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Reticoli di sottospazi.

Sia V uno spazio vettoriale su C' di dimensione finita. Defini-

amo S(V):={W|W <V} P(V):={W|W<V, dimgW=1} e[(V):=

{WW <LV, dimgW=dimgV —1} rispettivamente gli insiemi
dei sottospazi, delle rette e degli iperpiani di V/, che si dicono
rispettivamente spazi proiettivi completo, punteggiato, iperi-
gato associati a V.

S(V') ha struttura di reticolo con le operazioni di intersezione
e somma di sottospazi e 'ordine dell’inclusione. Osservazioni:
W1 CWo <= W1 4+Wo=Wyo <= W1NWo=W7q,
(W1+Wa)NW3 (W1 NW3)+(WanWs),
(W1NWa)+ W3 C(W1+W3)N(Wa+Ws)

(in particolare il reticolo non ¢ distributivo).

Se W<V & un sottospazio, allora S(W)CS(V) si dice il sot-
toreticolo completo (o sottospazio proiettivo completo) di sos-
tegno W; S(V/W)=2{W'eS(V)|W <W'}CS(V) si dice la stella
(proiettiva) completa di sostegno W, P(W)CP(V) si dice il sot-
tospazio proiettivo punteggiato di sostegno W.

La dualitd canonica tra V e V* induce un antiisomorfismo
di reticoli 1y :S(V)—S(V*) dato da W—W-=L ed induce un
antiisomorfismo S(V/W)—S(WL)2S((V/W)*). La dualita
scambia sottospazi con stelle.

Un’applicazione lineare f:V — V' induce una applicazione (in-
siemistica) S(f):S(V)—S(V’) data da W f(W), soddisfacente
alle seguenti proprieta:

S(£)(0)=0; dimeS(f) (W) <dime (W);

S(A (W AW SS(H(W)NS() (W);
S()(WHW)=S(f)(W)+S(f)(W').

Se F:S(V)—S(V’) & una funzione avente le proprieta di di-
minuire le dimensioni e di rispettare la somma (di sottospazi),
allora esiste f:V — V' tale che F=S(f).

Geometria Proiettiva.

Spazi Proiettivi. Uno spazio proiettivo completo di spazio
vettoriale sovrastante V (dim (V)=n+1) & un insieme S dotato
di una biiezione ag:S(V)—S. Per trasporto risulta data una
struttura di reticolo su S (le operazioni si indicano con V,
A e la relazione con <); dunque se s=a(W) e s'=a(W') &
sVs'=a(WNW'), sAns'=a(W+W') e s<s' «<=W<W'. Lo
spazio proiettivo punteggiato associato P ¢ il sottinsieme di S
dato da {s€S|a(s)€P(V)}; lo spazio proiettivo degli iperpiani
associato I ¢ il sottinsieme di S dato da {s€S|a(s)€Il(V)}.

N

Lo spazio proiettivo duale S* & costituito dallo stesso insieme S
dotato della biiezione o :ao7—‘;1 :S(V*)—S. Lo spazio proi-
ettivo punteggiato P* di S* si identifica con lo spazio proiettivo
degli iperpiani I associato a S

Per t=a(W)€S, con WeS(V), poniamo dim(t):=dimg (W)—1.
In particolare: dima(0)=—1 e «(0)€S di dice il vuoto proiet-
tivo; t€S si dice punto, retta, piano, iperpiano se dim(t)=
0,1,2,n—1 rispettivamente. Se dim(¢t)=m per t€S, allora la

sua dimensione considerato come t€S5* (elemento dello spazio
proiettivo duale) risulta dim(t)=n—m—1.

Formula di Grassmann: se s,t€S allora
dim(s)+dim(t)=dim(sVt)+dim(sAt).

Teorema di Dualita Proiettiva: ogni asserzione scritta in ter-
mini di elementi generici di uno spazio proiettivo coinvolgendo
solo la struttura di reticolo & vera se e solo se risulta vera
l’asserzione duale che si ottiene sostituendo V con A, A con
V, < con > (relazione duale) e dim con n—1—dim.

Applicazioni Proiettive, Proiettivita. Una applicazione
proiettiva ¢:S—— S’ & una funzione indotta da una applicazione
lineare f:V —V'/ tra gli spazi vettoriali sovrastanti, i.e. tale
che p(a(W))=a/(f(W)) per ogni WeS(V).

Due applicazioni lineari f,g sono sovrastanti la stessa appli-
cazione proiettiva se e solo se g=\f per A\eC*X.

Definiamo im(¢)=a/ (im(f)), e ker(p)=a(ker(f)) che si chiama
il luogo di degenerazione dell’applicazione .

Risulta dim(im(¢))+dim(ker(yp))=dim(S)—1.

L’applicazione proiettiva ¢:S——S’ non induce direttamente
una applicazione tra gli spazi punteggiati, a causa del luogo di
degenerazione, ma induce ¢: P ~ker(¢)— P’.

Una proiettivita & una applicazione proiettiva di S in sé il cui
nucleo sia il vuoto proiettivo di S, ovvero che abbia immag-
ine tutto S, o ancora tale che 'applicazione lineare sovrastante
sia un isomorfismo. Il gruppo delle proiettivita di S, sotto
Poperazione di composizione, si indica con PGL(S) ed & iso-
morfo a PGL(V):=GL(V)/C*.

Siano t=a(W) e t'=a(W’) elementi di S. Si dicono sghembi
se tAt'=a(0) (il vuoto di S, ovvero WNW'=0), incidenti altri-
menti; si dicono complementari se sono sghembi e tVt'=a(V)
(corrisponde a W@W'=V). Indichiamo con T il sottospazio
di S di sostegno t, e con T™* la stella di S di asse t.

L’inclusione T'CS & applicazione proiettiva con applicazione
lineare sovrastante ’inclusione W V.

La proiezione S—T* data da s+ sVt & applicazione proiettiva
di sovrastante la proiezione V—V/W. Piu generalmente la
proiezione di ¢/ dal centro t & T/ —T* data da s—sVt di
applicazione sovrastante la proiezione W/ — (W/+W)/W.

Se t e t'” sono complementari, allora la sezione della stella di

asse t con t'/ & T*—T" data da u—uAt” di applicazione
sovrastante l'isomorfismo canonico V/W —W"’.

Se t e t'" sono complementari, allora la proiezione di ¢’ su t”
di centro t & T/ —T"" data da u+ (uVt)At" composta di una
proiezione e di una sezione.

Coordinate. Lo spazio proiettivo standard di dimensione n su
C &P (C):=Vy41(C)/C*; se vEV ha coordinate (X, ..., Xn)?,
il punto P=[v] ha coordinate omogenee [Xj,...,Xn]t.

Modelli topologici di P*(R): sia S"={zeE"1(R)||z||=1} la
(buccia della) sfera di raggio 1 in E»T1(R). Sia ¢:S" —8" la
mappa antipodale z+— —z. Allora P"(R)2S" /o (sfera modulo
antipodia); in particolare si tratta di uno spazio topologico
compatto. Siano D""={zcE"™(R)|||z||<1} la palla di raggio 1
in E™(R) e :S"~1_—8"~1 |4 mappa antipodale z——z del
bordo di D™. Allora P"(R)=~D" /o (disco modulo antipodia del
bordo).

Per n=1 possiamo identificare un isomorfismo S —P!(R) (via
la “proiezione dal polo nord” sull’asse X: (m,y)Hlf—y) tale
che (z,y)—[l—y,z]. La retta proiettiva reale si pud ancora
identificare con R/Z, ovvero con il segmento [0,1] in cui gli
estremi {0,1} sono stati tra loro identificati.

La proiezione stereografica dal polo nord di S2 (sul piano Z=0:
(x,y,z)H(lf—z,lfyz)) da un isomorfismo §2—PL(C) tramite
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(z,y,2)—[1—z,x+1y] (dunque la retta proiettiva complessa &
una sfera reale, detta sfera di Riemann).

Per n=2 possiamo identificare il piano proiettivo reale P2 (R)
con la sfera 3-dimensionale modulo antipodia, oppure con il
disco 2-dimensionale modulo antipodia del bordo; ma non ¢ iso-
morfo al prodotto di due rette proiettive, che invece risulta una
superficie torica. Si osservi che dato un quadrato [0,1]%[0,1]
possiamo costruire: un cilindro (identificando (x,0)~(x,1) per
ogni z€[0,1]) e un nastro di Moébius (identificando (z,0)~
(1—=,1) per ogni €(0,1]); la prima figura & orientabile, mentre
la seconda no, come si vede seguento il cammino [1/2,y] per
y€[0,1] (che rovescia l'orientamento). Partendo dal cilindro
possiamo costruire tre figure senza bordo: la sfera (colassando
a un punto ciascuno dei due cerchi [0,y] e [1,y]), il toro (identifi-
cando (0,y)~(1,y) per ogni y€|0,1]) e l'otre o bottiglia di Klein
(identificando (0,y)~(1—y,y) per ogni y€[0,1]); si osservi che
quest’ultima superficie non ¢ orientabile, poiché contiene nastri
di Moébius, mentre sfera e toro sono orientabili. Partendo dal
nastro di Moébius e identificando ulteriormente i bordi rima-
nenti in ordine inverso (identificando (0,y)~(1—y,y) per ogni
y€[0,1]) si ottiene il piano proiettivo reale; anch’esso & superfi-
cie non orientabile, poiché contiene nastri di Moébius. Sfere e
piani proiettivi si ottengono anche per identificazione dei due
lati di un diagono (poligono con due lati) nei due modi possibili
(se il diagono & una sfera unitaria, e i due lati sono le semicir-
conferenze tra polo nord e polo sud, si tratta di (z,y)~(—=z,y)
oppure di (z,y)~(~z,~y)).

Descrizione ricorsiva: P™(C)2A™(C)UP?~1(C). Conteggio
degli elementi proiettivi sui corpi finiti: se Fg € il corpo con
g=p/ elementi, allora P"(Fq) ha %:Eizoqi punti e al-
trettanti iperpiani.

Un sistema di riferimento in uno spazio proiettivo punteggiato
di spazio vettoriale sovrastante V' ¢ il dato di un isomorfismo
proiettivo p:P(V)—P"(C). Equivalentemente si tratta del
dato di una base ordinata di V' (a meno di proporzionalitd);
oppure di n+2 punti Py,...,Pp,U di P tali che n+1 tra loro
non stiano su un iperpiano (i Py,...,Pn formano ’edro fonda-
mentale, U & il punto unitd); o dualmente di n+2 iperpiani
PQ, - *,Pn,u tali che n+1 tra loro abbiano sempre intersezione
vuota.

Dato un riferimento su P(V'), esiste unica I’applicazione proi-
ettiva p:P(V)—P/(V) che sia assegnata su quel riferimento.

In particolare per ogni permutazione o del gruppo simmetrico
Sp2 esiste una proiettivitd ¢o tale che g (P;)=Py;. Nel
caso del piano proiettivo (n=2), ogni permutazione dei quat-
tro punti fondamentali induce una permutazione dei tre punti
diagonali (del quadrilatero); abbiamo un morfismo suriettivo
di gruppi S4—S3 il cui nucleo ¢ il sottogruppo V' di Klein di
Sy.

