolo è vera se e solo se risulta vera
l’asserzione duale che si ottiene sostituendo ∨ con ∧, ∧ con
∨, 6 con > (relazione duale) e dim con n−1−dim.

Applicazioni Proiettive, Proiettività. Una applicazione
proiettiva ϕ:S−→S′ è una funzione indotta da una applicazione
lineare f :V −→V ′ tra gli spazi vettoriali sovrastanti, i.e. tale
che ϕ(α(W ))=α′(f(W )) per ogni W∈S(V ).

Due applicazioni lineari f,g sono sovrastanti la stessa appli-
cazione proiettiva se e solo se g=λf per λ∈C×.

Definiamo im(ϕ)=α′(im(f)), e ker(ϕ)=α(ker(f)) che si chiama
il luogo di degenerazione dell’applicazione ϕ.

Risulta dim(im(ϕ))+dim(ker(ϕ))=dim(S)−1.

L’applicazione proiettiva ϕ:S−→S′ non induce direttamente
una applicazione tra gli spazi punteggiati, a causa del luogo di
degenerazione, ma induce ϕ:Prker(ϕ)−→P ′.

Una proiettività è una applicazione proiettiva di S in sè il cui
nucleo sia il vuoto proiettivo di S, ovvero che abbia immag-
ine tutto S, o ancora tale che l’applicazione lineare sovrastante
sia un isomorfismo. Il gruppo delle proiettività di S, sotto
l’operazione di composizione, si indica con PGL(S) ed è iso-
morfo a PGL(V ):=GL(V )/C×.

Siano t=α(W ) e t′=α(W ′) elementi di S. Si dicono sghembi
se t∧t′=α(0) (il vuoto di S, ovvero W∩W ′=0), incidenti altri-
menti; si dicono complementari se sono sghembi e t∨t′=α(V )
(corrisponde a W⊕W ′=V ). Indichiamo con T il sottospazio
di S di sostegno t, e con T∗ la stella di S di asse t.

L’inclusione T⊆S è applicazione proiettiva con applicazione
lineare sovrastante l’inclusione W6V .

La proiezione S−→T∗ data da s 7→s∨t è applicazione proiettiva
di sovrastante la proiezione V −→V/W . Più generalmente la
proiezione di t′ dal centro t è T ′−→T∗ data da s 7→s∨t di
applicazione sovrastante la proiezione W ′−→(W ′+W )/W .

Se t e t′′ sono complementari, allora la sezione della stella di
asse t con t′′ è T∗−→T ′′ data da u 7→u∧t′′ di applicazione
sovrastante l’isomorfismo canonico V/W−→W ′′.

Se t e t′′ sono complementari, allora la proiezione di t′ su t′′

di centro t è T ′−→T ′′ data da u 7→(u∨t)∧t′′ composta di una
proiezione e di una sezione.

Coordinate. Lo spazio proiettivo standard di dimensione n su
C è Pn(C):=Vn+1(C)/C×; se v∈V ha coordinate (X0,...,Xn)t,

il punto P=[v] ha coordinate omogenee [X0,...,Xn]t.

Modelli topologici di Pn(R): sia Sn={x∈En+1(R)|‖x‖=1} la
(buccia della) sfera di raggio 1 in En+1(R). Sia σ :Sn−→Sn la
mappa antipodale x 7→−x. Allora Pn(R)∼=Sn/σ (sfera modulo
antipodia); in particolare si tratta di uno spazio topologico
compatto. Siano Dn={x∈En(R)|‖x‖61} la palla di raggio 1
in En(R) e σ :Sn−1−→Sn−1 la mappa antipodale x 7→−x del
bordo di Dn. Allora Pn(R)∼=Dn/σ (disco modulo antipodia del
bordo).

Per n=1 possiamo identificare un isomorfismo S1−→P1(R) (via
la “proiezione dal polo nord” sull’asse X: (x,y) 7→ x

1−y ) tale

che (x,y) 7→[1−y,x]. La retta proiettiva reale si può ancora
identificare con R/Z, ovvero con il segmento [0,1] in cui gli
estremi {0,1} sono stati tra loro identificati.

La proiezione stereografica dal polo nord di S2 (sul piano Z=0:
(x,y,z) 7→( x

1−z ,
y

1−z )) dà un isomorfismo S2−→P1(C) tramite

1 Formulario - Geo.Pro., Con.Qua. c©2004 by mcm



(x,y,z) 7→[1−z,x+iy] (dunque la retta proiettiva complessa è
una sfera reale, detta sfera di Riemann).

Per n=2 possiamo identificare il piano proiettivo reale P2(R)
con la sfera 3-dimensionale modulo antipodia, oppure con il
disco 2-dimensionale modulo antipodia del bordo; ma non è iso-
morfo al prodotto di due rette proiettive, che invece risulta una
superficie torica. Si osservi che dato un quadrato [0,1]×[0,1]
possiamo costruire: un cilindro (identificando (x,0)∼(x,1) per
ogni x∈[0,1]) e un nastro di Moëbius (identificando (x,0)∼
(1−x,1) per ogni x∈[0,1]); la prima figura è orientabile, mentre
la seconda no, come si vede seguento il cammino [1/2,y] per
y∈[0,1] (che rovescia l’orientamento). Partendo dal cilindro
possiamo costruire tre figure senza bordo: la sfera (colassando
a un punto ciascuno dei due cerchi [0,y] e [1,y]), il toro (identifi-
cando (0,y)∼(1,y) per ogni y∈[0,1]) e l’otre o bottiglia di Klein
(identificando (0,y)∼(1−y,y) per ogni y∈[0,1]); si osservi che
quest’ultima superficie non è orientabile, poiché contiene nastri
di Moëbius, mentre sfera e toro sono orientabili. Partendo dal
nastro di Moëbius e identificando ulteriormente i bordi rima-
nenti in ordine inverso (identificando (0,y)∼(1−y,y) per ogni
y∈[0,1]) si ottiene il piano proiettivo reale; anch’esso è superfi-
cie non orientabile, poiché contiene nastri di Moëbius. Sfere e
piani proiettivi si ottengono anche per identificazione dei due
lati di un diagono (poligono con due lati) nei due modi possibili
(se il diagono è una sfera unitaria, e i due lati sono le semicir-
conferenze tra polo nord e polo sud, si tratta di (x,y)∼(−x,y)
oppure di (x,y)∼(−x,−y)).
Descrizione ricorsiva: Pn(C)∼=An(C)tPn−1(C). Conteggio
degli elementi proiettivi sui corpi finiti: se Fq è il corpo con

q=pf elementi, allora Pn(Fq) ha qn+1−1
q−1 =Σn

i=0q
i punti e al-

trettanti iperpiani.

Un sistema di riferimento in uno spazio proiettivo punteggiato
di spazio vettoriale sovrastante V è il dato di un isomorfismo
proiettivo ρ:P(V )−→Pn(C). Equivalentemente si tratta del
dato di una base ordinata di V (a meno di proporzionalità);
oppure di n+2 punti P0,...,Pn,U di P tali che n+1 tra loro
non stiano su un iperpiano (i P0,...,Pn formano l’edro fonda-
mentale, U è il punto unità); o dualmente di n+2 iperpiani
p0,···,pn,u tali che n+1 tra loro abbiano sempre intersezione
vuota.

Dato un riferimento su P(V ), esiste unica l’applicazione proi-
ettiva ϕ:P(V )−→P′(V ) che sia assegnata su quel riferimento.

In particolare per ogni permutazione σ del gruppo simmetrico
Sn+2 esiste una proiettività ϕσ tale che ϕσ(Pi)=Pσi. Nel
caso del piano proiettivo (n=2), ogni permutazione dei quat-
tro punti fondamentali induce una permutazione dei tre punti
diagonali (del quadrilatero); abbiamo un morfismo suriettivo
di gruppi S4→S3 il cui nucleo è il sottogruppo V di Klein di
S4.

Scelti dei riferimenti su P(V ) e P′(V ), allora ogni applicazione
proiettiva ϕ:P(V )−→P′(V ) si rappresenta (a meno di proporzion-
alità) tramite una matriceA∈Mn+1,n′+1(C). Il gruppo PGL(P(V ))

è isomorfo al gruppo quoziente PGL(n,C):=GL(n+1,C)/C×.

Dato un riferimento su uno spazio proiettivo punteggiato P, il
riferimento duale sullo spazio proiettivo P∗ si dice il riferimento
di Plücker, e le coordinate in quel riferimento si scrivono in riga.
Identificando un punto di coordinate a in P∗ con l’iperpiano di
P la cui equazione è data da quelle coordinate abbiamo che
un punto di coordinate X appartiene all’iperpiano se e solo se
aX=0.

Se ϕ:P−→P ha matrice A in un riferimento scelto, i.e. ϕ(X)=
AX ove le X sono coordinate omogenee, allora ϕ:P∗−→P∗ ha
matrice A−1 nel riferimento duale, i.e. ϕ(a)=aA−1.

Reciprocità, Polarità, Sistemi nulli. Una reciprocità è un
isomorfismo proiettivo di uno spazio proiettivo sul suo duale

Φ:P(V )→P∗(V ). È equivalente ad avere un isomorfismo V→
V ∗, o anche ad una forma bilineare non degenere ϕ:V ×V→C.
Una reciprocità si dice una polarità (risp. sistema nullo) se la
forma ϕ è simmetrica (risp. alternante).

Una reciprocità determina una corrispondenza biunivoca tra
punti e iperpiani di P(V ). Se si tratta di una polarità, un punto
P∈P(V ) e l’iperpiano Φ(P )∈P∗(V )∼=I(V ) sono detti polo e po-
lare uno dell’altro.

Una reciprocità Φ è polarità o sistema nullo se e solo se per
ogni P,Q∈P(V ) si ha P∈Φ(Q)⇔Q∈Φ(P ). In tal caso, se la
caratteristica del corpo C è diversa da 2, Φ è polarità (risp.
sistema nullo) se e solo se esiste (risp. non esiste) un punto
P∈P(V ) tale che P /∈Φ(P ).

Varietà Proiettive. Un sottinsieme L di uno spazio proiet-
tivo P(V ) si dice una varietà proiettiva (lineare) se è del tipo
P(W ) per un sottospazio W di V ; cioè se e solo se è stabile per
combinazioni lineari dei sui punti; ovvero sse per ogni coppia
di suoi punti contiene la retta che li congiunge.

Dati m punti P1,...,Pm di uno spazio proiettivo P, si dicono
in posizione generale se gli m vettori che li rappresentano sono
li, ovvero sse la più piccola varietà proiettiva che li contiene ha
dimensione m−1. In tal caso le equzioni della varietà proi-
ettiva congiungente gli m punti sono date dalla condizione
rk(X P1 ··· Pm)=m, ove X=(X0,...,Xn) sono le coor-
dinate scelte in P(V ).

Spazi Affini e Proiettivi. L’immersione standard An(C)−→
Pn(C) data da (X1,...,Xn) 7→[1,X1,...,Xn] determina un iso-
morfismo di An(C) sull’aperto U di Pn(C) determinato da
X0 6=0. L’applicazione inversa U−→An(C) si scrive come

[X0,X1,...,Xn] 7→(X1
X0

,...,Xn
X0

).

