COVERING DIRECT PRODUCTS WITH PROPER SUBGROUPS

A. Lucchini, M. Garonzi

University of Padova

10th October, 2011
1. History, definitions and easy results

2. Sigma-elementary groups

3. Covering direct products
Exercise

No group can be written as set-theoretical union of two proper subgroups.
Exercise

No group can be written as set-theoretical union of two proper subgroups.

Theorem (Scorza 1926)

*A group G is union of three proper subgroups if and only if it admits an epimorphic image isomorphic to $C_2 \times C_2$.***
Exercise

No group can be written as set-theoretical union of two proper subgroups.

Theorem (Scorza 1926)

A group G is union of three proper subgroups if and only if it admits an epimorphic image isomorphic to $C_2 \times C_2$.

These elementary considerations led Cohn in 1994 to define for every group G:

$$\sigma(G) \quad \text{Sum of } G: \text{ the least cardinality of a cover of } G \text{ consisting of proper subgroups.}$$
Example

If G is a cyclic group then it is not a union of proper subgroups, because the generators of G do not lie in proper subgroups. In this case we make the convention $\sigma(G) = \infty$, with $n < \infty$ for every integer n.
Exercise

If G is a cyclic group then it is not a union of proper subgroups, because the generators of G do not lie in proper subgroups. In this case we make the convention $\sigma(G) = \infty$, with $n < \infty$ for every integer n.

Exercise

If p is a prime number then $\sigma(C_p \times C_p) = p + 1$. Indeed, $C_p \times C_p$ has exactly $p + 1$ maximal subgroups, all of them isomorphic to C_p and pairwise intersecting in the identity subgroup, so they cover $1 + (p - 1)(p + 1) = p^2$ elements.
The following result is due to Tomkinson (1997):

Theorem (Tomkinson)

Let G be a solvable non-cyclic group. Then $\sigma(G) = |S/K| + 1$ where $|S/K|$ is the least order of a chief factor of G with more than one complement.
The following result is due to Tomkinson (1997):

Theorem (Tomkinson)

Let G be a solvable non-cyclic group. Then $\sigma(G) = |S/K| + 1$ where $|S/K|$ is the least order of a chief factor of G with more than one complement.

Example

If q is a prime power then $\sigma(\mathbb{F}_q \rtimes \mathbb{F}_{q^*}) = q + 1$.
Remark

If N is a normal subgroup of G then $\sigma(G) \leq \sigma(G/N)$, because every cover of G/N corresponds to a cover of G.

This suggests to study the quotients G/N such that $\sigma(G) = \sigma(G/N)$, and leads to the following:

Definition (σ-elementary groups)

A group G is said to be “σ-elementary” if $\sigma(G) < \sigma(G/N)$ for every $1 \neq N \trianglelefteq G$. We say that G is “n-elementary” if G is σ-elementary and $\sigma(G) = n$.
Example

Scorza's theorem: the only 3-elementary group is $C_2 \times C_2$.
Example

Scorza’s theorem: the only 3-elementary group is $C_2 \times C_2$.

Example

If a group G is such that G/N is cyclic for every non-trivial normal subgroup N of G then G is σ-elementary. The vice-versa holds in the solvable case.
Example

Scorza’s theorem: the only 3-elementary group is $C_2 \times C_2$.

Example

If a group G is such that G/N is cyclic for every non-trivial normal subgroup N of G then G is σ-elementary. The vice-versa holds in the solvable case.

Example

There exist σ-elementary groups with non-cyclic proper quotients. For example if p is a large enough prime number and $G := \text{Alt}(5) \wr \text{Alt}(p)$ then $\sigma(G) \leq |\text{Alt}(5)|^p = 60^p$ and $\sigma(\text{Alt}(p)) \geq (p-2)! \geq 60^p$.
Example

Scorza’s theorem: the only 3-elementary group is $C_2 \times C_2$.

Example

If a group G is such that G/N is cyclic for every non-trivial normal subgroup N of G then G is σ-elementary. The vice-versa holds in the solvable case.

Example

There exist σ-elementary groups with non-cyclic proper quotients. For example if p is a large enough prime number and $G := \text{Alt}(5) \wr \text{Alt}(p)$ then $\sigma(G) \leq |\text{Alt}(5)|^p = 60^p$ and $\sigma(\text{Alt}(p)) \geq (p-2)! \geq 60^p$.

Example

If the σ-elementary group G is abelian then $G \cong C_p \times C_p$ for some prime p (cf. [2], Theorem 3).
A natural question arises:

DIRECT PRODUCTS OF SIMPLE GROUPS

Can a direct product of non-abelian simple groups be σ-elementary?
A natural question arises:

DIRECT PRODUCTS OF SIMPLE GROUPS

Can a direct product of non-abelian simple groups be σ-elementary?

The answer is no: if T_1, \ldots, T_k are non-abelian simple groups then

$$\sigma(T_1 \times \ldots \times T_k) = \min\{\sigma(T_1), \ldots, \sigma(T_k)\}.$$

It is not difficult to prove.
A natural question arises:

Direct Products of Simple Groups

Can a direct product of non-abelian simple groups be σ-elementary?

The answer is no: if T_1, \ldots, T_k are non-abelian simple groups then

$$\sigma(T_1 \times \ldots \times T_k) = \min\{\sigma(T_1), \ldots, \sigma(T_k)\}.$$

It is not difficult to prove.

But why not asking the general question:

Direct Products at All

Can a direct product of groups be σ-elementary?
A natural question arises:

Direct Products of Simple Groups

Can a direct product of non-abelian simple groups be σ-elementary?