Scelti dei riferimenti su P(V') e P/(V), allora ogni applicazione

proiettiva ¢:P(V) —P/ (V) si rappresenta (a meno di proporzion-
alita) tramite una matrice A€ My, 1 pp/41(C). Il gruppo PGL(P(V))

¢ isomorfo al gruppo quoziente PGL(n,C):=GL(n+1,C)/C*.
Dato un riferimento su uno spazio proiettivo punteggiato P, il
riferimento duale sullo spazio proiettivo P* si dice il riferimento
di Pliicker, e le coordinate in quel riferimento si scrivono in riga.
Identificando un punto di coordinate a in P* con I'iperpiano di
P la cui equazione ¢ data da quelle coordinate abbiamo che
un punto di coordinate X appartiene all’iperpiano se e solo se
aX=0.

Se ¢:P—P ha matrice A in un riferimento scelto, i.e. p(X)=
AX ove le X sono coordinate omogenee, allora p:P* —P* ha
matrice A~1 nel riferimento duale, i.e. p(a)=aA~1.

Reciprocita, Polarita, Sistemi nulli. Una reciprocita ¢ un
isomorfismo proiettivo di uno spazio proiettivo sul suo duale

®:P(V)—P*(V). E equivalente ad avere un isomorfismo V —
V* o anche ad una forma bilineare non degenere p:V xV —C.
Una reciprocita si dice una polarita (risp. sistema nullo) se la
forma ¢ & simmetrica (risp. alternante).

Una reciprocitd determina una corrispondenza biunivoca tra
punti e iperpiani di P(V'). Se si tratta di una polarita, un punto
PeP(V) e l'iperpiano ®(P)eP*(V)xI(V) sono detti polo e po-
lare uno dell’altro.

Una reciprocita ¢ & polarita o sistema nullo se e solo se per
ogni P,QeP(V) si ha Pe®(Q)<QeP(P). In tal caso, se la
caratteristica del corpo C ¢ diversa da 2, ® ¢ polarita (risp.
sistema nullo) se e solo se esiste (risp. non esiste) un punto
PeP(V) tale che P¢®(P).

Varieta Proiettive. Un sottinsieme L di uno spazio proiet-
tivo P(V') si dice una varietd proiettiva (lineare) se & del tipo
P(W) per un sottospazio W di V; cioe se e solo se & stabile per
combinazioni lineari dei sui punti; ovvero sse per ogni coppia
di suoi punti contiene la retta che li congiunge.

Dati m punti Pp,...,Pm di uno spazio proiettivo P, si dicono
in posizione generale se gli m vettori che li rappresentano sono
li, ovvero sse la piu piccola varieta proiettiva che li contiene ha
dimensione m—1. In tal caso le equzioni della varieta proi-
ettiva congiungente gli m punti sono date dalla condizione
tk(X P; -+ Pm)=m, ove X=(Xq,...,Xn) sono le coor-
dinate scelte in P(V).

Spazi Affini e Proiettivi. L’immersione standard A" (C)—
P"(C) data da (X7q,...,Xn)—[1,X1,...,Xn] determina un iso-
morfismo di A"™(C) sull’aperto U di P"(C) determinato da
X0#0. L’applicazione inversa U — A" (C') si scrive come

X Xn
[X07X17'~-7XH]H(X7(1)7-"7 X0 )

Una matrice A€PGL(n,C) di una proiettivita di P™(C') si re-
stringe ad una affinitd di A™(C) se e solo se & (proporzionale
a una) della forma B:(lll 19/) con B’€GL(n,C), ovvero se e
solo se lascia (globalmente) stabile I'iperpiano “all’infinito” di
equazione X(=0. Viceversa ogni affinita di A™(C) si estende
unicamente ad una proiettivita di P"(C) della forma suddetta.
Le traslazioni di A™(C') sono le (restrizioni di) proiettivita che
lasciano puntualmente fermo l’iperpiano all’infinito. La sim-
metria di asse V e direzione U & la proiettivita involutoria
con V e U spazi di punti uniti complementari e U contenuto
nell’iperpiano all’infinito; in particolare se V & un punto, si
tratta della simmetria centrale di centro quel punto.

Due varieta affini in A™(C) sono parallele se e solo se i loro
completamenti proiettivi hanno intersezione lungo 'iperpiano
all’infinito, i cui punti quindi sono le “direzioni” possibili nello
spazio affine.

Dati uno spazio proiettivo punteggiato P e un iperpiano H CP,
I'insieme P~ H resta munito in modo canonico di una struttura
di spazio affine (della stessa dimensione di P) con spazio delle
traslazioni associato T:={¢€PGL(P)|¢¥(H)CH}. Scegliendo
un riferimento in modo che H=V (X)), i quozienti (% Yoo ))g—g)
si dicono le coordinate affini associate su P~ H.

Retta Proiettiva, Trasformazioni di Moébius, Birap-
porto. La retta proiettiva standard P1(C) si pud identificare
con la retta affine Al (C) a cui s’¢ aggiunto un punto all’infinito:

CU{oo} ove 0o & un simbolo fuori di C. Una proiettivita ¢ della
retta ¢ data da una matrice (‘; g) €PGL(2,C), e in coordinate

affini si pud scrivere come p(X)= (ij—%ﬁ (trasformazioni lineari

fratte, o trasformazioni di Moébius, o omografie), e si tratta di
affinita se si scrivono p(X)=c+dX.

Dati tre elementi distinti a,b,ce CU{o0}, la proiettivitd che
agisce con p(a)=o00, ¢(b)=0 e p(c)=1 si scrive come (X)=
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(c—a)(X—Db)
(c=b)(X—a)"
Definiamo come birapporto dei quattro elementi a,b,c,X€CU

{o0} il valore ¢(X): CR(a,b,c,X)=(abcX):= % Si

tratta di un invariante per trasformazioni di Moébius. Si noti
che (0001X)=X.

Dati quattro punti 4,B,C,X di P1(C) (di cui i primi tre dis-
tinti) il birapporto (cross ratio) si calcola tramite:
CR(A,B,C,X):(ABCX):I—(I’ ove [zg,z1] sono le coordinate

x
omogenee di X nel riferimento di P! (C) costituito dai punti

A,B,C. Si ha che CR(A,B,C,X):%.
In coordinate qualsiasi, se A=[ag,a1], B=[bg,b1], C=[cg,c1],
apgay apgay ’
_lcoa LNES
allora (ABCX)= 5oty ’ /| N ’
cocl zox]

In generale le proiettivita conservano gli allineamenti e il bi-
rapporto di quattro punti allineati.

Azione delle permutazioni: se (ABC D)=, allora:
(ABCD):(BADC)—(DCBA)—(CDAB)—
(BACD)=(ABDC)=(CDBA)=(DCAB)
(ACBD)=(BDAC)=(DBCA)=(CADB)
(ADCB)= (BCDA):(DABC):(CBAD):L,
( ( )
( ( )

(CABD)=(DBAC)=(BDCA)=(ACDB
(DACB)=(CBDA)=(ADBC)=(BCAD

Il birapporto & nullo se X=B, 1 se X=C
e oo se X=A. Nel caso C=R il valore di
(ABCX) risulta negativo se i primi due
punti separano gli ultimi due, positivo al-
trimenti.

I sei valori per permutazioni del birapporto tra quattro fissati
punti non sono tutti distinti se A=1 (allora i valori sono 1,0,00
e vi sono solo tre punti distinti), oppure A=—1 (allora i valori
sono —1,2,1/2; i quattro punti sono distinti e si dicono una
quaterna armonica) oppure se A2_A+1=0 (e allora i quattro
punti sono distinti e si dicono una quaterna equianarmonica;
su R non esistono quaterne equianarmoniche).

Una quaterna A, B,C, X si dice armonica se (ABCX)=-1. 1l
quarto armonico dopo tre punti distinti & unico, e di tratta del
punto di mezzo tra i primi due se il terzo punto ¢ co. Se ¢
& una involuzione di P1(C) (cioé una proiettivitd non identica
tale che 302:id) con due punti uniti A e B, allora per ogni
punto P distinto dai punti uniti vale (ABP(P))=—1. Vicev-
ersa dati due punti A e B di P1(C) e ceC~{0,00}, esiste una
unica proiettivita con punti fissi A e B e definita su P#A,B
da (ABPy(P))=c; si tratta di una involuzione sse c=—1.

Il quarto armonico dopo i punti a,b,c0 € il punto medio a;b
tra a e b. Il quarto armonico dopo i punti 0,00,z € il punto
opposto —z. La quaterna 0,a,b,c &€ armonica se e solo se a ¢ la
media armonica di b e ¢, ovvero se %:%(%—i—%)

Date due coppie di punti distinti della retta proiettiva, esiste
una unica coppia di punti che separa armonicamente entrambe
le coppie date.

Costruzione grafica del quarto armonico
dopo tre punti: siano A,B,C punti di
una retta proiettiva r immersa nel pi-
ano P2(C); si traccino due rette distinte
m,n(#r) per A e una retta h(#r) per C;
M:=mnNh e N:=nNh; u:=MVB e v:=
NVB; U:=unn e V:=vNm; k:=UVV;
il quarto armonico ¢ X:=kNr.

La costruzione consiste nella realizzazione di un quadrangolo

piano completo di diagonale la retta data, e sfrutta le proprieta
di questa figura.

Quadrangolo piano completo: & la figura
formata da quattro punti, a tre a tre non
allineati, detti vertici e dalle sei rette che
li congiungono, dette lati. I punti di inter-
sezione di coppie di lati opposti si dicono i
punti diagonali. Le rette passanti per due
punti diagonali si dicono le diagonali del
quadrangolo; in ogni diagonale i punti di-
agonali separano armonicamente i punti di
intersezione con i rimanenti due lati.

Infatti la composizione delle proiezioni su un lato concorrente
con la diagonale rispetto a vertici non coinvolti da quel lato da
una involuzione che scambia i punti diagonali e fissa gli altri
due.

Proiettivita tra rette immerse nel piano: una proiettivita tra
due rette distinte del piano si scrive come composizione di al
piu due proiezioni da rette a rette di centri opportuni:

se :r—71/, e A,B,Cer distinti, al-
loraitre punti (AVeB)N(BVpA), (AV
PC)N(CVpA) e (BVeC)N(CVeB) sono
allineati, la retta a che li congiunge
si dice asse di collineazione per ¢, e
la proiettivita si scrive come compo-
sizione della proiezione r—a di cen-
tro @A e della proiezione a—r' di = @A) N[
centro A. Siha che ¢ € una proiezione
(da un punto) se e solo se rNr’ viene
mandato in se. A

Una proiettivita di una retta in seé si scrive come proiezione di
al piu tre proiezioni da rette a rette di centri opportuni.
’

Proiettivita tra rette sghembe nello spazio
proiettivo: si tratta di proiezioni di centro
una retta (si pud scegliere qualsiasi retta
distinta da 7 ed 7’ che sia complanare con
le tre rette AVpA, BVpB e CVC).

Teorema di Desargues. Due triangoli A,B,C e A’,B’,C’ (di lati
a,b,c e a’,b ¢, ove una minuscola congiunge le due maiuscole
diverse) si dicono prospettivi se le rette AVA’, BVB' e CvC’
si incontrano in un punto; si dicono omologici se i tre punti
ana’, bAY e cAc’ sono allineati.