Una matrice A∈PGL(n,C) di una proiettività di Pn(C) si re-
stringe ad una affinità di An(C) se e solo se è (proporzionale

a una) della forma B=
(
1 0
a B′

)
con B′∈GL(n,C), ovvero se e

solo se lascia (globalmente) stabile l’iperpiano “all’infinito” di
equazione X0=0. Viceversa ogni affinità di An(C) si estende
unicamente ad una proiettività di Pn(C) della forma suddetta.
Le traslazioni di An(C) sono le (restrizioni di) proiettività che
lasciano puntualmente fermo l’iperpiano all’infinito. La sim-
metria di asse V e direzione U è la proiettività involutoria
con V e U spazi di punti uniti complementari e U contenuto
nell’iperpiano all’infinito; in particolare se V è un punto, si
tratta della simmetria centrale di centro quel punto.

Due varietà affini in An(C) sono parallele se e solo se i loro
completamenti proiettivi hanno intersezione lungo l’iperpiano
all’infinito, i cui punti quindi sono le “direzioni” possibili nello
spazio affine.

Dati uno spazio proiettivo punteggiato P e un iperpiano H⊆P,
l’insieme PrH resta munito in modo canonico di una struttura
di spazio affine (della stessa dimensione di P) con spazio delle
traslazioni associato T :={ψ∈PGL(P)|ψ(H)⊆H}. Scegliendo

un riferimento in modo cheH=V (X0), i quozienti (X1
X0

,...,Xn
X0

)

si dicono le coordinate affini associate su PrH.

Retta Proiettiva, Trasformazioni di Moëbius, Birap-
porto. La retta proiettiva standard P1(C) si può identificare
con la retta affine A1(C) a cui s’è aggiunto un punto all’infinito:
C∪{∞} ove∞ è un simbolo fuori di C. Una proiettività ϕ della

retta è data da una matrice
(

a b
c d

)
∈PGL(2,C), e in coordinate

affini si può scrivere come ϕ(X)= c+dX
a+bX (trasformazioni lineari

fratte, o trasformazioni di Moëbius, o omografie), e si tratta di
affinità se si scrivono ϕ(X)=c+dX.

Dati tre elementi distinti a,b,c∈C∪{∞}, la proiettività che
agisce con ϕ(a)=∞, ϕ(b)=0 e ϕ(c)=1 si scrive come ϕ(X)=
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(c−a)(X−b)
(c−b)(X−a)

.

Definiamo come birapporto dei quattro elementi a,b,c,X∈C∪
{∞} il valore ϕ(X): CR(a,b,c,X)=(abcX):=

(c−a)(X−b)
(c−b)(X−a)

. Si

tratta di un invariante per trasformazioni di Moëbius. Si noti
che (∞01X)=X.

Dati quattro punti A,B,C,X di P1(C) (di cui i primi tre dis-
tinti) il birapporto (cross ratio) si calcola tramite:
CR(A,B,C,X)=(ABCX)= x0

x1
ove [x0,x1] sono le coordinate

omogenee di X nel riferimento di P1(C) costituito dai punti

A,B,C. Si ha che CR(A,B,C,X)=
DR(A,C,X)
DR(B,C,X)

.

In coordinate qualsiasi, se A=[a0,a1], B=[b0,b1], C=[c0,c1],

allora (ABCX)=

∣∣ a0a1
c0c1

∣∣∣∣ b0b1
c0c1

∣∣ /
∣∣ a0a1

x0x1

∣∣∣∣ b0b1
x0x1

∣∣ .

In generale le proiettività conservano gli allineamenti e il bi-
rapporto di quattro punti allineati.

Azione delle permutazioni: se (ABCD)=λ, allora:
(ABCD)=(BADC)=(DCBA)=(CDAB)=λ;

(BACD)=(ABDC)=(CDBA)=(DCAB)= 1
λ ;

(ACBD)=(BDAC)=(DBCA)=(CADB)=1−λ;

(ADCB)=(BCDA)=(DABC)=(CBAD)= λ
λ−1 ;

(CABD)=(DBAC)=(BDCA)=(ACDB)= 1
1−λ ;

(DACB)=(CBDA)=(ADBC)=(BCAD)= λ−1
λ .

Il birapporto è nullo se X=B, 1 se X=C
e ∞ se X=A. Nel caso C=R il valore di
(ABCX) risulta negativo se i primi due
punti separano gli ultimi due, positivo al-
trimenti. A

D

B
C

∞

−1

0
1

I sei valori per permutazioni del birapporto tra quattro fissati
punti non sono tutti distinti se λ=1 (allora i valori sono 1,0,∞
e vi sono solo tre punti distinti), oppure λ=−1 (allora i valori
sono −1,2,1/2, i quattro punti sono distinti e si dicono una
quaterna armonica) oppure se λ2−λ+1=0 (e allora i quattro
punti sono distinti e si dicono una quaterna equianarmonica;
su R non esistono quaterne equianarmoniche).

Una quaterna A,B,C,X si dice armonica se (ABCX)=−1. Il
quarto armonico dopo tre punti distinti è unico, e di tratta del
punto di mezzo tra i primi due se il terzo punto è ∞. Se ϕ
è una involuzione di P1(C) (cioè una proiettività non identica
tale che ϕ2=id) con due punti uniti A e B, allora per ogni
punto P distinto dai punti uniti vale (ABPϕ(P ))=−1. Vicev-
ersa dati due punti A e B di P1(C) e c∈Cr{0,∞}, esiste una
unica proiettività con punti fissi A e B e definita su P 6=A,B
da (ABPϕ(P ))=c; si tratta di una involuzione sse c=−1.

Il quarto armonico dopo i punti a,b,∞ è il punto medio a+b
2

tra a e b. Il quarto armonico dopo i punti 0,∞,x è il punto
opposto −x. La quaterna 0,a,b,c è armonica se e solo se a è la
media armonica di b e c, ovvero se 1

a = 1
2 ( 1

b + 1
c ).

Date due coppie di punti distinti della retta proiettiva, esiste
una unica coppia di punti che separa armonicamente entrambe
le coppie date.

Costruzione grafica del quarto armonico
dopo tre punti: siano A,B,C punti di
una retta proiettiva r immersa nel pi-
ano P2(C); si traccino due rette distinte
m,n( 6=r) per A e una retta h( 6=r) per C;
M :=m∩h e N :=n∩h; u:=M∨B e v :=
N∨B; U :=u∩n e V :=v∩m; k:=U∨V ;
il quarto armonico è X :=k∩r. A

B

C

X

N

M

m

n

h

u

v

U

V

La costruzione consiste nella realizzazione di un quadrangolo

piano completo di diagonale la retta data, e sfrutta le proprietà
di questa figura.

Quadrangolo piano completo: è la figura
formata da quattro punti, a tre a tre non
allineati, detti vertici e dalle sei rette che
li congiungono, dette lati. I punti di inter-
sezione di coppie di lati opposti si dicono i
punti diagonali. Le rette passanti per due
punti diagonali si dicono le diagonali del
quadrangolo; in ogni diagonale i punti di-
agonali separano armonicamente i punti di
intersezione con i rimanenti due lati.

Infatti la composizione delle proiezioni su un lato concorrente
con la diagonale rispetto a vertici non coinvolti da quel lato dà
una involuzione che scambia i punti diagonali e fissa gli altri
due.

Proiettività tra rette immerse nel piano: una proiettività tra
due rette distinte del piano si scrive come composizione di al
più due proiezioni da rette a rette di centri opportuni:

se ϕ:r−→r′, e A,B,C∈r distinti, al-
lora i tre punti (A∨ϕB)∩(B∨ϕA), (A∨
ϕC)∩(C∨ϕA) e (B∨ϕC)∩(C∨ϕB) sono
allineati, la retta a che li congiunge
si dice asse di collineazione per ϕ, e
la proiettività si scrive come compo-
sizione della proiezione r−→a di cen-
tro ϕA e della proiezione a−→r′ di
centro A. Si ha che ϕ è una proiezione
(da un punto) se e solo se r∩r′ viene
mandato in sè. A

B
C

ϕA

ϕB

ϕC

a

r

r′

Una proiettività di una retta in sè si scrive come proiezione di
al più tre proiezioni da rette a rette di centri opportuni.

Proiettività tra rette sghembe nello spazio
proiettivo: si tratta di proiezioni di centro
una retta (si può scegliere qualsiasi retta
distinta da r ed r′ che sia complanare con
le tre rette A∨ϕA, B∨ϕB e C∨ϕC).

A

B

C

ϕA

ϕB

ϕC

r
r′

Teorema di Desargues. Due triangoli A,B,C e A′,B′,C′ (di lati
a,b,c e a′,b′,c′, ove una minuscola congiunge le due maiuscole
diverse) si dicono prospettivi se le rette A∨A′, B∨B′ e C∨C′
si incontrano in un punto; si dicono omologici se i tre punti
a∧a′, b∧b′ e c∧c′ sono allineati.

Due triangoli sono prospettivi se
e solo se sono omologici (si tratta
di un’affermazione autoduale: una
implicazione è duale dell’altra).

Teoremi fondamentali della Geometria Proiettiva.

Siano L ed M varietà lineari sghembe in P della stessa dimen-
sione n; allora ogni proiettività di L su M è una proiezione di
centro una varietà lineare di dimendione n.

Siano L ed M varietà lineari della stessa dimensione in P spazio
proiettivo di dimensione abbastanza grande; allora ogni proiet-
tività di L su M è composizione di al più due proiezioni.

Siano L, M ed N varietà lineari in P tali che N sia sghemba con
le altre due e L∨N=M∨N . Allora P 7→(P∨N)∧M induce una
proiettività di L su M che è l’identità su L∧M . Viceversa, una
proiettività di L su M che sia l’identità su L∧M è proiezione
di M su L da un centro di dimensione dim(L)−dim(L∧M)−1.

Siano L ed M varietà lineari della stessa dimensione s in P; sia
data una proiettività di L suM che sia l’identità ristretta a N⊆
L∧M di dimensione s−i (16i6s+1). Allora la proiettività è
composizione di al più i proiezioni da punti.
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Ogni proiettività tra varietà lineari di dimensione s in P è
prodotto di al più s+2 proiezioni da punti.

Studio astratto delle Proiettività. Se la matriceA∈Mn(C)
ha tutti gli autovalori in C, allora A è simile in C ad At;
in particolare A e At hanno gli stessi autovalori con uguali
molteplicità e nullità (ma in generale gli autovettori sono di-
versi).

Elementi uniti delle proiettività sono i sottospazi proiettivi
mandati in sè stessi. I punti uniti corrispondono agli autovet-
tori della matrice A della proiettività; gli iperpiani uniti (in co-
ordinate plückeriane) corrispondono agli autovettori della ma-
trice At. Dunque c’è la stessa configurazione di punti e iperpi-
ani uniti. Due elementi uniti si dicono associati se corrispon-
dono allo stesso autovalore, non associati altrimenti. Un punto
ed un iperpiano uniti e non associati si appartengono. Se un au-
tovalore ha un unico punto unito, e dunque un unico iperpiano
unito, questi si appartengono sse l’autovalore ha molteplicità
maggiore di 1.

Se C è algebricamente chiuso, allora ogni proiettività ammette
almeno una bandiera (i.e. una catena L0⊂L1⊂···⊂Ln−1)
di varietà unite, e ogni varietà unita si inserisce in una tale
bandiera.