The answer is no: if T_1, \ldots, T_k are non-abelian simple groups then

$$\sigma(T_1 \times \ldots \times T_k) = \min\{\sigma(T_1), \ldots, \sigma(T_k)\}.$$

It is not difficult to prove.

But why not asking the general question:

Direct Products at All

Can a direct product of groups be σ-elementary?

This is the question we answered in [1], and the answer is again no, with the exception of $C_p \times C_p$.
For example, let us prove that if S is a finite simple non-abelian group then $\sigma(S \times S) = \sigma(S)$.

\blacksquare
For example, let us prove that if S is a finite simple non-abelian group then $\sigma(S \times S) = \sigma(S)$.

- We know that the maximal subgroups of $S \times S$ are of the following three types:

 1. $K \times S$
 2. $S \times K$
 3. $\Delta_\varphi := \{(x, \varphi(x)) \mid x \in S\}$,

where K is a maximal subgroup of S and $\varphi \in \text{Aut}(S)$.
For example, let us prove that if S is a finite simple non-abelian group then $\sigma(S \times S) = \sigma(S)$.

- We know that the maximal subgroups of $S \times S$ are of the following three types:

 1. $K \times S$,
 2. $S \times K$,
 3. $\Delta_\varphi := \{(x, \varphi(x)) \mid x \in S\}$,

where K is a maximal subgroup of S and $\varphi \in Aut(S)$.

- Let $\mathcal{M} = \mathcal{M}_1 \cup \mathcal{M}_2 \cup \mathcal{M}_3$ be a minimal cover of $S \times S$, where \mathcal{M}_i consists of subgroups of type (i).

For example, let us prove that if \(S \) is a finite simple non-abelian group then \(\sigma(S \times S) = \sigma(S) \).

- We know that the maximal subgroups of \(S \times S \) are of the following three types:

 1. \(K \times S \)
 2. \(S \times K \)
 3. \(\Delta_\varphi := \{ (x, \varphi(x)) \mid x \in S \} \)

 where \(K \) is a maximal subgroup of \(S \) and \(\varphi \in \text{Aut}(S) \).

- Let \(M = M_1 \cup M_2 \cup M_3 \) be a minimal cover of \(S \times S \), where \(M_i \) consists of subgroups of type (\(i \)).

- Let \(\Omega := S \times S - \bigcup_{M \in M_1 \cup M_2} M = \Omega_1 \times \Omega_2 \), where \(\Omega_1 = S - \bigcup_{K \times S \in M_1} K \) and \(\Omega_2 = S - \bigcup_{S \times K \in M_2} K \).
For example, let us prove that if S is a finite simple non-abelian group then $\sigma(S \times S) = \sigma(S)$.

- We know that the maximal subgroups of $S \times S$ are of the following three types:

 (1) $K \times S$, (2) $S \times K$, (3) $\Delta_\varphi := \{(x, \varphi(x)) \mid x \in S\}$,

 where K is a maximal subgroup of S and $\varphi \in \text{Aut}(S)$.

- Let $\mathcal{M} = \mathcal{M}_1 \cup \mathcal{M}_2 \cup \mathcal{M}_3$ be a minimal cover of $S \times S$, where \mathcal{M}_i consists of subgroups of type (i).

- Let $\Omega := S \times S - \bigcup_{M \in \mathcal{M}_1 \cup \mathcal{M}_2} M = \Omega_1 \times \Omega_2$, where $\Omega_1 = S - \bigcup_{K \times S \in \mathcal{M}_1} K$ and $\Omega_2 = S - \bigcup_{S \times K \in \mathcal{M}_2} K$.

- We prove that $\Omega = \emptyset$. Suppose $\Omega \neq \emptyset$. Let $\omega \in \Omega_1$. Notice that $\{K < S \mid S \times K \in \mathcal{M}_2\} \cup \{\langle \varphi(\omega) \rangle \mid \Delta_\varphi \in \mathcal{M}_3\}$ covers S.
For example, let us prove that if S is a finite simple non-abelian group then $\sigma(S \times S) = \sigma(S)$.

- We know that the maximal subgroups of $S \times S$ are of the following three types:

 $$(1) \ K \times S, \ (2) \ S \times K, \ (3) \ \Delta \varphi := \{(x, \varphi(x)) \mid x \in S\},$$

 where K is a maximal subgroup of S and $\varphi \in \text{Aut}(S)$.

- Let $\mathcal{M} = \mathcal{M}_1 \cup \mathcal{M}_2 \cup \mathcal{M}_3$ be a minimal cover of $S \times S$, where \mathcal{M}_i consists of subgroups of type (i).

- Let $\Omega := S \times S - \bigcup_{M \in \mathcal{M}_1 \cup \mathcal{M}_2} M = \Omega_1 \times \Omega_2$, where $\Omega_1 = S - \bigcup_{K \times S \in \mathcal{M}_1} K$ and $\Omega_2 = S - \bigcup_{S \times K \in \mathcal{M}_2} K$.

- We prove that $\Omega = \emptyset$. Suppose $\Omega \neq \emptyset$. Let $\omega \in \Omega_1$. Notice that $\{K < S \mid S \times K \in \mathcal{M}_2\} \cup \{\langle \varphi(\omega) \rangle \mid \Delta \varphi \in \mathcal{M}_3\}$ covers S.

