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Poincaré Duality for Algebraic De Rham Cohomology.

Francesco Baldassarri, Maurizio Cailotto, Luisa Fiorot

Abstract. We discuss in some detail the algebraic notion of De Rham cohomology

with compact supports for singular schemes over a field of characteristic zero. We prove
Poincaré duality with respect to De Rham homology as defined by Hartshorne [H.75], so
providing a generalization of some results of that paper to the non proper case. In order to
do this, we work in the setting of the categories introduced by Herrera and Lieberman [HL],
and we interpret our cohomology groups as hyperext groups. We exhibit canonical morphisms
of “cospecialization” from complex-analytic De Rham (resp. rigid) cohomology groups with
compact supports to the algebraic ones. These morphisms, together with the “specialization”
morphisms [H.75, IV.1.2] (resp. [BB, 1]) going in the opposite direction, are shown to be
compatible with our algebraic Poincaré pairing and the analogous complex-analytic (resp.
rigid) one (resp. [B.97, 3.2]).

Introduction.

In his paper on “De Rham cohomology of algebraic varieties”[H.75], Hartshorne defined De Rham
cohomology and homology groups for singular schemes over a field K of characteristic zero. He proved a
global Poincaré duality theorem in the proper case. Naturally, one expects to have a notion of (algebraic) “De
Rham cohomology with compact supports” Poincaré dual to De Rham homology, extending Hartshorne’s
De Rham cohomology and Poincaré duality to not necessarily proper (nor regular) schemes. To be useful,
such a theory should admit an independent (i.e. not based on duality with homology) and easily computable
definition.

The method for doing this in general has been “well-known” since Deligne’s lectures on crystals in
characteristic zero at IHES in March 1970. He sketched there an algebraic theory of the functor f! for
crystals, providing the natural setting for a general answer to the above problem. An account of those
lectures, however, has never been made available: we are not aware of any satisfactory reference for algebraic
De Rham cohomology with compact supports, not even in the standard case of constant coefficients on a
smooth open variety.

In view of the generality of Deligne’s lectures, the idea of publishing an independent account of the
case of constant coefficients may seem obsolete. On the other hand, even the choice of a suitable level of
generality for coefficients is embarassing, even if only because of the simultaneous need of pro-coherent and
ind-coherent O-modules. We have preferred to introduce the minimal amount of technique necessary to
give a good and flexible definition of algebraic cohomology with compact supports for singular K-varieties.
Hartshorne’s choice in [H.75] was to ignore the open case altogether, concentrating on the proper singular
case, despite his experience with Serre duality for open varieties over a field of characteristic zero [H.72].

The main point of this article is the following. The case of a proper singular K-scheme X, presents
the big technical advantage that one can develop all considerations in the category of abelian sheaves on
the Zariski space X. In the open case, X will have to be compactified to X, and X will be embedded as
a closed subscheme of a scheme P , smooth in a neighbourhood of X. The category A b(X) is suitable for
the definition of H•DR,c(X) = H•

(
X, ((Ω•P )/X→(Ω•P )/X\X)tot

)
but not so for proving that this definition

is independent of the embeddings X ↪→X ↪→P .
We are aware of at least three methods for proving that the given definition of H•DR,c(X) is good. The

most general one thrives in the previously mentioned context of crystals in characteristic zero. A second
method is based on Grothendieck’s linearization of differential operators [AB, Appendix D] (dual to Saito’s
linearization [S]). A third approach is via the filtered refinement of Herrera and Lieberman’s C •-Modules [HL]
proposed by Du Bois [DB.90]. We plan to investigate the full formalism of Grothendieck operations for De
Rham coefficients following Du Bois, in the near future. For the limited scope of the present article however,
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we chose to simply revisit the original article of Herrera and Lieberman [HL], which has the virtue of making
the relation between Serre and Poincaré duality very explicit. This theory is of course not sufficiently flexible
to permit the introduction of Grothendieck’s operations in general. But constructions are very explicit and
the comparison with analytic theories becomes natural.

We hesitated on whether we should work with pro-objects (of the category of coherent sheaves on a
scheme or analytic space), as Deligne does, or take their derived inverse limits on a formal scheme or formal
analytic space, as in Hartshorne [H.72], [H.75]. The point of a Mittag-Leffler type of result as [H.75, I.4.5]
(see also lemma 1.3.1 below) is that for suitable pro-objects, derived direct images commute with inverse
limits, so that applying the functor lim←− to those pro-objects is harmless. As a consequence, in our situation
we take indifferently one attitude or the other. It is worthwhile mentioning that when the base scheme
is SpecK, the procategory of finite dimensional K-vector spaces is equivalent via lim←− to the category of
linearly compact topological K-vector spaces. So, Hartshorne’s Serre duality of [H.72], may be regarded as a
perfect topological pairing between a discrete topological K-vector space and a linearly compact one (both
in general infinite dimensional). In the case of De Rham cohomology [H.75], this specializes to a duality of
finite dimensional K-vector spaces. We use this topological pairing when describing a duality of spectral
sequences converging to Poincaré duality. One should compare this with the analytic problem posed by
Herrera and Lieberman [HL, §5].

We want to mention that very recently, Chiarellotto and Le Stum have included in their wide-ranging
article [CLS] a short account of Deligne’s method for defining De Rham cohomology with compact supports
for open smooth K-varieties.

In the case of a smooth K-scheme X and of a connection (E ,∇), with E a coherent, hence locally free
OX -module, the De Rham cohomology groups with compact supports Hq

DR,c(X/K, (E ,∇)) were defined in
[AB, Def. D.2.16] and Poincaré duality was proved [AB, D.2.17], in fact in a more general relative situation.
The definition of f!M proposed by Katz-Laumon [KL, section 7], Du Bois [DB.90, 6.9] and Mebkhout
[M, I.5.3], for f : X −→ Y a morphism of smooth K-varieties and M an object of Db

hol(DX), is for us less
satisfactory, since duality is built into its definition. The experience with Dwork’s dual theory [AB, appendix
D], shows that an independent definition of f! is of great help in calculations and for arithmetic applications,
and is therefore very desirable.

We should mention here the crucial help we received from P. Berthelot who provided us with his notes
of Deligne’s course and whose treatement of rigid cohomology was also very useful, somewhat paradoxically,
to organize our discussion in the algebraic case.
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0. Notation and Preliminaries.

0.1. Schemes. Let K be a field of characteristic 0. By scheme we will mean a separated K-scheme of
finite type. Morphisms and products of schemes will be taken over SpecK, unless otherwise specified. For
a scheme X, |X| will denote the underlying topological space.

0.2. Closed Immersions. If X is a closed subscheme of the scheme Y , we indicate by IX⊆Y , or
simply by IX , the coherent Ideal of OY associated to X.

0.3. Infinitesimal neighborhoods. If i : X ↪→Y is a closed immersion of schemes, we denote by
X

(M)
Y the M -th infinitesimal neighborhood of X in Y , that is the scheme having |X| as topological space
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and OY /I
M+1
X (restricted to |X|) as structural sheaf.

Let Y/X be the formal completion of Y along X, i.e. the formal scheme inductive limit of all infinitesimal
neighborhoods of X in Y ; its underlying topological space is |X| and its structural sheaf is OY/X := (OY )/X =
lim←−M O

X
(M)
Y

. Following [EGA I, 10.8], if F is a quasi-coherent OY -Module, F/X will be the sheaf (an (OY )/X -

Module) of formal sections of F along X (i.e. the projective limit lim←−M i(M)∗F where i(M) : X(M)
Y →Y is

the canonical immersion; if F is coherent, F/X = i∗/XF where i/X : Y/X→Y is the canonical morphism of
ringed spaces, since our schemes are locally noetherian).

0.4. Differentials on infinitesimal neighborhoods. The closed immersion of X(M)
Y in Y , of

Ideal I
X

(M)
Y

= I
X

(M)
Y
⊆Y = IM+1

X , gives rise to the exact sequence

I
X

(M)
Y

/
I 2

X
(M)
Y

d(M)

−−−→Ω1
Y ⊗OY O

X
(M)
Y

−−−→Ω1

X
(M)
Y

−−−→ 0 .

The exact sequence
0−−−→I

X
(M)
Y

/
I 2

X
(M)
Y

−−−→O
X

(2M+1)
Y

−−−→O
X

(M)
Y

−−−→ 0

shows that “lim←−”
M

I
X

(M)
Y

/
I 2

X
(M)
Y

∼= 0. Therefore, the canonical morphism

“lim←−”
M

Ω1
Y ⊗OY O

X
(M)
Y

−−−→ “lim←−”
M

Ω1

X
(M)
Y

is an isomorphism. This isomorphism still holds in higher degrees, i.e.

“lim←−”
M

ΩiY ⊗OY O
X

(M)
Y

∼=−−−→ “lim←−”
M

Ωi
X

(M)
Y

,

for all i. On the other hand, ΩiY/X = lim←−M Ωi
X

(M)
Y

, so that

ΩiY/X = lim←−
M

Ωi
X

(M)
Y

∼= ΩiY ⊗OY OY/X
∼= (ΩiY )/X .

0.5. Categories of Differential Operators. Let X be a scheme. We recall ([HL] or [B.74,
II.5]) that the category C (X) of complexes of differential operators of order (less or equal to) one is defined
as follows: the objects of C (X) are complexes whose terms are OX -Modules and whose differentials are
differential operators of order less or equal to one. Morphisms between such complexes are OX -linear maps
of degree zero of graded OX -modules, compatible with the differentials.

We recall that for any complex F • = · · · −→F i
diF•−→F i+1−→· · · of abelian sheaves on X and k ∈ Z,

F •[k] is defined by (F •[k])i = F i+k and diF•[k] = (−1)kdi+kF• , for all i ∈ Z. If f = f• : F •−→G • is such a
morphism and k is an integer,

f•[k] : F •[k]−→G •[k]
is usually defined by (f•[k])j = f j+k, for all j, and may therefore be identified with f•. These conventions
are used in particular for F • and f• an object and a morphism in C (X).

A homotopy between two morphisms in C (X) is a homotopy in the sense of the category of complexes
of abelian sheaves, except that the homotopy operator (of degree −1) is taken to be OX-linear. We denote
by Cc(X) (resp. Cqc(X)) the full subcategory of C (X) consisting of complexes with coherent (resp. quasi-
coherent) terms.

We slightly generalize the previous definitions as follows. Let “lim←−”
α

Fα and “lim←−”
β

Fβ be two pro-
coherent OX -Modules (i.e. two objects of the pro-category ProCoh(X)). A morphism f : “lim←−”

α
Fα−→ “lim←−”

β
Gβ

of ProA b(X) is a differential operator of order one if f factors via the commutative diagram

(0.5.1)

“lim←−”
α

P1
X(Fα)

“lim←−”
α
d1
X,Fα

↗ ↘ f

“lim←−”
α

Fα
f−−−−−−−−−−−−−−−→ “lim←−”

β
Gβ

where d1
X,Fα

is the universal differential operator of order one of source Fα, and f is a morphism of
ProCoh(X). Now, Cpc(X) will denote the category of complexes of pro-coherent OX -Modules whose dif-
ferentials are differential operators of order one. Morphisms in Cpc(X) will be maps of degree zero of
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graded objects of ProCoh(X), compatible with the differentials. There is a natural exact and faithful func-
tor ProCc(X)−→Cpc(X) compatible with homotopical equivalence. Similarly, there is a natural exact and
faithful functor, compatible with homotopical equivalence, from the ind-category of Cc(X), IndCc(X), to
Cqc(X), since IndCoh(X) is equivalent to the category of quasi-coherent OX -Modules [H.RD, Appendix].
We point out that any object of Cqc(X) (resp. Cpc(X)) which is a bounded complex, is in fact in the essential
image of IndCc(X) in Cqc(X) (resp. of ProCc(X) in Cpc(X)).

0.5.2. (This subsection wants to motivate the definition of Homk(−,−) in [HL, §2]). We recall that
for a graded left Ω•X -Module F • and an integer k, one sets F •[k] to be the graded left Ω•X -Module E • such
that E j = F j+k and such that for α a section of E j = F j+k and ϕ a section of ΩiX , the scalar product
ϕ ·

E•
α of ϕ and α in E • is (−1)ik times the scalar product ϕ ·

F•
α of ϕ and α in F •. Morphisms of graded

left Ω•X -Modules are meant to be of degree zero. They form a Γ(X,OX)-module HomΩ•
X

(−,−); we denote
by HomΩ•

X
(−,−) the sheafified version. We point out that if ω is a section of ΩkX , and F • is a graded left

Ω•X -Module, left multiplication by ω is a morphism F •−→F •[k]. Once again, if f• is a morphism of graded
left Ω•X -Modules and k is an integer, f•[k] identifies with f•. For F • and G • as before, and k an integer,
one sets

Homk
Ω•
X

(F •,G •) = HomΩ•
X

(F •,G •[k]) = HomΩ•
X

(F •[−k],G •)

and similarly for Homk
Ω•
X

(F •,G •) = HomΩ•
X

(F •,G •[k]).
The skew-commutativity of Ω•X (i.e. αβ = (−1)ijβα, for α ∈ Ωi and β ∈ Ωj) permits to interpret any

graded left or right Ω•X -Module F • as two-sided. In fact, if F • is a graded left Ω•X -Module, we can define
a structure of graded right Ω•X -Module on it by setting

α ·ϕ = (−1)ijϕ ·α ,

for ϕ a section of ΩiX and α a section of F j . It is then clear that a morphism of graded left Ω•X -Modules is
also right Ω•X -linear, and the other way around. This is why the notation Homk

Ω•
X

(−,−) does not carry any

indication on whether left or right linearity is assumed. We observe that an element Φ of Homk
Ω•
X

(F •,G •)
turns out to be a collection Φ = (ϕj)j of maps of abelian sheaves ϕj : F j −→G j+k satisfying

ϕi+j(ω ·
F•
α) = (−1)ikω ·

G•
ϕj(α) ,

for sections ω of ΩiX and α of F j (cf. [HL, loc. cit.]).
The possibility of interchanging the left and right Ω•X -Module structure gives a meaning and a structure

of Ω•X -Module to M • ⊗Ω•
X

N •, for two Ω•X -modules M • and N •. Here one uses the right (resp. left) Ω•X -
Module structure on M • (resp. N •) to take the tensor product, while the left (resp. right) Ω•X -Module
structure on the tensor product is given by left (resp. right) Ω•X -Module structure of M • (resp. N •).
Similarly, Hom•Ω•

X
(M •,N •) has a structure of Ω•X -module.

0.5.3. The category C (X) is equivalent to the category of graded left Ω•X -Modules F •, endowed with
a morphism of graded abelian sheaves D = DF• : F •−→F •[1] satisfying DF• [1] ◦DF• = 0 and

(0.5.4) DF•(ϕ ·
F•
α) = ϕ ·

F•[1]
DF•(α) + (dXϕ) ·

F•
α

for sections ϕ of Ω•X and α of F •. If F • and G • are two objects of C (X), a morphism f : F •−→G • is
then a morphism of graded Ω•X -Modules, such that

f [1] ◦DF• = DG • ◦ f .

For any integer k, F •[k] as an object of C (X), is the graded left Ω•X -Module F •[k], endowed with DF•[k] =
(−1)kDF• .

The category C (X) is endowed with a natural tensor product − ⊗Ω•
X
− and with an internal hom

Hom•Ω•
X

(−,−). One sets DF•⊗Ω•
X

G •(α⊗ β) = DF•(α)⊗ β + (−1)iα⊗DG •(β), for sections α of F i and β

of G •. One also defines

D = DHom•
Ω•
X

(F•,G •) : Hom•Ω•
X

(F •,G •)−→Hom•Ω•
X

(F •,G •)[1]

by
DΦ = DG • ◦ Φ− Φ[1] ◦DF•[−k] ,
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if Φ is a section of Homk
Ω•
X

(F •,G •) = HomΩ•
X

(F •[−k],G •).
0.5.5. Obviously, two morphisms f and g : F •−→G • in C (X) are homotopic via the homotopy

operator ϑ : F •[1]−→G • (a morphism of graded OX -Modules) if and only if

g − f = DG • ◦ ϑ− ϑ[1] ◦DF•[1] .

The previous formula means in fact that for any i

gi − f i = Di−1
G • ◦ ϑ

i + ϑi+1 ◦Di
F• .

It is easy to check by induction on the degree of differential forms, that ϑ is automatically Ω•X -linear, and that
the previous formula simply means that g − f ∈ D(Hom−1

Ω•
X

(F •,G •)). Similarly, for f ∈ Hom0
Ω•
X

(F •,G •),
Df = 0 is equivalent to f being a morphism F •−→G • in the category C (X). So, (cf. [HL, remark p.104])
H0(Hom•Ω•

X
(F •,G •)) is the group of C (X)-morphisms F •−→G • up to homotopy.

0.5.6. It is also possible to interpret C (X) as the category of graded left C •X -Modules where C •X
∼=

Ω•−1
X D ⊕ Ω•X is the “mapping cylinder” of the identity map of Ω•X . It is a graded OX -Algebra, whose

product is defined using the wedge product of Ω•X and D2 = 0, while the structure of complex is defined
by Dα = (dα1+(−1)iα2)D + dα2 if α = α1D + α2 with α1 ∈ Ωi−1

X and α2 ∈ ΩiX . Therefore, the category
C (X) has enough injectives.