Due triangoli sono prospettivi se
e solo se sono omologici (si tratta
di un’affermazione autoduale: una \

implicazione ¢ duale dell’altra). N

Teoremi fondamentali della Geometria Proiettiva.

Siano L ed M varieta lineari sghembe in P della stessa dimen-
sione n; allora ogni proiettivita di L su M & una proiezione di
centro una varieta lineare di dimendione n.

Siano L ed M varieta lineari della stessa dimensione in P spazio
proiettivo di dimensione abbastanza grande; allora ogni proiet-
tivitda di L su M & composizione di al pitu due proiezioni.

Siano L, M ed N varieta lineari in P tali che N sia sghemba con
le altre due e LVN=MVN. Allora P—(PVN)AM induce una
proiettivita di L su M che ¢ I'identita su LAM. Viceversa, una
proiettivita di L su M che sia I'identita su LAM & proiezione
di M su L da un centro di dimensione dim(L)—dim(LAM)—

Siano L ed M varieta lineari della stessa dimensione s in P; sia
data una proiettivita di L su M che sia I'identita ristretta a N C
LAM di dimensione s—i (1<i<s+1). Allora la proiettivita &
composizione di al piu ¢ proiezioni da punti.
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Ogni proiettivita tra varieta lineari di dimensione s in P &
prodotto di al pitt s+2 proiezioni da punti.

Studio astratto delle Proiettivita. Sela matrice A€ My (C)
ha tutti gli autovalori in C, allora A & simile in C ad At;
in particolare A e A! hanno gli stessi autovalori con uguali
molteplicitd e nullitd (ma in generale gli autovettori sono di-
versi).

Elementi uniti delle proiettivita sono i sottospazi proiettivi
mandati in sé stessi. I punti uniti corrispondono agli autovet-
tori della matrice A della proiettivita; gli iperpiani uniti (in co-
ordinate pliickeriane) corrispondono agli autovettori della ma-
trice A'. Dunque c’¢ la stessa configurazione di punti e iperpi-
ani uniti. Due elementi uniti si dicono associati se corrispon-
dono allo stesso autovalore, non associati altrimenti. Un punto
ed un iperpiano uniti e non associati si appartengono. Se un au-
tovalore ha un unico punto unito, e dunque un unico iperpiano
unito, questi si appartengono sse ’autovalore ha molteplicita
maggiore di 1.

Se C & algebricamente chiuso, allora ogni proiettivita ammette
almeno una bandiera (i.e. una catena LgCL{C---CLp_1)
di varietd unite, e ogni varietd unita si inserisce in una tale
bandiera.

Le involuzioni sono le proiettivita ¢ non identiche tali che 4,02
sia l'identita. Se C ¢ algebricamente chiuso, una proiettivita
¢ una involuzione sse esistono due sottospazi complementari L
ed M di punti uniti, e associati a due autovalori uno opposto
dell’altro. Per ogni retta PVQ con P€L e Q€ M la proiettivita
indotta & una involuzione avente P e Q come punti uniti. Nel
caso delle rette proiettive: una proietivita € una involuzione sse
esiste una coppia di punti involutoria (P#Q tali che p(P)=Q e
»(Q)=P); inoltre esiste unica I'involuzione una volta assegnati
le immagini di due punti distinti (in particolare se vengono
assegnati due punti fissi distinti).

Una omologia ¢ una proiettivita non identica con un iperpiano
di punti uniti, detto asse di omologia; per dualita esiste un
punto unito centro di una stella di iperpiani uniti, detto centro
di omologia; I’omologia si dice speciale o generale a seconda che
il centro appartenga o no all’asse. La matrice di una omologia
in un riferimento che estenda un riferimento dell’asse & del tipo

0 -0\ se generale (il centro & il primo punto del riferi-

0 mento), il rapprto p/A si dice 'invariante dell’omo-
: Al logia e per ogni punto P fuori dell’asse e diverso
0 dal centro si ha (CH Po(P))=p/\;

ovvero

A1--0\ se speciale (I'ulteriore punto del riferimento ap-

0 partiene ad una retta unita esterna all’asse), il
A centro ¢ il primo punto del riferimento, I'asse &
0 PoVPyV---VPp.

Proiettivita della Retta. Se C & algebricamente chiuso, le
forme canoniche di Jordan classificano le proiettivita di P! (C)
in sé. Si hanno solo tre forme: l'identitd (di matrice AL con

A#0), Pomologia generale con due punti uniti (di matrice ((/}2)

con A#p non nulli), e omologia speciale con un solo punto
unito (di matrice (8‘)1\) con A#0).

Se C & qualsiasi, definiamo A(A):=(tr(A))2 —4det(A); una proi-
ettivitad si dice parabolica se A(A)=0, iperbolica se A(A) &
quadrato in C, ellittica se A(A) non & quadrato in C' (queste
condizioni dipendono solo dalla proiettivita e non dalla matrice
che la rappresenta). Una proiettivitd & parabolica, iperbolica,
ellittica a seconda che abbia un unico punto unito (necessaria-
mente razionale su C), due punti uniti distinti in P1(C), nes-
suno punto unito razionale su C' (e allora ha due punti uniti in

PL(CIVA])).

Se C'=R e ¢ & una involuzione, allora ¢ non & parabolica, ed &
ellittica o iperbolica a seconda che det(A) sia positivo o nega-
tivo. Se P,Q sono punti distinti, non uniti e non uno I'immagine
dell’altro per I'involuzione ¢, allora ¢ ¢ ellittica o iperbolica a
seconda che (Po(P)Q¢(Q)) sia negativo o positivo.

Proiettivita del Piano. Se C ¢ algebricamente chiuso, le
forme canoniche di Jordan classificano le proiettivita di P2 ()
in s¢. Si hanno sei forme: l'identitd (di matrice AI con A#0);

(

con A#p non nulli, & 'omologia generale (centro
Py e asse PV Py);

>
(=}
T oo
~——

0

00

A1 0\ con A#£0, & omologia speciale (centro Py e asse
0OXO

00X PoVvP);

A 0 0\ con A,u,v distinti e non nulli, vi sono tre punti e
0poO .

00 v/ tre rette unite;

A1 0\ con A#p non nulli, vi sono due punti uniti Py e
0OXO0 .

00 pu/) Pa, edue rette unite PV P e PyV Py;

6\ )1\ (1J con A#0, vi &€ un unico punto unito Py e un’unica
0 0 )/ retta unita PyVPy.

Proiettivita dello Spazio. Se C ¢ algebricamente chiuso, le
forme canoniche di Jordan classificano le proiettivita di P3(C)
in sé. Si hanno quattordici forme: I'identita (di matrice Al con

A£0

)

=

omologia speciale di asse PyV Py V P3 e centro Py;
sono unite le rette passanti per il centro;

la retta PyV P53 e di punti uniti, la retta PyV Py
¢ unita, il piano PyV PV Py & unito;

PyV Py é retta di punti uniti, le rette PyVP; e
P>V P3 sono unite, i piani PV PV P3 e PyV PV
P53 sono uniti;

il punto Py, la retta PyV P; e il piano PyV PV Py
sono uniti;
con \#u; PgV P e PyVP3 sono rette di punti
uniti, e sono uniti i piani dei fasci di asse quelle
due rette;

OO0y OO0 OO0 COO0OX COOM
OR OO OXFO OX00 OXHO OO0

T HOO TO0O TOO0OO TEHOO TO0OO TO0O0O »OO »HOoOO »OOO »OoOo

DA N W U W W W W e e e

con A#u; laretta PoV P3 ¢ di punti uniti, la retta
PyV P; e i piani che la contengono sono uniti;

con A#u; i punti Py e Py, le rette PyV Py e PoV
Ps, i piani PyV PV P3 e PyV PV P3 sono uniti;

con A#pu; € Yomologia generale di asse PV Py V
P53 e centro Fy;

con A#p; i punti Py e quelli della retta PV Ps,
sono uniti; il piano P;V Py V P35 e le rette di quel
piano contenenti P sono uniti;

con A\#pu; i punti Py e Py, la retta PV Py ed il
piano PV P,V P3 sono uniti;

con A, p e v distinti; Py, P; e i punti della retta
P5V P3 sono uniti; sui piani uniti PpV PV P3 e
PV PyV P3 sono indotte omologie generali;

con A, p e v distinti; Py, P; e P> sono punti uniti,
la retta PV P3 € unita; sui piani uniti PV PyV
P53 e PV PV P3 sono indotte omologie speciali;
con i quattro autovalori distinti; i quattro punti
fondamentali sono uniti, come pure i quattro iper-
piani e i sei assi.

OCR O OCEO OCKEO OCRO OCORO OORO OOXF OOXH OOXO OOXH OOXH OOX- OOXH

OV OO OO0 OROO Or O OO OO0 OO0 Ok 00

MOOO T OO ROOoO

N———

OO OO0y OO0y OO0y OO0y OO0y COO0OX O0OON

A~/ N 7 N 7 N 7 N7 N 7 N7 N7 N7 N 7NN 7NN

Collineazioni. Se 0:C—C’ & un isomorfismo di corpi, e V,
V' spazi vettoriali su C, C’ risp., una applicazione di gruppi
f:V—V"' si dice o-lineare se f(cv)=c? f(v) per ogni c€C e vE
V. Una applicazione P(V)—P(V’) si dice una o-proiettivita
se ¢ indotta da una applicazione o-lineare.
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Nota che se C=C’=R, allora 'unico automorfismo di corpo &
I’applicazione indentica (dipende dalla struttura d’ordine dei
reali).

Una applicazione suriettiva ¢:P1(C)—P(C’) tale che con-
serva i birapporti, (pApBpCpD)=(ABCD)? per ogni qua-
terna di punti distinti, & una o-proiettivitd. Se C=C", o=id:
le proiettivita tra rette sono le applicazioni biunivoche che con-
servano il birapporto.

Siano C e C’ corpi di caratteristica diversa da due; una ap-
plicazione suriettiva ¢:P1(C)—PL(C’) tale che conserva le
quaterne armoniche & una o-proiettivitd per un ben determi-
nato o:C'—C" iso di corpi (che dipende da ¢). Se C=C'=R:
le proiettivita tra rette sono le applicazioni biunivoche che con-
servano l’armonia.

Siano P e P/ spazi proiettivi di dimensione n>2 sui corpi C e
C’ risp., e 1:P—P’ una collineazione, i.e. una biiezione che
conservi ’allineamento dei punti; allora 1 € una o-proiettivita
per un ben determinato o:C —C" iso di corpi (che dipende da
). Se C=C’=R: le proiettivitd tra spazi di dimensione n>2
sono le collineazioni.

Forme Quadratiche e Bilineari.

Forme Bilineari. Siano V' e W spazi vettoriali su C; una ap-
plicazione bilineare ¢ una applicazione ¢:V X W —C' tale che
(040 w) = (0,0)+p(v W), (v, )= p(v,w)+p(v,u) o
p(Av,w)=Ap(v,w)=p(v,\w).

Una forma bilineare determina dua applicazioni lineari, una

trasposta dell’altra, p1:V—W* e po:W —V* tramite ¢1 (v)(w)=

e(v,w)=p2(w)(v).