- It follows that

 $$|\mathcal{M}_1| + |\mathcal{M}_2| + |\mathcal{M}_3| = |\mathcal{M}| = \sigma(S \times S) \leq \sigma(S) \leq |\mathcal{M}_2| + |\mathcal{M}_3|.$$

 This implies that $\mathcal{M}_1 = \emptyset$. Analogously $\mathcal{M}_2 = \emptyset$. So $\mathcal{M} = \mathcal{M}_3$.

For example, let us prove that if S is a finite simple non-abelian group then $\sigma(S \times S) = \sigma(S)$.

- We know that the maximal subgroups of $S \times S$ are of the following three types:

 \begin{align*}
 (1) & \quad K \times S, \\
 (2) & \quad S \times K, \\
 (3) & \quad \Delta_\varphi := \{(x, \varphi(x)) \mid x \in S\},
 \end{align*}

 where K is a maximal subgroup of S and $\varphi \in \text{Aut}(S)$.

- Let $M = M_1 \cup M_2 \cup M_3$ be a minimal cover of $S \times S$, where M_i consists of subgroups of type (i).

- Let $\Omega := S \times S - \bigcup_{M \in M_1 \cup M_2} M = \Omega_1 \times \Omega_2$, where $\Omega_1 = S - \bigcup_{K \times S \in M_1} K$ and $\Omega_2 = S - \bigcup_{S \times K \in M_2} K$.

- We prove that $\Omega = \emptyset$. Suppose $\Omega \neq \emptyset$. Let $\omega \in \Omega_1$. Notice that

 \begin{align*}
 \{K < S \mid S \times K \in M_2\} \cup \{\langle \varphi(\omega) \rangle \mid \Delta_\varphi \in M_3\}
 \end{align*}

 covers S.

- It follows that

 \begin{align*}
 |M_1| + |M_2| + |M_3| = |M| = \sigma(S \times S) \leq \sigma(S) \leq |M_2| + |M_3|.
 \end{align*}

 This implies that $M_1 = \emptyset$. Analogously $M_2 = \emptyset$. So $M = M_3$.

- Since $S = \bigcup_{S \ni s \neq 1} \langle s \rangle$ and $|M| = |S|$ for every $M \in M_3$,

 \begin{align*}
 |S| - 1 \geq \sigma(S) \geq \sigma(S \times S) = |M| = |M_3| \geq |S|,
 \end{align*}

 contradiction.
In fact there is a much more general conjecture ([3]):

Conjecture (Lucchini, Detomi)

Every non-abelian σ-elementary group is monolithic.

There are partial results supporting this conjecture. Let G be a non-abelian σ-elementary group. Then:

- ([3], Corollary 14) G has at most one abelian minimal normal subgroup. In particular if it is solvable, it is monolithic.
- ([3], Corollary 14) G is a subdirect product of monolithic primitive groups.
- ([3], Proposition 21) Any solvable proper quotient of G is cyclic.
- ([3], Theorem 24) Suppose G has no abelian minimal normal subgroups. Then either G is a primitive monolithic group and $G/\text{soc}(G)$ is cyclic, or $G/\text{soc}(G)$ is non-solvable and all the non-abelian composition factors of $G/\text{soc}(G)$ are alternating groups of odd degree.
- ([5], Lemma 3) If $\sigma(G) \leq 33$ then G is monolithic.
Our task was to solve the general problem of computing $\sigma(H_1 \times H_2)$ for any two finite groups H_1, H_2.
Our task was to solve the general problem of computing $\sigma(H_1 \times H_2)$ for any two finite groups H_1, H_2.

Theorem

Let \mathcal{M} be a minimal cover of a direct product $G = H_1 \times H_2$ of two finite groups. Then one of the following holds:

1. $\mathcal{M} = \{X \times H_2 \mid X \in \mathcal{X}\}$ where \mathcal{X} is a minimal cover of H_1. In this case $\sigma(G) = \sigma(H_1)$.

2. $\mathcal{M} = \{H_1 \times X \mid X \in \mathcal{X}\}$ where \mathcal{X} is a minimal cover of H_2. In this case $\sigma(G) = \sigma(H_2)$.

3. There exist $N_1 \trianglelefteq H_1$, $N_2 \trianglelefteq H_2$ with $H_1/N_1 \cong H_2/N_2 \cong C_p$ and \mathcal{M} consists of the maximal subgroups of $H_1 \times H_2$ containing $N_1 \times N_2$. In this case $\sigma(G) = p + 1$.
Our task was to solve the general problem of computing $\sigma(H_1 \times H_2)$ for any two finite groups H_1, H_2.

Theorem

Let \mathcal{M} be a minimal cover of a direct product $G = H_1 \times H_2$ of two finite groups. Then one of the following holds:

1. $\mathcal{M} = \{X \times H_2 \mid X \in \mathcal{X}\}$ where \mathcal{X} is a minimal cover of H_1. In this case $\sigma(G) = \sigma(H_1)$.

2. $\mathcal{M} = \{H_1 \times X \mid X \in \mathcal{X}\}$ where \mathcal{X} is a minimal cover of H_2. In this case $\sigma(G) = \sigma(H_2)$.

3. There exist $N_1 \triangleleft H_1$, $N_2 \triangleleft H_2$ with $H_1/N_1 \cong H_2/N_2 \cong C_p$ and \mathcal{M} consists of the maximal subgroups of $H_1 \times H_2$ containing $N_1 \times N_2$. In this case $\sigma(G) = p + 1$.

Remark

This theorem can be re-stated in the general case $G = H_1 \times \ldots \times H_n$.
Let us sketch the proof of the theorem.
Let us sketch the proof of the theorem.