0.5.7. For a morphism π : X −→Y of schemes, we have canonical morphisms of graded differential
Rings

Tπ : Ω•Y −→π∗Ω
•
X , Sπ : π−1Ω•Y −→Ω•X .

We deduce from this a pair of adjoint functors

π∗ : C (X)−→C (Y ) , π∗ : C (Y )−→C (X) .

For an object F • of C (X), the complex of abelian sheaves π∗(F •) coincides with the usual direct image of
the complex of abelian sheaves F •. For G • in C (Y ) instead, π∗(G •) = Ω•X ⊗π−1Ω•

Y
π−1(G •) and

Dπ∗(G •)(ϕ⊗ π−1(α)) = dXϕ⊗ π−1(α) + (−1)iϕ⊗ π−1(DG •α) ,

for ϕ a section of ΩiX and α a section of G •.

0.5.8. Lemma. Let π : X −→Y be a morphism of schemes, and assume that two morphisms f
and g : F •−→G • in C (Y ) are homotopic via the homotopy operator ϑ : F •[1]−→G •. Then π∗(f) and
π∗(g) : π∗(F •)−→π∗(G •) in C (X) are homotopic via the homotopy operator π∗(ϑ) : π∗(F •)[1]−→π∗(G •).

Proof. The main point is that, for any section ϕ of ΩiX and any section α of F •,

(0.5.9) π∗(ϑ)(dXϕ⊗ π−1(α)) + (−1)idXϕ⊗ π−1(ϑ(α)) = 0

(since more generally π∗(ϑ)(ϕ⊗ π−1(α)) = (−1)iϕ⊗ π−1(ϑ(α)), ϑ being a morphism of degree −1), so that

(Dπ∗(G •) ◦ π∗(ϑ) + π∗(ϑ) ◦Dπ∗(F•))(ϕ⊗ π−1(α)) =

= Dπ∗(G •)((−1)iϕ⊗ π−1(ϑα)) + π∗(ϑ)(dXϕ⊗ π−1(α) + (−1)iϕ⊗ π−1(DF•α))

= (−1)idXϕ⊗ π−1(ϑα) + ϕ⊗ π−1(DG •ϑα) + (−1)i+1dXϕ⊗ π−1(ϑα) + ϕ⊗ π−1(ϑDF•α))

= ϕ⊗ π−1(DG •ϑ+ ϑDF•)α

= ϕ⊗ π−1(g − f)α

= (π∗(g)− π∗(f))(ϕ⊗ π−1(α)) .

�
We point out that if π is a locally closed immersion, then π∗(F •) coincides, as a graded OX -Module,

with the usual inverse image in the sense of graded OX -Modules.
0.5.10. Let F and G be two objects of C (X), and let G →J • be an injective resolution of G in C (X).

The local (resp. global) hyperext functors of Herrera-Lieberman are defined in [B.74, II.5.4.3] as the abelian
sheaves (resp. groups), for any p ∈ Z,

Extp
Ω•
X

(F ,G ) = Hp
(
Hom•Ω•

X
(F ,I •)tot

)
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(resp.
Extp

Ω•
X

(F ,G ) = Hp
(

Hom•Ω•
X

(F ,I •)tot

)
) ,

where an object of C (X) is naturally regarded as a complex of abelian sheaves on X, and Hp is taken in
that sense. This definition is not exactly the original one of Herrera and Lieberman [HL, §3], but leads to
isomorphic objects; this subtlety on the definition of hyperext functors will be explained in section 2 below.

The local (resp. global) hyperext functors are limits of a spectral sequence

E p,q
1 = RqHomp

Ω•
X

(F ,G ) =: Extp,qΩ•
X

(F ,G ) =⇒ E p+q = Extp+q
Ω•
X

(F ,G )

(resp.
Ep,q1 = RqHomp

Ω•
X

(F ,G ) =: Extp,qΩ•
X

(F ,G ) =⇒ Ep+q = Extp+q
Ω•
X

(F ,G ) ) ,

obtained as the first spectral sequence of the bicomplex under consideration.
As a particular case we obtain, for any object F •, the functors

Hp(F •) = Extp
Ω•
X

(Ω•X ,F
•)

and
Hp(X,F •) = Extp

Ω•
X

(Ω•X ,F
•) .

In the last case, the spectral sequence above is the usual first spectral sequence of hypercohomology

Hq(X,F p) =⇒ Hp+q(X,F •) .

The hyperext functors naturally extend to functors

Extp
Ω•
X

(−,−) : ProC (X)◦ × IndC (X)−→ IndAb(X)

and
Extp

Ω•
X

(−,−) : IndC (X)◦ × ProC (X)−→ProAb(X)

(resp.
Extp

Ω•
X

(−,−) : ProC (X)◦ × IndC (X)−→ IndAb
and

Extp
Ω•
X

(−,−) : IndC (X)◦ × ProC (X)−→ProAb ) .

0.6. Direct image with compact supports (Deligne). We recall that in the appendix to [H.RD],
Deligne defines for an open immersion j : U ↪→X of locally noetherian schemes the functor j! (“prolongement
par zéro”) in the following way. Let F be a coherent OU -Module, and take F a coherent extension on X; let
I the coherent Ideal of OX defining XrU . Then j!F is the pro-coherent sheaf on X given by “lim←−”

N
I NF .

Deligne proves that the definition is independent of the choice of the coherent extension F .
The functor j! : Coh(OU )→ProCoh(OX) naturally extends to the category ProCoh(OU ) by the condi-

tion of commuting to all projective “limits”.
The functor j! extends to the subcategory of Cpc(U) whose objects (regarded as complexes) are bounded

below, with values in Cpc(X) and preserves homotopical equivalence of morphisms. If f, g : E →F are
homotopically equivalent morphisms in Cpc(X), then we have

R lim←−H
i(f) = R lim←−H

i(g) : R lim←−H
i(E )−→R lim←−H

i(F )

(maps of abelian sheaves) and

R lim←−Hi(X, f) = R lim←−Hi(X, g) : R lim←−Hi(X,E )−→R lim←−Hi(X,E )

(maps of abelian groups).
0.7. Cousin complex. We recall from [H.RD, chap. IV], that for any abelian sheaf F one functorially

defines a complex E•(F ) (the Cousin complex of F ) uniquely defined by suitable conditions of support w.r.t.
the stratification of X by the codimension of its points (see [H.RD, IV.2.3] or [H.75, II.2]). Moreover there is
a functorial augmentation morphism F →E•(F ), where F is regarded as a complex concentrated in degree
zero. The functor restricts to a functor from the category of OX -Modules into complexes of such (i.e. with
OX -linear differentials).
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Under suitable conditions on the sheaf F (see [H.RD,IV.2.6]), the Cousin complex is a flabby resolution
of F .

Moreover, if X is smooth E•(OX) admits an explicit description (see [H.RD, example p. 239]) proving
that it is an injective resolution of OX . In particular if F is a locally free OX -Module of finite type, we
have a canonical isomorphism of complexes E•(F ) ∼= E•(OX)⊗OX F . In fact these complexes both satisfy
the conditions to be the Cousin complex of F , so that by [H.RD, IV.3.3] the canonical morphism is an
isomorphism.

As in [H.75] we extend the definition of Cousin complex by associating to each complex F • of OX -
Modules (with Z-linear differentials) the total complex E(F •) associated to the double complex E•(F •)
defined by the Cousin complexes of its components.

0.7.1. Notice that Er(Ω•X), for any r ∈ N, and E(Ω•X) are naturally objects of Cqc(X). More generally,
if D : F →G is a differential operator then, for any r, Er(D) : Er(F )→Er(G ) is a differential operator of
the same order (this is easly seen using [EGA IV,16.8.8]).

1. De Rham Cohomology with compact supports.

1.1. Setting. Let j : X −→X be an open immersion of the scheme X into a proper scheme X, and
assume i : X −→P is a closed immersion in a scheme P smooth in a neighborhood of X. We have then the
following embeddings

X
j

↪−−−→X
i

↪−−−→P .

Let C be the complement of X in X endowed with some structure of closed subscheme of X, and let
h : C→X be the closed immersion. We do not suppose that X be dense in X (as the symbol may suggest),
even if we can always reduce to that case, replacing X by the closure of X in X.

1.1.1. Let W be an open smooth subscheme of P containing X as a closed subset. The closed
immersion X ↪→W can be used to calculate the De Rham cohomology and homology of X, as defined
by Hartshorne [H.75]. More generally, any open subscheme W ′ of P containing X as a closed subscheme
(e.g. the not necessarily smooth open subscheme PrC) would work for Hartshorne’s computation of De
Rham homology and cohomology. In fact, W ′ would contain an open smooth subscheme W containing
X as a closed subscheme. The open immersion u : W ↪→W ′ then induces isomorphisms of infinitesimal
neighbourhoods X(N)

W

∼=−→X
(N)
W ′ of X in W and W ′, respectively. On the other hand, the trace map Tru

induces an isomorphism of Cousin complexes Tru : ΓXE(Ω•W )
∼=−→ΓXE(Ω•W ′).

1.1.2. Consider now the infinitesimal neighborhoods of X and X in W and P , respectively. In the
following diagram

X
j−−−→ X

h←−−− Cy y y =

X
(M)
W −−−→

j(M)
X

(M)

P ←−−−
h(M)

C

the two squares are cartesian. If we put IX = IX⊆W , IX = IX⊆P and IC = IC⊆P , the ideal of the
closed immersion h(M) is IM := I

C⊆X(M)
P

= (IC+IM+1

X
)/IM+1

X
.

1.2. Definition. In the previous notation, we define the De Rham cohomology of X with compact
supports H•DR,c(X) as the hypercohomology of the simple complex of abelian sheaves on X associated to
the bicomplex

(Ω•P )/X −−−→h∗(Ω•P )/C ,

where (OP )/X sits in bidegree (0, 0). Namely, H•DR,c(X) = H•
(
X, ((Ω•P )/X→h∗(Ω•P )/C)tot

)
.

1.3. Proposition. We may rewrite the previous definition as

H•DR,c(X) ∼= H•
(
P,Rlim←−

M>N

I N−•
C Ω•P

/
IM−•
X

)
∼= lim←−
M>N

H•
(
P,I N−•

C Ω•P
/
IM−•
X

)
∼= H•

(
X,Rlim←−

M

j
(M)
! Ω•

X
(M)
W

)
∼= lim←−

M

H•
(
X, j

(M)
! Ω•

X
(M)
W

)
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where IC ⊇ IX are the Ideals of OP corresponding to the closed subschemes C ⊆ X, respectively.

We are using the compact notation I N−•
C Ω•P

/
IM−•
X

for the complex

0−→I N
C

/
IM
X
−→I N−1

C Ω1
P

/
IM−1

X
Ω1
P −→I N−2

C Ω2
P

/
IM−2

X
Ω2
P −→ . . .

and similarly for other complexes of this type.
Proof. For each M > N the short exact sequence of complexes

0−→I N−•
C Ω•P

/
IM−•
X

−→Ω•P
/
IM−•
X

−→Ω•P
/
I N−•
C −→ 0

gives the exact sequence of projective systems of complexes

0−→{I N−•
C Ω•P

/
IM−•
X

}M>N −→{Ω•P
/
IM−•
X

}M −→{Ω•P
/
I N−•
C }N −→ 0

and the isomorphism in ProCc(P )

“lim←−”
M>N

I N−•
C Ω•P

/
IM−•
X

∼=−→ “lim←−”
M>N

(Ω•P
/
IM−•
X

→Ω•P
/
I N−•
C )tot .

We apply the functor Rlim←− to get

Rlim←−
M>N

I N−•
C Ω•P

/
IM−•
X

∼=−→((Ω•P )/X→(Ω•P )/C)tot ,

where (OP )/X sits in bidegree (0, 0). This proves the first isomorphism of the proposition.
If we take hypercohomology first and then projective limits we obtain instead isomorphisms

lim←−
M>N

H•
(
P,I N−•

C Ω•P
/
IM−•
X

) ∼=−→ lim←−
M>N

H•
(
P, (Ω•P

/
IM−•
X

→Ω•P
/
I N−•
C )tot

)
.

We now have the following generalization of [H.75, I.4.5] to suitable complexes of abelian sheaves, already
used in the proof of [loc. cit., III.5.2]. For further use in the rigid-analytic context, we express the result for
G-topological spaces. We recall that a base B for a G-topology on X is a class of admissible open subsets
such that for any admissible open subset there is an admissible covering with elements in B.

1.3.1. Lemma. Let (F •n)n∈N be an inverse system of complexes in degrees > 0 of abelian sheaves on
the G-topological space X. Let T be a functor on the category of complexes of abelian sheaves on X, taking
its values in an abelian category A , where arbitrary direct products exist. We assume that the functor T
commutes with arbitrary direct products and that there is a base B for the G-topology of X such that:
(a) For each U ∈ B, the inverse system (F •n(U))n is surjective,
(b) For each U ∈ B, Hi(U,F jn) = 0 for all i > 0 and all j, n.

Then, for each i, there is an exact sequence

0−→ lim←−
(1)Ri−1T (F •n)−→RiT (lim←−F

•
n)

α•i−→ lim←−RiT (F •n)−→ 0 .

In particular, if for some i, Ri−1T (F •n) satisfies the Mittag-Leffler condition, then α•i is an isomorphism.

Proof (lemma). One may reason precisely as in the case of an ordinary topological space, and simply
follow the proof of [H.75, I.4.5], taking into account the structure of injectives in the category of complexes
in degrees > 0 over any abelian category [T, II.2.4]. �

We apply the previous lemma to the topological space P (or X, if one prefers), the functor Γ(P,−) and
the simple complex

“lim←−”
M>N

(Ω•P
/
IM−•
X

→Ω•P
/
I N−•
C )tot = “lim←−”

N

(Ω•P
/
I 2N−•
X

→Ω•P
/
I N−•
C )tot .

(More precisely, one takes F •N = (Ω•P
/
I 2N−•
X

→Ω•P
/
I N−•
C )tot in the lemma.)

We observe that, since the coherent sheaves appearing in the complex have support in the proper
subscheme X, the K-vector spaces Hi

(
P, (Ω•P

/
I 2N−•
X

→Ω•P
/
I N−•
C )tot

)
are finite dimensional, so that

they satisfy, for variable N , the Mittag-Leffler condition. Therefore

lim←−
M>N

H•
(
P, (Ω•P

/
IM−•
X

→Ω•P
/
I N−•
C )tot

)
∼= H•(X, (lim←−

M

Ω•P
/
IM−•
X

→ lim←−
N

Ω•P
/
I N−•
C )tot)
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which is H•DR,c(X) by definition. This proves the isomorphisms in the first line of the statement. To check
the isomorphism on the second line, we write in the notation of 1.1

“lim←−”
M

j
(M)
! Ω•

X
(M)
W

= “lim←−”
M>N

I N−•
M Ω•

X
(M)
P

∼= “lim←−”
M>N

I N−•
C Ω•P

/
IM−•
X

.

�

In order to prove that the given definition of De Rham cohomology with compact supports is good, we
need some enhancements to proposition II.1.1 of [H.75].

1.4. Lemma. Let Z ↪→X ↪→Y be a sequence of closed immersions of schemes. For any M > 0, we
have a cartesian diagram of closed immersions

(1.4.1)

X
i

↪−−−→ X
(M)
Y←

−−−
↩

←
−−−

↩

Z
(M)
X

i(M)

↪−−−→ Z
(M)
Y = Z

(M)

X
(M)
Y

.

Proof. The equality Z(M)
Y = Z

(M)

X
(M)
Y

follows from

(OY /IM+1
X⊂Y )/(IZ⊂Y /I

M+1
X⊂Y )M+1 ∼= OY /I

M+1
Z⊂Y .

The square is cartesian because so is
X

i
↪−−−→ X

(M)
Y←

−−−
↩

←
−−−

↩

Z −−−→ Z .
�

1.5. In the situation of the previous lemma, for any section s : X(M)
Y →X of X ↪→X

(M)
Y , there is

a unique section s(M) : Z(M)
Y →Z

(M)
X of i(M) : Z(M)

X ↪→Z
(M)
Y fitting in a commutative diagram, necessarily

cartesian,

(1.5.1)

X
(M)
Y

s−−−→ X

β(M)

x x α(M)

Z
(M)
Y −−−→

s(M)
Z

(M)
X .

To the morphism i (resp. s) we associate the Cc(X
(M)
Y )-morphism

Ti : Ω•
X

(M)
Y

−→ i∗Ω
•
X

(resp. the Cc(X)-morphism
Ts : Ω•X −→ s∗Ω

•

X
(M)
Y

).

Similarly, to the morphism i(M) (resp. s(M)) we associate the Cc(Z
(M)
Y )-morphism

Ti(M) : Ω•
Z

(M)
Y

−→ i
(M)
∗ Ω•

Z
(M)
X

(resp. the Cc(Z
(M)
X )-morphism

Ts(M) : Ω•
Z

(M)
X

−→ s
(M)
∗ Ω•

Z
(M)
Y

).