Si definisce Nq(p)=ker(y1) (nucleo sinistro di ¢) e No(p)=
ker(yp2) (nucleo destro di ). La forma si dice non degenere
se i nuclei sono nulli. Se gli spazi vettoriali hanno dimensione
finita, la forma € non degenere se e solo se le applicazioni ¢ e
(9 sono isomorfismi.

Siano vy,...,vn € wy,...,wm basi di V e W rispettivamente;
allora la matrice A=(p(v;,w;)) si dice associata a ¢ nelle basi
date. Se v€V ha coordinate (z;) nella base scelta di V e we
W ha coordinate (y;) nella base scelta di W allora ¢(v,w)=
zt Ay. Cambiamenti di base di matrici P (z=Pz') e Q (y=Qy")
rispettivamente in V e W cambiano la matrice di ¢ in PtAQ.

Due matrici A e B in Mn(C) si dicono congruenti se esiste
PeGL(n,C) tale che B=P'AP. Si tratta di una relazione
di equivalenza: due matrici congruenti rappresentano la stessa
forma bilineare su V=W in due basi diverse.

Una forma bilineare ¢ su uno spazio vettoriale V' & una ap-
plicazione bilineare ¢:V xV —C'; & non degenere sse una (e
dunque ogni) matrice associata ¢ invertibile; si dice simmetrica
(risp. alternante) se ¢(v,w)=¢(w,v) per ogni v,weV (risp.
©(v,v)=0 per ogni ve€V'). Una forma & simmetrica (risp. alter-
nante) se e solo se una (e allora ogni) matrice associata & sim-
metrica (risp. antisimmetrica). Se il corpo C ha caratteristica
diversa da 2, allora ¢ & alternate se e solo se ¢(v,w)=—p(w,v)
per ogni v,w€V. Se il corpo non ha caratteristica due, ogni
forma bilineare su V' si scrive unicamente come somma di una

forma bilineare simmetrica e di una antisimmetrica; ogni ma-
t
trice A€ Mp(C) & somma di una matrice simmetrica A'EA e
. .. . A—A?
di una antisimmetrica =5=-.

Se la forma & simmetrica o alternante, allora i due nuclei coin-
cidono, e la dimensione del nucleo N(¢) coincide con la nullita
di una qualunque matrice associata. Inoltre se U & un com-
plementare di N(¢) in V, allora YU ¢ una forma bilineare
(simmetrica o alternante) non degenere su U. In particolare

esiste una base di V tale cha la matrice associata ha forma
(g g) con B matrice non degenere.

Ortogonalita. Una base di V' si dice ortogonale per la forma ¢
se ¢(v;,v5)=0 se i#j; di dice ortonormale se p(v;,v;)=0d; ;.
Dato un sottospazio U di V, si definiscono gli ortogonali sin-
istro e destro di U per la forma ¢ tramite ~U={veV|p(v,U)=
0} e ULt ={veV]p(U,w)=0}. Se la forma & simmetrica o al-
ternante, i due ortogonali coincidono; se la forma ¢ non de-
genere, si hanno le usuali regole: U<U’ implica UJ'ZU’J-7
U+l =u, U+U)t=vLnu't, (UNU)L=UL+U'L; inoltre
dimcU+dimg Ut =dimc V. Per ogni sottospazio U di V risulta:
UNUL =0 sse el & non degenere, sse V=U®UL (se ¢ € non
degenere & ancora equivalente che V:U—l—UJ-).

Un vettore v€V si dice isotropo se ¢(v,v)=0. Un sottospazio
U si dice isoptropo se UQUJ-7 cioe se e solo se la forma ristretta
a U ¢ identicamente nulla. Se ¢ & non degenere, allora per ogni
sottospazio U non isotropo si ha che V=U® vt (teorema di
decomposizione ortogonale). La forma ammette vettori isotropi
se e solo se esistono sottospazi U di V' con UﬂUl;ﬁO. Se la
caratteristica del corpo C non & 2, e la forma ¢ non ¢ nulla,
allora esistono vettori non isotropi; ed esistono basi ortogonali
rispetto a ¢. In particolare, se C ¢ algebricamente chiuso, per
ogni matrice simmetrica A esiste un cambiamento di base P
tale che PtAP= (Hﬁf 8)

Se C'=R, allora per ogni matrice simmetrica A esiste un cam-

I, 0 O
biamento di base P tale che PPAP=| 0 —I, 0 | (teorema di
0o 0 0

Sylvester o regola di inerzia). In particolare nel caso reale una
forma simmetrica non degenere ammette una base ortonormale
se e solo se p(v,v)>0 per ogni v£0; in tal caso la forma si dice
definita positiva; si dice definita negativa se la sua opposta &
definita positiva.

Una matrice reale simmetrica A ¢ definita, positiva sse A=P?P
con PeGL(n,R) (i.e. se & congruente alla matrice identica), o
anche sse esiste una catena di minori principali positivi, e in tal
caso ogni minore principale € positivo; una matrice simmetrica
¢ definita negativa sse esiste una catena di minori principali
con segni alterni (iniziando con un valore negativo).
Isometrie. Una applicazione lineare f:V —W tra spazi vetto-
riali dotati di forme bilineari ¢ e ¢ si dice una isometria se
W(fv, fo')=¢(v,v') per ogni v,v'€V. In tal caso f & un iso-
morfismo. Se A, B, F sono le matrici rispettivamente di ¢,
v, f in fissate basi di V e W, allora f & isometria se e solo se
F!BF=A.

Per ogni coppia a,b di naturali si definisce il gruppo O, p(R)
delle isometrie reali di segnatura (a,b) come il gruppo delle
matrici P d’odine a+b tali che P!AP=A per A= (% _Gﬁb). Si
dicono isometrie euclidee se b=0 (sono le matrici ortogonali) e
trasformazioni di Lorentz se b=1. Il determinante di matrici
in Oa,b(R) € necessariamente £1, e il sottogruppo delle matrici
con determinante 1 si indica con SO, ;(R).

Per n=2 abbiamo i piani eclideo reale (segnatura (2,0), le ma-
trici di SO9(R) sono quelle trigonometriche), iperbolico reale
(segnatura (1,1), le matrici di SO1 1(R) sono quelle trigono-
metriche iperboliche), e il piano euclideo opposto (segnatura
(0,2)).

Se V' spazio vettoriale reale di dimensione n ammette una forma
bilineare alternante non degenere, allora la sua dimensione &
pari, sia 2m, ed esiste una base di V in cui la matrice della
forma diventa A:(Pﬂ g)) I1 gruppo delle matrici P tali che

PYAP=A si dice gruppo simplettico d’ordine m.

Aggiunzione. Data f:V — W applicazione lineare tra spazi vet-
toriali su C' dotati di forme bilineari non degeneri ¢ e v, defini-
amo l'applicazione aggiunta f%:W —V tramite la posizione:
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Y(fv,w)=p(v, fPw) per ogni veV. Se A, B, F sono le matrici
rispettivamente di ¢, v, f in fissate basi di V' e W, allora ma-
trice di £ risulta A~1F!B. Risulta (gf)%=f%?, id{,=idy,
faa=f.

Endomorfismi simmetrici. Sia V uno spazio vettoriale reale
dotato di una forma bilineare ¢ non degenere. Un endomor-
fismo f di V si dice simmetrico se ¢(fv,w)=¢(v, fw) per ogni
v,wEV; cid succede sse f=f% (f & autoaggiunto), ovvero sse
F'A=AF se A e F sono le matrici di ¢ e f in una fissata base
(in particolare sse le matrici associate a f in basi ortonormali
per ¢ sono simmetriche).

Ogni endomorfismo simmetrico ammette una base di autovet-
tori ortogonali; in particolare ogni matrice reale simmetrica &
ortogonalmente diagonalizzabile.

Forme Quadratiche. Una forma quadratica su uno spazio
vettoriale V su C & una applicazione Q:V —C tale che Q(av)=
OCQQ(’U) per ogni veV, a€C e la funzione ¢:V xV —C definita
da p(v,0")=Q(v+v")—Q(v) —Q(v’) sia bilineare (e allora neces-
sariamente simmetrica). Se il corpo C ha caratteristica diversa
da due, vi € una corrispondenza biunivoca tra applicazioni bi-
lineari su V' e forme quadratiche su V.

Supponiamo che C sia un corpo di caratteristica diversa da
due. Un polinomio Q(X)eC[X] omogeneo di grado due de-
termina una forma quadratica di matrice simmetrica A=Ate
Mn(C) data da Q(X)=X!AX ove X=(X1,...,Xn)t; e una
forma bilineare associata data da G(X,Y)=X?AY, ove anche
Y =(Y1,...,Yn)t.

Forme quadratica e bilineare corrispondenti sono legate dalle
relazioni Q(X)=G(X,X) e G(X,Y)=%(Q(X+Y)-Q(X-Y)).

Un cambiamento di base P€GL(n,C') cambia la matrice della
forma quadratica in PY!AP. Due matrici simmetriche A,B€
My, (C) si dicono congruenti in C se e solo se esiste P€ GL(n,C)
tale che B=P?AP (si tratta di una relazione di equivalenza).
Si dicono ortogonalmente congruenti, o equivalentenente ortog-
onalmente simili, se si ha P€O(n,C).

Sia @ una forma quadratica su R, di matrice associata A;

Teorema di Sylvester (regola di inerzia): esistono due interi p
e q con p+q<n, (gli indici della forma) e un cambiamento di

base PEGL(n,R) tali che Q(PZ)=Y"P_ 22— fi§+lzi2;

esiste un cambiamento di base ortogonale P€O(n,R) tale che
Q(PZ):X::.L_I)\izi2 ove i A; sono gli autovalori della matrice
A (dunque p+q ¢ il numero di autovalori non nulli);

esistono un intero r e un cambiamento di base complesso P&
GL(n,C) tali che Q(PZ)=Y""__ 22

i=17%"
Teorema di Jacobi. Sia A matrice simmetrica in M, 1(C);
poniamo A; il minore d’ordine ¢+1 dato dalle prime i+1 righe
e colonne. Allora se A;#0 per ogni i, A & congruente alla
matrice diagonale Ag,A1/Aqg,...,An/Ap_1.
Completamento dei quadrati. Una forma quadratica si puo
diagonalizare tramite il procedimento di completamento dei

quadrati: si procede per ricorrenza (discendente) sul numero
di variabili costruendo la trasformazione di coordinate tramite:

e se c’¢ un termine quadratico, supponiamo a=aqgg7#0 poni-
amo an+2)\X0+1/J:a(XO+a_1)\)2+(1/J—a_1)\2) (si pone
ZO:XO—f—a*l/\; I'ultima parentesi non dipende da Xj);

e se tutti i termini quadrati sono nulli, possiamo supporre
b=ap1#0 e poniamo

bXX1+AX0+uX1+p=b(Xo+b~1u)(X1+b—N)+(—b—1Ap)

(ultima parentesi non dipende da Xy e X1) e usare I'identita
4pg=(p+q)% — (p—q)? al primo termine (si pone p=Xg+b~1p,
q=X14+b"" X e poi Zg=p+q e Z1=p—q).