Proposition (Maximal Subgroups of a Direct Product)

Let $G = H_1 \times H_2$ be the direct product of two finite groups. A maximal subgroup of G is called “(of) standard (type)” if it is of the form $M \times H_2$ with M a maximal subgroup of H_1 or $H_1 \times M$ with M a maximal subgroup of H_2, it is called “(of) diagonal (type)” if it is of the form $\{(x, y) \in G \mid \varphi(xN_1) = yN_2\}$ where N_i is a maximal normal subgroup of H_i for $i = 1, 2$ and $\varphi : H_1/N_1 \to H_2/N_2$ is an isomorphism. It is well known that every maximal subgroup of G is either of standard type or of diagonal type.
Let us sketch the proof of the theorem.

Proposition (Maximal Subgroups of a Direct Product)

Let $G = H_1 \times H_2$ be the direct product of two finite groups. A maximal subgroup of G is called “(of) standard (type)” if it is of the form $M \times H_2$ with M a maximal subgroup of H_1 or $H_1 \times M$ with M a maximal subgroup of H_2, it is called “(of) diagonal (type)” if it is of the form $\{(x, y) \in G \mid \varphi(xN_1) = yN_2\}$ where N_i is a maximal normal subgroup of H_i for $i = 1, 2$ and $\varphi : H_1/N_1 \rightarrow H_2/N_2$ is an isomorphism. It is well known that every maximal subgroup of G is either of standard type or of diagonal type.

For a proof see [7], Chap. 2, (4,19).
Step 1. Let \mathcal{M} be a minimal cover of $G = H_1 \times H_2$ consisting of maximal subgroups. Assume that \mathcal{M} contains no subgroup of diagonal type whose index is a prime number. We want to show that in this case either $H_1 \times 1$ or $1 \times H_2$ is contained in $\bigcap_{M \in \mathcal{M}} M$.
Step 1. Let \mathcal{M} be a minimal cover of $G = H_1 \times H_2$ consisting of maximal subgroups. Assume that \mathcal{M} contains no subgroup of diagonal type whose index is a prime number. We want to show that in this case either $H_1 \times 1$ or $1 \times H_2$ is contained in $\bigcap_{M \in \mathcal{M}} M$.

\[\mathcal{M}_1 := \{ M \in \mathcal{M} | M \supseteq 1 \times H_2 \}, \quad \mathcal{M}_2 := \{ M \in \mathcal{M} | M \supseteq H_1 \times 1 \}, \]

\[\mathcal{M}_3 := \mathcal{M} - (\mathcal{M}_1 \cup \mathcal{M}_2), \]

\[\Omega_1 := H_1 - \left(\bigcup_{L \times H_2 \in \mathcal{M}_1} L \right), \quad \Omega_2 := H_2 - \left(\bigcup_{H_1 \times L \in \mathcal{M}_2} L \right). \]
Step 1. Let \mathcal{M} be a minimal cover of $G = H_1 \times H_2$ consisting of maximal subgroups. Assume that \mathcal{M} contains no subgroup of diagonal type whose index is a prime number. We want to show that in this case either $H_1 \times 1$ or $1 \times H_2$ is contained in $\bigcap_{M \in \mathcal{M}} M$.

\[\mathcal{M}_1 := \{ M \in \mathcal{M} \mid M \supseteq 1 \times H_2 \} , \quad \mathcal{M}_2 := \{ M \in \mathcal{M} \mid M \supseteq H_1 \times 1 \} , \]

\[\mathcal{M}_3 := \mathcal{M} - (\mathcal{M}_1 \cup \mathcal{M}_2) , \]

\[\Omega_1 := H_1 - (\bigcup_{L \times H_2 \in \mathcal{M}_1} L) , \quad \Omega_2 := H_2 - (\bigcup_{H_1 \times L \in \mathcal{M}_2} L) . \]

Suppose by contradiction that $\Omega := G - \bigcup_{M \in \mathcal{M}_1 \cup \mathcal{M}_2} M = \Omega_1 \times \Omega_2 \neq \emptyset$.
Step 1. Let \mathcal{M} be a minimal cover of $G = H_1 \times H_2$ consisting of maximal subgroups. Assume that \mathcal{M} contains no subgroup of diagonal type whose index is a prime number. We want to show that in this case either $H_1 \times 1$ or $1 \times H_2$ is contained in $\bigcap_{M \in \mathcal{M}} M$.

- $\mathcal{M}_1 := \{M \in \mathcal{M} \mid M \supseteq 1 \times H_2\}$, $\mathcal{M}_2 := \{M \in \mathcal{M} \mid M \supseteq H_1 \times 1\}$, $\mathcal{M}_3 := \mathcal{M} - (\mathcal{M}_1 \cup \mathcal{M}_2)$,

- $\Omega_1 := H_1 - (\bigcup_{L \times H_2 \in \mathcal{M}_1} L)$, $\Omega_2 := H_2 - (\bigcup_{H_1 \times L \in \mathcal{M}_2} L)$.

- Suppose by contradiction that $\Omega := G - \bigcup_{M \in \mathcal{M}_1 \cup \mathcal{M}_2} M = \Omega_1 \times \Omega_2 \neq \emptyset$.

