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Commutative Algebra Exam
Padova, 26/01/2017

Exercise 1. Let L = Q(α), where α3 + α2 − 2α + 8 = 0. Let A = Z[α] and write OL for the
integral closure of Z in L.

a) Compute ∆(1, α, α2). Show that A
[
1
2

]
= OL

[
1
2

]
.

b) Describe the decompostion of 3, 5 and 503 in L and compute the inertia and ramification
degree above these primes.

c) Manipulating the equation defining α, show that β = 4
α ∈ OL.

d) Prove that α2 = −α+ 2− 2β and that β2 = −2α− 2 + β. Conclude that A ( OL.

e) Show that {1, α, β} is a basis for OL as a Z-module.

f) Let p ⊂ OL be a prime ideal, 2 ∈ p. Let π : OL → OL/p be the projection map. Computing
the value of π on α and β, show that OL/p = F2.

g) Describe all the possible ring homomorphisms π : OL → F2.

h) Compute the decomposition of 2.

i) For every prime p 3 2, find θ ∈ OL such that p = (2, θ).

Exercise 2. Let k be a field, A1 and A2 two k-algebras of finite type. Show that
dim (A1 ⊗k A2) = dimA1 + dimA2. [Hint: Noether’s Normalisation Lemma]

Exercise 3. Let k be a field, A = k[X1, . . . , Xn]. Let q1, q2 ⊂ A be prime ideals, put Ai = A/qi
and πi : A → Ai the natural projections. Let p ⊂ A be a prime ideal, minimal among those
containing q1 + q2.

a) Let ϕ = π1 ⊗ π2 : A⊗k A→ A1 ⊗k A2. Show that J = kerϕ = q1 ⊗k A+A⊗k q2.

b) Let µ : A⊗k A→ A be the multiplication map. Recall (remark 1.3.8) that I = kerµ is the
ideal generated by the elements Xi⊗1−1⊗Xi for i = 1, . . . , n. Show that µ(I+J) = q1+q2.

c) Let p̃ = µ−1(p). Show that p̃ is minimal among the primes containing I + J .

d) Let p = ϕ(p̃). Show that p ⊂ A1⊗kA2 is prime and minimal among those containing ϕ(I).

e) Show that ht p ≤ n.

f) Using exercise 2 and proposition 6.1.35, show that ht p ≤ ht q1 + ht q2.

You may submit your answers in english, french or italian.



Solutions

Exercise 1. The minimal polynomial of α if F (X) = X3 + X2 − 2X + 8, hence ∆(1, α, α2) =
−NL/Q(F ′(α)) = −NL/Q(3α2 + 2α− 2). Writing the matrix of multiplication by 3α2 + 2α− 2 in
the basis {1, α, α2} we get

∆(1, α, α2) = −NL/Q(3α2 + 2α− 2) = −det

−2 −24 8
2 4 −26
3 −1 5

 = −22503.

Only 2 and 503 may ramify, and 503 ramifies for sure, since it appears with odd exponent.
Moreover, by exercise 5.8, we get A

[
1
2

]
= OL

[
1
2

]
.

We may compute the decompositions of the odd primes using Kummer’s lemma. F (X) has no
roots mod 3, so it is irreducible. Therefore 3 is inert in L.

F (X) ≡ (X + 1)(X2 + 3) mod 5, and the quadratic factor is irreducible. Therefore 5OL = p1p2,
with e1 = e2 = f1 = 1 and f1 = 2.

We know that 503 ramifies. Writing 503OL =
∏r
i=1 q

ei
i with

∑r
i=1 eifi = 3 and e1 ≥ 2, we

have only two possibilities: either 503OL = q31 or 503OL = q21q2 and fi = 1 in any case. From
Kummer’s lemma, we see that the first case occurs if F has a triple root mod 503, while the
second if it has a double root. In the first case F ′ must have a double root, while in the second
it has simple roots. F ′(X) = 3X2 + 2X − 2 has discriminant 28 6≡ 0 mod 503. Hence F ′ has
no double roots and F can’t have a triple one, hence 503OL = q21q2. If you really must know,
F (X) ≡ (X + 299)(X + 354)2, but it’s advisable not to compute this by hand.

Dividing α3 + α2 − 2α + 8 = 0 by α3 we get 1 + 1
α −

2
α2 + 8

α3 = 0. Multiplying by 8 we get

8 + 2 4
α −

(
4
α

)2
+
(
4
α

)3
= 0, thus β is a root of G(Y ) = 8 + 2Y − Y 2 + Y 3 ∈ Z[Y ] hence integral.

Dividing α3 +α2−2α+8 = 0 by α we get α2 = −α+2−2β and dividing 8+2β−β2 +β3 = 0 by
β we get that β2 = −2α− 2 + β. The first equation gives β = 1− 1

2α−
1
2α

2 /∈ A, while β ∈ OL.

From equation α2 = −α+ 2−2β we see that A ⊂ Z⊕Zα⊕Zβ ⊆ OL and we get that the matrix
expressing the basis {1, α, α2} in terms of the basis {1, α, β} is

U =

1 0 2
0 1 −1
0 0 −2

 .