Le involuzioni sono le proiettività ϕ non identiche tali che ϕ2

sia l’identità. Se C è algebricamente chiuso, una proiettività
è una involuzione sse esistono due sottospazi complementari L
ed M di punti uniti, e associati a due autovalori uno opposto
dell’altro. Per ogni retta P∨Q con P∈L e Q∈M la proiettività
indotta è una involuzione avente P e Q come punti uniti. Nel
caso delle rette proiettive: una proietività è una involuzione sse
esiste una coppia di punti involutoria (P 6=Q tali che ϕ(P )=Q e
ϕ(Q)=P ); inoltre esiste unica l’involuzione una volta assegnati
le immagini di due punti distinti (in particolare se vengono
assegnati due punti fissi distinti).

Una omologia è una proiettività non identica con un iperpiano
di punti uniti, detto asse di omologia; per dualità esiste un
punto unito centro di una stella di iperpiani uniti, detto centro
di omologia; l’omologia si dice speciale o generale a seconda che
il centro appartenga o no all’asse. La matrice di una omologia
in un riferimento che estenda un riferimento dell’asse è del tipoµ 0 ··· 0

0
...
0

λI

 se generale (il centro è il primo punto del riferi-
mento), il rapprto µ/λ si dice l’invariante dell’omo-
logia e per ogni punto P fuori dell’asse e diverso
dal centro si ha (CHPϕ(P ))=µ/λ;

ovveroλ 1 ··· 0
0
...
0

λI

 se speciale (l’ulteriore punto del riferimento ap-
partiene ad una retta unita esterna all’asse), il
centro è il primo punto del riferimento, l’asse è
P0∨P2∨···∨Pn.

Proiettività della Retta. Se C è algebricamente chiuso, le
forme canoniche di Jordan classificano le proiettività di P1(C)
in sè. Si hanno solo tre forme: l’identità (di matrice λI con

λ 6=0), l’omologia generale con due punti uniti (di matrice
(
λ0
0µ

)
con λ 6=µ non nulli), e l’omologia speciale con un solo punto

unito (di matrice
(
λ1
0λ

)
con λ 6=0).

Se C è qualsiasi, definiamo ∆(A):=(tr(A))2−4det(A); una proi-
ettività si dice parabolica se ∆(A)=0, iperbolica se ∆(A) è
quadrato in C, ellittica se ∆(A) non è quadrato in C (queste
condizioni dipendono solo dalla proiettività e non dalla matrice
che la rappresenta). Una proiettività è parabolica, iperbolica,
ellittica a seconda che abbia un unico punto unito (necessaria-
mente razionale su C), due punti uniti distinti in P1(C), nes-
suno punto unito razionale su C (e allora ha due punti uniti in
P1(C[

√
∆])).

Se C=R e ϕ è una involuzione, allora ϕ non è parabolica, ed è
ellittica o iperbolica a seconda che det(A) sia positivo o nega-
tivo. Se P,Q sono punti distinti, non uniti e non uno l’immagine
dell’altro per l’involuzione ϕ, allora ϕ è ellittica o iperbolica a
seconda che (P ϕ(P )Qϕ(Q)) sia negativo o positivo.

Proiettività del Piano. Se C è algebricamente chiuso, le
forme canoniche di Jordan classificano le proiettività di P2(C)
in sè. Si hanno sei forme: l’identità (di matrice λI con λ 6=0);(

λ 0 0
0 µ 0
0 0 µ

)
con λ 6=µ non nulli, è l’omologia generale (centro
P0 e asse P1∨P2);(

λ 1 0
0 λ 0
0 0 λ

)
con λ 6=0, è l’omologia speciale (centro P0 e asse
P0∨P2);(

λ 0 0
0 µ 0
0 0 ν

)
con λ,µ,ν distinti e non nulli, vi sono tre punti e
tre rette unite;(

λ 1 0
0 λ 0
0 0 µ

)
con λ 6=µ non nulli, vi sono due punti uniti P0 e
P2, e due rette unite P0∨P1 e P0∨P2;(

λ 1 0
0 λ 1
0 0 λ

)
con λ 6=0, vi è un unico punto unito P0 e un’unica
retta unita P0∨P1.

Proiettività dello Spazio. Se C è algebricamente chiuso, le
forme canoniche di Jordan classificano le proiettività di P3(C)
in sè. Si hanno quattordici forme: l’identità (di matrice λI con
λ 6=0);(

λ 1 0 0
0 λ 0 0
0 0 λ 0
0 0 0 λ

)
omologia speciale di asse P0∨P2∨P3 e centro P0;
sono unite le rette passanti per il centro;(

λ 1 0 0
0 λ 1 0
0 0 λ 0
0 0 0 λ

)
la retta P0∨P3 è di punti uniti, la retta P0∨P1
è unita, il piano P0∨P1∨P2 è unito;(

λ 1 0 0
0 λ 0 0
0 0 λ 1
0 0 0 λ

)
P0∨P2 è retta di punti uniti, le rette P0∨P1 e
P2∨P3 sono unite, i piani P0∨P1∨P3 e P0∨P2∨
P3 sono uniti;(

λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ

)
il punto P0, la retta P0∨P1 e il piano P0∨P1∨P2
sono uniti;(

λ 0 0 0
0 λ 0 0
0 0 µ 0
0 0 0 µ

)
con λ 6=µ; P0∨P1 e P2∨P3 sono rette di punti
uniti, e sono uniti i piani dei fasci di asse quelle
due rette;(

λ 1 0 0
0 λ 0 0
0 0 µ 0
0 0 0 µ

)
con λ 6=µ; la retta P2∨P3 è di punti uniti, la retta
P0∨P1 e i piani che la contengono sono uniti;(

λ 1 0 0
0 λ 0 0
0 0 µ 1
0 0 0 µ

)
con λ 6=µ; i punti P0 e P2, le rette P0∨P1 e P2∨
P3, i piani P0∨P1∨P3 e P0∨P2∨P3 sono uniti;(

λ 0 0 0
0 µ 0 0
0 0 µ 0
0 0 0 µ

)
con λ 6=µ; è l’omologia generale di asse P1∨P2∨
P3 e centro P0;(

λ 0 0 0
0 µ 1 0
0 0 µ 0
0 0 0 µ

)
con λ 6=µ; i punti P0 e quelli della retta P1∨P3,
sono uniti; il piano P1∨P2∨P3 e le rette di quel
piano contenenti P1 sono uniti;(

λ 0 0 0
0 µ 1 0
0 0 µ 1
0 0 0 µ

)
con λ 6=µ; i punti P0 e P1, la retta P1∨P2 ed il
piano P1∨P2∨P3 sono uniti;(

λ 0 0 0
0 µ 0 0
0 0 ν 0
0 0 0 ν

)
con λ, µ e ν distinti; P0, P1 e i punti della retta
P2∨P3 sono uniti; sui piani uniti P0∨P2∨P3 e
P1∨P2∨P3 sono indotte omologie generali;(

λ 0 0 0
0 µ 0 0
0 0 ν 1
0 0 0 ν

)
con λ, µ e ν distinti; P0, P1 e P2 sono punti uniti,
la retta P2∨P3 è unita; sui piani uniti P0∨P2∨
P3 e P1∨P2∨P3 sono indotte omologie speciali;(

λ 0 0 0
0 µ 0 0
0 0 ν 0
0 0 0 ξ

)
con i quattro autovalori distinti; i quattro punti
fondamentali sono uniti, come pure i quattro iper-
piani e i sei assi.

Collineazioni. Se σ :C−→C′ è un isomorfismo di corpi, e V ,
V ′ spazi vettoriali su C, C′ risp., una applicazione di gruppi
f :V −→V ′ si dice σ-lineare se f(cv)=cσf(v) per ogni c∈C e v∈
V . Una applicazione P(V )−→P(V ′) si dice una σ-proiettività
se è indotta da una applicazione σ-lineare.
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Nota che se C=C′=R, allora l’unico automorfismo di corpo è
l’applicazione indentica (dipende dalla struttura d’ordine dei
reali).

Una applicazione suriettiva ϕ:P1(C)−→P1(C′) tale che con-
serva i birapporti, (ϕAϕBϕCϕD)=(ABCD)σ per ogni qua-
terna di punti distinti, è una σ-proiettività. Se C=C′, σ=id:
le proiettività tra rette sono le applicazioni biunivoche che con-
servano il birapporto.

Siano C e C′ corpi di caratteristica diversa da due; una ap-
plicazione suriettiva ϕ:P1(C)−→P1(C′) tale che conserva le
quaterne armoniche è una σ-proiettività per un ben determi-
nato σ :C−→C′ iso di corpi (che dipende da ϕ). Se C=C′=R:
le proiettività tra rette sono le applicazioni biunivoche che con-
servano l’armonia.

Siano P e P′ spazi proiettivi di dimensione n>2 sui corpi C e
C′ risp., e ψ :P−→P′ una collineazione, i.e. una biiezione che
conservi l’allineamento dei punti; allora ψ è una σ-proiettività
per un ben determinato σ :C−→C′ iso di corpi (che dipende da
ψ). Se C=C′=R: le proiettività tra spazi di dimensione n>2
sono le collineazioni.

Forme Quadratiche e Bilineari.
Forme Bilineari. Siano V e W spazi vettoriali su C; una ap-
plicazione bilineare è una applicazione ϕ:V ×W−→C tale che
ϕ(v+v′,w)=ϕ(v,w)+ϕ(v′,w), ϕ(v,w+w′)=ϕ(v,w)+ϕ(v,w′) e
ϕ(λv,w)=λϕ(v,w)=ϕ(v,λw).

Una forma bilineare determina dua applicazioni lineari, una
trasposta dell’altra, ϕ1 :V→W∗ e ϕ2 :W→V ∗ tramite ϕ1(v)(w)=
ϕ(v,w)=ϕ2(w)(v).

Si definisce N1(ϕ)=ker(ϕ1) (nucleo sinistro di ϕ) e N2(ϕ)=
ker(ϕ2) (nucleo destro di ϕ). La forma si dice non degenere
se i nuclei sono nulli. Se gli spazi vettoriali hanno dimensione
finita, la forma è non degenere se e solo se le applicazioni ϕ1 e
ϕ2 sono isomorfismi.

Siano v1,...,vn e w1,...,wm basi di V e W rispettivamente;
allora la matrice A=(ϕ(vi,wj)) si dice associata a ϕ nelle basi
date. Se v∈V ha coordinate (xi) nella base scelta di V e w∈
W ha coordinate (yi) nella base scelta di W allora ϕ(v,w)=
xtAy. Cambiamenti di base di matrici P (x=Px′) eQ (y=Qy′)
rispettivamente in V e W cambiano la matrice di ϕ in P tAQ.

Due matrici A e B in Mn(C) si dicono congruenti se esiste
P∈GL(n,C) tale che B=P tAP . Si tratta di una relazione
di equivalenza: due matrici congruenti rappresentano la stessa
forma bilineare su V =W in due basi diverse.