- Let K_i be intersection of the maximal normal subgroups of H_i, for $i = 1, 2$. There are simple groups $S_1, \ldots, S_\alpha, T_1, \ldots, T_\beta$ such that

\[
H_1/K_1 = \prod_{1 \leq a \leq \alpha} S_a, \quad H_2/K_2 = \prod_{1 \leq b \leq \beta} T_b.
\]
\[H_1/K_1 = \prod_{1 \leq a \leq \alpha} S_a, \quad H_2/K_2 = \prod_{1 \leq b \leq \beta} T_b. \]
\[
H_1/K_1 = \prod_{1 \leq a \leq \alpha} S_a, \quad H_2/K_2 = \prod_{1 \leq b \leq \beta} T_b.
\]

\[
\rho_i : H_i \to H_i/K_i, \quad \pi_1, a : H_1 \to S_a, \quad \Delta_i := \rho_i(\Omega_i), \quad \pi_2, b : H_2 \to T_b.
\]
\[H_1/K_1 = \prod_{1 \leq a \leq \alpha} S_a, \quad H_2/K_2 = \prod_{1 \leq b \leq \beta} T_b. \]

\[\rho_i : H_i \to H_i/K_i, \quad \Delta_i := \rho_i(\Omega_i), \]
\[\pi_1,a : H_1 \to S_a, \quad \pi_2,b : H_2 \to T_b. \]

To any \(M \in \mathcal{M}_3 \) we may associate a triple \((a, b, \phi)\) with \(1 \leq a \leq \alpha, 1 \leq b \leq \beta\) and \(\phi : S_a \to T_b \) a group isomorphism such that \(M = M(a, b, \varphi) \) equals

\[\{(h_1, h_2) \in H_1 \times H_2 \mid \phi(\pi_1,a(h_1)) = \pi_2,b(h_2)\}. \]

By the hypothesis, if \(M(a, b, \phi) \in \mathcal{M}_3 \) then \(S_a \cong T_b \) is non-abelian.
\[\frac{H_1}{K_1} = \prod_{1 \leq a \leq \alpha} S_a, \quad \frac{H_2}{K_2} = \prod_{1 \leq b \leq \beta} T_b. \]

\[\rho_i : H_i \to H_i/K_i, \quad \Delta_i := \rho_i(\Omega_i), \]
\[\pi_{1,a} : H_1 \to S_a, \quad \pi_{2,b} : H_2 \to T_b. \]

To any \(M \in \mathcal{M}_3 \) we may associate a triple \((a, b, \phi)\) with \(1 \leq a \leq \alpha, 1 \leq b \leq \beta \) and \(\phi : S_a \to T_b \) a group isomorphism such that \(M = M(a, b, \phi) \) equals

\[\{ (h_1, h_2) \in H_1 \times H_2 \mid \phi(\pi_{1,a}(h_1)) = \pi_{2,b}(h_2) \}. \]

By the hypothesis, if \(M(a, b, \phi) \in \mathcal{M}_3 \) then \(S_a \cong T_b \) is non-abelian.

Fix \(\omega \in \Omega_1. \ \rho_1(\omega) =: (s_1, \ldots, s_\alpha) \in \Delta_1. \) For \(M(a, b, \phi) \in \mathcal{M}_3 \) let

\[U(a, b, \phi) := \{ h \in H_2 \mid \pi_{2,b}(h) \in \langle \phi(s_a) \rangle \}. \]

\(T_b \) is non-abelian \(\Rightarrow \langle \phi(s_a) \rangle \neq T_b \Rightarrow U(a, b, \phi) < H_2. \)
\[
H_1/K_1 = \prod_{1 \leq a \leq \alpha} S_a, \quad H_2/K_2 = \prod_{1 \leq b \leq \beta} T_b.
\]

\[\rho_i : H_i \rightarrow H_i/K_i, \quad \Delta_i := \rho_i(\Omega_i),\]

\[\pi_{1,a} : H_1 \rightarrow S_a, \quad \pi_{2,b} : H_2 \rightarrow T_b.\]

To any \(M \in \mathcal{M}_3 \) we may associate a triple \((a, b, \phi)\) with \(1 \leq a \leq \alpha, 1 \leq b \leq \beta\) and \(\phi : S_a \rightarrow T_b\) a group isomorphism such that \(M = M(a, b, \phi) \) equals

\[
\{(h_1, h_2) \in H_1 \times H_2 \mid \phi(\pi_{1,a}(h_1)) = \pi_{2,b}(h_2)\}.
\]

By the hypothesis, if \(M(a, b, \phi) \in \mathcal{M}_3 \) then \(S_a \cong T_b \) is non-abelian.

Fix \(\omega \in \Omega_1 \). \(\rho_1(\omega) := (s_1, \ldots, s_\alpha) \in \Delta_1 \). For \(M(a, b, \phi) \in \mathcal{M}_3 \) let

\[
U(a, b, \phi) := \{h \in H_2 \mid \pi_{2,b}(h) \in \langle \phi(s_a) \rangle\}.
\]

\(T_b \) is non-abelian \(\Rightarrow \langle \phi(s_a) \rangle \neq T_b \Rightarrow U(a, b, \phi) < H_2.\)

The following family of proper subgroups of \(H_2 \) covers \(H_2 \):

\[
\{K < H_2 \mid H_1 \times K \in \mathcal{M}_2\} \cup \{U(a, b, \phi) \mid M(a, b, \phi) \in \mathcal{M}_3\}.
\]
\[H_1/K_1 = \prod_{1 \leq a \leq \alpha} S_a, \quad H_2/K_2 = \prod_{1 \leq b \leq \beta} T_b. \]

\[\rho_i : H_i \rightarrow H_i/K_i, \quad \Delta_i := \rho_i(\Omega_i), \]

\[\pi_{1,a} : H_1 \rightarrow S_a, \quad \pi_{2,b} : H_2 \rightarrow T_b. \]

To any \(M \in \mathcal{M}_3 \) we may associate a triple \((a, b, \phi)\) with \(1 \leq a \leq \alpha, 1 \leq b \leq \beta\) and \(\phi : S_a \rightarrow T_b\) a group isomorphism such that \(M = M(a, b, \phi)\) equals

\[\{(h_1, h_2) \in H_1 \times H_2 \mid \phi(\pi_{1,a}(h_1)) = \pi_{2,b}(h_2)\}. \]

By the hypothesis, if \(M(a, b, \phi) \in \mathcal{M}_3 \) then \(S_a \cong T_b\) is non-abelian.