Since s ◦ i = idX (resp. s(M) ◦ i(M) = id
Z

(M)
X

), we have

s∗(Ti) ◦ Ts = idΩ•
X

(resp.
s

(M)
∗ (Ti(M)) ◦ Ts(M) = idΩ•

Z
(M)
X

) .
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We will be interested in the composite Cc(X)-morphism (resp. Cc(Z
(M)
X )-morphism)

(1.5.2) s∗Ω
•

X
(M)
Y

s∗(Ti)−−−→Ω•X
Ts−−−→ s∗Ω

•

X
(M)
Y

(resp.

(1.5.3) s
(M)
∗ Ω•

Z
(M)
Y

s
(M)
∗ (T

i(M) )
−−−−−−−→Ω•

Z
(M)
X

T
s(M)−−−→ s

(M)
∗ Ω•

Z
(M)
Y

) .

1.5.4. Local situation. In the notation of the previous lemma, assume furthermore that X and Y are
affine and smooth. Let I be the ideal of O(Y ) corresponding to X ↪→Y and assume moreover that the O(X)-
module I/I2 is free on the generators x1, . . . , xn. Let us denote byD(M)

n := SpecK[x1, . . . , xn]/(x1, . . . , xn)M+1,
the M -th infinitesimal neighborhood of the origin in the affine K-space of dimension n. Then a section s as
in (1.5.1) certainly exists and that cartesian diagram can be identified with the standard diagram

(1.5.5)

X
(M)
Y

∼=−−−→ D
(M)
n ×X pr2−−−→ X

β(M)

x id
D

(M)
d

×α(M)

x x α(M)

Z
(M)
Y −−−→∼= D

(M)
n × Z(M)

X −−−→
pr2

Z
(M)
X .

1.5.6. Lemma. In the local situation above, the composite morphism Ts(M) ◦ s(M)
∗ (Ti(M)) in formula

(1.5.2) is homotopic to the identity of s
(M)
∗ Ω•

Z
(M)
Y

in the category Cc(Z
(M)
X ).

Proof. The canonical morphisms

D(M)
n

σ−→SpecK ι−→D(M)
n ,

where ι corresponds to the canonical augmentation K[x1, . . . , xn]/(x1, . . . , xn)M+1−→K, fit in the diagram
with cartesian squares

(1.5.7)

X
(M)
Y

s−−−→ X
i−−−→ X

(M)
Y

pr1

y π

y y pr1

D
(M)
n

σ−−−→ SpecK ι−−−→ D
(M)
n ,

where π : X −→SpecK is the structural morphism.
We have as usual a Cc(D

(M)
n )-morphism

Tι : Ω•
D

(M)
n
−→ ι∗K = K

D
(M)
n

= K

and a morphism of K-vector spaces
Tσ : K −→σ∗Ω

•

D
(M)
n

.

We observe that Ω•
D

(M)
n

is freely generated over K = K
D

(M)
n

by its global sections

{xαdxλ1 ∧ · · · ∧ dxλp | p+ |α| 6M} .

We have
Tι(xαdxλ1 ∧ · · · ∧ dxλp) =

{ 1 if α = 0 and p = 0
0 otherwise

while
Tσ(1) = 1 .

So, σ∗(Tι) ◦ Tσ = idK , while

(1.5.8) idσ∗Ω•
D

(M)
n

− Tσ ◦ σ∗(Tι) = d ◦ ϑ+ ϑ ◦ d

where d := d
D

(M)
n

and
ϑ : σ∗Ω•D(M)

n
−→σ∗Ω

•

D
(M)
n

[−1]
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is the morphism of K-vector spaces such that

ϑ(xαdxλ1 ∧ · · · ∧ dxλp) =


0 if α = 0 and p = 0,

1
p+ |α|

p∑
j=1

(−1)j+1xαdxλ1 ∧ · · · ∧ d̂xλj ∧ · · · ∧ dxλp otherwise.

We now observe that π∗σ∗Ω•
D

(M)
n

= s∗Ω
•

X
(M)
Y

, that π∗(Tσ) = Ts and that π∗σ∗(Tσ) = s∗(Ti) and take

ϑX := π∗(ϑ) : s∗Ω•X(M)
Y

−→ s∗Ω
•

X
(M)
Y

[−1] ,

a morphism of graded Ω•X -Modules. Applying the functor π∗ to (1.5.8) we conclude that

ids∗Ω•
X

(M)
Y

− Ts ◦ s∗(Ti) = d
X

(M)
Y

/X
◦ ϑX + ϑX ◦ dX(M)

Y
/X

= d
X

(M)
Y

◦ ϑX + ϑX ◦ dX(M)
Y

,

by (0.5.9). This proves the claim. �

Now we can handle the case of smooth morphisms, which will be used in the proof of the theorem.

1.6. Proposition. Let f : X→Y be a smooth morphism of smooth schemes. Let Z be a closed
subscheme of X such that the composition with f gives a closed immersion of Z in Y . Then the canonical
map

Tf(M) : Ω•
Z

(M)
Y

−→ f
(M)
∗ Ω•

Z
(M)
X

is locally a homotopic isomorphism in the category of C •
Z

(M)
Y

-Modules.

Proof. Since the morphism f : X→Y is smooth, and Z is a closed subset of both X and Y , we may
factorize the diagram

Z
i1−−→ X

i2 ↘
y f

Y

locally on X and Y at the points of Z, as

Z
i′2−−→ Y ′

i′1−−→ X

i2 ↘
yf ′ ↙f
Y

where i′1 and i′2 are closed immersions such that i1 = i′1 ◦ i′2, and f ′ is an étale morphism (see [H.75, II.1.3]).
We may and will insist that X be affine and that the ideal I of Y ′ in X satisfy the condition that I /I 2

be a free OY ′ -Module. Taking the infinitesimal neighborhoods of Z we have

Z
(M)
Y ′

i
′(M)
1−−→ Z

(M)
X

f ′(M)
y ↙ f(M)

Z
(M)
Y

where f ′(M) is an isomorphism. The morphism i
′(M)
1 admits therefore the retraction s(M) = f ′(M)−1f (M),

for which f ′(M)s(M) = f (M). Notice that, f ′ being étale, the retraction s(M) comes from the unique section
s : Y ′(M)

X →Y ′ of the canonical inclusion Y ′ ↪→Y
′(M)
X fitting in the first commutative square here below. The

second square below is obtained by taking M -th infinitesimal neighborhoods of Z in the objects of the first.

Y ′
=−−→ Y ′y s↗

y f ′

Y
′(M)
X −−→ Y

and

Z
(M)
Y ′

=−−→ Z
(M)
Y ′y s(M)↗
y f ′(M)

Z
(M)

Y
′(M)
X

=Z(M)
X −−→ Z

(M)
Y

(the lower maps of the above diagrams are given by the composition Y
′(M)
X ↪→X

f−→Y , the left vertical
arrows are nilpotent closed immersions, while the right vertical maps are étale morphisms).
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Now, lemma 1.5.6 applied to the closed immersion i′(M)
1 (and its section s(M)) shows that the composite

morphism

s
(M)
∗ Ω•

Z
(M)
X

s
(M)
∗ (T

i
′(M)
1

)

−−−−−−−→ s
(M)
∗ i

′(M)
1∗ Ω

Z
(M)
Y ′

∼= Ω
Z

(M)
Y ′

T
s(M)−−−→ s

(M)
∗ Ω•

Z
(M)
X

is homotopic to the identity of s(M)
∗ Ω•

Z
(M)
X

in the category Cc(Z
(M)
Y ′ ), while

s
(M)
∗ (T

i
′(M)
1

) ◦ Ts(M) = idΩ•
Z

(M)
Y ′

.

Taking direct images via f ′(M), and identifying f
′(M)
∗ Ω•

Z
(M)
Y ′

with Ω•
Z

(M)
Y

, so that f ′(M)
∗ (Ts(M)) is identified

with Tf(M) , we conclude that

f
(M)
∗ (T

i
′(M)
1

) ◦ f ′(M)
∗ (Ts(M)) = idΩ•

Z
(M)
Y

,

while
f
′(M)
∗ (Ts(M)) ◦ f (M)

∗ (T
i
′(M)
1

) : f (M)
∗ Ω•

Z
(M)
X

−→ f
(M)
∗ Ω•

Z
(M)
X

,

is homotopically equivalent the identity of f (M)
∗ Ω•

Z
(M)
X

. In other words

f
(M)
∗ (T

i
′(M)
1

) : f (M)
∗ Ω•

Z
(M)
X

∼= f
′(M)
∗ s

(M)
∗ Ω•

Z
(M)
X

f
′(M)
∗ s

(M)
∗ (T

i
′(M)
1

)

−−−−−−−−−−−→ f
′(M)
∗ Ω•

Z
(M)
Y ′

∼= Ω•
Z

(M)
Y

is a homotopic inverse of the canonical morphism Tf(M) . �

1.7. Lemma. Let X be a scheme and U = {Uα} be an open covering. For an object F • of Cpc(X)
we define the Čech (co-)complex C•(U ,F ) of F • on U as follows:

Cp(U ,F •) =
⊕
|α|=p+1

jα!F
•
|Uα

where α = (α0, . . . , αp) is a multi-index, Uα =
⋂
i Uαi and jα is the inclusion of Uα in X. The differentials

Cp(U ,F •)→Cp−1(U ,F •) are defined as usual by the simplicial structure. Then we have a canonical
augmentation morphism C0(U ,F •)→F • making C•(U ,F •) into a left resolution of F • in the category
Cpc(X). In other words, the sequence

(1.7.1) · · · −−−→C2(U ,F •)−−−→C1(U ,F •)−−−→C0(U ,F •)−−−→F •−−−→ 0

is exact.

Proof. In order to prove the exactness of (1.7.1), we have to prove that for any i the sequence in
ProCoh(X) given by C•(U ,F i) is a left resolution of F i. Since all the constructions involved commute
with the functor “lim←−” we may assume that each F i is a coherent OX -Module. So, let F be in Coh(X).
The complex

C•(U ,F )−−−→F −−−→ 0
is exact if and only if for any injective quasi-coherent OX -Module I the sequence

HomOX (C•(U ,F ),I )←−−−HomOX (F ,I )←−−− 0

is exact. The exact functors HomOX (−,I ) : Coh(X)−→QCoh(X), for I an injective of QCoh(X), form
in fact a conservative family. Using the adjunction of jα! and j−1

α (see the Deligne appendix in [H.RD]) the
last sequence is just the usual Čech resolution of the sheaf HomOX (F ,I )

HomOX

 ⊕
|α|=p+1

jα!F|Uα ,I

 ∼= ∏
|α|=p+1

jα∗HomOUα (F|Uα ,I|Uα) ∼=
∏

|α|=p+1

jα∗HomOX (F ,I )|Uα .

�
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1.8. Theorem. The definition of H•DR,c(X) is independent of the choice of the compactification X

and of the closed immersion of X in P smooth around X.

Proof. Given X→X1→P1 and X→X2→P2, and Ci = XirXi, as in the definition, we consider X
the closure of (the diagonal immersion of) X in X1 ×X2, and the product P1 × P2. So we have a diagram

X1
i1−−−−−−−−→ P1

j1 ↗ ↖ ↖
X → X → X1 ×X2 −−−→ P1 × P2

j2 ↘ ↙ ↙
X2 −−−−−−−−→

i2
P2

where all the horizontal maps are closed immersions, except X→X which is an open one. Moreover, since
the natural morphisms from X to X ×X2 and X1 ×X are closed immersions, we have that C = X rX is
contained in C1 × C2. We then obtain diagrams

X −−−→ P1×P2

X
↗
↘

y y
Xi −−−−→ Pi

for i = 1, 2. Therefore we are reduced to the case of a proper morphism g : X1→X2 with g−1(C2) = C1 (in
particular g(C1) ⊆ C2) and a morphism f : P1→P2 restricting to a smooth morphism f : W1→W2, if W1

is taken to be sufficiently small. We have then the commutative diagram

X1
i1−−−−−−−−→ P1

X

j1 ↗

j2 ↘

y g

y f

X2 −−−−−−−−→
i2

P2 .

As usual, hi : Ci ↪→Xi will denote the closed immersions for i = 1, 2.
We have to prove that H•

(
X1, ((Ω•P1

)/X1
→h1∗(Ω•P1

)/C1)tot

)
∼= H•

(
X2, ((Ω•P2

)/X2
→h2∗(Ω•P2

)/C2)tot

)
.

More precisely we have to prove that the canonical morphism

(1.8.1) ((Ω•P2
)/X2

→h2∗(Ω•P2
)/C2)tot−−−→Rg∗((Ω•P1

)/X1
→h1∗(Ω•P1

)/C1)tot

induces isomorphisms on the hypercohomology groups. We will show that the previous morphism is a quasi-
isomorphism of abelian sheaves. Taking infinitesimal neighborhoods of X and Xi in Wi and Pi respectively,
we have diagrams

X
(M)
W1

j
(M)
1−−−−−−−−→ X

(M)

1P1

X

↗

↘

y f(M)

y f
(M)

X
(M)
W2
−−−−−−−−→

j
(M)
2

X
(M)

2P2

where j(M)
1 and j

(M)
2 are open immersions, f (M) is smooth and f

(M)
is proper. By proposition 1.3 and

remark 0.3 we may study the morphism

(1.8.2) “lim←−”
M,N

I N−•
C2

Ω•
X

(M)
2P2

−−−→ “lim←−”
M,N

Rf
(M)

∗

(
I N−•
C1

Ω•
X

(M)
1P1

)
(corresponding to the morphism (1.8.1)). We explicitly recall, without proof, the following enhanced version
of proposition 5 of Deligne’s appendix to [H.RD] (whose proof depends on [EGA III, Prop. 3.3.1]).
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1.8.3. Proposition. Let
U ↪−−−→ X

f

y y f

V ↪−−−→ Y ,

be a cartesian diagram of noetherian schemes, where the horizontal maps are open immersions, f and f are
proper morphisms and f is acyclic. Let I be an Ideal of OY defining the closed subset Y \ V , and let J
denote the extension of the OY -Ideal I to an Ideal of OX . Then, for any coherent OX -Modules F
(i) if k > 0, “lim←−”

n
Rkf∗J

nF = 0 ,

(ii) if k = 0, for sufficiently big n, f∗J
n+1F = I f∗J

nF .

From this proposition, we have that for any M , i and any sufficiently big N , there is a canonical

isomorphism “lim←−”
N

Rf
(M)

∗ I N+N
C1

Ωi
X

(M)
1P1

∼= “lim←−”
N

I N
C2
f

(M)

∗

(
I N
C1
Ωi
X

(M)
1P1

)
. We are then reduced to proving

that, for any M , the canonical morphism

(1.8.4) “lim←−”
N

I N−•
C2

Ω•
X

(M)
2P2

−−−→ “lim←−”
N

I N−•
C2

f
(M)

∗

(
I N−•
C1

Ω•
X

(M)
1P1

)
is a quasi-isomorphism. By 1.3 and flat base change, we may rewrite (1.8.4) as

(1.8.5) j
(M)
2! Ω•

X
(M)
W2

−−−→ j
(M)
2! f

(M)
∗ Ω•

X
(M)
W1

and we know by proposition 1.6 that Ω•
X

(M)
W2

−→ f
(M)
∗ Ω•

X
(M)
W1

is locally a homotopic isomorphism. So there

exists an open covering U (M) of X(M)
W2

such that for any i the canonical morphism

Ci(U (M), Ω•
X

(M)
W2

)−→Ci(U (M), f
(M)
∗ Ω•

X
(M)
W1

)

is a homotopic isomorphism. Therefore, applying the functor j2!, which is exact in the category ProCoh(X),
to the diagram

C•(U (M), Ω•
X

(M)
W2

) −−−→ Ω•
X

(M)
W2

−−−→ 0y y
C•(U (M), f

(M)
∗ Ω•

X
(M)
W1

) −−−→ f
(M)
∗ Ω•

X
(M)
W1

−−−→ 0

we obtain that (1.8.5) is a quasi-isomorphism in the category ProAb(X). �

1.9. Remark. In the setting 1.1 we may suppose that P is smooth. In fact, if

X −−−→X −−−→P

are immersions as in 1.1, we can take a resolution of singularities à la Hironaka π : P ′→P (we are in
characteristic zero), which restricts to an isomorphism on any open smooth subscheme W of P , and therefore
on X. Taking as X

′
the closure of X in P ′, we have a commutative diagram

X
′ −−→ P ′

j′ ↗
y y π

X −−→
j

X −−−→
i

P

where X
′

(a closed subscheme of the inverse image by π of X) is proper and j′ is an open immersion.
We may then calculate the De Rham cohomology with compact supports of X using the first line of the
diagram, i.e. we can assume P smooth. Notice that this can also be proven independently of the previous
theorem, in a simpler way. In fact, let W be any smooth open subscheme of P containing X as a closed
subscheme. Then in the previous diagram W is also an open subscheme of P ′ with the same property. Now,
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for any M , the proper map π induces a proper map π(M) : X
′(M)

P ′ −→X
(M)

P , and an isomorphism of functors
Rπ(M)
∗ ◦ j′(M)

!