Una forma bilineare ϕ su uno spazio vettoriale V è una ap-
plicazione bilineare ϕ:V ×V −→C; è non degenere sse una (e
dunque ogni) matrice associata è invertibile; si dice simmetrica
(risp. alternante) se ϕ(v,w)=ϕ(w,v) per ogni v,w∈V (risp.
ϕ(v,v)=0 per ogni v∈V ). Una forma è simmetrica (risp. alter-
nante) se e solo se una (e allora ogni) matrice associata è sim-
metrica (risp. antisimmetrica). Se il corpo C ha caratteristica
diversa da 2, allora ϕ è alternate se e solo se ϕ(v,w)=−ϕ(w,v)
per ogni v,w∈V . Se il corpo non ha caratteristica due, ogni
forma bilineare su V si scrive unicamente come somma di una
forma bilineare simmetrica e di una antisimmetrica; ogni ma-

trice A∈Mn(C) è somma di una matrice simmetrica A+At

2 e

di una antisimmetrica A−At

2 .

Se la forma è simmetrica o alternante, allora i due nuclei coin-
cidono, e la dimensione del nucleo N(ϕ) coincide con la nullità
di una qualunque matrice associata. Inoltre se U è un com-
plementare di N(ϕ) in V , allora ϕ|U è una forma bilineare

(simmetrica o alternante) non degenere su U . In particolare

esiste una base di V tale cha la matrice associata ha forma(O O
O B

)
con B matrice non degenere.

Ortogonalità. Una base di V si dice ortogonale per la forma ϕ
se ϕ(vi,vj)=0 se i 6=j; di dice ortonormale se ϕ(vi,vj)=δi,j .

Dato un sottospazio U di V , si definiscono gli ortogonali sin-
istro e destro di U per la forma ϕ tramite ⊥U={v∈V |ϕ(v,U)=

0} e U⊥={v∈V |ϕ(U,v)=0}. Se la forma è simmetrica o al-
ternante, i due ortogonali coincidono; se la forma è non de-
genere, si hanno le usuali regole: U6U ′ implica U⊥>U ′⊥,
U⊥⊥=U , (U+U ′)⊥=U⊥∩U ′⊥, (U∩U ′)⊥=U⊥+U ′⊥; inoltre

dimCU+dimCU
⊥=dimCV . Per ogni sottospazio U di V risulta:

U∩U⊥=0 sse ϕ|U è non degenere, sse V =U⊕U⊥ (se ϕ è non

degenere è ancora equivalente che V =U+U⊥).

Un vettore v∈V si dice isotropo se ϕ(v,v)=0. Un sottospazio

U si dice isoptropo se U⊆U⊥, cioè se e solo se la forma ristretta
a U è identicamente nulla. Se ϕ è non degenere, allora per ogni
sottospazio U non isotropo si ha che V =U⊕U⊥ (teorema di
decomposizione ortogonale). La forma ammette vettori isotropi

se e solo se esistono sottospazi U di V con U∩U⊥ 6=0. Se la
caratteristica del corpo C non è 2, e la forma ϕ non è nulla,
allora esistono vettori non isotropi; ed esistono basi ortogonali
rispetto a ϕ. In particolare, se C è algebricamente chiuso, per
ogni matrice simmetrica A esiste un cambiamento di base P
tale che P tAP=

(Im O
O O

)
.

Se C=R, allora per ogni matrice simmetrica A esiste un cam-

biamento di base P tale che P tAP=

(
Ip O O
O −Iq O
O O O

)
(teorema di

Sylvester o regola di inerzia). In particolare nel caso reale una
forma simmetrica non degenere ammette una base ortonormale
se e solo se ϕ(v,v)>0 per ogni v 6=0; in tal caso la forma si dice
definita positiva; si dice definita negativa se la sua opposta è
definita positiva.

Una matrice reale simmetrica A è definita positiva sse A=P tP
con P∈GL(n,R) (i.e. se è congruente alla matrice identica), o
anche sse esiste una catena di minori principali positivi, e in tal
caso ogni minore principale è positivo; una matrice simmetrica
è definita negativa sse esiste una catena di minori principali
con segni alterni (iniziando con un valore negativo).

Isometrie. Una applicazione lineare f :V→W tra spazi vetto-
riali dotati di forme bilineari ϕ e ϕ si dice una isometria se
ψ(fv,fv′)=ϕ(v,v′) per ogni v,v′∈V . In tal caso f è un iso-
morfismo. Se A, B, F sono le matrici rispettivamente di ϕ,
ψ, f in fissate basi di V e W , allora f è isometria se e solo se
F tBF=A.

Per ogni coppia a,b di naturali si definisce il gruppo Oa,b(R)
delle isometrie reali di segnatura (a,b) come il gruppo delle

matrici P d’odine a+b tali che P tAP=A per A=
(Ia O

O −Ib

)
. Si

dicono isometrie euclidee se b=0 (sono le matrici ortogonali) e
trasformazioni di Lorentz se b=1. Il determinante di matrici
in Oa,b(R) è necessariamente ±1, e il sottogruppo delle matrici
con determinante 1 si indica con SOa,b(R).

Per n=2 abbiamo i piani eclideo reale (segnatura (2,0), le ma-
trici di SO2(R) sono quelle trigonometriche), iperbolico reale
(segnatura (1,1), le matrici di SO1,1(R) sono quelle trigono-
metriche iperboliche), e il piano euclideo opposto (segnatura
(0,2)).

Se V spazio vettoriale reale di dimensione n ammette una forma
bilineare alternante non degenere, allora la sua dimensione è
pari, sia 2m, ed esiste una base di V in cui la matrice della
forma diventa A=

( O I
−I O

)
. Il gruppo delle matrici P tali che

P tAP=A si dice gruppo simplettico d’ordine m.

Aggiunzione. Data f :V→W applicazione lineare tra spazi vet-
toriali su C dotati di forme bilineari non degeneri ϕ e ψ, defini-
amo l’applicazione aggiunta fa :W→V tramite la posizione:
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ψ(fv,w)=ϕ(v,faw) per ogni v∈V . Se A, B, F sono le matrici
rispettivamente di ϕ, ψ, f in fissate basi di V e W , allora ma-
trice di fa risulta A−1F tB. Risulta (gf)a=faga, ida

V =idV ,
faa=f .

Endomorfismi simmetrici. Sia V uno spazio vettoriale reale
dotato di una forma bilineare ϕ non degenere. Un endomor-
fismo f di V si dice simmetrico se ϕ(fv,w)=ϕ(v,fw) per ogni
v,w∈V ; ciò succede sse f=fa (f è autoaggiunto), ovvero sse
F tA=AF se A e F sono le matrici di ϕ e f in una fissata base
(in particolare sse le matrici associate a f in basi ortonormali
per ϕ sono simmetriche).

Ogni endomorfismo simmetrico ammette una base di autovet-
tori ortogonali; in particolare ogni matrice reale simmetrica è
ortogonalmente diagonalizzabile.

Forme Quadratiche. Una forma quadratica su uno spazio
vettoriale V su C è una applicazione Q:V→C tale che Q(αv)=
α2Q(v) per ogni v∈V , α∈C e la funzione ϕ:V×V→C definita
da ϕ(v,v′)=Q(v+v′)−Q(v)−Q(v′) sia bilineare (e allora neces-
sariamente simmetrica). Se il corpo C ha caratteristica diversa
da due, vi è una corrispondenza biunivoca tra applicazioni bi-
lineari su V e forme quadratiche su V .

Supponiamo che C sia un corpo di caratteristica diversa da
due. Un polinomio Q(X)∈C[X] omogeneo di grado due de-
termina una forma quadratica di matrice simmetrica A=At∈
Mn(C) data da Q(X)=XtAX ove X=(X1,...,Xn)t; e una
forma bilineare associata data da G(X,Y )=XtAY , ove anche
Y =(Y1,...,Yn)t.

Forme quadratica e bilineare corrispondenti sono legate dalle
relazioni Q(X)=G(X,X) e G(X,Y )= 1

4 (Q(X+Y )−Q(X−Y )).

Un cambiamento di base P∈GL(n,C) cambia la matrice della
forma quadratica in P tAP . Due matrici simmetriche A,B∈
Mn(C) si dicono congruenti in C se e solo se esiste P∈GL(n,C)
tale che B=P tAP (si tratta di una relazione di equivalenza).
Si dicono ortogonalmente congruenti, o equivalentenente ortog-
onalmente simili, se si ha P∈O(n,C).

Sia Q una forma quadratica su R, di matrice associata A;

Teorema di Sylvester (regola di inerzia): esistono due interi p
e q con p+q6n, (gli indici della forma) e un cambiamento di

base P∈GL(n,R) tali che Q(PZ)=
∑p

i=1
z2i −

∑p+q
i=p+1

z2i ;

esiste un cambiamento di base ortogonale P∈O(n,R) tale che
Q(PZ)=

∑n
i=1

λiz
2
i ove i λi sono gli autovalori della matrice

A (dunque p+q è il numero di autovalori non nulli);

esistono un intero r e un cambiamento di base complesso P∈
GL(n,C) tali che Q(PZ)=

∑r
i=1

z2i .

Teorema di Jacobi. Sia A matrice simmetrica in Mn+1(C);
poniamo ∆i il minore d’ordine i+1 dato dalle prime i+1 righe
e colonne. Allora se ∆i 6=0 per ogni i, A è congruente alla
matrice diagonale ∆0,∆1/∆0,...,∆n/∆n−1.

Completamento dei quadrati. Una forma quadratica si può
diagonalizare tramite il procedimento di completamento dei
quadrati: si procede per ricorrenza (discendente) sul numero
di variabili costruendo la trasformazione di coordinate tramite:

• se c’è un termine quadratico, supponiamo a=a00 6=0 poni-
amo aX2

0+2λX0+ψ=a(X0+a−1λ)2+(ψ−a−1λ2) (si pone

Z0=X0+a−1λ; l’ultima parentesi non dipende da X0);

• se tutti i termini quadrati sono nulli, possiamo supporre
b=a01 6=0 e poniamo
bX0X1+λX0+µX1+ψ=b(X0+b−1µ)(X1+b−1λ)+(ψ−b−1λµ)
(l’ultima parentesi non dipende daX0 eX1) e usare l’identità
4pq=(p+q)2−(p−q)2 al primo termine (si pone p=X0+b−1µ,
q=X1+b−1λ e poi Z0=p+q e Z1=p−q).

Coniche.
Coniche. Una conica C è una curva di grado due in P2(C).
Scriviamo C=V (Q) con Q(X)∈C[X]h (omogeneo) di grado
due, e anche Q(X)=XtAX con X=(X0,X1,X2) e

A=

(a0,0 a0,1 a0,2
a0,1 a1,1 a1,2
a0,2 a1,2 a2,2

)
=At∈M3(C). SiaA′=

(a1,1 a1,2
a1,2 a2,2

)
∈M2(C).

Se P è un punto del piano, l’equazione complessiva delle tan-
genti a C per P è data da (XtAX)(P tAP )−(P tAX)2=0; si
tratta di una conica spezzata.

Riducibilità. La conica C è irriducibile e non singolare se e
solo se detA 6=0, e in tal caso se P∈C l’equazione della tangente
in P è P tAX=0; è C=r+s con r 6=s rette distinte in P1(C) se
e solo se rkA=2, e in tal caso l’unico punto doppio è r∩s ed è
razionale su C; è C=2r con r retta definita su C se e solo se
rkA=1, e in tal caso tutti i punti di C sono doppi.