Coniche.

Coniche. Una conica C ¢ una curva di grado due in P2(C).
Scriviamo C=V(Q) con Q(X)eC[X]; (omogeneo) di grado
due, e anche Q(X)=X*AX con X=(X,X1,X2) e
@0,0 @0,1 Q0,2

— ? ’ D)= At : /_(@1,1 Q1,2
A= <gg:; Zi; g;zg)fA €M;3(C). Sia A 7(a172 aZ,z)GMQ(C).
Se P & un punto del piano, ’equazione complessiva delle tan-
genti a C per P & data da (X*AX)(PtAP)—(P'AX)2=0; si
tratta di una conica spezzata.

Riducibilita. La conica C & irriducibile e non singolare se e
solo se detA#0, e in tal caso se P€C ’equazione della tangente
in P& PLAX=0; & C=r+s con r#s rette distinte in P} (C) se
e solo se rkA=2, e in tal caso 'unico punto doppio & rNs ed &
razionale su C; € C=2r con r retta definita su C se e solo se
rkA=1, e in tal caso tutti i punti di C sono doppi.

Polarita rispetto a una Conica. Sia C una conica irriducibile
in P2(C) di matrice associata A. Polarita associata alla conica
& la proiettivita P2(C)—P2(C)* data da P—p:=P'A. La
retta (di coordinate) p si dice la polare del punto P, e P si dice
il polo di p. Proprieta della polarita:

Pegq se e solo se Q€p (reciprocita);
Pep se e solo se PeC, sse p € tangente a C;

se P¢C allora pNC sono i punti di tangenza delle tangenti a C
per P;

Costruzione grafica della polare: se le tangenti alla quadrica
da P sono razionali su C, allora la polare di P & la retta con-
giungente i due punti di tangenza; altrimenti & la retta che
congiunge i poli di due qualsiasi rette distinte passanti per P.

Un triangolo & autopolare rispetto alla conica C se ogni vertice
& polo di un lato. Un tale triangolo si dice autopolare di prima
specie se ogni vertice & polo del lato opposto; di seconda specie
altrimenti, nel qual caso due lati sono tangenti alla conica.

Armonie della polarita: per ogni retta r non tangente a C
I’applicazione di r in sé che manda P in pNr ¢ una proiettivita
involutoria con punti fissi 7NC; quindi per ogni punto P non
appartenente alla conica, e ogni retta r per P e non tangente
a C, la quaterna P, pNr, rNC & armonica. Quindi ’omologia
involutoria di centro P e asse p lascia globalmente invariata C.

Proiettivita delle coniche. La parametrizzazione razionale
di una conica irriducibile C si ottiene a partire da un punto
Py€C e dalla biiezione C— Py = stella di rette di centro Py:
immagine di PeC ¢ la retta PyVP. Una seconda parametriz-
zazione usando un altro punto P; differisce dalla precedente per
una proiettivita Bj — P tra le due stelle (in particolare risulta
definito il birapporto di quattro punti, almeno tre distinti, su
una conica irriducibile: come il birapporto tra le quattro rette
in una parametrizzazione).

Viceversa: generazione di Steiner di una conica. Siano P,Q
punti in un piano proiettivo, e sia p: P* —Q™* una proiettivita
tra le due stelle di rette di centri P e @ rispettivamente, con
p(PVQ)#PVQ. Allora rNp(r) al variare di 7 in P* sono i
punti di una conica irriducibile contenente P e Q.

Duale della generazione di Steiner di una conica. Siano r ed
s due rette di un piano proiettivo, p:r—s una proiettivita con
p(rAs)#rAs (i.e. non una proiezione). Allora le rette PVp(P)
al variare di P€r sono le tangenti ad una conica non degenere,
che ammette r ed s come tangenti.

In particolare: dati due triangoli con vertici in una conica non
degenere C, esiste una conica D che ¢ inscritta in entrambi i
triangoli dati.

Proiettivita. Definiamo GP(C) il gruppo delle trasformazioni
biiettive di una conica irriducibile C in sé che conservano il
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birapporto di ogni quaterna di punti di C; sia GO(C) il sot-
togruppo delle proiettivita del piano che mandano C in se. Al-
lora la restrizione induce un isomorpfismo GO(C)—GP(C) di
gruppi (in particolare, ogni proiettivita della conica si estende
a una proiettivita del piano).

Teorema dell’asse di proiettivita: supponiamo C' algebricamente
chiuso, e sia p una proiettivita di C; definiamo ’asse di p come
la congiungente i punti fissi (eventualmente la tangente a C
nell’'unico punto fisso). Allora per ogni coppia di punti P e Q
di C, distinti dai punti fissi, si ha che I'intersezione di PVp(Q)
e QVp(P) appartiene all’asse.

Teorema di Pascal. Sia C una conica irriducibile, A1,A9,A3,B1,Bg

punti di C; un punto Bs del piano appartiene a C se e solo se
i tre punti (A;V B;)A(A;V B;) sono allineati (e la retta si dice
retta di Pascal; dati sei punti sulla conica, esistono 60 rette di
Pascal associate). In particolare i lati opposti di un esagono
inscritto in C si intersecano in un punto.

Teorema di Brianchon. Le diagonali di un esagono circoscritto
a una conica irriducible si intersecano in un punto (duale di
Pascal).

Sistemi Lineari. Le coniche di P2(C) formano uno spazio
proiettivo su C' di dimensione cinque. Diciamo sistemi lineari
di coniche le famiglie di coniche che corrispondono a varieta
lineari di P5 (C), e condizioni lineari quelle che determinano un
sistema lineare. La condizione si dice n-pla se determina una
varieta di dimensione 5—n di P5(C). Fasci sono i sistemi lineari
di dimensione uno.

Condizioni lineari sono: Il passaggio per un punto (semplice),
per due punti distinti (doppia), per tre punti non allineati
(tripla), per quattro punti a tre a tre non allineati (quadru-
pla), passaggio per un punto e con data tangente (doppia).
Non ¢ lineare la condizione di avere una data tangente (se non
si prefissa il punto di tangenza); si tratta di una condizione
quadratica (determina un cono di P?(C) con vertice di dimen-
sione 2). E lineare doppia la condizione che un punto abbia
una fissata retta come polare.

Fasci. Tre coniche A, B,C di un fascio determinano un sistema
di coordinate proiettivo sul fascio, per cui ogni conica del fascio
si scrive cone C(A, 1) =V (Xt*(AA+pB)X) e le coniche degeneri
del fascio sono individuate da det(AA+pB)=0, equazione omo-
genea di grado tre in A e p. Ogni fascio di coniche irriducibile
(i-e. tale che non tutte le sue coniche siano riducibili) contiene
da una a tre coniche riducibili.

Classificazione dei fasci irriducibili:

fascio di ciclo base A+B+C+D, cioé passanti
per i quattro punti assegnati; vi sono tre coniche
degeneri: (AVB)+(CVD), (AVC)+(BVD), (AV
D)+(BVC);

fascio di ciclo base 2A+ B+ C, cioé passante per S#C
i tre punti dati e con tangente r assegnata in B
A; vi sono due coniche degeneri: 74+(BVC) e A
(AVB)+(AVC); - T

fascio di ciclo base 2A+2B, cio¢ passante per i

due punti dati e con tangenti r ed s assegnate tali

che A¢s e B¢r; vi sono due coniche degeneri: 4
r+s e 2(AVB);

T
fascio di coniche osculatrici a una conica irriducibile
C in A (r sia la tangente); ciclo base 3A+ B con B
B# A un punto di C; unica conica degenere del
fascio ¢ 7+ (AV B); r
A
; r

fascio di coniche iperosculatrici a una conica ir-
riducibile C in A (r sia la tangente); ciclo base
4A; unica conica degenere del fascio ¢ 27.

Dato un fascio di coniche, su ogni retta r non contenente punti
del ciclo base del fascio viene indotta una involuzione che manda
ogni punto P€r nella intersezione (diversa da P) di r con la
conica del fascio passante per P.

Classificazione Proiettiva di Coniche Reali. Consideri-
amo le coniche non singolari di IPD%((C); a meno di equivalenza
proiettiva complessa esiste un’unica classe di coniche non de-
generi, con equazione canonica X3+X12+X2:O.

A meno di equivalenza proiettiva reale esistono due classi di
coniche non degeneri, a seconda che abbiano punti reali (equa-
zione canonica X% +X22—Xg =0), oppure che non abbiano alcun
punto reale (equazione canonica X8+X12+X§:O).
Classificazione Affine di Coniche Reali. Le coniche non
singolari di AD%((C) si dividono in due classi a meno di affinita
complesse, in funzione della loro posizione con la retta impro-
pria; sia C' il polo della retta impropria e diciamo diametri di
C le rette passanti per C. Si distinguono:

coniche a centro se il polo della retta impropria &€ un punto pro-
prio (che si dice il centro e ha coordinate date dai minori, con
segni alterni, delle ultime due righe di A); equazione canonica
per le coniche a centro & X24v2=1. L’applicazione dr—d’:=
DV C si dice l'involuzione dei diametri coniugati (rispetto alla
polarita indotta da C); si tratta di una proiettivitd involuto-
ria del fascio di rette di centro C'; due rette di punti impropri

[0,\,1] e [0,\,11/] sono coniugate se e solo se (Au)A’ (2i):0;

equazione dei diametri coniugati: a272mm,+a1’2 (m+m’)+a1 ,1=0.

La retta impropria e due diametri coniugati danno un riferi-
mento autopolare per le coniche a centro. Un diametro au-
toconiugato, dunque tangente a C nel suo punto improprio, si
dice un asintoto di C; equazione dei diametri autoconiugati:
a272m2+2a172m+a1,1=0.

parabole se sono tangenti alla retta impropria; cio succede se e
solo se det A’ =0; equazione canonica per le parabole & 2y =X2
(in un riferimento autopolare formato da: retta impropria, una
retta di direzione il punto di tangenza improprio, la tangente
nell’altro punto della seconda retta). Ogni retta passante per
il punto improprio della parabola si dice un diametro della
parabola, e ha polo sulla retta impropria.

Le coniche non singolari di AE%((C) si dividono in quattro classi
a meno di affinita reali, tre classi di coniche a centro, e la classe
delle parabole (ellissi, iperboli e parabole a seconda che CNroo
sia. P4 P non razionali su R, P+Q, 2P):

ellissi senza punti reali, di equazione canonica X2+Y2+1:0;
caratterizzata da: A & definita (positiva o negativa) e detA’ >0;
ellissi con punti reali, di equazione canonica X2+Y2:1; carat-
terizzata da: A non & definita (positiva o negativa) e detA’ >0;

iperboli, di equazione canonica X27Y2:1; caratterizzata da:
det A’ <0;
parabole, di equazione canonica 2Y:X2; caratterizzata da:
det A’ =0.

Proprieta diametrali (simmetrie e as-
intoti): ogni conica a centro & sim-
metrica rispetto al centro e rispetto
ad ogni diametro nella direzione ad
esso coniugata (dunque nella direzione
delle tangenti ai punti di intersezione
del diametro con la conica); i diametri
autoconiugati sono asintoti.