∼=−→ j
(M)
! . We then have a morphism of spectral sequences

Hq(X
(M)

P , j
(M)
! Ωp

X
(M)
W

) =⇒ Hp+q(X
(M)

P , j
(M)
! Ω•

X
(M)
W

)y y
Hq(X

′(M)

P ′ , j
′(M)
! Ωp

X
(M)
W

) =⇒ Hp+q(X
′(M)

P ′ , j
′(M)
! Ω•

X
(M)
W

) .

The left hand arrow is an isomorphism, since both source and target identify with the cohomology groups
with compact supports for coherent sheaves Hq

c (X(M)
W , Ωp

X
(M)
W

) as defined in [H.72, §2]. In view of regularity,

the limits of the two spectral sequences are also isomorphic.

1.10. Proposition. The De Rham cohomology with compact supports is a contravariant functor
w.r.t. proper morphisms and a covariant functor w.r.t. open immersions.

Proof. For an open immersion j : X1→X2 we may calculate the De Rham cohomologies with compact
supports of X1 and X2 using an open immersion of X2 into a proper scheme:

X1

j
y ↘
X2 −−→

j2
X2 −−−→

i2
P2

since the diagonal arrow is again an open immersion. Now remark that C2 = X2 r X2 is contained in
C1 = X2 rX1, so that IC1 ⊆ IC2 . The canonical commutative diagram

(Ω•P2
)/X2

−−−→ h1∗(Ω•P2
)/C1∥∥ y

(Ω•P2
)/X2

−−−→ h2∗(Ω•P2
)/C2

where hi is the closed immersion Ci→X2, induces a natural morphism HDR,c(X1)−→HDR,c(X2).
Let now h : X1→X2 be a proper morphism. As in the first step of the proof of the theorem, we may

complete a diagram as
X1 −−−→ X1 −−−→ P1

h
y
X2 −−−→ X2 −−−→ P2

using X = the closure of the image of the canonical morphism X1−→X1×X2, and the product P = P1×P2.
So we are reduced to a diagram of the form

(1.10.1)
X1 −−−→ X1 −−−→ P1

h
y g

y f
y

X2 −−−→ X2 −−−→ P2

where the first square is cartesian. In fact the canonical morphismX1→ g−1(X2) is clearly an open immersion
and it is a proper morphism since its composition with g|g−1(X2) : g−1(X2)→X2 is proper; therefore it is
the identity. As a consequence we have that g(C1) ⊆ C2. We then have a commutative diagram

g∗(Ω•P1
)/X1

−−−→ g∗h1∗((Ω•P1
)/C1)x x

(Ω•P2
)/X2

−−−→ h2∗((Ω•P2
)/C2)

so that we deduce a natural map HDR,c(X2)−→HDR,c(X1). �

1.10.2. Remark. Notice that if X is a proper scheme we have H•DR,c(X) ∼= H•DR(X), since we may
choose X = X in the setting 1.1 of our definition. In general, let j : X→X be the open immersion in 1.1. By
the proposition we have a canonical map H•DR,c(X)→H•DR,c(X) = H•DR(X) (the last equality by properness
of X). Moreover, by the (contravariant) functoriality of De Rham cohomology (without supports) we have a
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canonical morphism H•DR(X)→H•DR(X). Therefore, by composition, we have for any scheme X a canonical
morphism

H•DR,c(X)−−−→H•DR,c(X) = H•DR(X)−−−→H•DR(X) .
This morphism is induced by the canonical morphism of complexes (Ω•P )/X −→ j∗((Ω•W )/X) which defines
a morphism

((Ω•P )/X→h∗(Ω•P )/C)tot−→ j∗(Ω•W )/X ;
taking hypercohomology gives the canonical morphism between De Rham cohomologies.

1.11. Proposition. Let j : U→X be an open immersion of schemes and i : Z = XrU→X be the
closed immersion of the complement, endowed with some closed subscheme structure. There exists a long
exact sequence

· · · −→Hi−1
DR,c(Z)−→Hi

DR,c(U)−→Hi
DR,c(X)−→Hi

DR,c(Z)−→Hi+1
DR,c(U)−→· · · .

Proof. We can choose a compactification X of X and a closed immersion of X in a scheme P smooth
around X. We then construct the diagram

U

j
y ↘
X −−→ X −−−→ P

i
x x i

Z −−→ XrU

where we remark that XrU is closed in X and contains Z as an open subset; moreover (XrU)rZ = XrX.
Therefore, we are in the situation to calculate the three De Rham cohomologies with compact supports:

HDR,c(U) = H•
(
X, ((Ω•P )/X→(Ω•P )/XrU )tot

)
= lim←−
M,N

H•
(
X,I N−•

XrU
Ω•P
/
IM−•
X

)
HDR,c(X) = H•

(
X, ((Ω•P )/X→(Ω•P )/XrX)tot

)
= lim←−
M,N

H•
(
X,I N−•

XrX
Ω•P
/
IM−•
X

)
HDR,c(Z) = H•

(
XrU, ((Ω•P )/XrU→(Ω•P )/XrX)tot

)
= lim←−
M,N

H•
(
XrU,I N−•

XrX
Ω•P
/
IM−•
XrU

)
.

From the exact sequences

0−→I N−•
XrU

Ω•P
/
IM−•
X

−→I N−•
XrX

Ω•P
/
IM−•
X

−→I N−•
XrX

Ω•P
/
IM−•
XrU

−→ 0

we have immediatly the conclusion taking the long exact sequence of hypercohomology. �

1.11.1. Remark. It will follow from our Poincaré duality theorem below that the long exact sequence
of the proposition is dual of the exact sequence of a closed subset for homology, see [H.75, II.3.3].

1.11.2. Remark. If X is a proper scheme, then also Z is proper and the exact sequence of the
proposition can be written as

· · · −→Hi−1
DR (Z)−→Hi

DR,c(U)−→Hi
DR(X)−→Hi

DR(Z)−→Hi+1
DR,c(U)−→· · ·

because of the remark 1.10.2. This will be one ingredient for the proof of the Poincaré duality theorem, see
below.

1.12. Proposition. Let X be the union of two closed subschemes X1 and X2; then there exists a
Mayer-Vietoris exact sequence for the De Rham cohomology with compact supports

· · · −→Hi−1
DR,c(X1∩X2)−→Hi

DR,c(X)−→Hi
DR,c(X1)⊕Hi

DR,c(X2)−→Hi
DR,c(X1∩X2)−→Hi+1

DR,c(X)−→· · ·

Proof. We can take a compactification X of X which is the union of closed subschemes X1 and X2,
compactifications of X1 and X2, respectively. (It suffices to replace X by the union of the closure of X1 and
of X2 in X). Since the Xi are closed in X, we have that C = XrX is the union of the Ci = XirXi. The
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proof of the Mayer-Vietoris sequence in De Rham cohomology (without supports), [H.75, II.4.1], gives the
following diagram with exact rows

0 −→ (Ω•P )/X −→ (Ω•P )/X1
⊕ (Ω•P )/X2

−→ (Ω•P )/X1∩X2
−→ 0y y y

0 −→ (Ω•P )/C −→ (Ω•P )/C1 ⊕ (Ω•P )/C2 −→ (Ω•P )/C1∩C2 −→ 0 .

Then we can deduce the exact sequence of pro-complexes

0 −→ “lim←−”
M,N

I N−•
C Ω•P
IM−•
X

−→ “lim←−”
M,N

I N−•
C1

Ω•P

IM−•
X1

⊕ “lim←−”
M,N

I N−•
C2

Ω•P

IM−•
X2

−→ “lim←−”
M,N

I N−•
C1∩C2

Ω•P

IM−•
X1∩X2

−→ 0

from which the exact sequence of Mayer-Vietoris of De Rham cohomology with compact supports follows.
�

1.13. Example: De Rham cohomology with compact supports of affine spaces. If X = A
n
K ,

we can take P = X = P
n
K , and the exact sequence of the closed subset C = XrX ∼= P

n−1
K is

· · · −→Hi−1
DR (Pn−1

K )−→Hi
DR,c(A

n
K)−→Hi

DR(PnK) δ−→Hi
DR(Pn−1

K )−→Hi+1
DR,c(A

n
K)−→· · ·

Now, for projective spaces we have Hi
DR(PnK) ∼= K for 0 6 i 6 2n even, and 0 otherwise [H.75, II.7.1];

moreover, the coboundary operator δ is an isomorphism. Then we deduce

Hi
DR,c(A

n
K) ∼=

{ 0 if i 6= 2n
K if i = 2n.

1.14. Proposition. For any scheme X of dimension n we have that Hi
DR,c(X) = 0 for i > 2n.

Proof. In fact we can take the exact sequence of X as an open subset of X with closed complement
C, and apply the analogous results for ordinary De Rham cohomology of [H.75, II.7.2]. �

2. Hyperext functors and De Rham Homology.

In this section we recall the notion of De Rham homology, which will be essential in the proof of our
duality theorem in the next section. For simplicity, in this and the next section we will assume, in the setting
1.1, to have chosen a smooth P (see remark 1.9). In that case, we can use the classical Cousin complex of
Ω•P , rather than the more complicated dualizing complex of Du Bois [DB.90], and we can make explicit its
relevance in the calculation of certain hyperext groups of Herrera and Lieberman.

2.1. In the notation of our setting 1.1, since W is a smooth scheme containing X as a closed subscheme,
the Hartshorne definition of De Rham homology [H.75, II.3] may be expressed as

HDR
• (X) = H2n−•

X (W,Ω•W )

where n is the dimension of W , and the right hand side indicates hypercohomology with support in X of
the complex Ω•W .

2.1.1. Using the resolution of Ω•W given by the Cousin complex E(Ω•W ), Hartshorne interpretes his
definition as

HDR
• (X) ∼= H2n−•(W,ΓXE(Ω•W )) ∼= H2n−•(Γ(W,ΓXE(Ω•W )))

since ΓXE(Ω•W ) is a complex of injective OW -Modules ([H.75, II.3]).
2.2. In the following we will characterize the notion of De Rham homology in terms of the func-

tors Hom•Ω•
P

(−,−) (which are important in order to understand the differentials of the complex) and
Hom•OP (−,−) (which are related to the notion of support).

2.2.1. The ring change formula

Hom•OP (F ,M •) ∼= Hom•Ω•
P

(F ⊗OP Ω
•
P ,M

•) ,

where F is an OP -Module and M • is a graded Ω•P -Module, is an isomorphism of graded Ω•P -Modules.
If moreover M • is a C •P -Module and F ⊗OP Ω

•
P admits a structure of C •P -Module (for example if P is

smooth and F is a left DP -Module), then the ring change formula gives a structure of C •P -Module to
N • = Hom•OP (F ,M •). Notice that in general diN • is not induced by Hom•K(idF , d

i
M•), since this last
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operator does not preserve OP -linearity. As a particular case, we see that if M • is a C •P -Module and Z is
closed in P , then

ΓZM • := lim−→
N

Hom•OP (OP /I N
Z ,M •) ∼= lim−→

N

Hom•Ω•
P

(Ω•P /I
N−•
Z ,M •)

is a C •P -Module.
2.2.2. The same sort of phenomena are explored in detail in [HL], and [B.74, II.5.2] for the other ring

change formula. Namely, for F an OP -Module and M • an Ω•P -Module, we have a canonical isomorphism
of Ω•P -Modules

Hom•Ω•
P

(M •,Hom•OP (Ω•P ,F )) ∼= Hom•OP (M •,F ) .
If moreover M • is a C •P -Module and Hom•OP (Ω•P ,F ) admits a structure of C •P -Module (for example if P is
smooth and F is a right DP -Module), then the second ring change formula gives a structure of C •P -Module
to Hom•OP (M •,F ). A special case of this isomorphism is implicitely used by [H.75] in the proof of the
duality theorem. Assuming P smooth, if F = ΩnP [−n] where n = dimP , Hom•OP (Ω•P , Ω

n
P [−n]) ∼= Ω•P , the

isomorphism becomes
Hom•Ω•

P
(M •, Ω•P ) ∼= Hom•OP (M •, ΩnP [−n])

and the terms have a structure of C •P -Module if M • does (see [HL, 2.9]).

2.3. On the definition of HyperExt functors. This section is meant to justify the useful sign
convention of [HL,§3], and to modify some incorrect statements in that section(1). We also prove that the
definition of hyperext groups of [B.74, II.5.4.3], which we adopted here, is equivalent to the original definition
of [HL, §3].

We start with an easy lemma on complexes of C •P -Modules.

2.3.1. Lemma. Let

J •,• : · · · −→J •,q
d′′ •,q
J−→ J •,q+1−→· · ·

be a complex of C •P -Modules, and let d′ •,qJ indicate the differentials of each term J •,q (notice that d′J is

a differential operator, while d′′J is an OP -linear map). We define a new complex J̃ •,• of C •P -Modules in

the following way: for any p and q let J̃ p,q = J p,q, d′ p,q
J̃

= (−1)qd′ p,qJ and d′′ p,q
J̃

= (−1)pd′′ p,qJ . Then

the canonical map σ•,•J : J •,•−→ J̃ •,• defined by σp,qJ = (−1)pqidJ p,q is an isomorphism of complexes of

C •P -Modules. Moreover, the functor sending J •,• to J̃ •,• is an involution of the category of complexes of
C •P -Modules.

Proof. Clearly, for any q, J̃ •,q with the differentials d′ •,q
J̃

is a C •P -Module. Moreover we have the

commutativity d′
J̃
d′′
J̃

= d′′
J̃
d′
J̃

, so that J̃ •,• is a complex of C •P -Modules.

Therefore we have only to prove that σ•,•J is a morphism of complexes of C •P -Modules, that is it commutes
with the differentials, which is an easy exercise. �

We point out that the structure of Ω•P -Module on each J̃ •,q is given by

α ·
J̃•,q

u = (−1)iqα ·
J•,q

u ,

if α ∈ Ωi and u ∈J •,q.

2.3.2. Corollary. Let F • be a C •P -Module and J •,• a complex of C •P -Modules as before. Then
we have canonical isomorphisms of complexes of C •P -Modules

Homp
Ω•
P

(F •,J •,q)
σp,q
J∗−−−→Homp

Ω•
P

(F •, J̃ •,q)
σp,q
Hom−−−→ H̃om

p

Ω•
P

(F •, J̃ •,q)

where σJ ∗ = Hom•Ω•
P

(idF• , σJ ), σp,qHom = σ
Homp

Ω•
P

(F•,J̃ •,q)
and

(H̃om
p

Ω•
P

(F •, J̃ •,q))p,q =
(

(Homp
Ω•
P

(F •, J̃ •,q))p,q
)˜ .

(1) cf. the lines of loc. cit. preceding formula (3.1): “. . . Ω•-linearity, a property which is preserved by d′

and d′′”. This statement is false.
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Proof. This is a consequence of the previous lemma. �

We make explicit the differentials in the objects of the corollary in view of the next result. The
differentials in the first term are given by d′ and d′′ defined as usual:

d′ p,q : Homp
Ω•
P

(F •,J •,q)−→Homp+1
Ω•
P

(F •,J •,q) d′ p,q(Φ) = d′ •,qJ ◦ Φ− (−1)pΦ ◦ d•F

and
d′′ p,q : Homp

Ω•
P

(F •,J •,q)−→Homp
Ω•
P

(F •,J •,q+1) d′′ p,q(Φ) = d′′ •,qJ ◦ Φ .

The second term also has the usual differentials, but using the differentials of J̃ instead of J . So we have

d̃′ p,q : Homp
Ω•
P

(F •, J̃ •,q)−→Homp+1
Ω•
P

(F •, J̃ •,q) d̃′ p,q(Ψ) = (−1)qd′ •,qJ ◦Ψ− (−1)pΨ ◦ d•F

and
d̃′′ p,q : Homp

Ω•
P

(F •, J̃ •,q)−→Homp
Ω•
P

(F •, J̃ •,q+1) d̃′′ p,q(Ψ)a = (−1)p+ad′′ •,qJ ◦Ψa

where Ψ = (Ψa), with Ψa : F a→J a+p,q.
Finally the differentials of the last object are given by

δ′ p,q : H̃om
p

Ω•
P

(F •, J̃ •,q)−→ H̃om
p+1

Ω•
P

(F •, J̃ •,q) δ′ p,q(Ψ) = d′ •,qJ ◦Ψ− (−1)p+qΨ ◦ d•F

and
δ′′ p,q : H̃om

p

Ω•
P

(F •, J̃ •,q)−→ H̃om
p

Ω•
P

(F •, J̃ •,q+1) δ′′ p,q(Ψ)a = (−1)ad′′ •,qJ ◦Ψa .

We note that the hyperext functors are defined by [HL] using the third bicomplex of the corollary, and by
[B.74] using the first one; the corollary proves therefore that the definitions are equivalent.

2.3.3. Proposition. Using the previous notation, we have a canonical identification of C •P -Modules((
H̃om

p

Ω•
P

(F •, J̃ •,q)
)
p,q

)
tot

∼= Hom•Ω•
P

(F •,J •
tot)

between the total complex of
(
H̃om

p

Ω•
P

(F •, J̃ •,q)
)
p,q

and the complex Hom•Ω•
P

(F •,J •
tot), where J •

tot

indicates the total complex associated to J •,•.