Polarità rispetto a una Conica. Sia C una conica irriducibile
in P2(C) di matrice associata A. Polarità associata alla conica
è la proiettività P2(C)−→P2(C)∗ data da P 7→p:=P tA. La
retta (di coordinate) p si dice la polare del punto P , e P si dice
il polo di p. Proprietà della polarità:

P∈q se e solo se Q∈p (reciprocità);

P∈p se e solo se P∈C, sse p è tangente a C;
se P /∈C allora p∩C sono i punti di tangenza delle tangenti a C
per P ;

Costruzione grafica della polare: se le tangenti alla quadrica
da P sono razionali su C, allora la polare di P è la retta con-
giungente i due punti di tangenza; altrimenti è la retta che
congiunge i poli di due qualsiasi rette distinte passanti per P .

Un triangolo è autopolare rispetto alla conica C se ogni vertice
è polo di un lato. Un tale triangolo si dice autopolare di prima
specie se ogni vertice è polo del lato opposto; di seconda specie
altrimenti, nel qual caso due lati sono tangenti alla conica.

Armonie della polarità: per ogni retta r non tangente a C
l’applicazione di r in sè che manda P in p∩r è una proiettività
involutoria con punti fissi r∩C; quindi per ogni punto P non
appartenente alla conica, e ogni retta r per P e non tangente
a C, la quaterna P , p∩r, r∩C è armonica. Quindi l’omologia
involutoria di centro P e asse p lascia globalmente invariata C.
Proiettività delle coniche. La parametrizzazione razionale
di una conica irriducibile C si ottiene a partire da un punto
P0∈C e dalla biiezione C→P∗0 = stella di rette di centro P0:
immagine di P∈C è la retta P0∨P . Una seconda parametriz-
zazione usando un altro punto P1 differisce dalla precedente per
una proiettività P∗0 →P∗1 tra le due stelle (in particolare risulta
definito il birapporto di quattro punti, almeno tre distinti, su
una conica irriducibile: come il birapporto tra le quattro rette
in una parametrizzazione).

Viceversa: generazione di Steiner di una conica. Siano P,Q
punti in un piano proiettivo, e sia p:P∗→Q∗ una proiettività
tra le due stelle di rette di centri P e Q rispettivamente, con
p(P∨Q) 6=P∨Q. Allora r∩p(r) al variare di r in P∗ sono i
punti di una conica irriducibile contenente P e Q.

Duale della generazione di Steiner di una conica. Siano r ed
s due rette di un piano proiettivo, p:r→s una proiettività con
p(r∧s) 6=r∧s (i.e. non una proiezione). Allora le rette P∨p(P )
al variare di P∈r sono le tangenti ad una conica non degenere,
che ammette r ed s come tangenti.

In particolare: dati due triangoli con vertici in una conica non
degenere C, esiste una conica D che è inscritta in entrambi i
triangoli dati.

Proiettività. Definiamo GP (C) il gruppo delle trasformazioni
biiettive di una conica irriducibile C in sè che conservano il
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birapporto di ogni quaterna di punti di C; sia GO(C) il sot-
togruppo delle proiettività del piano che mandano C in sè. Al-
lora la restrizione induce un isomorpfismo GO(C)→GP (C) di
gruppi (in particolare, ogni proiettività della conica si estende
a una proiettività del piano).

Teorema dell’asse di proiettività: supponiamo C algebricamente
chiuso, e sia p una proiettività di C; definiamo l’asse di p come
la congiungente i punti fissi (eventualmente la tangente a C
nell’unico punto fisso). Allora per ogni coppia di punti P e Q
di C, distinti dai punti fissi, si ha che l’intersezione di P∨p(Q)
e Q∨p(P ) appartiene all’asse.

Teorema di Pascal. Sia C una conica irriducibile, A1,A2,A3,B1,B2
punti di C; un punto B3 del piano appartiene a C se e solo se
i tre punti (Ai∨Bj)∧(Aj∨Bi) sono allineati (e la retta si dice
retta di Pascal; dati sei punti sulla conica, esistono 60 rette di
Pascal associate). In particolare i lati opposti di un esagono
inscritto in C si intersecano in un punto.

Teorema di Brianchon. Le diagonali di un esagono circoscritto
a una conica irriducible si intersecano in un punto (duale di
Pascal).

Sistemi Lineari. Le coniche di P2(C) formano uno spazio
proiettivo su C di dimensione cinque. Diciamo sistemi lineari
di coniche le famiglie di coniche che corrispondono a varietà
lineari di P5(C), e condizioni lineari quelle che determinano un
sistema lineare. La condizione si dice n-pla se determina una
varietà di dimensione 5−n di P5(C). Fasci sono i sistemi lineari
di dimensione uno.

Condizioni lineari sono: Il passaggio per un punto (semplice),
per due punti distinti (doppia), per tre punti non allineati
(tripla), per quattro punti a tre a tre non allineati (quadru-
pla), passaggio per un punto e con data tangente (doppia).
Non è lineare la condizione di avere una data tangente (se non
si prefissa il punto di tangenza); si tratta di una condizione
quadratica (determina un cono di P5(C) con vertice di dimen-
sione 2). È lineare doppia la condizione che un punto abbia
una fissata retta come polare.

Fasci. Tre coniche A,B,C di un fascio determinano un sistema
di coordinate proiettivo sul fascio, per cui ogni conica del fascio
si scrive cone C(λ,µ)=V (Xt(λA+µB)X) e le coniche degeneri
del fascio sono individuate da det(λA+µB)=0, equazione omo-
genea di grado tre in λ e µ. Ogni fascio di coniche irriducibile
(i.e. tale che non tutte le sue coniche siano riducibili) contiene
da una a tre coniche riducibili.

Classificazione dei fasci irriducibili:

fascio di ciclo base A+B+C+D, cioè passanti
per i quattro punti assegnati; vi sono tre coniche
degeneri: (A∨B)+(C∨D), (A∨C)+(B∨D), (A∨
D)+(B∨C);

A

D

B

C

fascio di ciclo base 2A+B+C, cioè passante per
i tre punti dati e con tangente r assegnata in
A; vi sono due coniche degeneri: r+(B∨C) e
(A∨B)+(A∨C);

A
B

C

r

fascio di ciclo base 2A+2B, cioè passante per i
due punti dati e con tangenti r ed s assegnate tali
che A/∈s e B /∈r; vi sono due coniche degeneri:
r+s e 2(A∨B);

A

B

r

s

fascio di coniche osculatrici a una conica irriducibile
C in A (r sia la tangente); ciclo base 3A+B con
B 6=A un punto di C; unica conica degenere del
fascio è r+(A∨B);

A

B

r

fascio di coniche iperosculatrici a una conica ir-
riducibile C in A (r sia la tangente); ciclo base
4A; unica conica degenere del fascio è 2r.

A

r

Dato un fascio di coniche, su ogni retta r non contenente punti
del ciclo base del fascio viene indotta una involuzione che manda
ogni punto P∈r nella intersezione (diversa da P ) di r con la
conica del fascio passante per P .

Classificazione Proiettiva di Coniche Reali. Consideri-
amo le coniche non singolari di P2

R(C); a meno di equivalenza
proiettiva complessa esiste un’unica classe di coniche non de-
generi, con equazione canonica X2

0+X2
1+X2

2=0.

A meno di equivalenza proiettiva reale esistono due classi di
coniche non degeneri, a seconda che abbiano punti reali (equa-
zione canonicaX2

1+X2
2−X

2
0=0), oppure che non abbiano alcun

punto reale (equazione canonica X2
0+X2

1+X2
2=0).

Classificazione Affine di Coniche Reali. Le coniche non
singolari di A2

R(C) si dividono in due classi a meno di affinità
complesse, in funzione della loro posizione con la retta impro-
pria; sia C il polo della retta impropria e diciamo diametri di
C le rette passanti per C. Si distinguono:

coniche a centro se il polo della retta impropria è un punto pro-
prio (che si dice il centro e ha coordinate date dai minori, con
segni alterni, delle ultime due righe di A); equazione canonica
per le coniche a centro è X2+Y 2=1. L’applicazione d 7→d′ :=
D∨C si dice l’involuzione dei diametri coniugati (rispetto alla
polarità indotta da C); si tratta di una proiettività involuto-
ria del fascio di rette di centro C; due rette di punti impropri

[0,λ,µ] e [0,λ′,µ′] sono coniugate se e solo se (λµ)A′
(
λ′

µ′
)
=0;

equazione dei diametri coniugati: a2,2mm
′+a1,2(m+m′)+a1,1=0.

La retta impropria e due diametri coniugati danno un riferi-
mento autopolare per le coniche a centro. Un diametro au-
toconiugato, dunque tangente a C nel suo punto improprio, si
dice un asintoto di C; equazione dei diametri autoconiugati:
a2,2m

2+2a1,2m+a1,1=0.

parabole se sono tangenti alla retta impropria; ciò succede se e
solo se detA′=0; equazione canonica per le parabole è 2Y =X2

(in un riferimento autopolare formato da: retta impropria, una
retta di direzione il punto di tangenza improprio, la tangente
nell’altro punto della seconda retta). Ogni retta passante per
il punto improprio della parabola si dice un diametro della
parabola, e ha polo sulla retta impropria.

Le coniche non singolari di A2
R(C) si dividono in quattro classi

a meno di affinità reali, tre classi di coniche a centro, e la classe
delle parabole (ellissi, iperboli e parabole a seconda che C∩r∞
sia P+P non razionali su R, P+Q, 2P ):

ellissi senza punti reali, di equazione canonica X2+Y 2+1=0;
caratterizzata da: A è definita (positiva o negativa) e detA′>0;

ellissi con punti reali, di equazione canonica X2+Y 2=1; carat-
terizzata da: A non è definita (positiva o negativa) e detA′>0;

iperboli, di equazione canonica X2−Y 2=1; caratterizzata da:
detA′<0;

parabole, di equazione canonica 2Y =X2; caratterizzata da:
detA′=0.

Proprietà diametrali (simmetrie e as-
intoti): ogni conica a centro è sim-
metrica rispetto al centro e rispetto
ad ogni diametro nella direzione ad
esso coniugata (dunque nella direzione
delle tangenti ai punti di intersezione
del diametro con la conica); i diametri
autoconiugati sono asintoti.

Ogni parabola è simmetrica rispetto
ad ogni diametro, nella direzione ad
esso coniugata (dunque nella direzione
della tangente al punto di intersezione
propria del diametro con la parabola).
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Classificazione Metrica Euclidea. Le trasformazioni am-

messe sono del tipo B=

(
1 0 0
a
b B′

)
con B′∈O(2,R) e

(
a
b

)
∈R2. I

punti ciclici di E2(R) sono J∞=[0,1,i] e J∞=[0,1,−i]. Dunque
per la rigidità ϕ associata a B si ha ϕJ∞=J∞ se B′∈O+(2,R)
e ϕJ∞=J∞ se B′∈O(2,R)rO+(2,R).

Diciamo circolo una conica reale irriducibile passante per i
punti ciclici. L’equazione di un circolo èX2+Y 2+2cX+2dY +
e=0 con e−c2−d2 6=0; centro del circolo è (−c,−d). Se poi
e−c2−d2<0 poniamoR2=c2+d2−e, R si dice il raggio del cir-
colo, che ha equazione (X+c)2+(Y +d)2=R2, e dunque rapp-
resenta il luogo dei punti di distanza R dal centro C=(−c,−d).

Definiamo gli assi di una conica a centro come i diametri ortogo-
nali al proprio coniugato. Nel caso di un circolo ogni diametro
è un asse. Altrimenti esiste una unica coppia d,d′ di assi i
cui punti impropri [0,λ,µ] e [0,−µ,λ] soddisfano all’equazione
a1,2λ

2+(a1,1−a2,2)λµ−a1,2µ
2=0. Vertici di una conica a cen-

tro sono le intersezioni della conica con gli assi.