Fix \(\omega \in \Omega_1. \rho_1(\omega) =: (s_1, \ldots, s_\alpha) \in \Delta_1. \) For \(M(a, b, \phi) \in \mathcal{M}_3 \) let

\[U(a, b, \phi) := \{ h \in H_2 \mid \pi_{2,b}(h) \in \langle \phi(s_a) \rangle \}. \]

\(T_b \) is non-abelian \(\Rightarrow \langle \phi(s_a) \rangle \neq T_b \Rightarrow U(a, b, \phi) < H_2.\)

The following family of proper subgroups of \(H_2 \) covers \(H_2: \)

\[\{K < H_2 \mid H_1 \times K \in \mathcal{M}_2\} \cup \{U(a, b, \phi) \mid M(a, b, \phi) \in \mathcal{M}_3\}. \]

It follows that

\[|\mathcal{M}_1| + |\mathcal{M}_2| + |\mathcal{M}_3| = |\mathcal{M}| = \sigma(H_1 \times H_2) \leq \sigma(H_2) \leq |\mathcal{M}_2| + |\mathcal{M}_3|. \]

This implies that \(\mathcal{M}_1 = \emptyset. \) Analogously \(\mathcal{M}_2 = \emptyset. \) So \(\mathcal{M} = \mathcal{M}_3. \)
Now the conclusion of Step 1 follows easily. For sake of exposition, we will state and use the following (quite useful) technical lemma.

Lemma

Let G be a finite group, let N be a proper normal subgroup of G, and let $U_1, \ldots, U_h, V_1, \ldots, V_k$ be proper subgroups of G such that U_1, \ldots, U_h contain N, V_1, \ldots, V_k supplement N, and $\beta_1 \leq \ldots \leq \beta_k$, where $\beta_i = |G : V_i|$ for $i = 1, \ldots, k$.

If $U_1 \cup \ldots \cup U_h \cup V_1 \cup \ldots \cup V_k = G$ and $U_1 \cup \ldots \cup U_h \neq G$ then $\beta_1 \leq k$.

Moreover, if $\beta_1 = k$ then $\beta_1 = \ldots = \beta_k = k$ and $V_i \cap V_j \leq U_1, \ldots, U_h$ for every $i \neq j$ in $\{1, \ldots, k\}$.

Apply this lemma with $N = H_1 \times \{1\} = U_1$, $h = 1$, $\{V_1, \ldots, V_k\} = \mathcal{M}_3$. The index of $V_1 \in \mathcal{M}_3$ is the order of a simple non-abelian group S which is an epimorphic image of G.

$$|S| = |G : V_1| = \beta_1 \leq k = |\mathcal{M}_3| = |\mathcal{M}| = \sigma(G) \leq \sigma(S) \leq |S| - 1,$$

contradiction.
Step 2. Assume now that there exists $M \in \mathcal{M}$ of diagonal type and index p, say $M = \{(x, y) \in G \mid \varphi(xN_1) = yN_2\}$ for some $N_1 \trianglelefteq H_1$, $N_2 \trianglelefteq H_2$ with $H_i/N_i \cong C_p$ for $i = 1, 2$. We prove that then \mathcal{M} consists of normal subgroups of index p.
Step 2. Assume now that there exists $M \in \mathcal{M}$ of diagonal type and index p, say $M = \{(x, y) \in G \mid \varphi(xN_1) = yN_2\}$ for some $N_1 \trianglelefteq H_1$, $N_2 \trianglelefteq H_2$ with $H_i/N_i \cong C_p$ for $i = 1, 2$. We prove that then \mathcal{M} consists of normal subgroups of index p.

Note that $\sigma(G) \leq \sigma(H_1 \times H_2/N_1 \times N_2) = \sigma(C_p \times C_p) = p + 1$.

Induction: assume that no non-trivial normal subgroup N of G is contained in H_i and in every element of \mathcal{M}, for $i = 1, 2$.
Step 2. Assume now that there exists $M \in \mathcal{M}$ of diagonal type and index p, say $M = \{(x, y) \in G \mid \varphi(xN_1) = yN_2\}$ for some $N_1 \trianglelefteq H_1$, $N_2 \trianglelefteq H_2$ with $H_i/N_i \cong C_p$ for $i = 1, 2$. We prove that then \mathcal{M} consists of normal subgroups of index p.

- Note that $\sigma(G) \leq \sigma(H_1 \times H_2/N_1 \times N_2) = \sigma(C_p \times C_p) = p + 1$.

Induction: assume that no non-trivial normal subgroup N of G is contained in H_i and in every element of \mathcal{M}, for $i = 1, 2$.