Proof. We first point out that the total complex associated to a complex of C •P -Modules is canonically
a C •P -Module. Notice that, for any r, the r-th level of any of the two complexes appearing in the statement
is described as collection of OP -linear morphisms (Ψp,q

a ) (for varying a, p and q with p+q = r) where
Ψp,q
a : F a→J a+p,q and satisfying the following linearity w.r.t. sections α ∈ ΩiP

Ψp,q
a+i(αu) = (−1)i(p+q)αΨp,q

a (u)

for any u section of F a. Therefore we only have to prove that the differentials in the two complexes coincide.
We can prove that they are given by

Dr(Ψ)p,qa = d′ a+p−1,q
J ◦Ψp−1,q

a + (−1)r+1Ψp−1,q
a+1 ◦ daF + (−1)p+a+1d′′ a+p,q−1

J ◦Ψa+p,q−1
a

where Ψ = (Ψp,q
a ) with Ψp,q

a : F a→J a+p,q (for p+q = r), and Dr(Ψ)p,qa : F a→J a+p,q (for p+q = r+1).
In fact, using the previous notation, the total differential ∆r in the first case is defined by

∆r(Ψ)p,qa = (δ′Ψ)p,qa + (−1)p+1(δ′′Ψ)p,qa
= d′ a+p−1,q

J ◦Ψp−1,q
a − (−1)rΨp−1,q

a+1 ◦ daF + (−1)p+1(−1)ad′′ a+p,q−1
J ◦Ψa+p,q−1

a ,

while the differential Dr in the second complex is given by

Dr(Ψ)p,qa = (d•J tot ◦Ψ)p,qa − (−1)r(Ψ ◦ d•F )p,qa

= d′ a+p−1,q
J ◦Ψp−1,q

a + (−1)p+a+1d′′ a+p,q−1
J ◦Ψa+p,q−1

a − (−1)rΨp−1,q
a+1 ◦ daF .

�
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2.4. If P is a smooth scheme of dimension n, then the sheaves of differentials ΩiP are locally free
OP -Modules, so that we have the following isomorphisms

(2.4.1)

Hom•Ω•
P

(F •, Er(Ω•P )) ∼= Hom•Ω•
P

(F •, Er(OP )⊗OP Ω
•
P )

∼= Hom•Ω•
P

(F •, Er(OP )⊗OP Hom•OP (Ω•P , Ω
n
P [−n]))

∼= Hom•Ω•
P

(F •,Hom•OP (Ω•P , E
r(OP )⊗OP Ω

n
P [−n]))

∼= Hom•OP (F •, Er(OP )⊗OP Ω
n
P [−n])

∼= Hom•OP (F •, Er(ΩnP )[−n])

(using once more the contravariant ring change formula). Similarly,

(2.4.2) Hom•Ω•
P

(F •, Er(Ω•P )) ∼= Hom•OP (F •, Er(ΩnP )[−n])

and, in particular,

HomΩ•
P

(F •, Er(Ω•P )) ∼= HomOP (F •, Er(ΩnP )[−n]) .

Since Er(ΩnP ) is an injective OP -Module for any r, we conclude that Er(Ω•P ) is an injective Ω•P -Module.

2.4.3. Proposition. We have a canonical isomorphism

Hom•Ω•
P

(M •, E(Ω•P ))−−−→Hom•OP (M •, E•(ΩnP )[−n])

for any graded Ω•P -Module M •.

Proof. Follows immediately from 2.3.3 and 2.4.2. �

2.5. Definition. Let P be a smooth scheme of pure dimension n. For any C •P -Module M •, we
define its dual C •P -Module as

(M •)∗ := Hom•Ω•
P

(M •, E(Ω•P ))[2n] .

Notice that, as a graded OP -Module, (M •)∗ ∼= Hom•OP (M •, E•(ΩnP )[n]), so that this notion of dual is
compatible with duality in the derived category of OP -Modules. If N • = (M •)∗ is a dual, then for any i,
the OP -Module N i =

⊕n
j=0 HomOP (M j−n−i, Ej(ΩnP )) is flabby, since Ej(ΩnP ) is an injective OP -Module.

The functor
C (P )◦ −−−→ C (P )
M • 7−−−→ (M •)∗

is exact and naturally extends to a functor

(ProC (P ))◦−−−→ IndC (P ) .

2.6. De Rham Homology. Coming back to the notation of 1.1, we rewrite the definition of De Rham
homology for an easier construction of the duality morphism in the following section.

2.6.1. Proposition. Let jW : W →P be the open immersion of W in P , and assume that P is
smooth. Then

(“lim←−”
M>N

I N−•
C Ω•P

/
IM−•
X

)∗ ∼= jW∗ΓXE(Ω•W )

and we have canonical isomorphisms

HDR
• (X) ∼= H−•(X, (“lim←−”

M>N

I N−•
C Ω•P

/
IM−•
X

)∗) .
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Proof. We compute

jW∗ΓXE(Ω•W ) ∼= lim−→
N

I −NC ΓXE(Ω•P )

∼= lim−→
M,N

I −NC Hom•OP

(
OP
/
IM
X
, E(Ω•P )

)
∼= lim−→
M,N

Hom•OP

(
I N
C ,Hom•OP

(
OP
/
IM
X
, E(Ω•P )

))
∼= lim−→
M>N

Hom•OP

(
I N
C

/
IM
X
, E(Ω•P )

)
∼= Hom•OP

(
“lim←−”
M>N

I N
C

/
IM
X
, E(Ω•P )

)

∼= Hom•Ω•
P

(
“lim←−”
M>N

I N−•
C Ω•P

/
IM−•
X

, E(Ω•P )

)
.

Since ΓXE(Ω•W ) is a complex of flabby abelian sheaves (the objects are injective OW -Modules), we have, in
the derived category of abelian sheaves on P , jW∗ΓXE(Ω•W ) ∼= RjW∗ΓXE(Ω•W ) and

H•X(W,Ω•W ) ∼= H•(W,ΓXE(Ω•W )) ∼= H•(P, jW∗ΓXE(Ω•W )) .

�

2.6.2. Corollary. In the previous notation, let M • be a C •P -Module. There are canonical
isomorphisms

Extp
Ω•
P

(M •, Ω•P ) ∼= Hp
(
Hom•Ω•

P
(M •, E(Ω•P ))

)
and

Extp
Ω•
P

(M •, Ω•P ) ∼= Hp
(

Hom•Ω•
P

(M •, E(Ω•P ))
)
.

Moreover,

HDR
p (X) ∼= Ext2n−p

Ω•
P

(“lim←−”
M>N

I N−•
C Ω•P

/
IM−•
X

, Ω•P ) ∼= lim−→
M>N

Ext2n−p
Ω•
P

(I N−•
C Ω•P

/
IM−•
X

, Ω•P ) .

Proof. By (2.4.1) and [B.74, II.5.4.8], the Cousin resolution E•(Ω•P ) of Ω•P permits the computation
of the (local and global) hyperExt functors of [HL]. So we have

Extp
Ω•
P

(M •, Ω•P ) ∼= Hp
(

(Hom•Ω•
P

(M •, E•(Ω•P )))tot

)
.

Proposition 2.3.3 gives

Hp
(

(Hom•Ω•
P

(M •, E•(Ω•P )))tot

)
∼= Hp

(
(Hom•Ω•

P
(M •, (E•(Ω•P ))tot)

)
which proves the first formula. The second formula follows immediately from the first. The last assertion of
the statement combines the first one with proposition 2.6.1. �

3. Algebraic Poincaré Duality.

Our first result is the construction of a duality morphism, which will be compatible with the duality
morphisms constructed in the proper case in [H.75, II.5]. As already said, in the body of this section, we
suppose that the scheme P of the setting 1.1 be smooth. The Poincaré duality theorem will be proved using
the long exact sequences for a closed subset in De Rham cohomology with compact supports and De Rham
homology.

We also give an alternative proof, with a strategy similar to the original one of [H.75] for the proof of
the duality theorem in the proper case: the canonical duality morphism is induced by a morphism of spectral
sequences, and we can use the results of [H.72] (cohomology with compact supports for coherent sheaves)
to prove that it is an isomorphism. For the construction of the morphism of spectral sequences we make
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explicit the (equivalent) point of view of pairings of spectral sequences used in [HL]. In fact the alternative
proof could also be rewritten adapting to the open case the proof of the duality theorem [HL, 5.7] for proper
smooth spaces.

3.0. In this section we will discuss duality results for not necessarily finite dimensional K-vector spaces,
so we recall some important notions which will be freely used. Let V be the category of finite dimensional
K-vector spaces. The category of all K-vector spaces is equivalent to IndV . On the other hand, ProV
is equivalent, via the inverse limit functor, to the category of linearly topologized and linearly compact
K-vector spaces (with continuous maps as morphisms). Notice that it is in fact an abelian category.

The usual duality for finite dimensional K-vector spaces, sending V to V ′ = HomK(V,K), extends
to contravariant functors IndV −→ProV and ProV −→ IndV which are (anti-)equivalences inverse to each
other. In fact we have canonical equivalences Ind(V ◦) ∼= Pro(V )◦ and Pro(V ◦) ∼= Ind(V )◦; so the Ind-
extension of V ◦

′→V , again denoted with the prime apex, is Pro(V )◦ ∼= Ind(V ◦) ′→ Ind(V ). Similarly the
Pro-extension of V ◦

′→V is Ind(V )◦ ∼= Pro(V ◦) ′→Pro(V ).
We explicitly point out that, given a spectral sequence E : Ep,qr ⇒ Ep+q in V (resp. IndV ), the dual

spectral sequence E′ in V (resp. ProV ) can be defined in the following way. We put E′ p,qr = (E−p,−qr )′

and E′n = (En)′ where the prime apex indicates the dual K-vector space (resp. topological K-vector
space), in the above sense. The limit object is endowed with the filtration given by orthogonality, that
is Fi(E′n) := (FiEn)⊥ = ker((En)′→(FiEn)′). The exactness of the duality functor and the relation
(Fi/Fj)′ ∼= F⊥j /F

⊥
i permit to endow E′ with a well defined structure of spectral sequence, where the

differentials at the r-th level are defined by duality:

d′ p,qr = (d−p−r,−q−r+1
r )′ .

3.1. Construction of the duality morphism. Let X, X and P be as in 1.1, and suppose P
smooth (see remark 1.9); let p = pX : X→SpecK the canonical morphism (we call p also the corresponding
morphisms for X and P ) and let n = nP be the dimension of P . Let M • = “lim←−”

M
M (M)• where M (M)•

is an object of Cc(X
(M)

P ); so, M • is a pro-object of Cc(P ), indexed by N. Then

(M •)∗ := Hom•Ω•
P

(M •, E(Ω•P )) [2n] ∼= Hom•OP (M •, E(ΩnP )[n]) = ΓXHom•OP (M •, E(ΩnP )[n])

has support in X. On the other hand, for any j, the OP -modules ((M •)∗)j and ((M •)∗∗)j are flabby sheaves.
From the evaluation morphism

(3.1.1) η = ηM : M •−−−→(M •)∗∗ ∼= Hom•Ω•
P

(
Hom•Ω•

P
(M •, E(Ω•P )) , ΓXE(Ω•P )

)
,

clearly a morphism of complexes for the natural structure of complex of the second term, and the trace
morphism

Tr = TrX : p∗ΓXE(Ω•P ) = Rp∗ΓXE(Ω•P )−→K[−2n]
of [H.75, II.2.3], which is a morphism of complexes since X is proper, we obtain a canonical morphism

τ = τM : Rp∗M •−→(Rp∗(M •)∗)′ .

This is explained by the following diagram

Rp∗M • τM−−−−−−−−−−−−−−−−−→ (Rp∗(M •)∗)′

Rp∗η
y ∥∥

Rp∗(M •)∗∗ HomK(Rp∗(M •)∗,K)∥∥ x Tr
X

p∗Hom•Ω•
P

((M •)∗, ΓXE(Ω•P )[2n]) can−−−−−→ HomK(p∗(M •)∗, p∗ΓXE(Ω•P )[2n])

where a primed object indicates the dual (topological) K-vector space.
We have therefore canonical morphisms of hypercohomology

(3.1.2) τ •M : H•(X,M •)−−−→
(
H−•(X, (M •)∗)

)′
which we will call the canonical duality morphisms (for M •).

3.2. Functoriality of the duality morphism. Let h : X1→X2 be a proper morphism fitting
in a diagram like (1.10.1), with P1 and P2 smooth. We first examine the case where M •

i is an object of
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Cc((Xi)
(M)
Pi

) ⊂ Cc(Pi), for a fixed M and i = 1, 2. We assume to be given a morphism γ : M •
2 −→ f∗(M •

1 )

in Cc((Xi)
(M)
P2

). Then γ induces a morphism γ : M •
2 −→Rf∗(M •

1 ) in the derived category of complexes
of abelian sheaves on P2. There exists a canonical commutative diagram of duality morphisms of finite
dimensional K-vector spaces

(3.2.1)

H•(X2,M •
2 )

τ•2−−−→
(
H−•(X2, (M •

2 )∗)
)′y y

H•(X1,M •
1 ) −−−→

τ•1

(
H−•(X1, (M •

1 )∗)
)′

where we set τ •i = τ •Mi
. This is obtained from the following commutative diagram

Rp2∗M •
2

τ2−−−−−−→ HomK(Rp2∗(M •
2 )∗,K)

Rp2∗γ

y y HomK(Rp2∗τ,idK)

Rp2∗Rf∗M •
1 HomK(Rp2∗Rf∗(M •

1 )∗,K)
‖ ‖

Rp1∗M •
1

τ1−−−−−−→ HomK(Rp1∗(M •
1 )∗,K)

where d = n1−n2 is the relative dimension of f and the morphism τ : Rf∗(M •
1 )∗−→(M •

2 )∗ is induced by
compositions with γ and the relative trace morphism Trf : f∗ΓX1

E(Ω•P1
)−→ΓX2

E(Ω•P2
)[−2d] as follows

(3.2.2)
Rf∗Hom•Ω•

P1
(M •

1 , ΓX1
E(Ω•P1

)[2n1]) ∼= f∗Hom•Ω•
P1

(M •
1 , ΓX1

E(Ω•P1
)[2n1]) can−−−→

Hom•Ω•
P2

(f∗M •
1 , f∗ΓX1

E(Ω•P1
)[2n1])−−−→Hom•Ω•

P2
(M •

2 , ΓX2
E(Ω•P2

)[2n2]) .

The commutativity of the diagram now follows from the functorial properties of the trace map for scheme
morphisms, that is TrX1

= TrX2
◦Rp2∗(Trf ), see [H.75, II.2]. The general case of M •

i = “lim←−”
M

M
(M)•
i where

M
(M)•
i is an object of Cc((Xi)

(M)
Pi

) and of a morphism γ = “lim←−”
M
γM , with γM : M

(M)•
2 −→ f∗(M

(M)•
1 ) a

morphism in Cc((X2)(M)
P2

), is then deduced from the previous discussion applying lim←− to a projective system
of diagrams of the form (3.2.1). We obtain diagram (3.2.1) in the category of linearly compact topological
K-vector spaces.

An easier discussion gives the functoriality of the duality morphisms w.r.t. open immersions.
3.3. Application to De Rham coefficents. In particular, in our general setting 1.1, we can take

as M • any of the following three complexes:

(3.3.1) “lim←−”
M

Ω•
X

(M)
P

∼= “lim←−”
M

Ω•P /I
M−•
X

, “lim←−”
N

Ω•
C

(N)
P

∼= “lim←−”
N

Ω•P /I
N−•
C

and

(3.3.2) “lim←−”
M

j
(M)
! Ω•

X
(M)
W

∼= “lim←−”
M>N

I N−•
C Ω•P

/
IM−•
X

.

In the first two cases we obtain the canonical duality (iso)morphisms

(3.3.3) H•DR(X)−→
(
HDR
• (X)

)′
and H•DR(C)−→

(
HDR
• (C)

)′
of Hartshorne. In fact, the first term of (3.1.2) is by definition the De Rham cohomology of X and C
respectively, while the second term can be reinterpreted using 2.5 as the dual of the De Rham homology
of X (and the same is true for C). So the construction of the duality morphism in this case is just that of
Hartshorne in the proof of the duality theorem [H.75, II.5.1] in the proper case.

In the third case, when M • = “lim←−”
M>N

I N−•
C Ω•P

/
IM−•
X

, proposition 2.6.1 of the previous paragraph

identifies the second term of (3.1.2) with the dual of the De Rham homology HDR
• (X) of X, so that we have

canonical morphisms

(3.3.4) H•DR,c(X)−→
(
HDR
• (X)

)′
.
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3.4. Theorem. The duality morphism (3.3.4) is an isomorphism for any scheme X as in our setting
1.1, and it is compatible with the functoriality of the two terms w.r.t. proper map and open immersions;
more precisely we have for any proper morphism p : X1→X2 (resp. any open immersion j : X1→X2)
commutative diagrams

H•DR,c(X1) −−→
(
HDR
• (X1)

)′x x
H•DR,c(X2) −−→

(
HDR
• (X2)

)′ (resp.