Definiamo l’asse di una parabola di punto improprio C∞ una
retta d per C∞ che sia ortogonale al suo polo D. Dunque una
parabola ha un unico asse di punto improprio C∞=[0,λ,µ] e
polo D=[0,−µ,λ], e di equazione (0 a1,2 a2,2)AX=0. Vertice
della parabola è V =C∩d.

Equazioni canoniche. Per le coniche a centro: sia (C,D,D′,r∞,d,d′)
il triangolo autopolare di prima specie formato dal centro a da

due assi; in tale riferimento si ha A=

(
a 0 0
0 b 0
0 0 c

)
con a,b,c∈R×;

dunque la conica ha equazione αX2+βY 2=1 con α,β∈R×.
Sia tratta di una iperbole se αβ<0, di una ellisse con punti
reali se α,β>0, di una ellisse senza punti reali se α,β<0.

Le equazioni si possono anche scrivere ±X2

a2 ± Y 2

b2
=1 con a,b>0

che si dicono i semiassi della conica.

Per le parabole: sia (C∞,D,V,r∞,d,D∨V ) il triangolo autopo-
lare di seconda specie formato dal punto improprio, dalla po-

lare dell’asse e dal vertice; allora A=

(
0 0 a
0 b 0
b 0 0

)
=b

(
0 0 −p
0 1 0
−p 0 0

)
con p∈R×; dunque la conica ha equazione X2=2pY ; possiamo
supporre p>0 e si chiama il parametro della parabola.

Invarianti ortogonali. I tre valori detA, detA′ e trA′ sono
invarianti per rigidità, i.e. per congruenza tramite matrici del
tipo B consentito. Si dicono gli invarianti ortogonali.

• la conica è a centro se e solo se detA′ 6=0 e una sua equazione
è proporzionale a α+βX2+γY 2=0 con αβγ=detA, βγ=
detA′, β+γ=trA′.

• la conica è una parabola se e solo se detA′=0; una sua
equazione è proporzionale a βX2=2αY con −αβ2=detA,
β=trA′, αβ>0.

Fuochi. Una retta r per P∈E2 è detta principale di C in P se
la retta per P ortogonale a r ha polo (rispetto a C) in r; cioè
se e solo se la retta r e la sua ortogonale per P sono coniugate.
Una coppia di tali rette per P si dice una “dupla principale”
di C in P .

Un punto F∈E2 si dice un fuoco di C se per F vi sono infinite
duple principali; ciò accade sse il fascio di coniche generato da C
e da (F∨J∞)+(F∨J∞) contiene rette doppie; sse (F∨J∞) e
F∨J∞ sono tangenti a C. Dunque i fuochi sono le intersezioni
delle tangenti a C dai punti isotropi di E2.

La condizione rk

(
A−λ

(
X2

1+X2
2 −X1 −X2

−X1 1 0
−X2 0 1

))
=1 determina le

quadriche focali.

Nel caso delle equazioni canoniche:

Ellissi: X2

a2 +Y 2

b2
=1 con a>b,

F1(
√
a2−b2,0), F2(−

√
a2−b2,0);

F (0,i
√
a2−b2), F (0,−i

√
a2−b2);

Iperboli: X2

a2 −Y 2

b2
=1,

F1(
√
a2+b2,0), F2(−

√
a2+b2,0);

F (0,i
√
a2+b2), F (0,−i

√
a2+b2);

Parabole: X2=2pY , F (0, p2 ).

F1F2

F1F2

F

L’asse focale a è la retta contenente i due fuochi razionali per
le coniche a centro, e l’asse contenente il fuoco e il punto im-
proprio per le parabole. L’involuzione focale è l’involuzione
dell’asse focale data da R 7→S se R=r∩a, S=s∩a con r,s rette
principali per P /∈a. Si può ottenere usando una qualsiasi retta
u per R∈a, e intersecando a con la retta u′ ortogonale a u pas-
sante per il polo U(∈r) di u (la funzione u 7→u′ corrisponde a

r→r∞, U 7→U⊥∞, che è prospettività di centro in a; tale centro
è l’immagine di R tramite l’involuzione focale).

Per le coniche a centro (risp. parabole) si tratta della in-
voluzione con punti fissi i due fuochi (risp. il fuoco e il punto
improprio).

Le rette principali per P /∈a sono le bisettrici di P∨F1 e P∨F2
se la conica è a centro, le bisettrici di P∨F e P∨C∞ se si
tratta di una parabola. Se P∈C si tratta di tangente e normale
nel punto:

Le ellissi (risp. le iperboli) sono i luoghi del piano per cui la
somma (risp. la differenza) delle distanze da due punti fissi (i
fuochi) sono costanti.

Eccentricità. Per una conica a centro, siano V1, V2 i vertici

dell’asse focale a; definiamo l’eccentricità e=
|F1−F2|
|V1−V2|

; risulta

e<1 per le ellissi (e=0 per i circoli), e>1 per le iperboli, si
definisce e=1 per le parabole.

Se l’equazione è X2

a2 ±Y 2

b2
=1, allora e=

√
a2∓b2

a .

Si dice direttrice di una conica C una retta che sia polare di un
fuoco.

Una conica è il luogo dei punti del piano per cui il rapporto e tra
la distanza da un punto (fuoco) e una retta (direttrice) fissati
è costante; si tratta di ellissi, parabole o iperboli a seconda che
e sia minore, uguale o maggiore di 1.
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Quadriche.
Una quadrica è un divisore di ordine 2 in Pn(C). Fissato un
riferimento, una quadricaQ corrisponde a V (ϕ(X)) con ϕ(X)=∑

06i,j6naijXiXj ove aij =aji, e a cui associamo la matrice

simmetrica (non nulla) A=(aij) di ordine n+1 a coefficienti in

C; risulta ϕ(X)=XtAX.

C’è una biiezione tra quadriche di Pn(C) e matrici simmetriche
non nulle in Mn+1(C) a meno di proporzionalità, dunque con

struttura di spazio proiettivo di dimensione
(
n+2

2

)
−1.

Un cambiamento di coordinate X=PY con P∈GL(n+1,C)
comporta che la stessa quadrica avrà matrice B=P tAP ; due
matrici si dicono congruenti se tra loro vale questa relazione.
Due quadriche Q e Q′ sono proiettivamente equivalenti (cioè
esiste una proiettività f di Pn(C) con f(Q)=Q′) se e solo se
le matrici associate in un fissato (e dunque in ogni) sistema di
riferimento sono (proporzionali a) matrici congruenti.

Quadriche nella retta proiettiva. Se n=1 allora una quadrica
è la somma di due punti di Pn

C
(C); se A=

(
a00 a01
a01 a11

)
ponendo

∆=−det(A)=a201−a00a11 possiamo distinguere tre casi:

(e)
√

∆ /∈C, allora si tratta di due punti distinti non razionali
su C (cioè in Pn

C
(C) ma non in Pn(C): coppia ellittica di

punti);

(i)
√

∆∈C, ∆ 6=0, allora di tratta di due punti distinti razionali
su C (cioè di Pn(C): coppia iperbolica di punti);

(p) ∆=0, allora si tratta un punto (doppio), razionale su C (cop-
pia parabolica di punti).

Generalità in Pn(C) per n>2. In generale una quadruca è
determinata dal suo supporto: se è irriducibile, abbiamo Q=
1V con V ipersuperfice irriducibile; se Q=1H+1H′ con H ed
H′ iperpiani distinti di Pn

C
(C), abbiamo Supp(Q)=H∪H′; se

Q=2H conH iperpiano, allora Supp(Q)=H (gli ultimi due casi
la quadrica si dice riducibile). In particolare identifichiamo Q
con Supp(Q) che è un sottinsieme di Pn

C
(C), e usiamo QC =

Q∩P(C).

Punti singolari e Coni. Risulta ∂ϕ
∂Xi

=2AX=2XtA; dunque

un punto P di coordinate x è singolare per Q=V (ϕ(X)) se e
solo se Ax=0 (dunque si tratta d’una varietà lineare); se P
non è singolare, allora xtAX=0 è l’equazione dell’iperpiano
tangente a Q in P .

La quadrica Q ha punti singolari se e solo se una (dunque
ognuna) dalle sue matrici associata è singolare (i.e. di rango
r6n), se e solo se è un cono (in tal caso il vertice è definito su
C, coincide con l’insieme dei punti singolari e ha dimensione
n−r; Q è allora proiezione dal vertice di una quadrica non
degenere di una varietà complementare).

Sia r il rango di A, matrice associata a Q; allora: se 2<r6
n abbiamo una quadrica irriducibile (cono); se r=2 abbiamo
Q=H+H′ con H ed H′ iperpiani distinti di Pn

C
(C); se r=1

abbiamo Q=2H con H iperpiano.

Scegliendo coordinate in modo che v(Q) abbia equazioni X0=
···=Xr−1=0, sia M la varietà complementare di equazioni
Xr=···=Xn=0 e sia A′ la matrice (invertibile) di Q′=Q∩
M (che è quadrica non degenere di M); allora Q ha matrice(

A′ O
O O

)
.

Dunque ogni matrice simmetrica a coefficienti in C è congru-
ente in C ad una tale matrice con A′ matrice quadrata invert-
ibile di ordine r (rango di A).

Polarità. Sia Q una quadrica non degenere di Pn(C); la po-
larità rispetto a Q è l’applicazione Pn

C
(C)→Pn

C
(C)∗ che manda

il punto P di coordinate x nell’iperpiano P⊥ di coordinate

plückeriane xtA (P⊥ si dice polare di P , e P polo di P⊥).

L’iperpiano P⊥ è razionale su C se e solo se il punto P lo è.
Due punti P e Q si dicono coniugati, e si scrive P⊥Q se P∈Q⊥
(equivalentemente Q∈P⊥), e vale se e solo se xtAy=0=ytAx
(se x e y sono le coordinate dei due punti).

Per un sottinsieme Z di Pn
C

(C) definiamo il polare rispetto a Q
Z⊥={Q∈Pn

C
(C)|Q⊥P, ∀P∈Z}. Si hanno gli usuali risultati:

Z⊥=
⋂

P∈ZP
⊥ è varietà lineare, coincidente con L⊥ se L è la

varietà lineare generata da Z; una varietà lineare L è razionale
su C se e solo se L⊥ lo è; L⊥⊥=L; per due varietà lineari
L ed M risulta che L<M sse M⊥<L⊥, (L∨M)⊥=L⊥∧M⊥,

(L∧M)⊥=L⊥∨M⊥.

La varietà L⊥ si dice la polare di L.

Generalizzazione per quadriche qualsiasi. Sia Q una quadrica
qualsiasi in Pn(C); se L=P(U) è varietà lineare di spazio sovras-

tante U , definiamo L⊥ come la varietà lineare P(U⊥) dove

U⊥={v∈Vn+1(C)|ytAx=0, ∀y∈U} (nel caso di quadriche non
degeneri le definizioni sono equivalenti). Se L=Pn(C) allora

L⊥=v(Q) (vertice della quadrica), se P∈v(Q) allora P⊥=

Pn(C); se P /∈v(Q) allora P⊥ è un iperpiano contenente v(Q).
In generale, se L è varietà di dimensione m e L∩v(Q) ha di-

mensione s, allora L⊥ è varietà lineare contenente v(Q) e di
dimensione n−m+s.