Ogni parabola ¢ simmetrica rispetto
ad ogni diametro, nella direzione ad
esso coniugata (dunque nella direzione
della tangente al punto di intersezione
propria del diametro con la parabola).
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Classificazione Metrica1 Euclidea. Le trasformazioni am-
00
messe sono del tipo B= (% B’) con B'€O(2,R) e (z) €R2. 1

punti ciclici di E2(R) sono Joo =1[0,1,i] € Joo=1[0,1,—4]. Dunque
per la rigidita ¢ associata a B si ha ¢ Joo =Jo se B'e0t(2,R)
e pJoo=Joo se B'€0(2,R)~0OT(2,R).

Diciamo circolo una conica reale irriducibile passante per i
punti ciclici. L’equazione di un circolo & X24+Y242cX +2dY +
e=0 con e—c? —d27é0; centro del circolo & (—c¢,—d). Se poi
e—c?—d? <0 poniamo RZ2=c2+d? —e, R si dice il raggio del cir-
colo, che ha equazione (X +c¢)2+(Y +d)2=R2, e dunque rapp-
resenta il luogo dei punti di distanza R dal centro C=(—c,—d).

Definiamo gli assi di una conica a centro come i diametri ortogo-
nali al proprio coniugato. Nel caso di un circolo ogni diametro
& un asse. Altrimenti esiste una unica coppia d,d’ di assi i
cui punti impropri [0,A,u] e [0,—u,A] soddisfano all’equazione
a1’2/\2+(a1’1 —ag’g)/\u—al’guzzﬂ. Vertici di una conica a cen-
tro sono le intersezioni della conica con gli assi.

Definiamo ’asse di una parabola di punto improprio C una
retta d per Coo che sia ortogonale al suo polo D. Dunque una
parabola ha un unico asse di punto improprio Coo=[0,\,u] e
polo D=[0,—p,]], e di equazione (0 a1 2 ag 2)AX=0. Vertice
della parabola ¢ V=CNd.

Equazioni canoniche. Per le coniche a centro: sia (C,D, D’ rec,d,d’)

il triangolo autopolare di prima specie formato dal centro a da
a 00

due assi; in tale riferimento si ha A= (8 8 0) con a,b,ceR*;
C

dunque la conica ha equazione aX2+8Y2=1 con o,BERX.

Sia tratta di una iperbole se a3<0, di una ellisse con punti

reali se a,3>0, di una ellisse senza punti reali se «,3<0.
N . X2 ,v2

Le equazioni si possono anche scrivere :I:? + 5= 1 con a,b>0

che si dicono i semiassi della conica.

Per le parabole: sia (Coo,D,V,rc0,d,DVV) il triangolo autopo-
lare di seconda specie formato dal punto improprio, dalla po-
lare dell’asse e dal vertice; allora A=(8 % 8) =b( 8 (1) _Op)
b0O —p0 O
con p€R*; dunque la conica ha equazione X2 =2pY’; possiamo
supporre p>0 e si chiama il parametro della parabola.

Invarianti ortogonali. 1 tre valori detA, detA’ e trA’ sono
invarianti per rigidita, i.e. per congruenza tramite matrici del
tipo B consentito. Si dicono gli invarianti ortogonali.

e la conica & a centro se e solo se det A’ #0 e una sua equazione
& proporzionale a a+,@X2+7Y2 =0 con afBy=detA, By=
detA!, B+y=trA’.

e la conica & una parabola se e solo se detA’=0; una sua
equazione € proporzionale a ,@XQZQQY con —a,@2:detA,
B=trA’, a5>0.

Fuochi. Una retta r per PeE? ¢ detta principale di C in P se
la retta per P ortogonale a r ha polo (rispetto a C) in r; cioé
se e solo se la retta r e la sua ortogonale per P sono coniugate.
Una coppia di tali rette per P si dice una “dupla principale”
di C in P.

Un punto Fe€E? si dice un fuoco di C se per F vi sono infinite
duple principali; cio accade sse il fascio di coniche generato da C
e da (FVJso)+(FVJoo) contiene rette doppie; sse (F'VJoo) €
FVJoo sono tangenti a C. Dunque i fuochi sono le intersezioni
delle tangenti a C dai punti isotropi di E2.

. X24X2 X1 —Xg .
La condizione rk { A—X| =-x;° 1 o =1 determina le

—Xo 0 1
quadriche focali.

Nel caso delle equazioni canoniche:

2 2
Ellissi: f—z—l—%:l con a>b,

Fl( V (l2—b2,0), F2(_ V a2_b270);
F(0,iv/a2—b2), F(0,—iv/a2—b2);
2

2
Iperboli: )a(—z - }b/—z =1,

Fl( V a2+b270)7 FQ(_ V a2+b270);
F(0,iy/a2+4b2), F(0,—i\/a2+b2);

Parabole: X2=2pY’, F(O:%)~

L’asse focale a ¢ la retta contenente i due fuochi razionali per
le coniche a centro, e ’asse contenente il fuoco e il punto im-
proprio per le parabole. L’involuzione focale & 'involuzione
dell’asse focale data da R—S se R=rNa, S=sNa con 7,s rette
principali per P¢a. Si pud ottenere usando una qualsiasi retta
u per R€a, e intersecando a con la retta u’ ortogonale a u pas-
sante per il polo U(€r) di u (la funzione ursu’ corrisponde a
r—reo, U— UOJ;), che & prospettivita di centro in a; tale centro
& 'immagine di R tramite l'involuzione focale).

Per le coniche a centro (risp. parabole) si tratta della in-
voluzione con punti fissi i due fuochi (risp. il fuoco e il punto
improprio).

Le rette principali per P¢a sono le bisettrici di PVFy e PV Fy
se la conica ¢ a centro, le bisettrici di PVF e PVCxo se si
tratta di una parabola. Se P€C si tratta di tangente e normale
nel punto: _ ’

Le ellissi (risp. le iperboli) sono i luoghi del piano per cui la
somma (risp. la differenza) delle distanze da due punti fissi (i
fuochi) sono costanti.

Eccentricita. Per una conica a centro, siano Vi, Vo i vertici
dell’asse focale a; definiamo 1’eccentricita e:%;
e<1 per le ellissi (e=0 per i circoli), e>1 per le iperboli, si
definisce e=1 per le parabole.

2 2 —s
Se I'equazione & X—zig—z:L allora, e:@‘lab.

risulta

Si dice direttrice di una conica C una retta che sia polare di un
fuoco.

Una conica ¢ il luogo dei punti del piano per cui il rapporto e tra
la distanza da un punto (fuoco) e una retta (direttrice) fissati
¢ costante; si tratta di ellissi, parabole o iperboli a seconda che
e sia minore, uguale o maggiore di 1.
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Quadriche.

Una quadrica ¢ un divisore di ordine 2 in P™(C). Fissato un
riferimento, una quadrica Q corrisponde a V' (¢(X)) con ¢(X)=
Zog,jgn“inin ove a;;=aj;, € a cui associamo la matrice
simmetrica (non nulla) A=(a;;) di ordine n+1 a coefficienti in
C; risulta p(X)=XtAX.

C’¢ una biiezione tra quadriche di P™(C) e matrici simmetriche
non nulle in My, 41(C) a meno di proporzionalita, dunque con

struttura di spazio proiettivo di dimensione (nJ2r2) —1.

Un cambiamento di coordinate X=PY con PeGL(n+1,C)
comporta che la stessa quadrica avrd matrice B=PtAP; due
matrici si dicono congruenti se tra loro vale questa relazione.
Due quadriche Q e Q' sono proiettivamente equivalenti (cioe
esiste una proiettivitd f di P"(C) con f(Q)=Q’) se e solo se
le matrici associate in un fissato (e dunque in ogni) sistema di
riferimento sono (proporzionali a) matrici congruenti.

Quadriche nella retta proiettiva. Se n=1 allora una quadrica
¢ la somma di due punti di Pg(C); se A= (gg(l) g[ﬁ) ponendo

Azfdet(A):aglfaOOall possiamo distinguere tre casi:

(e) VAEC, allora si tratta di due punti distinti non razionali
su C (ciot in PE(C) ma non in P*(C): coppia ellittica di
punti);

(i) VAeC, A#0, allora di tratta di due punti distinti razionali
su C (cioe di P"(C): coppia iperbolica di punti);

(p) A=0, allora si tratta un punto (doppio), razionale su C (cop-
pia parabolica di punti).

Generalita in P™(C) per n>2. In generale una quadruca &
determinata dal suo supporto: se & irriducibile, abbiamo Q=
1V con V ipersuperfice irriducibile; se Q=1H+1H’ con H ed
H' iperpiani distinti di P{%(C), abbiamo Supp(Q)=HUH’; se
Q=2H con H iperpiano, allora Supp(Q)=H (gli ultimi due casi
la quadrica si dice riducibile). In particolare identifichiamo Q

con Supp(Q) che & un sottinsieme di P (C), e usiamo Qo=
oNP((C).

Punti singolari e Coni. Risulta 38790 =2AX=2X*A; dunque
un punto P di coordinate = & singolare per Q=V(p(X)) se e
solo se Az=0 (dunque si tratta d’una varietd lineare); se P
non ¢ singolare, allora 2t AX=0 & lequazione dell'iperpiano
tangente a Q in P.

La quadrica Q ha punti singolari se e solo se una (dunque
ognuna) dalle sue matrici associata & singolare (i.e. di rango
r<n), se e solo se & un cono (in tal caso il vertice & definito su
C, coincide con l'insieme dei punti singolari e ha dimensione
n—r; Q & allora proiezione dal vertice di una quadrica non
degenere di una varietd complementare).

Sia 7 il rango di A, matrice associata a Q; allora: se 2<r<
n abbiamo una quadrica irriducibile (cono); se r=2 abbiamo
Q=H+H’ con H ed H' iperpiani distinti di Pg(é); se r=1
abbiamo Q=2H con H iperpiano.

Scegliendo coordinate in modo che v(Q) abbia equazioni Xg=
--=X,,_1=0, sia M la varietd complementare di equazioni
Xr=--=Xpn=0 e sia A’ la matrice (invertibile) di o'=9n

M (che & quadrica non degenere di M); allora © ha matrice
(¥5)

0 0)°
Dunque ogni matrice simmetrica a coefficienti in C' ¢ congru-
ente in C ad una tale matrice con A’ matrice quadrata invert-
ibile di ordine r (rango di A).
Polarita. Sia Q una quadrica non degenere di P™(C); la po-
larita rispetto a Q & 'applicazione P2 (C) —P% (C)* che manda

il punto P di coordinate x nell’iperpiano PL di coordinate

pliickeriane zt A (PJ- si dice polare di P, e P polo di PJ-).
L’iperpiano P ¢ razionale su C se e solo se il punto P lo e.
Due punti P e @ si dicono coniugati, e si scrive P_LQ se PGQL
(equivalentemente QEPL), e vale se e solo se xt Ay=0=y! Az
(se e y sono le coordinate dei due punti).

Per un sottinsieme Z di P (C') definiamo il polare rispetto a Q
7L ={QePL(C)|QLP, YPEZ}. Si hanno gli usuali risultati:

ZJ-:ﬂP€ZPJ- & varieta lineare, coincidente con LtseLela
varieta lineare generata da Z; una varieta lineare L & razionale
su C se e solo se L+ 1o & LtL=L; per due varieta lineari
L ed M risulta che L<M sse ML+ <L+, (LvM)t =Lt AMt,
(LAM)+=L+vMmL,

La varieta Lt si dice la polare di L.