H•DR,c(X1) −−→
(
HDR
• (X1)

)′y y
H•DR,c(X2) −−→

(
HDR
• (X2)

)′ )

where the horizontal maps are the duality isomorphisms, and the vertical ones are induced by functoriality.

Proof. We consider the open inclusion of X in X, with complement C. Then we have the long exact
sequences of the closed subset C for the De Rham homology given by [H.75, II.3.3] and for the De Rham
cohomology with compact supports given in 1.11.2. Moreover the duality (iso)morphisms of (3.3.3) in the
case of X and C, and (3.3.4) for X, give rise to the commutative diagram with exact rows

· · · −→ Hi−1
DR (C) −→ Hi

DR,c(X) −→ Hi
DR(X) −→ Hi

DR(C) −→ Hi+1
DR,c(X) −→ · · ·

· · ·
y ∼= y y ∼= y ∼= y · · ·

· · · −→ (HDR
i−1(C))′ −→ (HDR

i (X))′ −→ (HDR
i (X))′ −→ (HDR

i (C))′ −→ (HDR
i+1(X))′ −→ · · ·

so that we can apply the five lemma, since the schemes X and C are proper and the duality theorem of
[H.75, II.5.1] applies. The functoriality of the isomorphism is clear, in view of 3.2. �

3.5. Pairing of Complexes and Spectral Sequences. We keep here the notation of (3.1). The
evaluation morphism (3.1.1) can be seen as a pairing of complexes

(3.5.1) (M •)∗ ⊗K M •−−−−−→(M •)∗ ⊗Ω•
P

M •−−−−−→ΓXE(Ω•P )[2n] .

Let M (M)•−→I (M)•• be an injective resolution of of M (M)• in the category of C •
X

(M)
P

-Modules. We obtain

a resolution

(3.5.2) M • ∼= “lim←−”
M

M (M)•−→ “lim←−”
M

I (M)•• =: I ••

of M • in ProC (P ), and the pairing (3.5.1) extends to a pairing of bicomplexes

Hom••Ω•
P

(I ••, E•(Ω•P ))⊗I ••−−−−−→ΓXE
•(Ω•P )

(see [HL, 4.2] for the notation). The trace morphism of [H.75, §2] for the structural morphism p : P →SpecK
and the subscheme X, is actually a morphism of bicomplexes

(3.5.3) TrX : ΓX(P,E•(Ω•P ))−→K[−n,−n]

and composing with the previous pairing, we obtain a pairing of bicomplexes with values in K.
We then have a pairing of associated spectral sequences

(3.5.4) Ext•
Ω•
P

(M •, Ω•P )×H•(X,M •)−−−−−→H•
X

(P,Ω•P )

(see [HL, 4.1] for the definition of a pairing of spectral sequences), where Ext•
Ω•
P

(M •, Ω•P ) (resp. H•(X,M •),

resp. H•
X

(P,Ω•P )) stands for the full spectral sequence

RqHomp
Ω•
P

(M •, Ω•P ) ∼= ExtqOP (M n−p, ΩnP ) =⇒ Extp+q
Ω•
P

(M •, Ω•P )

(resp. Hq(X,M p) =⇒ Hp+q(X,M •) , resp. Hq

X
(P,ΩpP ) =⇒ Hp+q

X
(P,Ω•P ) ).

On the other hand (3.5.3) induces a morphism of first spectral sequences

(3.5.5) Ep,q1 =Hq

X
(P,ΩpP ) −−−→Cp,q1 =

{
K if p = q = n

0 otherwise.
Composing the pairing of spectral sequences (3.5.4) with the morphism of spectral sequence (3.5.5), we
obtain another pairing of spectral sequences

(3.5.6) Ext•
Ω•
P

(M •, Ω•P )×H•(X,M •)−−−−−→C•
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with values in a “constant spectral sequence” C••• (the first spectral sequence of K[−n,−n]) with C• =
K[−2n]. In particular, for any p there is a canonical pairing

(3.5.7) Ext2n−p
Ω•
P

(M •, Ω•P )⊗Hp(X,M •)−−−−−→K

which corresponds to the duality morphisms (3.1.2) (via the definition 2.5). To the pairing (3.5.6) is associ-
ated a morphism of spectral sequences from E••• to F ••• where

Ep,q1 = Hq(P,M p) =⇒ Ep+q = Hp+q(P,M •)

and
F p,q1 = Rn−qHomn−p

Ω•
P

(M •, Ω•P )′ = Extn−qOP
(M p, ΩnP )′ =⇒ F p+q = Ext2n−(p+q)

Ω•
P

(M •, Ω•P )′

where the prime apex means dual (topological) K-vector space.

3.6. Functoriality of the pairing. As we did in 3.2 for the duality morphisms, and in the same
setting, we discuss the functoriality of the pairing (3.5.4) (and consequently also of (3.5.6) and (3.5.7)) with
respect to proper morphisms. We place ourselves in the situation of 3.2. We have the following diagram of
pairings of spectral sequences

(3.6.1)

Ext•
Ω•
P1

(M •
1 , Ω

•
P1

) × H•(X1,M •
1 ) −−−−−→ H•

X1
(P1, Ω

•
P1

)

τ•

y x γ•

y Tr•f

Ext•−2d

Ω•
P2

(M •
2 , Ω

•
P2

) × H•(X2,M •
2 ) −−−−−→ H•−2d

X2
(P2, Ω

•
P2

)

such that
Tri+jf 〈ϕ, γ

jµ〉 = 〈τ iϕ, µ〉
for any ϕ ∈ Exti

Ω•
P1

(M •
1 , Ω

•
P1

) and µ ∈ Hj(X2,M •
2 ), where 〈−,−〉 indicates the pairings (this corresponds

to the commutative diagram (3.2.1)). In fact we can start with resolutions of the form (3.5.2) J ••
1 and

J ••
2 of M •

1 and M •
2 , respectively. We have a canonical morphism γ = “lim←−” γM : J ••

2 −→ f∗J ••
1 , with

γM : J
(M)••
2 −→ f∗J

(M)••
1 a morphism in C ((X2)(M)

P2
). We observe that the trace map for f induces

a morphism of bicomplexes Trf : f∗ΓX1
E•(Ω•P1

)−→ΓX2
E•(Ω•P2

)[−d,−d]. Since for any C •Pi-Modules E •i ,
F •
i , with E •i supported in Xi, Hom•Ω•

Pi

(E •i ,F
•
i ) = Hom•Ω•

Pi

(E •i , ΓXiF
•
i ), we obtain a diagram of pairings of

bicomplexes
Hom••Ω•

P2
(f∗J ••

1 , f∗E
•(Ω•P1

)) ⊗ f∗J ••
1 −−−−−→ f∗ΓX1

E•(Ω•P1
)

τ

y x γ

y Trf

Hom••Ω•
P2

(J ••
2 , E•(Ω•P2

)[−d,−d]) ⊗ J ••
2 −−−−−→ ΓX2

E•(Ω•P2
)[−d,−d]

(see [HL, 4.2] for the notation). From this we deduce the above functoriality with respect to proper mor-
phisms. We omit the easier discussion of open immersions.

3.7. Application to De Rham coefficients: alternative proof (of the duality theorem

3.4). If we replace M • by the coefficient (3.3.2), we end up with the pairings

(3.7.1) HDR
p (X)⊗Hp

DR,c(X)−−−→K ,

obviously compatible with the duality morphisms (3.3.4). By 3.4 these pairings are perfect: we now provide
a second proof of this fact.

From the pairing of spectral sequences (3.5.6), we deduce a morphism of spectral sequences E•,•• −→F •,•• ,
where

(3.7.2) Ep,q1 = lim←−
M>N

Hq
(
X,I N

C ΩpP
/
IM
X

)
=⇒ Ep+q = lim←−

M>N

Hp+q
(
X,I N−•

C Ω•P
/
IM−•
X

)
= Hp+q

DR,c(X)

and

(3.7.3) F p,q1 = Hn−q
X (W,Ωn−pW )′ =⇒ F p+q = H2n−(p+q)

X (W,Ω•W )′ = HDR
p+q(X)′ .

It is sufficient to prove that the above morphism of spectral sequences is an isomorphism. The level
one terms of E•,•• may be rewritten as Ep,q1 = lim←−M Hq

c

(
X,ΩpW

/
IM
X

)
where one uses the definition of
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cohomology with compact supports for coherent sheaves given in [H.72]. On the other hand the level one
terms of F •,•• are F p,q1 = (Hn−q

X (W, (ΩpW )∨ ⊗OW ΩnW ))′, since W is smooth.
Now the duality theorem for the cohomology with compact supports for coherent sheaves, see [H.72,

3.1], gives isomorphisms

Hq
c (W,ΩpW

/
IM
X )−−−→Extn−qW (ΩpW

/
IM
X , ΩnW )′ = Extn−qW (OW

/
IM
X , (ΩpW )∨ ⊗OW ΩnW )′ .

Taking projective limits on M we obtain isomorphisms

lim←−
M

Hq
c (W,ΩpW

/
IM
X )−−−→(lim−→

M

Extn−qW (OW
/
IM
X , (ΩpW )∨ ⊗OW ΩnW ))′ = (Hn−q

X (W, (ΩpW )∨ ⊗OW ΩnW ))′

where the last equality is [H.RD, V.4.2]. So the morphism E•,•• −→F •,•• of spectral sequences is an isomor-
phism at level one, and therefore also on the limits, by regularity of both spectral sequences. �

3.8. Remark: the (smooth) proper case. In the construction of the duality morphism we use the
fact that the morphism (3.1.1) takes its values in ΓXE(Ω•P ). This is needed because in the non proper case
the trace map Tr : p∗E(Ω•P )→K is not a morphism of complexes and, in order to make it commute with
differentials, we have to use a proper support. When P is a proper scheme this is not needed. In this case
the pairing (3.7.1) factors as

HDR
• (X)⊗H•DR,c(X)−−−→H2n

DR(P ) ∼= H2n
DR,c(W ) TrP−−−→K .

4. Künneth formulae.

4.1. Construction of Künneth morphisms for De Rham functors. Let X1 X2 be schemes.
We consider the product X1 ×X2 and we assume to be given immersions as in our setting 1.1 for i = 1, 2
(their products give automatically similar immersions for the product scheme). The canonical isomorphism

p−1
1 Ω•W1

⊗ p−1
2 Ω•W2

=: Ω•W1
�Ω•W2

∼=−−−→Ω•W1×W2

induces a canonical isomorphism between the completions on W1/X1 ×W1/X1
∼= (W1×W2)/X1×X2

(Ω•W1
)/X1 � (Ω•W2

)/X2

∼=−−−→(Ω•W1×W2
)/X1×X2

and therefore canonical morphisms of hypercohomology groups

H•(W1, (Ω•W1
)/X1)⊗H•(W2, (Ω•W2

)/X2)y
H•(W1×W2, (Ω•W1

)/X1 � (Ω•W2
)/X2)y ∼=

H•(W1×W2, (Ω•W1×W2
)/X1×X2) ,

called the Künneth morphisms for De Rham cohomology

(4.1.1) κ•DR(X1, X2) : H•DR(X1)⊗H•DR(X2)−−−→H•DR(X1 ×X2) .

In the same way, taking hypercohomologies with supports, we have canonical morphisms

H•X1
(W1, Ω

•
W1

)⊗H•X2
(W2, Ω

•
W2

)−−−→H•X1×X2
(W1×W2, Ω

•
W1
�Ω•W2

)
∼=−−−→H•X1×X2

(W1×W2, Ω
•
W1×W2

) ,

and the Künneth morphisms for De Rham homology

(4.1.2) κDR
• (X1, X2) : HDR

• (X1)⊗HDR
• (X2)−−−→HDR

• (X1 ×X2) .

Finally, starting with the isomorphism

Ω•P1
�Ω•P2

∼=−−−→Ω•P1×P2

we find a canonical isomorphism

(4.1.3) “lim←−”
M>N

I N
C1
Ω•P1

/
IM
X1
� “lim←−”

M>N

I N
C2
Ω•P2

/
IM
X2
−−−→ “lim←−”

M>N

I N
C Ω•P1×P2

/
IM
X1×X2
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where C is X1×X2 r X1×X2 = C1×X2 ∪ X1×C2. The pro-objects are in fact cofinal, since the Ideal
IX1×X2

of X1×X2 is given by IX1
�OP2 + OP1�IX2

, while the Ideal IC of C is given by IC1�IC2 .
Taking hypercohomology we obtain canonical morphisms

H•(P1, “lim←−”
M>N

I N
C1
Ω•P1

/
IM
X1

)⊗H•(P2, “lim←−”
M>N

I N
C2
Ω•P2

/
IM
X2

)y
H•(P1×P2, “lim←−”

M>N
I N
C1
Ω•P1

/
IM
X1
� “lim←−”

M>N
I N
C2
Ω•P2

/
IM
X2

)y ∼=
H•(P1×P2, “lim←−”

M>N
I N
C Ω•P1×P2

/
IM
X1×X2

)

which will be called the Künneth morphisms for De Rham cohomology with compact supports

(4.1.4) κ•DR,c(X1, X2) : H•DR,c(X1)⊗H•DR,c(X2)−−−→H•DR,c(X1 ×X2) .

In order to prove that the morphisms κ•DR,c and κDR
• are isomorphisms we need to extend the Künneth

formula of [EGA III, 6.7.8] to complexes of O-Modules with differential operators as differentials.

4.2. Lemma. Let Wi with i = 1, 2 be two separated schemes of finite type over K. For each pair of
bounded below complexes F •

i (i = 1, 2) whose terms are quasi-coherent OWi-Modules and whose differentials
are K-linear, we have that the canonical morphisms

H•(W1,F
•
1 )⊗KH•(W2,F

•
2 )−→H•(W1×W2,F

•
1�F •

2 )

are isomorphisms.

Proof. Theorem 6.7.8 of [EGA III] proves the claim when the F •
i ’s are complexes of quasi-coherent

OWi-Modules (with OWi-linear differentials). In fact any object in F •
i is K-flat and so is H •(Wi,F •

i ). The
proof of this theorem is based on the definition of T orKn (F •

1 ,F
•
2 ) ([EGA III, 6.4.1]) and on the results of

[EGA III, 6.7.6-7]. We observe that all of these results could be extended to the case of K-linear differentials.
�

4.3. Theorem. The canonical morphisms κ•DR,c and κDR
• are isomorphisms compatible with the

Poincaré duality.

Proof. We suppose that Pi are proper (and smooth). The compatibility with the Poincaré duality is
obvious by construction, and therefore it is sufficient to show that the Künneth morphisms for De Rham
cohomology with compact supports are isomorphisms. By the previous Lemma we obtain the following
isomorphism

lim←−M,N

(
H•(P1,I

N−•
C1

Ω•P1

/
IM−•
X1

)⊗H•(P2,I
N−•
C2

Ω•P2

/
IM−•
X2

)
)y

lim←−M,N
H•(P1×P2,I

N−•
C1

Ω•P1

/
IM−•
X1

�I N−•
C2

Ω•P2

/
IM−•
X2

).
The first term is isomorphic to

lim←−
M,N

H•(P1,I
N−•
C1

Ω•P1

/
IM−•
X1

)⊗ lim←−
M,N

H•(P2,I
N−•
C2

Ω•P2

/
IM−•
X2

) =: H•DR,c(X1)⊗H•DR,c(X2) .

In fact, since the Pi are proper, the K-vector spaces

H•(Pi,I N−•
Ci

Ω•Pi
/
IM−•
Xi

) and lim←−
M,N

H•(Pi,I N−•
Ci

Ω•Pi
/
IM−•
Xi

)

are finite dimensional. The second term is isomorphic to

lim←−
M,N

H•(P1×P2,I
N−•
C Ω•P1×P2

/
IM−•
X1×X2

) =: H•DR,c(X1 ×X2)

by (4.1.3). �

5. Classical comparison theorems.

In this section we keep the notation of our setting 1.1, and assume K = C. We compare the algebraic
De Rham cohomology with compact supports of the algebraic variety X, with the singular cohomology with
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compact supports of the corresponding complex analytic space Xan. We refer to chapter IV of [H.75] for the
analogous statements for De Rham cohomology without supports (or with supports in a closed subvariety
Z of X) and for De Rham homology.

We recall that in the construction of the algebraic pairing of (3.1) we assumed for simplicity P to be
smooth. The algebraic pairing was then shown to be independent of the choice of P . When comparing
the algebraic and analytic Poincaré duality pairings we will make the same assumption. We then construct
canonical morphisms relating the spectral sequence of algebraic De Rham cohomology with compact supports
(resp. algebraic De Rham homology) and the analytic one. These morphisms will be compatible with the
natural pairings of spectral sequences of section 3 and of [HL].

5.0. Results from [H.75, IV]. Let T be a complex analytic space and S be a closed analytic subspace
defined by the coherent OT -Ideal IS . Then T/S will denote the formal completion of T along S, namely the
ringed space with underlying topological space S and structural sheaf OT/S := lim←−N (OT /I N

S )|S . Similarly,
for a coherent OT -Module F , F/S will denote the OT/S -Module lim←−N (F/J N

S F )|S , which coincides with
the inverse image of the OT -Module F on T/S . If κ : U ↪→T is an open immersion of analytic spaces, or
formal completions of such, the functor

κ! : A b(U)−→A b(T ) ,
left adjoint to κ−1 : A b(T )−→A b(U), is the usual topological extension by zero.