Per n=1, Q=Q1+Q2 (punti distinti di Pn
C

(C)) la polarità as-
sociata a Q è l’involuzione con Q1 e Q2 punti uniti; dunque
P⊥Q se e solo se (Q1Q2PQ)=−1.

Piani e Coni Tangenti. Per n>2 abbiamo P∈Q se e solo se
P∈P⊥, e in questo caso P⊥ è l’iperpiano tangente a Q in P
(di equazione xtAX=0 se x sono le coordinate di P ).

Una varietà lineare L si dice tangente aQ se L⊆Q oppure L∩Q
è quadrica degenere di L; dunque un iperpiano H è tangente
a Q sse H∩Q è degenere. L’iperpiano H è tangente a Q sse
H3H⊥=P , e alloraH è l’iperpiano tangente aQ in P , e questo
è l’unico punto in cui H è tangente a Q; vale sse aA−1at=0 (se
a sono le coordiante plückeriane di H, si tratta dell’equazione
della quadrica inviluppo di Q).

Una varietà lineare L è tangente aQ sse L ed L⊥ sono incidenti;
L⊆Q sse L6L⊥. Se L non è tangente a Q, allora L∩Q è
quadrica non degenere di L, e la polarità associata a L∩Q in
L è la restrizione a L della polarità associata a Q.

Sia P /∈Q, r una retta per P , non tangente a Q, Q∩r=Q1+Q2;
alloraQ1,Q2,P sono distinti, eQ=H∩L conH=P⊥ è il quarto
armonico: (Q1Q2PQ)=−1.

Il cono CP tangente a Q di vertice P (unione delle rette per P
tangenti aQ) è la proiezione da P della quadrica (non degenere)
Q∩H di H. CP ha equazione (xtAX)2−(xtAx)(XtAX)=0 e
matrice A(xtxA−xtAx).

Quadriche Inviluppo. La biiezione tra le quadriche non de-
generi di P e quelle di P∗ che associa a Q di matrice A la
quadrica inviluppoQ∗ di matriceA−1 (oppureAc=det(A)A−1)
si scrive nelle coordinate ai,j e a∗i,j tramite espressioni a∗

h,k
=

(−)h+kdetAh,k polinomiali nelle ai,j ; la biiezione si estende
a quadriche di rango n (non tutti i minori d’ordine n sono
nulli), nel qual caso la quadrica inviluppo immagine ha rango
1 (dunque una stella di iperpiani, con centro nel vertice di Q).

Descrizione delle quadriche inviluppo singolari: sia Q∗⊆P∗
quadrica di rango r. Se r=1 allora Q∗ è una stella di iperpiani
(contata due volte); se r=2 allora Q∗ è una coppia di stelle di
iperpiani con diversi centri; se r>2 allora esistono una varietà
lineare L di P di dimensione r−1, e una quadrica non degenere
C di L, tali che H∈Q∗ sse H>L oppure H∩L è tangente a C.
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Classificazione Proiettiva. Un (n+1)-edro (triangolo per
n=2, tetraedro per n=3) di Pn(C) è l’insieme formato da n+1
punti P0,...,Pn (detti i vertici) tali che

∨
iPi=Pn(C), e dagli

iperpianiHi=
∨

j 6=iPj (detti le facce). Si dice autopolare rispetto

alla quadrica non degenere Q se P⊥i =Hi per ogni i.

Se Q è quadrica di Pn(C), allora esistono punti razionali su
C non appartenenti a Q. Se Q è quadrica non degenere di
Pn(C), allora esistono (n+1)-edri autopolari rispetto a Q. In
particolare: in un riferimento autopolare la quadrice ha matrice
diagonale.

L’indice di una quadrica Q è la massima dimensione delle va-
rietà lineari di Pn(C) (razionali su C) contenute in Q. Si tratta

di un intero >−1 (uguale a −1 sse QC =∅); da L6L⊥ se L⊆Q
abbiamo che l’indice è 6m−1 (risp. m) se n=2m è pari (risp.
n=2m+1 è dispari). L’indice è un invariante proiettivo.

La classificazione proiettiva dipende dalla struttura del gruppo
moltiplicativo C×/(C×)2.

se (C×)2=C× (ogni elemento è un quadrato, per es. corpi
algebricamente chiusi) allora possiamo diagonalizzare la (ma-
trice della) quadrica avendo solo 1 e 0 in diagonale; dunque due
quadriche sono proiettivamente equivalenti sse hanno lo stesso
rango. Se la quadrica è non degenere, allora ha indice m−1 se
n=2m, indice m se n=2m+1.

se C×/(C×)2∼={±1} (per es. R) allora possiamo diagonaliz-
zare la quadrica avendo valori 1, −1, 0 in diagonale. Se Q ha
forma diagonale X2

0+···+X2
s−X2

s+1−···−X
2
m (ove possiamo

supporre h=s+1>k=m−s) allora t=(m−s−1)+(n−m)=n−s−1
(6s) è l’indice di Q. Dunque due quadriche sono proietti-
vamente equivalenti sse hanno lo stesso rango e lo stesso in-
dice; oppure sse hanno la stessa segnatura (h,k) (corrispon-
dente al numero di 1 e −1 nella forma diagonale) soggetti alle
condizioni 16h, 06k6h, h+k6n+1 (teorema di Sylvester).
Abbiamo allora che il rango di Q è r=h+k e l’indice è i=
(n+1−r)+(k−1)=n−h.

Esempi per Pn(R): n=1 (retta proiettiva reale)
(r,i) (h,k) equazione descrizione
(1,0) (1,0) X2

0 =0 coppia parabolica di punti

(2,0) (1,1) X2
0−X

2
1 =0 coppia iperbolica di punti

(2,−1) (2,0) X2
0+X2

1 =0 coppia ellittica di punti

n=2 (piano proiettivo reale)
(r,i) (h,k) equazione descrizione
(1,1) (1,0) X2

0 =0 coppia parabolica di rette

(2,1) (1,1) X2
0−X

2
1 =0 coppia iperbolica di rette

(2,0) (2,0) X2
0+X2

1 =0 coppia ellittica di rette

(3,0) (2,1) X2
0+X2

1−X
2
2 =0 irrid. con punti reali

(3,−1) (3,0) X2
0+X2

1+X2
2 =0 irrid. senza punti reali

n=3 (spazio proiettivo reale)
(r,i) (h,k) equazione descrizione
(1,2) (1,0) X2

0 =0 coppia parabolica di piani

(2,2) (1,1) X2
0−X

2
1 =0 coppia iperbolica di piani

(2,1) (2,0) X2
0+X2

1 =0 coppia ellittica di piani

(3,1) (2,1) X2
0+X2

1−X
2
2 =0 cono con punti reali

(3,0) (3,0) X2
0+X2

1+X2
2 =0 cono immaginario (vertice reale)

(4,1) (2,2) X2
0+X2

1−X
2
2−X

2
3 =0 non degenere rigata

(4,0) (3,1) X2
0+X2

1+X2
2−X

2
3 =0 non deg. con punti reali

(4,−1) (4,0) X2
0+X2

1+X2
2+X2

3 =0 non deg. senza punti reali

Quadriche rigate nello spazio. L’equazione della quadrica rigata
Q di P3(C) si può scrivere X0X3−X1X2=0; in tal modo si
vede che la mappa di Segre

S : P1(C)×P1(C)−→Q⊆P3(C)

definita da S([v0,v1],[w0,w1])=[v0w0,v0w1,v1w0,v1w1] (proi-
ettivizzazione di C2×C2−→C2⊗CC

2∼=C4) è una biiezione
di P1(C)×P1(C) sull’immagine Q. In particolare Q contiene
due schiere di rette immagini tramite Segre di P1(C)×{[a,b]}
e {[a,b]}×P1(C). Abbiamo che: due rette appartenenti alla
stessa schiera sono tra loro sghembe; due rette di schiere di-
verse sono incidenti, e ogni retta di una schiera incontra tutte
quelle dell’altra; per ogni punto di Q passa una retta di cias-
cuna schiera.

Quadriche sui corpi finiti. Sia p>2 un primo, e sia C corpo
con q=pf elementi. Ogni quadrica in Pn(C) con n>2 con-
tiene punti razionali su C. Se n=2m (m>1) allora Q ha indice
m−1, e due qualsiasi quadriche non degeneri sono proiettiva-
mente equivalenti. Se n=2m+1 (m>0) allora Q ha indice m
sse il determinante di una (dunque ognuna) sua matrice è un
quadrato in C, altrimenti ha indice m−1; due quadriche non
degeneri sono proiettivamente equivalenti sse hanno lo stesso
indice.

Si possono contare i punti: ]Pn(C)= qn+1−1
q−1 , e

]QC =


qn−1
q−1 se n=2m

(qm+1−1)(qm+1)
q−1 se n=2m+1 e indice=m

(qm+1+1)(qm−1)
q−1 se n=2m+1 e indice=m−1

Classificazione Affine. Sia H∞ un iperpiano di Pn(C), e
A=Pn(C)rH∞ lo spazio affine complementare; scegliendo co-
ordinate tali cheH∞ siaX0=0 possiamo supporre A=An(C)⊆
Pn(C). Una quadrica affine di A è una quadrica Q di Pn(C)
non contenente H∞ (le quadriche del tipo H+H∞ si dicono
improprie). Cilindri sono i coni con vertice contenuto in H∞.
Se Q è quadrica affine, allora Q∞=Q∩H∞ si dice la quadrica
impropria di Q.

Due quadriche affini Q e Q′ sono affinemente equivalenti sse
esiste una affinità f con f(Q)=Q′; in tal caso Q∞ e Q′∞ sono
proiettivamente equivalenti come quadriche di H∞.

Se r6n è il rango di Q∞, abbiamo le seguenti forme canoniche
possibili per le equazioni di Q:

•
∑r

i=1aiX
2
i =0 (la quadrica ha rango r, dunque sempre de-

genere, e si tratta di un cono proprio; caratterizzata da
Q∩H⊥∞ 66H∞);

• X2
0+

∑r
i=1aiX

2
i =0 (la quadrica ha rango r+1, si dice quadrica

a centro, di centro H⊥∞, se è non degenere, se invece è
degenere si tratta di cilindro, detto non parabolico; sono
quadrice caratterizzate da H⊥∞ 66H∞ e Q∩H⊥∞6H∞);

•
∑r

i=1aiX
2
i +2X0Xn=0 (la quadrica ha rango r+2, si dice

paraboloide se è non degenere, se invece è degenere si tratta
di cilindro, detto parabolico; sono quadrice caratterizzate da
H⊥∞6H∞).