Generalizzazione per quadriche qualsiasi. Sia Q una quadrica
qualsiasi in P (C); se L=P(U) & varieta lineare di spazio sovras-
tante U, definiamo L1 come la varieta lineare P(UL) dove
U+ ={v€Vy11(0)|yt Az=0, Vy€U?} (nel caso di quadriche non
degeneri le definizioni sono equivalenti). Se L=P"(C) allora
LL=v(Q) (vertice della quadrica), se Pev(Q) allora P+=
P"(C); se P¢v(Q) allora PL & un iperpiano contenente v(Q).
In generale, se L & varietd di dimensione m e LNv(Q) ha di-
mensione s, allora L1 & varieta lineare contenente v(Q) e di
dimensione n—m+s.

Per n=1, Q=Q1+Q2 (punti distinti di IF‘"Cl, (C)) la polarita as-
sociata a Q & l'involuzione con @)1 e Q9 punti uniti; dunque
P1lQ seesolose (Q1Q2PQ)=—1.

Piani e Coni Tangenti. Per n>2 abbiamo P€Q se e solo se
PGPL7 e in questo caso pPle I'iperpiano tangente a Q in P
(di equazione zt AX =0 se z sono le coordinate di P).

Una varieta lineare L si dice tangente a Q se LC Q oppure LNQ
e quadrica degenere di L; dunque un iperpiano H & tangente
a Q sse HNQ & degenere. L’iperpiano H & tangente a Q sse
H>H-t =P, eallora H &’iperpiano tangente a Q in P, e questo
¢ Punico punto in cui H & tangente a Q; vale sse aA~Lal =0 (se
a sono le coordiante pliickeriane di H, si tratta dell’equazione
della quadrica inviluppo di Q).

Una varieta lineare L & tangente a Q sse L ed L+ sono incidenti;
LCQ sse L<LL. Se L non & tangente a Q, allora LNQ &
quadrica non degenere di L, e la polarita associata a LNQ in
L é la restrizione a L della polarita associata a Q.

Sia P¢ Q, r una retta per P, non tangente a Q, QNr=Q1+Q2;
allora Q1,Q2, P sono distinti, e Q=HNL con H=pleil quarto
armonico: (Q1 Qo PQ)=-1.

Il cono Cp tangente a Q di vertice P (unione delle rette per P
tangenti a Q) ¢ la proiezione da P della quadrica (non degenere)
QNH di H. Cp ha equazione (¢t AX)% — (2t Az)(XTAX)=0 e
matrice A(ztzA—ztAx).

Quadriche Inviluppo. La biiezione tra le quadriche non de-
generi di P e quelle di P* che associa a Q@ di matrice A la
quadrica inviluppo Q* di matrice A~1 (oppure Aczdet(A)A*1
si scrive nelle coordinate a; ; e a;"j tramite espressioni “Z,k:

(—)h+kdetAh7k polinomiali nelle a; ;; la biiezione si estende
a quadriche di rango m (non tutti i minori d’ordine n sono
nulli), nel qual caso la quadrica inviluppo immagine ha rango
1 (dunque una stella di iperpiani, con centro nel vertice di Q).

Descrizione delle quadriche inviluppo singolari: sia Q* CP*
quadrica di rango r. Se r=1 allora Q* ¢ una stella di iperpiani
(contata due volte); se =2 allora Q* & una coppia di stelle di
iperpiani con diversi centri; se r>2 allora esistono una varieta
lineare L di P di dimensione r—1, e una quadrica non degenere
C di L, tali che He Q* sse H>L oppure HNL & tangente a C.
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Classificazione Proiettiva. Un (n+1)-edro (triangolo per
n=2, tetraedro per n=3) di P"(C) & I'insieme formato da n+1
punti Py,..., Py (detti i vertici) tali che \/, P;=P"(C), e dagli
iperpiani H; :\/jy&i P (detti le facce). Si dice autopolare rispetto
alla quadrica non degenere Q se PiJ- =H, per ogni i.

Se Q & quadrica di P™(C), allora esistono punti razionali su
C non appartenenti a Q. Se Q & quadrica non degenere di
P"(C), allora esistono (n+1)-edri autopolari rispetto a Q. In
particolare: in un riferimento autopolare la quadrice ha matrice
diagonale.

L’indice di una quadrica Q & la massima dimensione delle va-
rietd lineari di P™(C') (razionali su C) contenute in Q. Si tratta
di un intero >—1 (uguale a —1 sse Q¢ =&); da L<Ltse LCQ
abbiamo che l'indice ¢ <m—1 (risp. m) se n=2m & pari (risp.
n=2m+1 & dispari). L’indice & un invariante proiettivo.

La classificazione proiettiva dipende dalla struttura del gruppo
moltiplicativo C% /(C*)2.

I

se (C’><)2:C'>< (ogni elemento & un quadrato, per es. corpi
algebricamente chiusi) allora possiamo diagonalizzare la (ma-
trice della) quadrica avendo solo 1 e 0 in diagonale; dunque due
quadriche sono proiettivamente equivalenti sse hanno lo stesso
rango. Se la quadrica ¢ non degenere, allora ha indice m—1 se
n=2m, indice m se n=2m+1.

se CX/(C*)222{£1} (per es. R) allora possiamo diagonaliz-
zare la quadrica avendo valori 1, —1, 0 in diagonale. Se Q ha
forma diagonale X§+~-~+X§—X§+1—-~~—X72n (ove possiamo
supporre h=s+1>k=m—s) allorat=(m—s—1)+(n—m)=n—s—1
(<s) & lindice di Q. Dunque due quadriche sono proietti-
vamente equivalenti sse hanno lo stesso rango e lo stesso in-
dice; oppure sse hanno la stessa segnatura (h,k) (corrispon-
dente al numero di 1 e —1 nella forma diagonale) soggetti alle
condizioni 1<h, 0<k<h, h+k<n+1 (teorema di Sylvester).
Abbiamo allora che il rango di Q ¢ r=h+k e lindice ¢ i=
(n+1—r)+(k—1)=n—h.

Esempi per P (R): n=1 (retta proiettiva reale)

(r,3)  (h,k) equazione descrizione

(1,0) (1,00 X2=0 coppia parabolica di punti

(2,0) (1,1) ngX%:O coppia iperbolica di punti

(2,-1) (2,0) Xg—l—XlQ:O coppia ellittica di punti

n=2 (piano proiettivo reale)

(r,3)  (h,k) equazione descrizione

(1,1) (1,0) Xg:O coppia parabolica di rette
(2,1) (1,1) Xg—XIQ:O coppia iperbolica di rette
(2,0) (2,0) Xg—i-Xlz:O coppia ellittica di rette
(3,00 (2,1) X§+X127X22:0 irrid. con punti reali

(3,-1) (3,0) Xg—i—X%—&-X%:O irrid. senza punti reali

n=3 (spazio proiettivo reale)

2,2) X8+X12—X22—X§:0 non degenere rigata
(4,0) (3,1) X3+X12+X22—X§:0 non deg. con punti reali
(4,-1) (4,0) X3+X12+X22+X§:0 non deg. senza punti reali

(r,3)  (h,k) equazione descrizione
(1,2) (1,0) Xg:O coppia parabolica di piani
(2,2) (1,1) Xg—X%:O coppia iperbolica di piani
(2,1) (2,0) XngXQ:O coppia ellittica di piani
3,1) (2,1) X3+X12—X22:0 cono con punti reali
(3,0) (3,0) Xg+X12+X22:0 cono immaginario (vertice reale)
)
(

Quadriche rigate nello spazio. L’equazione della quadrica rigata
Q di P3(0) si pud scrivere XgX3—X1X2=0; in tal modo si
vede che la mappa di Segre

S: PL(C)xPL(C)— QCP3(C)
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definita da S([”Oﬂﬂ% [w07wﬂ)=£vowo7vow1,v1w07v1wﬂ (proi-
ettivizzazione di C2xC2—C2®-C22C*) & una biiezione
di P1(C)xP}(C) sullimmagine Q. In particolare Q contiene
due schiere di rette immagini tramite Segre di P1(C) x {[a,b]}
e {[a,b]} xP1(C). Abbiamo che: due rette appartenenti alla
stessa schiera sono tra loro sghembe; due rette di schiere di-
verse sono incidenti, e ogni retta di una schiera incontra tutte
quelle dell’altra; per ogni punto di Q passa una retta di cias-
cuna schiera.

Quadriche sui corpi finiti. Sia p>2 un primo, e sia C' corpo
con g=p’ elementi. Ogni quadrica in P"*(C) con n>2 con-
tiene punti razionali su C. Se n=2m (m>1) allora Q ha indice
m—1, e due qualsiasi quadriche non degeneri sono proiettiva-
mente equivalenti. Se n=2m-+1 (m>0) allora Q ha indice m
sse il determinante di una (dunque ognuna) sua matrice ¢ un
quadrato in C, altrimenti ha indice m—1; due quadriche non
degeneri sono proiettivamente equivalenti sse hanno lo stesso
indice.

ntl_
Si possono contare i punti: ﬁIP’"(C):qq_ill, e
n
qq__ll se n=2m

ﬁQC: (qnl+1;£)1(qm,+1)

(g™ +1) (g™ —1)
q—1

se n=2m+1 e indice=m

se n=2m++1 e indice=m—1

Classificazione Affine. Sia Hoo un iperpiano di P*(C), e
A=P"(C)\ Hoo lo spazio affine complementare; scegliendo co-
ordinate tali che Hoo sia Xy =0 possiamo supporre A=A"(C)C
P"(C). Una quadrica affine di A & una quadrica Q di P"*(C)
non contenente Hoo (le quadriche del tipo H+Hoo si dicono
improprie). Cilindri sono i coni con vertice contenuto in Hoo.
Se Q ¢ quadrica affine, allora Qoo =QNHo si dice la quadrica
impropria di Q.

Due quadriche affini Q e Q' sono affinemente equivalenti sse
esiste una affinita f con f(Q)=Q/’; in tal caso Qo € ng sono
proiettivamente equivalenti come quadriche di Heo.

Se r<n ¢ il rango di Qcoc, abbiamo le seguenti forme canoniche
possibili per le equazioni di Q:

. Z;zl aiXZ.QZO (la quadrica ha rango r, dunque sempre de-
genere, e si tratta di un cono proprio; caratterizzata da
QNHae £ Hoo);

° Xg—&—zzzl ainZ:O (la quadrica ha rango r+1, si dice quadrica
a centro, di centro HOLO, se € non degenere, se invece &
degenere si tratta di cilindro, detto non parabolico; sono
quadrice caratterizzate da Holo LHeo € QQHOLO <Hwo);

° Z;;laixi2+2X0X”:0 (la quadrica ha rango r+2, si dice
paraboloide se & non degenere, se invece & degenere si tratta
di cilindro, detto parabolico; sono quadrice caratterizzate da
Hi <Hoo).