Since ∆(1, α, α2) = detU2∆(1, α, β) = 4∆(1, α, β), from a) we conclude that ∆(1, α, β) = −503.
As this has no square factors, we conclude that {1, α, β} is a Z-basis for OL. We also deduce
that 2 is unramified, as it does not divide the discriminant anymore.

As 2 ∈ p we have 2 = 0 in OL/p. Since the latter is a domain, from the equation αβ = 4 in OL
we get π(αβ) = π(α)π(β) = 0, so either π(α) = 0 or π(β) = 0. Put α = π(α) and β = π(β). If

α = 0, from β2 = −2α − 2 + β in OL we get that β
2

= β, so either β = 1 or β = 0. Similarly,
if β = 0, from α2 = −α + 2 − 2β in OL we get that α is idempotent, so either α = 1 or α = 0.
In all cases α, β ∈ F2 ⊆ OL/p. Since {1, α, β} is a Z-basis for OL and π is Z-linear, the classes
1, α, β generate OL/p as a Z-module, hence as a Z/2Z-module. Thus OL/p = F2. Therefore all
primes above 2 have inertia degree 1: we conclude that 2 splits completely.

The map π is determined by its values on the basis elements. From the computations in f), we
get that there are only three Z-linear maps πi : OL → F2, defined by

π0(α) = π0(β) = 0; π1(α) = 1, π1(β) = 0; π2(α) = 0, π2(β) = 1.



Since 2 splits completely, there must be three different ring homomorphisms OL → F2, so the πi
must be ring homomorphisms. We can check this directly: from the relations in d) and αβ = 4
we get the multiplication formula for ξ = x+ yα+ xβ and η = u+ vα+ wβ in OL:

ξη = (xu+ 4yw + 4zv + 2yv − 2zw) + (xv + yu− yv − 2zw)α+ (xw + zu− 2yv + zw)β.

Therefore we need to check the identity in F2

(x+ yα+ xβ)(u+ vα+ wβ)
?
= (xu) + (xv + yu+ yv)α+ (xw + zu+ zw)β (1)

for the pairs (α, β) ∈ {(0, 0), (0, 1), (1, 0)}. It holds in all three cases, so the three maps πi are
ring homomorphism, hence pi = kerπi are distinct prime ideals containing 2.

We conclude from g) that 2OL = p0p1p2.

From g) we have p0 = (2, α, β), p1 = (2, α− 1, β) and p2 = (2, α, β − 1). Using αβ = 4 it is easy
to get rid of one generator in p1 and p2:

β(α− 1) = 4− β =⇒ β = 4− β(α− 1) ∈ (2, α− 1) = p1;

and symetrically α = 4− α(β − 1) ∈ (2, β − 1) = p2. The case of p0 is more complicated and we
need to exploit the relations d) to get p0 = (2, α− β) as

α = 2− α2 − 2β = −2 + αβ − α2 − 2β = −α(α− β)− 2(1 + β) ∈ (2, α− β);

β = 2 + 2α+ β2 = 6 + 2α− αβ + β2 = −β(α− β) + 2(3 + α) ∈ (2, α− β).

Exercise 2. If Ai = k[X1, . . . , Xni ] then A1⊗kA2
∼= k[X1, . . . , Xn1 , Y1, . . . , Yn2 ] and the result is

clear. By Noether’s Normalisation Lemma, there exists polynomial algebras Ri ⊂ Ai such that
Ai is a finitely generated Ri-module. Therefore A1⊗kA2 is a finitely generated R1⊗kR2-module,
hence A1 ⊗k A2 is integral over R1 ⊗k R2. It now follows from proposition 6.1.32 that

dim (A1 ⊗k A2) = dim (R1 ⊗k R2) = dimR1 + dimR2 = dimA1 + dimA2.

Exercise 3. Identifying A ⊗k A ∼= k[X1 . . . , Xn, Y1, . . . , Yn], if q1 = (F1, . . . , Fr) and q2 =
(G1, . . . , Gs) then J = (F1(X), . . . , Fr(X), G1(Y ), . . . , Gs(Y )) ∼= q1 ⊗k A + A ⊗k q2. It is now
trivial that µ(I + J) = µ(J) = q1 + q2.

Since µ is surjective, the minimality of p̃ = µ−1(p) follows from b) and the correspondence
between primes in A ∼= (A⊗k A) /I and primes in A⊗k A containing I.

Since ϕ is surjective and p̃ contains its kernel, the statement follows from the correspondence
between primes in A⊗k A containing J and primes in (A⊗k A) /J .

Since I is generated by n elements, ϕ(I) is generated by their images. We conclude by the
generalised Principal Ideal theorem 6.1.19.

By proposition 6.1.35, we have

dim [(A1 ⊗k A2)] = ht p + dim [(A1 ⊗k A2) /p] (2)

By exercise 2, dim (A1 ⊗k A2) = dimA1 + dimA2. From the definitions of the ideals, we have
(A1 ⊗k A2) /p = (A⊗k A) /p̃ = A/p. Substituting this in (2) we get

dimA/q1 + dimA/q1 = ht p + dimA/p (3)

Recalling that Ai = A/qi and dimA = n, applying proposition 6.1.35 to both sides of (3) we get

(n− ht q1) + (n− ht q2) = ht p + n− ht p.

Therefore ht p = ht q1 + ht q2 + (ht p− n). The claim now follows from e): ht p ≤ n.