- Assume that p divides $|Z(G)|$.
Step 2. Assume now that there exists $M \in \mathcal{M}$ of diagonal type and index p, say $M = \{(x, y) \in G \mid \varphi(xN_1) = yN_2\}$ for some $N_1 \trianglelefteq H_1$, $N_2 \trianglelefteq H_2$ with $H_i/N_i \cong C_p$ for $i = 1, 2$. We prove that then \mathcal{M} consists of normal subgroups of index p.

- Note that $\sigma(G) \leq \sigma(H_1 \times H_2/N_1 \times N_2) = \sigma(C_p \times C_p) = p + 1$.
 Induction: assume that no non-trivial normal subgroup N of G is contained in H_i and in every element of \mathcal{M}, for $i = 1, 2$.

- Assume that p divides $|Z(G)|$.

- WLOG, let $g \in Z(G) \cap H_1$ of order p, and let $N = \langle g \rangle \trianglelefteq G$.

Step 2. Assume now that there exists \(M \in \mathcal{M} \) of diagonal type and index \(p \), say \(M = \{(x, y) \in G \mid \varphi(xN_1) = yN_2\} \) for some \(N_1 \trianglelefteq H_1, N_2 \trianglelefteq H_2 \) with \(H_i/N_i \cong C_p \) for \(i = 1, 2 \). We prove that then \(\mathcal{M} \) consists of normal subgroups of index \(p \).

- Note that \(\sigma(G) \leq \sigma(H_1 \times H_2/N_1 \times N_2) = \sigma(C_p \times C_p) = p + 1 \).
 Induction: assume that no non-trivial normal subgroup \(N \) of \(G \) is contained in \(H_i \) and in every element of \(\mathcal{M} \), for \(i = 1, 2 \).
- Assume that \(p \) divides \(|Z(G)| \).
- WLOG, let \(g \in Z(G) \cap H_1 \) of order \(p \), and let \(N = \langle g \rangle \trianglelefteq G \).
- \(\mathcal{U} := \{M \in \mathcal{M} \mid M \nsubseteq N\} \) is non-empty by the above assumption.
Step 2. Assume now that there exists $M \in \mathcal{M}$ of diagonal type and index p, say $M = \{(x, y) \in G \mid \varphi(xN_1) = yN_2\}$ for some $N_1 \leq H_1$, $N_2 \leq H_2$ with $H_i/N_i \cong C_p$ for $i = 1, 2$. We prove that then \mathcal{M} consists of normal subgroups of index p.

- Note that $\sigma(G) \leq \sigma(H_1 \times H_2/N_1 \times N_2) = \sigma(C_p \times C_p) = p + 1$.

 Induction: assume that no non-trivial normal subgroup N of G is contained in H_i and in every element of \mathcal{M}, for $i = 1, 2$.

- Assume that p divides $|Z(G)|$.

- WLOG, let $g \in Z(G) \cap H_1$ of order p, and let $N = \langle g \rangle \leq G$.

- $\mathcal{U} := \{M \in \mathcal{M} \mid M \not\supseteq N\}$ is non-empty by the above assumption.

- Let $M \in \mathcal{U}$. $G = MN \cong M \times N$, so M is normal of index $|N| = p$.
Step 2. Assume now that there exists $M \in \mathcal{M}$ of diagonal type and index p, say $M = \{(x, y) \in G \mid \varphi(xN_1) = yN_2\}$ for some $N_1 \trianglelefteq H_1$, $N_2 \trianglelefteq H_2$ with $H_i/N_i \cong C_p$ for $i = 1, 2$. We prove that then \mathcal{M} consists of normal subgroups of index p.

- Note that $\sigma(G) \leq \sigma(H_1 \times H_2/N_1 \times N_2) = \sigma(C_p \times C_p) = p + 1$.
 Induction: assume that no non-trivial normal subgroup N of G is contained in H_i and in every element of \mathcal{M}, for $i = 1, 2$.

- Assume that p divides $|Z(G)|$.

- WLOG, let $g \in Z(G) \cap H_1$ of order p, and let $N = \langle g \rangle \trianglelefteq G$.

- $\mathcal{U} := \{M \in \mathcal{M} \mid M \not\supset N\}$ is non-empty by the above assumption.

- Let $M \in \mathcal{U}$. $G = MN \cong M \times N$, so M is normal of index $|N| = p$.

- The lemma implies $|\mathcal{U}| \geq p$, and since \mathcal{U} does not cover N, $|\mathcal{U}| = p$ and $\sigma(G) = p + 1$. $\mathcal{U} = \{M_1, \ldots, M_p\}$, $\mathcal{M} - \mathcal{U} = \{K\}$.
Step 2. Assume now that there exists $M \in \mathcal{M}$ of diagonal type and index p, say $M = \{(x, y) \in G \mid \varphi(xN_1) = yN_2\}$ for some $N_1 \triangleleft H_1$, $N_2 \triangleleft H_2$ with $H_i/N_i \cong C_p$ for $i = 1, 2$. We prove that then \mathcal{M} consists of normal subgroups of index p.

- Note that $\sigma(G) \leq \sigma(H_1 \times H_2/N_1 \times N_2) = \sigma(C_p \times C_p) = p + 1$.
- Induction: assume that no non-trivial normal subgroup N of G is contained in H_i and in every element of \mathcal{M}, for $i = 1, 2$.