5.0.1. The formal analytic Poincaré lemma [H.75, IV.2.1]. The complex (Ω•W an)/Xan is a
resolution of the constant sheaf CXan in the category of abelian sheaves on Xan.

5.0.2. [H.75, IV.1.1]. The canonical morphism
βi : Hi

Xan(W an,C)−−→Hi
Xan(W an, Ω•W an)

is an isomorphism for any i. We recall that, if dimW = n, H2n−i
Xan (W an,C) ∼= HBM

i (Xan,C), the Borel-Moore
homology of Xan. We set

HDR
i (Xan) := H2n−i

Xan (W an, Ω•W an) .
5.0.3. [H.75, loc. cit.]. The canonical morphism

αi : Hi
DR(X)−−→Hi

DR(Xan)
is an isomorphism for any i (apply αi of Hartshorne with X, X, W as Z, X, Y ).

5.0.4. [H.75, loc. cit.]. The canonical morphism
αi : HDR

i (X)−−→HDR
i (Xan)

is an isomorphism for any i (apply αi of Hartshorne with X, W , W as Z, X, Y ).

5.1. Analytic De Rham cohomology with compact supports. We define
H•DR,c(X

an) := H•c(X
an
, (Ω•W an)/Xan) ∼= H•(X

an
, jan

! (Ω•W an)/Xan)
and we recall that

Hi
c(X

an,C) ∼= Hi(X
an
, jan

! CXan) .
By 5.0.1 and the exactness of jan

! , the canonical morphism
βic : Hi

c(X
an,C)−−→Hi

DR,c(X
an)

is an isomorphism for any i.

5.1.1. Lemma. Let κ : U ↪→T be an open immersion of complex analytic spaces and J be a coherent
sheaf of OT -Ideals such that the support of OT /J is T r U . Let F be a coherent OU -Module and let F
be any coherent extension of F to T . Then the canonical morphism

κ!F −→ lim←−
N

J NF

is an isomorphism.

Proof. The assertion is easily checked on the fibers. In fact, if x is a point of T r U , Jx is a proper
ideal of the noetherian ring OT,x. So, lim←−N J N

x F x =
⋂
N J N

x F x = 0. On the other hand, for any M , the
canonical morphism lim←−N J NF −→JMF is a monomorphism, so that

(lim←−
N

J NF )x ⊆ lim←−
N

J N
x F x = 0

is also zero. On the other hand, both sheaves restrict to F on U . �
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5.1.2. Lemma. Let F be a coherent OP an-Module. The canonical morphism

jan
! ((F|W an)/Xan)−→ lim←−

N

I N
CanF/X

an

is an isomorphism.

Proof. We have to show that for any x ∈ P an, the fiber

( lim←−
M>N

I N
CanF/IM

X
anF )x =

 0 if x ∈ P an
rX

an

(lim←−M F|W an/IM
XanF|W an)x if x ∈ Xan

0 if x ∈ Can .

If x ∈ P an
rX

an
the assertion is clear: on open neighborhoods U of x, x ∈ U ⊆ P an

rX
an

( lim←−
M>N

I N
CanF/IM

X
anF )(U) = lim←−

M>N

((I N
CanF/IM

X
anF )(U)) = 0 ,

since (ICan)|P anrX
an = (IX

an)|P anrX
an = (OP an)|P anrX

an . If x ∈ Xan, the assertion is also clear, since

( lim←−
M>N

I N
CanF/IM

X
anF )x = lim−→

x∈U⊆W an

( lim←−
M>N

(I N
CanF/IM

X
anF )(U)) ,

where U varies among open neighborhoods of x contained in W an. But on W an, (ICan)|W an = OW an , so
that

lim−→
x∈U⊆W an

( lim←−
M>N

(I N
CanF/IM

X
anF )(U)) = lim−→

x∈U⊆W an

(lim←−
M

(F|W an/IM
XanF|W an)(U)) = (lim←−

M

F|W an/IM
XanF|W an)x .

We are left to show that, for x ∈ Can, (lim←−M>N I N
CanF/I N

X
anF )x = 0. To check this, we write

jP anrX
an : P an

rX
an
↪→P an and jP anrCan : P an

r Can ↪→P an

for the open immersions, and apply (5.1.1) to obtain the exact sequence

0−→(jP anrX
an)!F|P anrX

an −→(jP anrCan)!F|P anrCan −→ lim←−
M>N

I N
CanF/IM

X
anF −→

−→ coker (F →F/X
an)−→ coker (F →F/Can)−→· · ·

Taking fibers at x ∈ Can, we obtain the exact sequence

0−→( lim←−
M>N

I N
CanF/IM

X
anF )x−→ coker (F →F/X

an)x =

= coker (Fx→(F/X
an)x)−→ coker (F →F/Can)x = coker (Fx→(F/Can)x) .

Now, for a Stein semianalytic compact neighbourhood K of x in P an, Γ(K,F ) is a module of finite type over
the noetherian ring Γ(K,OP an). For a coherent OP an-Ideal J , and K as before, we denote by ̂Γ(K,F )Γ(K,J )

the Γ(K,J )-adic completion of Γ(K,F ). Then, by [BS, VI.2.2 (i)],

(F/Can)x = lim−→
K

̂Γ(K,F )Γ(K,ICan ) , (F/X
an)x = lim−→

K

̂Γ(K,F )Γ(K,I
X

an ) .

Then
ker (coker (Fx→(F/X

an)x)−→ coker (Fx→(F/Can)x)) =

lim−→
K

ker ( ̂Γ(K,F )Γ(K,I
X

an )/Γ(K,F )−→ ̂Γ(K,F )Γ(K,ICan )/Γ(K,F )) = 0 .

�

5.2. The canonical isomorphism

jan
! (Ω•W an)/Xan −−−→ lim←−

M>N

(I N−•
Can Ω•P an

/
IM−•
X

an )

induces a canonical morphism of hypercohomology groups

Hi
DR,c(X

an)−−−→ lim←−
M>N

Hi(X
an
,I N−•

Can Ω•P an

/
IM−•
X

an ) .
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Via the GAGA isomorphisms

lim←−
M>N

H•(X
an
,I N−•

Can Ω•P an

/
IM−•
X

an )
∼=←−−− lim←−

M>N

H•(X,I N−•
C Ω•P

/
IM−•
X

)

we obtain a canonical morphism

(5.2.1) αic : Hi
DR,c(X

an)−−−→Hi
DR,c(X) .

5.3. Theorem. The canonical morphism αic is an isomorphism for any i.

Proof.

H•DR,c(X
an) = H•(X

an
, jan

! (Ω•W an)/Xan)
∼=−−−→

(5.1.2)
H•(X

an
, lim←−
N

I N−•
Can (Ω•P an)/Xan)

∼= H•(X
an
, lim←−
M>N

(I N−•
Can Ω•P an

/
IM−•
X

an ))

∼=−−−→H•(X
an
, lim←−
M>N

(Ω•P an

/
IM−•
X

an →Ω•P an

/
I N−•
Can )tot)

∼=−−−→
(1.3.1)

lim←−
M>N

H•(X
an
, (Ω•P an

/
IM−•
X

an →Ω•P an

/
I N−•
Can )tot)

∼= lim←−
M>N

H•(X
an
,I N−•

Can Ω•P an

/
IM−•
X

an )

∼=←−−−
GAGA

lim←−
M>N

H•(X,I N−•
C Ω•P

/
IM−•
X

) = H•DR,c(X)

�

5.3.1. We point out the following alternative proof of theorem 5.3, valid if P is supposed to be smooth.
We have a morphism of exact sequences of abelian sheaves on X

an

0 −−−−−−→ CXan−−−−−−−−→ CX
an −−−→ CCan −−−→ 0y y y

0 −−−→ jan
! (Ω•W an)/Xan −−−→ (Ω•P an)/Xan −−−→ han

∗ (Ω•P an)/Can

where as usual CXan = jan
! CXan and CCan = han

∗ CCan , as sheaves on X
an

. All vertical arrows are quasi-
isomorphism by the Formal Analytic Poincaré lemma and exactness of jan

! and han
∗ . In particular

H•DR,c(X
an) = H•(X

an
, jan

! (Ω•W an)/Xan)
∼=−→H•(X

an
, ((Ω•P an)/Xan→han

∗ (Ω•P an)/Can)tot)

which considerably simplifies the above proof.
5.3.2. We remark moreover that in the analytic case

Rlim←−
M>N

I N−•
Can Ω•P an

/
IM−•
X

an
∼= lim←−
M>N

I N−•
Can Ω•P an

/
IM−•
X

an

while in the algebraic case this is false; in fact in general lim←−
(1)

M>N
I N−•
C Ω•P

/
IM−•
X

6= 0.

5.4. Comparison of algebraic and analytic Poincaré dualities. We will show that the
pairings (3.5.4) (and therefore also the duality morphisms (3.1.2)) are compatible with the algebraic-analytic
comparison maps. Notation is as in (3.1); in particular, P is smooth.

5.4.1. Proposition. Under the assumptions of (3.1), we have a canonical morphism of pairings of
spectral sequences

Ext•
Ω•
P

(M •, Ω•P ) × H•(X,M •) −−−−−→ H•
X

(P,Ω•P )y y y
Ext•

Ω•
Pan

(M •an, Ω•P an) × H•(X
an
,M •an) −−−−−→ H•

X
an(P an, Ω•P an) .
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Proof. Let I •• be a resolution of M • as in (3.5.2). Let M (M)•an−→J (M)•• be an injective resolution
of M (M)•an in the category of C •

(X
an

)
(M)
Pan

-Modules. We obtain a resolution

(5.4.2) M •an ∼= “lim←−”
M

M (M)•an−→ “lim←−”
M

J (M)•• =: J ••

of M •an in ProC (P an). There is a canonical morphism of complexes of objects of ProC (P an), I ••an−→J ••

(which is an isomorphism of D(ProC (P an))). On the other hand, if I•(Ω•P an) is an injective resolu-
tion of Ω•P an as a C •P an-Module, then we have a canonical morphism of complexes of objects of C (P an),
E•(Ω•P )an−→ I•(Ω•P an) (again an isomorphism of D(C (P an))). Therefore we have the following diagram of
(pairings of) double complexes

Hom••Ω•
Pan

(I ••an, E•(Ω•P )an) ⊗ I ••an −−−→ (ΓXE
•(Ω•P ))any ∥∥ y

Hom••Ω•
Pan

(I ••an, I•(Ω•P an)) ⊗ I ••an −−−→ ΓXanI•(Ω•P an)x y ∥∥
Hom••Ω•

Pan
(J ••, I•(Ω•P an)) ⊗ J •• −−−→ ΓXanI•(Ω•P an) .

We notice that the canonical morphisms of bicomplexes

Hom••Ω•
Pan

(I ••an, I•(Ω•P an))−−−→Hom•Ω•
Pan

(M •an, I•(Ω•P an))←−−−Hom••Ω•
Pan

(J ••, I•(Ω•P an))

induce isomorphisms of the associated spectral sequences (see for example [HL, 4.2]). Therefore, taking the
associated diagram of pairings of spectral sequences and composing with the canonical GAGA morphism of
pairings of spectral sequences induced by

Hom••Ω•
P

(I ••, E•(Ω•P )) ⊗ I •• −−−→ ΓXE
•(Ω•P )y y y

ε∗Hom••Ω•
Pan

(I ••an, E•(Ω•P )an) ⊗ ε∗I ••an −−−→ ε∗ΓXE
•(Ω•P )an ,

we complete the proof. �

5.4.3. Theorem. For any i, the canonical comparison isomorphisms αi of (5.0.4) and αic of (5.2.1)
are compatible with Poincaré duality, i.e. they fit in a commutative diagram

HDR
i (X) ⊗ Hi

DR,c(X) −−−→ C

αio‖ o‖αic ‖
HDR
i (Xan) ⊗ Hi

DR,c(X
an) −−−→ C .

Proof. We apply the previous proposition, with M • = “lim←−”
M
j

(M)
! Ω•

X
(M)
W

. We obtain a commutative

diagram
HDR
i (X) ⊗ Hi

DR,c(X) −−−→ H2n
X

(P,Ω•P ) = HDR
0 (X)

αio‖ o‖αic o‖α0

HDR
i (X

an
) ⊗ Hi

DR,c(X
an) −−−→ H2n

X
an(P an, Ω•P an) = HDR

0 (X
an

).
We consider the algebraic trace map Tr : H2n

X
(P,Ω•P )−→C and the map Tran : H2n

X
an(P an, Ω•P an)−→C

uniquely defined by fitting in the commutative diagram

H2n
X

(P,Ω•P ) Tr−−−→ Cy ∼= ∥∥∥
H2n
X

an(P an, Ω•P an) −−−→
Tran

C

Composing with Tr and Tran, we obtain the diagram of the statement. �

6. Compatibility of rigid and algebraic Poincaré duality.

6.1. Setting. Let V be a discrete valuation ring of mixed characteristics (0, p). As usual, let K
and k be, respectively, the fraction field and the residue field of V . All V -schemes will be meant to be
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separated and of finite type, and all morphisms between them will be assumed to be V -morphisms. Let X
be a V -scheme, and let j : X ↪→X be an open immersion in a proper V -scheme. Let i : X ↪→P be a closed
immersion of X in a V -scheme P . We assume that there is an open smooth V -subscheme W of P containing
X as a closed subscheme. Let h : C ↪→X be a closed V -subscheme of X, whose support is exactly |X|r |X|.

6.2. Notation. For a V -scheme T , we will use the standard notation Tk (resp. TK) for the special
(resp. the generic) fiber. The formal V -scheme completion of T along a closed V -subscheme S, will be
denoted by T/S . In the special case of S = Tk, we will write T̂ for T/Tk . We freely use the notions and
notation of [B.96]. In particular, the (Raynaud) generic fiber of a formal scheme T over Spf V (for the p-adic
topology on V ) is denoted by TK . We point out that we take this notion in the extended sense of [B.96,
0.2.6]. If T is a V -scheme, the tube of a locally closed subset U of Tk in (T̂ )K =: T̂K will be denoted by ]U [

T̂
.

We use as much as possible a functorial notation for these constructions. For example, for C
h
↪→X

i
↪→P as

before, we get

(6.2.1) ]hk[
P̂

: ]Ck[
P̂
↪−−−→ ]Xk[

P̂
, hP/ : P/Ck ↪−−−→P/Xk ,

(6.2.2) (hP/)K : (P/Ck)K ↪−−−→(P/Xk)K , and (i/Xk)K : X̂K ↪−−−→(P/Xk)K .

Notice that, by [B.96, 0.2.7], ]hk[
P̂

identifies with (hP/)K .
For a K-scheme of finite type T , we denote by T an the associated rigid analytic space and let

(6.2.3) ε = εT : T an−−−→T

be the natural morphism of locally ringed G-spaces. For a coherent sheaf E on T we set E an = ε∗T (E ). When
T is a proper V -scheme, T̂K ∼= (TK)an. For example, the map (i/Xk)K in (6.2.2) identifies with the natural

closed immersion of rigid K-analytic spaces X
an

K in ]Xk[
P̂

.

6.3. Cohomology with compact supports. The data in 6.1 permit to simultaneously calculate the
algebraic De Rham cohomology with compact supports of XK/K, H•DR,c(XK/K), and the rigid cohomology
with compact supports of Xk/K, H•rig,c(Xk/K).

The algebraic De Rham cohomology with proper supports of XK/K may be calculated from the complex
of abelian sheaves on XK

(6.3.1) Rlim←−
M>N

I N−•
CK

Ω•PK
/
IM−•
XK

∼=
(

(Ω•PK )/XK →(Ω•PK )/CK
)

tot

so that

(6.3.2) H•DR,c(XK/K) = H•(XK ,
(

(Ω•PK )/XK →(Ω•PK )/CK
)

tot
) .

6.4. The complex of coherent OP an
K

-Modules

((Ω•PK/I
N−•
XK

)an→(Ω•PK/I
N−•
CK

)an)tot
∼= ((Ω•P an

K
/I N−•

X
an
K

)→(Ω•P an
K
/I N−•

Can
K

))tot ,

where IX
an
K

(resp. ICan
K

) is the OP an
K

-Ideal corresponding to the closed analytic subspace X
an

K (resp. Can
K )

of P an
K may also be regarded as a complex of abelian sheaves on X

an

K . By GAGA over K and (1.3.1) on XK ,
we then have

(6.4.1) H•DR,c(XK/K) = lim←−
N

H•(X
an

K , ((Ω
•
P an
K
/I N−•

X
an
K

)−−→(Ω•P an
K
/I N−•

Can
K

))tot) .

6.5. We have canonical flat morphisms of V -formal schemes

(6.5.1) P/Ck
hP/−−−→P/Xk

iP/−−−→P/Pk =: P̂

and open immersions of rigid K-analytic spaces

(6.5.2) (P/Ck)K
(hP/)K
↪−−−→(P/Xk)K

(iP/)K
↪−−−→(P/Pk)K = P̂K .
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The last sequence identifies via [B.96, 0.2.7] with the natural sequence of open immersions of rigid K-analytic
spaces

(6.5.3) ]Ck[
P̂
↪−−−→]Xk[

P̂
↪−−−→ P̂K .