Possiamo scrivere le equazioni canoniche affini:
r(Q) r(Q∞) equazione descrizione
n+1 n+1

∑n
i=1aiX

2
i =1 a centro

n+1 n−1
∑n−1

i=1
aiX

2
i +2Xn=0 paraboloide

r r
∑r

i=1aiX
2
i =0 cono proprio

r+1 r
∑r

i=1aiX
2
i =1 cilindro non parabolico

r+2 r
∑r

i=1aiX
2
i +2Xn=0 cilindro parabolico

Se in C ogni elemento è quadrato, allora due quadriche Q e Q′
sono affinemente equivalenti sse Q e Q∞ hanno lo stesso rango
di Q′ e Q′∞ rispettivamente.
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Se C=R le quadriche a centro si distinguono in ellissoidi e iper-
boloidi a seconda che (Q∞)R sia vuoto oppure no. Abbiamo la
seguente classificazione dipendente da s:
tipo equazione canonica valori di s
a centro

∑s
i=1X

2
i −

∑n
s+1X

2
i =1 06s6n

paraboloidi
∑s

i=1X
2
i −

∑n−1
s+1 X

2
i +2Xn=0 n−1

2 6s6n−1

coni propri
∑s

i=1X
2
i −

∑r
s+1X

2
i =0 r

2 6s6r

cil. non par.
∑s

i=1X
2
i −

∑r
s+1X

2
i =1 06s6r

cilindri par.
∑s

i=1X
2
i −

∑r
s+1X

2
i +2Xn=0 r

2 6s6r

Nel caso di P3(R) i punti di una conica si dicono parabolici,
iperbolici o ellittici a seconda che la conica degenere sul piano
tangente in quel punto sia una coppia parabolica, iperbolica
o ellittica di rette. I punti di una quadrica sono tutti dello
stesso tipo, e a seconda di questo la quadrica si dice parabolica,
iperbolica o ellittica. La classificazione dà:
tipo r s equazione descrizione
a centro 4, 0 −X2

1−X
2
2−X

2
3 =1 ell. senza punti reali

1 X2
1−X

2
2−X

2
3 =1 iperb. ellittico

2 X2
1+X2

2−X
2
3 =1 iperb. iperbolico

3 X2
1+X2

2+X2
3 =1 ell. con punti reali

paraboloidi 4, 1 X2
1−X

2
2+2X3=0 par. iperbolico

2 X2
1+X2

2+2X3=0 par. ellittico

coni propri 3, 2 X2
1+X2

2−X
2
3 =0 con punti reali

3 X2
1+X2

2+X2
3 =0 con vertice reale

2, 1 X2
1−X

2
2 =0 coppia iperb. piani

2 X2
1+X2

2 =0 coppia ell. piani

1, 1 X2
1 =0 coppia par. piani

cil. non par. 2, 0 −X2
1−X

2
2 =1 cil. ell. senza punti

1 X2
1−X

2
2 =1 cil. iperbolico

2 X2
1+X2

2 =1 cil. ell. con punti

1, 0 −X2
1 =1 coppia ell. piani paralleli

1 X2
1 =1 coppia iperb. piani paralleli

cil. parab. 1, 1 X2
1+2X3=0 cilindro parabolico

Aspetto del paraboloide e dell’iperboloide parabolici:

(ciascuno evidenziato tramite alcune rette di una delle sue
schiere).

Proprietà diametrali (simmetrie e asintoti). SiaQ una quadrica
non degenere di Pn(C); de U è un punto non appartenente a

Q e H=U⊥, allora l’omologia armonica di asse H e centro U
lascia globalmente fissa Q. Dunque:

(c) se Q è quadrica a centro, diciamo diametri gli iperpiani per
il centro; Q risulta simmetrica rispetto al centro e rispetto
ad ogni iperpiano nella direzione ad esso coniugata; il cono
che proietta Q∞ dal centro si chiama cono asintotico, e gli
asintoti di Q sono le rette del cono asintotico;

(p) se Q è paraboloide, diciamo diametri gli iperpiani propri
con polo improprio (i.e. gli iperpiani propri contenenti il
punto C∞=Q∩H∞); tutti i punti di H∞ distinti da C∞
sono direzioni di simmetria.

Classificazione Euclidea. Uno spazio euclideo E=En di di-
mensione n>2 è una coppia (A,Ω∞) ove A=(Pn(R),H∞) è
spazio affine reale di dimensione n, e Ω∞ è una quadrica reale
non degenere priva di punti reali (segnatura (n,0)) di H∞

(detta l’assoluto di E; i suoi punti, impropri immaginari, si
dicono i punti ciclici di E). Una unità di misura di E è una
coppia di punti (propri reali).

Assoluto e unità di misura di E determinano una forma quadrat-
ica non degenere (definita positiva) q sullo spazio vettoriale T
delle traslazioni di E (uno spazio pseudo-euclideo viene definito
senza restizione che l’assoluto non abbia punti reali, e dunque
gli corrisponde una forma non degenere, ma non definita in
generale).

Definiamo le usuali nozioni euclidee: distanza tra due punti
(reali propri) d(P,Q)=q(Q−P ); sfera di centro C e raggio R
(reale positivo) {P |d(P,C)=R}. Un sistema di riferimento
cartesiano ortogonale è un sistema di riferimento P0,...,Pn,U
di Pn(R) tale che P0 sia punto proprio, P1,...,Pn siano ver-
tici di un n-edro di H∞ autopolare rispetto a Ω∞, e per
cui si abbia d(P0,Ui)=1 per ogni Ui=(P0∨Pi)∧(U∨

∨
j 6=iPj).

Equivalentemente un riferimento è cartesiano sse ogni sfera di
raggio R e centro C di coordiante (c1,...,cn) ha equazione∑n

i=1
(Xi−ci)2=R2; in particolare per ogni coppia di punti

risulta d(P,Q)=
√∑n

i=1
(xi−yi)2; e l’assoluto ha equazioni

X0=0 eX2
1+···+X2

n=0. Una sfera (generalizzata) è una quadrica
contenente l’assoluto.

Le similitudini di E sono le affinità che lasciano globalmente
fisso l’assoluto; equivalentemente, che mandano sfere in sfere, e
se l’immagine di una sfera di raggio 1 è una sfera di raggio R, il
numero reale positivo R si dice il rapporto di omotetia (se f è
la similitudine, vale allora d(fP,fQ)=Rd(P,Q) per ogni coppia
di punti). Una omotetia è una omologia generale di asse im-
proprio; chiaramente è una similitudine. Una isometria è una
similitudine di rapporto 1; in un riferimento cartesiano ortogo-
nale le isometrie hanno matrici

(
1 0
a P

)
con P matrice ortogonale

(P tP=PP t=In). Orientamenti: due riferimenti cartesiani or-
togonali sono equiorientati se la matrice di cambiamento ha
determinante 1; vi sono due classi di equivalenza per questa
relazione, dette gli orientamenti.

Data una varietà lineare (propria reale) L, detto L∞=L∧H∞,
diciamo che la polare M∞ di L∞ rispetto a Ω∞ è la direzione
ortogonale a L; si tratta di una varietà sghemba con L. La
simmetria (ortogonale) rispetto ad L è la simmetria di asse L
e direzione ortogonale (si tratta di isometrie). Ogni isometria
è proiezione di al più n+1 simmetrie (ortogonali) rispetto a
iperpiani. Se L ed L′ sono varietà lineari di dimensione r>0
allora esiste almeno una isometria f di E tale che fL=L′.
Quadriche. Siano Ω e Q due quadriche distinte di Pn(R), la
prima priva di punti reali (dunque non degenere); allora es-
istono riferimenti autopolari rispetto a Ω in cui Q ha matrice
diagonale (se C1,...,Ch sono i coni del fascio generato da Ω
e Q, che sono tutti reali, con 16h6n e di ranghi tali che∑

iri=n+1, basta trovare riferimenti in Li=v(Ci) che siano
autopolari per Ω∩Li).

Due quadriche Q e Q′ di E si dicono metricamente equivalenti
se esiste una isometria f con f(Q)=Q′. Tramite trasformazioni
cartesiane ortogonali possiamo avere forme canoniche come nel
caso affine (ma senza alterare gli ai). Per coniche a centro,
cilindri non parabolici e coni propri i coefficienti ai si dicono
(inversi de)i semiassi (reali quelli positivi, trasversi quelli neg-
ativi); si può supporre che i semiassi reali siano non meno di
quelli trasversi, e nel caso di coni che uno dei semiassi sia 1. Per
paraboloidi e coni parabolici gli ai si dicono i parametri; si può
supporre che quelli positivi siano non meno di quelli negativi.
Una quadrica si dice di rotazione se vi sono semiassi o parametri
con molteplicità (>1); ciò succede sse esiste una varietà lineare
L tale che ogni rotazione di asse L manda la quadrica in sè.
Le rette ri=P0∨Pi (risp. gli iperpiani Hi=

∨
j 6=i

Pj) si di-

cono assi (rispettivamente iperpiani principali) di Q se i punti
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P0,...,Pn sono quelli di un riferimento in cui Q abbia equazione
canonica.

Due quadriche sono metricamente equivalenti se e solo se hanno
gli stessi semiassi (o gli stessi parametri) con le stesse molteplicità.

Invarianti ortogonali. In certi casi i parametri si possono cal-
colare facilmente: sia A una matrice di Q,

• per le quadriche a centro: ai=ρi/λ ove ρi (i=1,...,n) sono
gli autovalori di A e λ=−detA/detA∞;

• per i coni propri: gli ai sono a meno di proporzionalità gli
autovalori di A;

• per i paraboloidi: ai=cρi ove ρi (i=1,...,n−1) sono gli auto-

valori di A∞ e c=±
√
−
∏

i
ρi/detA (il segno scelto in modo

che vi siano più parametri positivi).

Cerchi sulle quadriche. Sia Q una quadrica irriducubile nello
spazio euclideo di dimensione 3. I piani π che intersecano la
quadrica Q in cerchi sono quelli per cui la conica π∩Q passa
per i punti ciclici π∩Ω di π. Se Q non è una sfera vi sono uno
o due fasci (impropri) di tali piani a seconda che la quadrica Q
sia di rotazione o no.

Proprietà focali. Sia Q quadrica non degenere di E; una retta
r per un punto P si dice retta principale di Q in P se H⊥∈r
ove H è l’iperpiano per P ortogonale ad r. Si dicono n-uple
principali di Q in P le n-uple ortogonali di rette principali di
Q in P .

Se P /∈Q, le n-uple principali sono le n-uple di assi del cono tan-
gente CP (Q). Se P∈Q, la normale nP (all’iperpiano tangente
in P ) è retta pricipale, unica retta principale per P non ap-
partenente all’iperpiano tangente TP (Q); inoltre l1,...,ln−1,nP
è una n-upla principale di Q in P sse l1,...,ln−1 è una (n−1)-
upla di assi del cono Q∩TP (Q).

Un punto P∈E si dice un fuoco di Q se in P vi sono infinite
n-uple pricipali di Q. Ciò vale sse il fascio generato da Q e dal
cono isotropo IP (proiezione dell’assoluto da P ) contiene coni
di rango 6n−1.

Per le quadriche a centro non di rotazione, con equazione canon-

ica
∑n

i=1
X2

i
bi

=1 con b1<···<bn, i fuochi sono i punti delle n

quadriche (dette focali) di equazioni

{
Xi=0∑n

i6=j=1

X2
j

bj−bi
=1

(per

i=1,...,n; si tratta di quadriche a centro, una per ogni tipo).

Per i paraboloidi non di rotazione, con equazione canonica∑n−1
i=1

X2
i

bi
=2Xn con b1<···<bn−1, i fuochi sono i punti delle

n−1 quadriche (dette focali) di equazioni

{
Xi=0∑n−1

i6=j=1

X2
j

bj−bi
=2Xn−bi

(per i=1,...,n−1; si tratta di paraboloidi, uno per ogni tipo).
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