Possiamo scrivere le equazioni canoniche affini:

r(Q) r(Qwo) equazione descrizione
n+l n+l Z?Zlainzl a centro
n+l n—1 Z:.L:_II aiXi2+2Xn:0 paraboloide

T r 22:1 aiXi2 =0
r+1 r Z;Zlainzl
r+2 r Z;ﬂzl aiXi2+2Xn =0 cilindro parabolico

cono proprio

cilindro non parabolico

Se in C ogni elemento & quadrato, allora due quadriche Q e Q’
sono affinemente equivalenti sse Q e Qxo hanno lo stesso rango
di @ e Qgc rispettivamente.
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Se C'=R le quadriche a centro si distinguono in ellissoidi e iper-
boloidi a seconda che (Qoo)r sia vuoto oppure no. Abbiamo la
seguente classificazione dipendente da s:

tipo equazione canonica valori di s
a centro Z‘;:ngsz_‘rlX?:l 0<s<n
s s n—1 —
paraboloidi Zi:lXi2723+1 X3+2Xn:O "Tlgsgnfl
. . S T

coni propri 2221X5_2§+1Xi2:0 5<s<r

cil. non par. Zé:lxiQ*Z;HX?:l 0<s<r
cilindri par. )7 X2 —Zs+1xi2+2xn:0 F<s<r

Nel caso di Pg(R) i punti di una conica si dicono parabolici,
iperbolici o ellittici a seconda che la conica degenere sul piano
tangente in quel punto sia una coppia parabolica, iperbolica
o ellittica di rette. I punti di una quadrica sono tutti dello
stesso tipo, e a seconda di questo la quadrica si dice parabolica,
iperbolica o ellittica. La classificazione da:

tipo r S equazione descrizione
a centro 4,0 7X127X227X§:1 ell. senza punti reali
1 X12 —X% —X; =1 iperb. ellittico
2 X12+X§ —X% =1 iperb. iperbolico
3 X12+X§+X2:1 ell. con punti reali
paraboloidi 4, 1 X12—X§+2X3:0 par. iperbolico
2 X?+4+X34+2X3=0 par. ellittico
coni propri 3, 2 X12+X§—X§:O con punti reali
3 X12+X§+X§:O con vertice reale
2,1 X%—X%:O coppia iperb. piani
2 X12+X§:O coppia ell. piani
1,1 X12:0 coppia par. piani
cil. non par. 2,0 —X12—X22:1 cil. ell. senza punti
1 X2-X2=1 cil. iperbolico
2 X12+X§:1 cil. ell. con punti
1,0 —X12:1 coppia ell. piani paralleli
1 X12:1 coppia iperb. piani paralleli
cil. parab. 1,1 X12+2X370 cilindro parabolico

Aspetto del paraboloide e dell’iperboloide parabolici:

(ciascuno evidenziato tramite alcune rette di una delle sue
schiere).

Proprieta diametrali (simmetrie e asintoti). Sia Q una quadrica
non degenere di P"*(C); de U & un punto non appartenente a
Qe H:UL, allora ’omologia armonica di asse H e centro U
lascia globalmente fissa Q. Dunque:

(¢) se Q & quadrica a centro, diciamo diametri gli iperpiani per
il centro; Q risulta simmetrica rispetto al centro e rispetto
ad ogni iperpiano nella direzione ad esso coniugata; il cono
che proietta Qoo dal centro si chiama cono asintotico, e gli
asintoti di Q@ sono le rette del cono asintotico;

(p) se Q & paraboloide, diciamo diametri gli iperpiani propri
con polo improprio (i.e. gli iperpiani propri contenenti il
punto Coo =QNHeo); tutti i punti di Hoo distinti da Coo
sono direzioni di simmetria.

Classificazione Euclidea. Uno spazio euclideo E=E" di di-

mensione n>2 & una coppia (A,Qcc) ove A=(P"(R),Hx) &

spazio affine reale di dimensione n, e Q200 € una quadrica reale
non degenere priva di punti reali (segnatura (n,0)) di Heo
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(detta l’assoluto di E; i suoi punti, impropri immaginari, si
dicono i punti ciclici di E). Una unitad di misura di E & una
coppia di punti (propri reali).

Assoluto e unita di misura di E determinano una forma quadrat-
ica non degenere (definita positiva) ¢ sullo spazio vettoriale T'
delle traslazioni di E (uno spazio pseudo-euclideo viene definito
senza restizione che ’assoluto non abbia punti reali, e dunque
gli corrisponde una forma non degenere, ma non definita in
generale).

Definiamo le usuali nozioni euclidee: distanza tra due punti
(reali propri) d(P,Q)=q(Q—P); sfera di centro C e raggio R
(reale positivo) {P|d(P,C)=R}. Un sistema di riferimento
cartesiano ortogonale & un sistema di riferimento Fy,...,Pn,U
di P"™*(R) tale che Py sia punto proprio, Pi,...,Pn siano ver-
tici di un n-edro di Hoo autopolare rispetto a o0, € per
cui si abbia d(Py,U;)=1 per ogni Ui:(POVPi)/\(UV\/j¢Z-Pj)~
Equivalentemente un riferimento & cartesiano sse ogni sfera di
raggio R e centro C di coordiante (cp,...,cn) ha equazione
Z?:l(Xi—ci)zzRQ; in particolare per ogni coppia di punti
risulta d(P,Q)= E?_l(mi—yi)QZ e lassoluto ha equazioni
Xo=0e X%—i—-u—&—X% =0. Una sfera (generalizzata) & una quadrica
contenente ’assoluto.

Le similitudini di E sono le affinita che lasciano globalmente
fisso ’assoluto; equivalentemente, che mandano sfere in sfere, e
se 'immagine di una sfera di raggio 1 ¢ una sfera di raggio R, il
numero reale positivo R si dice il rapporto di omotetia (se f ¢
la similitudine, vale allora d(f P, fQ)=Rd(P,Q) per ogni coppia
di punti). Una omotetia & una omologia generale di asse im-
proprio; chiaramente € una similitudine. Una isometria ¢ una
similitudine di rapporto 1; in un riferimento cartesiano ortogo-

nale le isometrie hanno matrici (le 19,) con P matrice ortogonale

(PtP=PPt=I,). Orientamenti: due riferimenti cartesiani or-
togonali sono equiorientati se la matrice di cambiamento ha
determinante 1; vi sono due classi di equivalenza per questa
relazione, dette gli orientamenti.

Data una varieta lineare (propria reale) L, detto Loo =LA Hoo,
diciamo che la polare Moo di Lo rispetto a Qoo € la direzione
ortogonale a L; si tratta di una varieta sghemba con L. La
simmetria (ortogonale) rispetto ad L & la simmetria di asse L
e direzione ortogonale (si tratta di isometrie). Ogni isometria
& proiezione di al pit n+1 simmetrie (ortogonali) rispetto a
iperpiani. Se L ed L’ sono varietd lineari di dimensione >0
allora esiste almeno una isometria f di E tale che fL=L'.

Quadriche. Siano Q e Q due quadriche distinte di P"(R), la
prima priva di punti reali (dunque non degenere); allora es-
istono riferimenti autopolari rispetto a Q in cui @ ha matrice
diagonale (se Cj,...,Cj, sono i coni del fascio generato da Q
e Q, che sono tutti reali, con 1<h<n e di ranghi tali che
Zﬂ’i:”‘f'lv basta trovare riferimenti in L;=v(C;) che siano
autopolari per QNL;).

Due quadriche Q e Q' di E si dicono metricamente equivalenti
se esiste una isometria f con f(Q)=Q’. Tramite trasformazioni
cartesiane ortogonali possiamo avere forme canoniche come nel
caso affine (ma senza alterare gli a;). Per coniche a centro,
cilindri non parabolici e coni propri i coefficienti a; si dicono
(inversi de)i semiassi (reali quelli positivi, trasversi quelli neg-
ativi); si pud supporre che i semiassi reali siano non meno di
quelli trasversi, e nel caso di coni che uno dei semiassi sia 1. Per
paraboloidi e coni parabolici gli a; si dicono i parametri; si puo
supporre che quelli positivi siano non meno di quelli negativi.
Una quadrica si dice di rotazione se vi sono semiassi o parametri
con molteplicita (>1); cid succede sse esiste una varieta lineare
L tale che ogni rotazione di asse L manda la quadrica in se.
Le rette r;=PyV P; (risp. gli iperpiani Hi:\/j#in) si di-

cono assi (rispettivamente iperpiani principali) di Q se i punti
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Py,...,Pn sono quelli di un riferimento in cui Q abbia equazione
canonica.

Due quadriche sono metricamente equivalenti se e solo se hanno
gli stessi semiassi (o gli stessi parametri) con le stesse molteplicita.
Invarianti ortogonali. In certi casi i parametri si possono cal-
colare facilmente: sia A una matrice di Q,

e per le quadriche a centro: a;=p; /A ove p; (i=1,...,n) sono
gli autovalori di A e A=—detA/detAc;

e per i coni propri: gli a; sono a meno di proporzionalita gli
autovalori di A;

e per i paraboloidi: a;=cp; ove p; (i=1,...,n—1) sono gli auto-

valori di Aco € c==, /7Hipi/detA (il segno scelto in modo

che vi siano piu parametri positivi).

Cerchi sulle quadriche. Sia Q una quadrica irriducubile nello
spazio euclideo di dimensione 3. I piani 7 che intersecano la
quadrica Q in cerchi sono quelli per cui la conica TNQ passa
per i punti ciclici 7N di 7. Se Q non & una sfera vi sono uno
o due fasci (impropri) di tali piani a seconda che la quadrica Q
sia di rotazione o no.

Proprieta focali. Sia Q quadrica non degenere di E; una retta
r per un punto P si dice retta principale di Q in P se HLer
ove H & l'iperpiano per P ortogonale ad r. Si dicono mn-uple
principali di @ in P le n-uple ortogonali di rette principali di
Qin P.

Se P¢ Q, le n-uple principali sono le n-uple di assi del cono tan-
gente Cp(Q). Se P€Q, la normale np (all'iperpiano tangente
in P) & retta pricipale, unica retta principale per P non ap-
partenente all’iperpiano tangente Tp(Q); inoltre l1,...,l,—1,np
& una n-upla principale di Q in P sse lq,...,l,,_1 & una (n—1)-
upla di assi del cono ONTp(Q).

Un punto P€E si dice un fuoco di Q se in P vi sono infinite
n-uple pricipali di Q. Cio vale sse il fascio generato da Q e dal
cono isotropo Zp (proiezione dell’assoluto da P) contiene coni
di rango <n—1.

Per le quadriche a centro non di rotazione, con equazione canon-

2
ica Z?:l )Iil =1 con by <-+-<bp, i fuochi sono i punti delle n

X;=0
quadriche (dette focali) di equazioni " x2 (per
i#j=1b;—b; =
i=1,...,n; si tratta di quadriche a centro, una per ogni tipo).
Per i paraboloidi non di rotazione, con equazione canonica
-1Xx2 . . . .
2?211 b—i":QXn con by <---<b,_1, i fuochi sono i punti delle
X,;=0
2
n—1 Xz
Zi#j:l b5 *Jbi =2Xn—b;
(per i=1,...,n—1; si tratta di paraboloidi, uno per ogni tipo).

n—1 quadriche (dette focali) di equazioni
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