Let us consider the diagram
P/Ck

hP/−−−→ P/Xk
↘ ↙

P .

We have Ω•P on P and denote by Ω•P/Ck
(resp. Ω•P

/Xk

), its inverse image on P/Ck (resp. P/Xk). By

analytification in the sense of [B.96, 0.2.6], and using [B.96, 0.2.7], we obtain a complex of coherent sheaves
on (P/Ck)K =]Ck[

P̂
(resp. on (P/Xk)K =]Xk[

P̂
), namely (Ω•P/Ck )K = Ω•]Ck[

P̂

(resp. (Ω•P
/Xk

)K = Ω•
]Xk[

P̂

).

By [B.86, 3.2] we have

(6.5.4) RΓ]Xk[
P̂

Ω•
]Xk[

P̂

=
(
Ω•

]Xk[
P̂

→(]hk[
P̂

)∗Ω•]Ck[
P̂

)
tot

=
(

(Ω•P
/Xk

)K→((hP/)K)∗(Ω•P/Ck )K
)

tot
,

where (OP
/Xk

)K is taken in bidegree (0, 0). By definition [B.86, 3.3],

(6.5.5) H•rig,c(Xk/K) := H•]Xk[
P̂

(]Xk[
P̂
, Ω•

]Xk[
P̂

) = H•
(

]Xk[
P̂
,

(
Ω•

]Xk[
P̂

→(]hk[
P̂

)∗Ω•]Ck[
P̂

)
tot

)
.

6.6. Theorem (Cospecialization morphism). Under the previous assumptions, there is a
canonical functorial K-linear map

cosp• : H•c,rig(Xk/K)−−−→H•DR,c(XK/K) .

This map will be called cospecialization.

Proof. The proof is based on the following diagram of locally ringed G-spaces

CK ↪−−−−−−−−−−−−−−−−−→ XK ↪−−−−−−−−−−−−−→ PKx x x
Can
K = (C/Ck)K

han
K

↪−−−−−→ X
an

K = (X/Xk
)K ↪−−−→ (P/Pk)K = P̂K ↪−−−→ P an

K

((i◦h)/Ck )K

↪−−−→ (i
/Xk

)K

↪−−−→

y =

]Ck[
P̂

= (P/Ck)K ↪−−−−−→
]hk[

P̂
=(hP/)K

]Xk[
P̂

= (P/Xk)K ↪−−−→ (P/Pk)K .

We notice that for any r and N there are isomorphisms

(6.6.1) (]hk[
P̂

)∗

(
Ωr]Ck[

P̂

/
(I N

Can
K

)|]Ck[
P̂

)
∼=
(
ΩrP an

K
/I N

Can
K

)
|]Xk[

P̂

.

We deduce the existence of maps

(]hk[
P̂

)∗Ωr]Ck[
P̂

−−−→
(
ΩrP an

K
/I N

Can
K

)
|]Xk[

P̂

.

(Since coherent O]Ck[
P̂

-Modules are (]hk[
P̂

)∗-acyclic, the previous maps are in fact surjective.) These we
may view as a map

((i/Xk)K)−1(]hk[
P̂

)∗Ω•]Ck[
P̂

−−−→
(
Ω•P an

K
/I N−•

Can
K

)
|Xan

K

of complexes on X
an

K . Similarly, we get a map

((i/Xk)K)−1Ω•
]Xk[

P̂

−−−→
(
Ω•P an

K
/I N−•

X
an
K

)
|Xan

K
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of complexes on X
an

K . Combining the two, we get morphisms

((i/Xk)K)−1

(
Ω•

]Xk[
P̂

→(]hk[
P̂

)∗Ω•]Ck[
P̂

)
tot

−−−→
((

Ω•P an
K
/I N−•

X
an
K

)
|Xan

K

→
(
Ω•P an

K
/I N−•

Can
K

)
|Xan

K

)
tot

and, passing to the limit, maps of complexes of abelian sheaves on X
an

K

(6.6.2) ((i/Xk)K)−1
(

(Ω•P
/Xk

)K→((hP/)K)∗(Ω•P/Ck )K
)

tot
−−−→

(
(Ω•P an

K
)/Xan

K
→(han

K )∗(Ω•P an
K

)/Can
K

)
tot

We deduce morphisms of hypercohomology groups

H•c,rig(Xk/K) := H•(]Xk[
P̂
,

(
Ω•

]Xk[
P̂

→(]hk[
P̂

)∗Ω•]Ck[
P̂

)
tot

)

−−−→H•(X
an

K , ((i/Xk)K)−1

(
Ω•

]Xk[
P̂

→(]hk[
P̂

)∗Ω•]Ck[
P̂

)
tot

)

(6.6.2)−−−→H•(X
an

K ,

(
Ω•P an

K/X
an
K

→(han
K )∗Ω•P an

K/Can
K

)
tot

)

(1.3.1)−−−→∼= lim←−
N

H•(X
an

K ,

((
Ω•P an

K
/I N−•

X
an
K

)
|Xan

K

→
(
Ω•P an

K
/I N−•

Can
K

)
|Xan

K

)
tot

)

GAGA←−−−∼= lim←−
N

H•(XK ,

((
Ω•PK/I

N−•
XK

)
|XK
→
(
Ω•PK/I

N−•
CK

)
|XK

)
tot

) =: H•DR,c(XK/K)

which induce the cospecialization morphism. �

6.7. The specialization morphism (from [BB]). For the convenience of the reader, we recall the
construction given in [BB] of the specialization morphism between algebraic and rigid-analytic homologies
(or cohomologies supported in a closed subset). In the notation of 6.1, let U be the open complement of X
in W and u be the open immersion U ↪→W . If we take an injective resolution I • of Ω•WK

, and an injective
resolution J • of Ω•W an

K
, then we have a canonical morphism

(6.7.1) ε−1
WK

(
I •→uK∗u

−1
K I •

)
tot
−−−→

(
J •→uan

K ∗u
an−1
K J •

)
tot

.

We observe thatW an
K is a strict neighborhood of ŴK (resp. ÛK) in P an

K . We recall the definition of the (family

of) functor(s) j†W : A b(V )−→A b(V ) (resp. j†U : A b(V )−→A b(V )), for any fixed strict neighborhood V

of ŴK (resp. ÛK) in P an
K , namely

(6.7.2) F 7−→ lim−→
V ′

jV ′∗j
−1
V ′ F

where V ′ runs over the strict neighborhoods of ŴK (resp. ÛK) in V , and jV ′ : V ′ ↪→V denotes the open
immersion of V ′ in V . We take here V = W an

K . Since Uan
K is a strict neighborhood of ÛK in W an

K , we have a
canonical morphism

(6.7.3)
(
J •→uan

K ∗u
an−1
K J •

)
tot
−−−→

(
j
†
WJ •→ j

†
UJ •

)
tot

.

We sum up the previous remarks into the following proposition.

6.7.4. Proposition. For any injective resolution I • of Ω•WK
and J • of Ω•W an

K
, we have a canonical

morphism

ε−1
WK

(
I •→uK∗u

−1
K I •

)
tot
−−−→

(
j
†
WJ •→ j

†
UJ •

)
tot

.

Via the functoriality map induced by εWK
, we deduce a morphism of complexes of K-vector spaces

(6.7.5) Γ(WK ,
(
I •→uK∗u

−1
K I •

)
tot

)−−−→Γ(W an
K ,
(
j
†
WJ •→ j

†
UJ •

)
tot

) .

Since J • is a flabby complex, j†WJ • and j
†
UJ • are Γ(W an

K ,−)-acyclic, so that, taking cohomology, we
have canonical morphisms

H•(WK , (Ω•WK
→uK∗u

−1
K Ω•WK

)tot)−−−→H•(W an
K , (j†WΩ

•
W an
K
→ j
†
UΩ

•
W an
K

)tot) .
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This is the specialization morphism

(6.7.6) sp• : H•DR,XK (WK/K)−−−→H•rig,Xk(Wk/K) .

6.8. Another construction of the cospecialization morphism. In order to compare Poincaré
dualities in the algebraic and rigid contexts, it is convenient to exhibit a construction of the cospecialization
morphism, closer to the previous definition of the specialization map.

6.8.1. We place ourselves in the previous setting, and let W be a proper V -scheme containing W as
an open subscheme. We give here some structure of V -scheme to W r W (resp. to W r U) such that
W rW ↪→W rU ↪→W be closed immersions; we denote by l : W rW ↪→W the composite immersion. Then

(WK rWK ↪→WK r UK ↪→WK) := (W rW ↪→W r U ↪→W )K
and

(W
an

K rW an
K ↪→W

an

K r Uan
K ↪→W

an

K ) := (W rW ↪→W r U ↪→W )an
K .

Let jWK
and jUK be the open immersions of WK and UK in WK , respectively. We recall that

H•DR,c(XK/K) = H•(PK , ((Ω•PK )/XK →(Ω•PK )/CK )tot) ∼= H•(WK , (RjUK !Ω
•
UK →RjWK !Ω

•
WK

)tot)

where RjWK ! indicates the composite R lim←−◦jWK !. Then

RjWK !Ω
•
WK
∼=
(
Ω•
WK
→(Ω•

WK
)/WKrWK

)
tot

∼= lim←−
N

(
Ω•
WK
→Ω•

WK
/I N−•

WKrWK

)
tot

and
RjUK !Ω

•
UK
∼=
(
Ω•
WK
→(Ω•

WK
)/WKrUK

)
tot

∼= lim←−
N

(
Ω•
WK
→Ω•

WK
/I N−•

WKrUK

)
tot

,

respectively.
On the other hand, we may define

H•DR,c(X
an
K /K) := H•(P an

K , ((Ω•P an
K

)/Xan
K
→(Ω•P an

K
)/Can

K
)tot) ∼= H•(W

an

K , (Rj
an
UK !Ω

•
Uan
K
→Rjan

WK !Ω
•
W an
K

)tot)

where

Rjan
WK !Ω

•
W an
K

:=
(
Ω•
W

an
K

→(Ω•
W

an
K

)/W an
K rW

an
K

)
tot

∼= lim←−
N

(
Ω•
W

an
K

→Ω•
W

an
K

/I N−•
W

an
K rW

an
K

)
tot

and

Rjan
UK !Ω

•
Uan
K

:=
(
Ω•
W

an
K

→(Ω•
W

an
K

)/W an
K rU

an
K

)
tot

∼= lim←−
N

(
Ω•
W

an
K

→Ω•
W

an
K

/I N−•
W

an
K rU

an
K

)
tot

,

respectively.
By 1.3.1 we have

H•DR,c(X
an
K /K) ∼= lim←−

N

H•(X
an

K , (Ω
•
P an
K
/I N−•

X
an
K

−−→Ω•P an
K
/I N−•

Can
K

)tot)

∼= lim←−
N

H•(W
an

K ,

((
Ω•
W

an
K

→Ω•
W

an
K

/I N−•
W

an
K rW

an
K

)
tot

−→
(
Ω•
W

an
K

→Ω•
W

an
K

/I N−•
W

an
K rU

an
K

)
tot

)
tot

) .

The canonical map εWK
: W

an

K →WK induces a canonical morphism

(6.8.2) ε−1

WK

(
RjUK !Ω

•
UK →RjWK !Ω

•
WK

)
tot
−−−→

(
Rjan

UK !Ω
•
Uan
K
→Rjan

WK !Ω
•
W an
K

)
tot

;

taking cohomology over W
an

K and composing with the canonical functorial map induced by εWK
we have the

morphism

(6.8.3) H•DR,c(XK/K)−−−→H•DR,c(X
an
K )

which is an isomorphism, as already said, by a GAGA argument over K.
6.8.4. From the commutative diagram

W
an

K rW an
K

lan
K

↪−−−→ W
an

K = ŴK↪−−−→

∥∥∥
]W k rWk[

Ŵ
↪−−−→
]lk[

Ŵ

]W k[
Ŵ

,
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as in (6.6.2), we have a canonical morphism

(6.8.5)
(
Ω•

]Wk[
Ŵ

→(]lk[
Ŵ

)∗Ω•]WkrWk[
Ŵ

)
tot

−−−→
(
Ω•
W

an
K

→(Ω•
W

an
K

)/W an
K rW

an
K

)
tot

and therefore

(6.8.6) RΓ]Wk[
Ŵ

Ω•
]Wk[

Ŵ

−−−→Rjan
WK !Ω

•
W an
K
.

Applying this for W and U , we obtain a morphism

(6.8.7)
(

RΓ]Uk[
Ŵ

Ω•
]Wk[

Ŵ

→RΓ]Wk[
Ŵ

Ω•
]Wk[

Ŵ

)
tot

−−−→
(
Rjan

UK !Ω
•
Uan
K
→Rjan

WK !Ω
•
W an
K

)
tot

.

Taking hypercohomology, we find a canonical morphism

(6.8.8) H•rig,c(Xk/K)−−−→H•DR,c(X
an
K ) ;

finally, composing with the isomorphism H•DR,c(X
an
K ) ∼= H•DR,c(XK/K) we obtain the cospecialization mor-

phism of the theorem.

6.9. Theorem (Compatibility of algebraic and rigid Poincaré dualities). For i =
0, . . . , 2n, the canonical morphisms of specialization

sp2n−i : H2n−i
DR,XK

(WK/K)−→H2n−i
rig,Xk

(Wk/K)

of [BB] and of cospecialization

cospi : Hi
rig,c(Xk/K)−→Hi

DR,c(XK/K)

are compatible with Poincaré pairings

〈 , 〉 : H2n−i
DR,XK

(WK/K)⊗Hi
DR,c(XK/K)−−−→K

and
〈 , 〉 : H2n−i

rig,Xk
(Wk/K)⊗Hi

rig,c(Xk/K)−−−→K

in the sense that, for α ∈ H2n−i
DR,XK

(WK/K) and β ∈ Hi
rig,c(Xk/K), one has 〈sp2n−iα, β〉 = 〈α, cospiβ〉 .

Proof. In the notation of 6.1, we may and will assume P proper and PK smooth. So, in the second
construction of the cospecialization morphism, we take W = P . In this special case, by its very definition,
the trace map Trrig

Wk
: H2n

rig,c(Wk/K)−→K of [B.97, 2] is the composite

H2n
rig,c(Wk/K)

∼=−−−→H2n
rig(Pk/K)

Trrig
Pk−−−→K

and sits in a commutative diagram

H2n
DR,c(WK/K)

∼=−−−→ H2n
DR(PK/K)

TrPK−−−→ K

cosp
2n

x ∼= cosp
2n

x ∼= ∥∥∥
H2n

rig,c(Wk/K) −−−→∼= H2n
rig(Pk/K) −−−→

Trrig
Pk

K

where TrPK : H2n
DR(PK/K)−→K is the algebraic trace map. We observe that in this case cosp2n :

H2n
rig(Pk/K)−→H2n

DR(PK/K) and sp2n : H2n
DR(PK/K)−→H2n

rig(Pk/K) are inverse isomorphisms.
The pairing in the rigid context is constructed by Berthelot in [B.97, 2.2] using the adjunction between

the functors j†W and Γ]Wk[
P̂

([B.97, 2.1]). Taking an injective resolution J • of Ω•P an
K

as a complex of sheaves
of K-vector spaces on P an

K , and a pairing J • ⊗J •→J • extending the wedge product, one obtains a
pairing

j
†
WJ • ⊗ Γ]Wk[

P̂

J •−−−→J • .

This, applied to the smooth schemes Wk and Uk, leads to the pairing(
j
†
WJ •→ j

†
UJ •

)
tot
⊗
(
Γ]Uk[

P̂

J •→Γ]Wk[
P̂

J •
)

tot
−−−→J • ,
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where j†WJ 0 (resp. Γ]Wk[
P̂

J 0) is placed in bidegree (0, 0). Taking cohomology, we get the pairings

(6.9.1) Hrig
p (Xk/K)⊗Hp

rig,c(Xk/K)−−−→H2n
rig(Pk/K) .

In the present algebraic context, the pairing (3.5.1) becomes, via (2.6.1),

jWK∗E(Ω•WK
)⊗ “lim←−”

N

I N−•
PKrWK

Ω•PK −→E(Ω•PK ) .

This pairing is also induced by an extension E(Ω•PK ) ⊗ Ω•PK →E(Ω•PK ) of the wedge product. So, we get
the canonical pairing

jWK∗E(Ω•WK
)⊗RjWK !Ω

•
WK
−−−→E(Ω•PK ) .

This, applied to the smooth schemes WK and UK , leads to the pairing(
jWK∗E(Ω•WK

)→ jUK∗E(Ω•UK )
)

tot
⊗
(
RjUK !Ω

•
UK →RjWK !Ω

•
WK

)
tot
−−−→E(Ω•PK ) .

Taking cohomology, we obtain the pairings

(6.9.2) HDR
p (XK/K)⊗Hp

DR,c(XK/K)−−−→H2n
DR(PK/K) .

Now the compatibility of (6.9.2) and (6.9.1) is obvious via proposition 6.7.4, (6.8.2) and (6.8.7). �
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41–81.
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