- Assume that p divides $|Z(G)|$.
- WLOG, let $g \in Z(G) \cap H_1$ of order p, and let $N = \langle g \rangle \triangleleft G$.
- $\mathcal{U} := \{M \in \mathcal{M} \mid M \nsubseteq N\}$ is non-empty by the above assumption.
- Let $M \in \mathcal{U}$. $G = MN \cong M \times N$, so M is normal of index $|N| = p$.
- The lemma implies $|\mathcal{U}| \geq p$, and since \mathcal{U} does not cover N, $|\mathcal{U}| = p$ and $\sigma(G) = p + 1$. $\mathcal{U} = \{M_1, ..., M_p\}$, $\mathcal{M} - \mathcal{U} = \{K\}$.
- By the lemma $M_1 \cap M_2 \subseteq K$. $G/M_1 \cap M_2 \cong C_p \times C_p$, so K is normal of index p.
Step 2. Assume now that there exists $M \in \mathcal{M}$ of diagonal type and index p, say $M = \{(x, y) \in G \mid \varphi(xN_1) = yN_2\}$ for some $N_1 \trianglelefteq H_1$, $N_2 \trianglelefteq H_2$ with $H_i/N_i \cong C_p$ for $i = 1, 2$. We prove that then \mathcal{M} consists of normal subgroups of index p.

- Note that $\sigma(G) \leq \sigma(H_1 \times H_2/N_1 \times N_2) = \sigma(C_p \times C_p) = p + 1$.
 Induction: assume that no non-trivial normal subgroup N of G is contained in H_i and in every element of \mathcal{M}, for $i = 1, 2$.
- Assume that p divides $|Z(G)|$.
- WLOG, let $g \in Z(G) \cap H_1$ of order p, and let $N = \langle g \rangle \trianglelefteq G$.
- $\mathcal{U} := \{M \in \mathcal{M} \mid M \nsubseteq N\}$ is non-empty by the above assumption.
- Let $M \in \mathcal{U}$. $G = MN \cong M \times N$, so M is normal of index $|N| = p$.
- The lemma implies $|\mathcal{U}| \geq p$, and since \mathcal{U} does not cover N, $|\mathcal{U}| = p$ and $\sigma(G) = p + 1$.
 $\mathcal{U} = \{M_1, \ldots, M_p\}$, $\mathcal{M} - \mathcal{U} = \{K\}$.
- By the lemma $M_1 \cap M_2 \subseteq K$. $G/M_1 \cap M_2 \cong C_p \times C_p$, so K is normal of index p.
- Let $N = M_1 \cap M_2$ and $\{U_1, \ldots, U_h, V_1, \ldots, V_k\} = \mathcal{M}$. Applying the lemma we get $h = 1$, $M_1 \cap \ldots \cap M_p \cap K = M_1 \cap M_2 = N$. Therefore \mathcal{M} corresponds to the unique cover of $G/N \cong C_p \times C_p$.
Assume that p does not divide $|Z(G)|$.
Assume that p does not divide $|Z(G)|$.

It is possible to find a minimal normal subgroup N of G contained either in H_1 or H_2 with the property that $A = G/C_G(N)$ has a chief factor of order p. The set \mathcal{U} of the subgroups in \mathcal{M} not containing N is non-empty.
Assume that p does not divide $|Z(G)|$.

It is possible to find a minimal normal subgroup N of G contained either in H_1 or H_2 with the property that $A = G/C_G(N)$ has a chief factor of order p. The set \mathcal{U} of the subgroups in \mathcal{M} not containing N is non-empty.

Let $\beta := \min_{K \in \mathcal{U}} |G : K|$, and let $M \in \mathcal{M}$ be such that $\beta = |G : M|$. By the lemma, $p + 1 \geq \sigma(G) \geq |\mathcal{U}| \geq \beta$.
Assume that p does not divide $|Z(G)|$.

It is possible to find a minimal normal subgroup N of G contained either in H_1 or H_2 with the property that $A = G/C_G(N)$ has a chief factor of order p. The set \mathcal{U} of the subgroups in \mathcal{M} not containing N is non-empty.

Let $\beta := \min_{K \in \mathcal{U}} |G : K|$, and let $M \in \mathcal{M}$ be such that $\beta = |G : M|$. By the lemma, $p + 1 \geq \sigma(G) \geq |\mathcal{U}| \geq \beta$.

We only discuss the case in which N is a non-abelian simple group. In this case C_p is isomorphic to a chief factor of a subgroup of $\text{Out}(N)$ hence $p \leq |\text{Out}(N)|$.
Assume that p does not divide $|Z(G)|$.

It is possible to find a minimal normal subgroup N of G contained either in H_1 or H_2 with the property that $A = G/C_G(N)$ has a chief factor of order p. The set \mathcal{U} of the subgroups in \mathcal{M} not containing N is non-empty.

Let $\beta := \min_{K \in \mathcal{U}} |G : K|$, and let $M \in \mathcal{M}$ be such that $\beta = |G : M|$. By the lemma, $p + 1 \geq \sigma(G) \geq |\mathcal{U}| \geq \beta$.

We only discuss the case in which N is a non-abelian simple group. In this case C_p is isomorphic to a chief factor of a subgroup of $\text{Out}(N)$ hence $p \leq |\text{Out}(N)|$.

$\beta = |G : M| = |N : M \cap N|$ is the index of a proper subgroup of N, therefore $\beta > 2p$ (this follows from [6], Lemma 2.7, which relies on the CFSG). Then $p + 1 \geq \beta > 2p$, contradiction.
M. Garonzi, A. Lucchini, Direct products of groups as unions of proper subgroups.

M. Garonzi, Finite Groups that are Union of at most 25 Proper Subgroups, Journal of Algebra and its Applications, ISSN: 0219-4988.
