Commutative Algebra (2016-17)

COMMUTATIVE ALGEBRA EXAM
Padova, 26/01/2017

Exercise 1. Let L = Q(a), where a® + a? — 2a + 8 = 0. Let A = Z[a] and write O, for the
integral closure of Z in L.

a)
b)

Compute A(1, «,a?). Show that A [%] =0y [%]

Describe the decompostion of 3, 5 and 503 in L and compute the inertia and ramification
degree above these primes.

Manipulating the equation defining «, show that 8 = % € Or.
Prove that o? = —a 4+ 2 — 23 and that 32 = —2a — 2 + 3. Conclude that A C Oy,.
Show that {1, a, 8} is a basis for Of, as a Z-module.

Let p C Op, be a prime ideal, 2 € p. Let m : O, — O, /p be the projection map. Computing
the value of m on a and 3, show that O /p = Fa.

Describe all the possible ring homomorphisms 7 : O, — Fo.
Compute the decomposition of 2.

For every prime p 5 2, find 6 € Or, such that p = (2,6).

Exercise 2. Let k be a field, A; and A, two k-algebras of finite type. Show that
dim (A; ®k A2) = dim A; + dim As. [Hint: Noether’s Normalisation Lemmal]

Exercise 3. Let k be a field, A = k[X1,..., X,,]. Let q1,q2 C A be prime ideals, put 4; = 4/q;
and m; : A — A; the natural projections. Let p C A be a prime ideal, minimal among those
containing q; + qs.

Let p=m1 ®my: AR A — A1 ®p As. Show that J =kerp = q1 ®p A+ A Ry qo.

Let 4 : A®p A — A be the multiplication map. Recall (remark 1.3.8) that I = ker y is the
ideal generated by the elements X;®1—1®X; fori = 1,...,n. Show that u(I+J) = q1+qa.

Let p = p~1(p). Show that p is minimal among the primes containing I + .J.
Let p = o(p). Show that p C A3 ®j, As is prime and minimal among those containing (I).
Show that htp < n.

Using exercise 2 and proposition 6.1.35, show that htp < ht q; + ht q2.

You may submit your answers in english, french or italian.



SOLUTIONS

Exercise 1. The minimal polynomial of « if F(X) = X3 4+ X2 — 2X + 8, hence A(1,a,a?) =
—Npo(F'(a)) = =Ny (302 4+ 2o — 2). Writing the matrix of multiplication by 302 + 20 — 2 in
the basis {1, @, a?} we get

-2 24 8
A(l,a,0®) = =Npjg(Ba® +20—2) = —det [ 2 4 —26 | =—2°503.
3 -1 5

Only 2 and 503 may ramify, and 503 ramifies for sure, since it appears with odd exponent.
Moreover, by exercise 5.8, we get A [%] =0y [%]

We may compute the decompositions of the odd primes using Kummer’s lemma. F'(X) has no
roots mod 3, so it is irreducible. Therefore 3 is inert in L.

F(X) = (X +1)(X? +3) mod 5, and the quadratic factor is irreducible. Therefore 507, = p1pa,
with e = eg = f; =1 and f; = 2.

We know that 503 ramifies. Writing 5030, = [[;_,q;" with > ;e;fi = 3 and e; > 2, we
have only two possibilities: either 5030, = g3 or 5030, = q?q2 and f; = 1 in any case. From
Kummer’s lemma, we see that the first case occurs if F' has a triple root mod 503, while the
second if it has a double root. In the first case I’/ must have a double root, while in the second
it has simple roots. F’(X) = 3X? + 2X — 2 has discriminant 28 # 0 mod 503. Hence F’ has
no double roots and F can’t have a triple one, hence 5030, = q3q2. If you really must know,
F(X) = (X +299)(X + 354)2, but it’s advisable not to compute this by hand.

Dividing o® 4+ a? — 2a + 8 = 0 by a® we get 1 + é — % + % = 0. Multiplying by 8 we get
8424 — (4)” 4 (4)? = 0, thus § is a root of G(Y) =8+ 2Y — Y2 4+ Y3 € Z[Y] hence integral.

« «
Dividing a® + a? —2a+8 = 0 by a we get a? = —a+2 — 20 and dividing 8425 — 32+ 32 = 0 by
B we get that 52 = —2a — 2 + 3. The first equation gives 8 =1 — %a — %aQ ¢ A, while g € Op.

From equation o? = —a 42 — 23 we see that A C Z®Za®ZB C Or, and we get that the matrix
expressing the basis {1, a, @} in terms of the basis {1, a, B} is

1 0 2
U=(0 1 -1
00 -2
Since A(1, o, @?) = det U?A(1, 0, ) = 4A(1, o, B), from a) we conclude that A(1,a, 3) = —503.
As this has no square factors, we conclude that {1,«a, 8} is a Z-basis for Or. We also deduce
that 2 is unramified, as it does not divide the discriminant anymore.

As 2 € p we have 2 =0 in O /p. Since the latter is a domain, from the equation a5 =4 in Of,
we get m(aB) = w(a)m(B) = 0, so either 7(a) =0 or 7(8) = 0. Put @ = n(a) and B = 7(B). If
@ =0, from 82 = —2a — 2+ B in O, we get that BZ = B, so either B =1 or B = 0. Similarly,
if =0, from a®? = —a + 2 — 28 in O, we get that @ is idempotent, so either @ = 1 or @ = 0.
In all cases @, 3 € Fy C Op/p. Since {1,a, 8} is a Z-basis for O, and 7 is Z-linear, the classes
1,@, B generate O, /p as a Z-module, hence as a Z/2Z-module. Thus O /p = Fy. Therefore all
primes above 2 have inertia degree 1: we conclude that 2 splits completely.

The map 7 is determined by its values on the basis elements. From the computations in f), we
get that there are only three Z-linear maps m; : O — Fa, defined by

mo(a) =mo(B) =0;  m(a)=1,m(B)=0;  m(a)=0,m(B8)=1



Since 2 splits completely, there must be three different ring homomorphisms Oy — Fs, so the m;
must be ring homomorphisms. We can check this directly: from the relations in d) and af = 4
we get the multiplication formula for £ = x + ya + 8 and n = v + va + wp in Of:

En = (zu + dyw + 4zv + 2yv — 2zw) + (v + yu — yv — 2zw)a + (zw + zu — 2yv + 2w)B.

Therefore we need to check the identity in Fy

(z + ya + 28)(u + va + wp) Z (zu) + (zv + yu + yv)a + (zw + zu + zw)B (1)
for the pairs (@, 3) € {(0,0),(0,1),(1,0)}. It holds in all three cases, so the three maps m; are
ring homomorphism, hence p; = ker m; are distinct prime ideals containing 2.

We conclude from g) that 201, = pop1pa2.
From g) we have pp = (2, a, ), p1 = (2, — 1,8) and pa = (2,, 8 — 1). Using aff = 4 it is easy
to get rid of one generator in p; and po:

fla-1)=4—- = pL=4—-0F(a—-1)€ (2,a—1)=p;;

and symetrically « =4 — (8 — 1) € (2,8 — 1) = p2. The case of pg is more complicated and we
need to exploit the relations d) to get pg = (2, — ) as

a=2—-0?-28=-2+af-a?>-28=—ala—pB)—2(1+78) € (2,a - p);
B=2+2a+B=6+2a—aB+p2=—-PBla—F)+2B+a)c(2,a—p).

Exercise 2. If A; = k[X1,...,Xy,] then A1 ®; Ay = k[X4,..., Xy, Y1,...,Yy,] and the result is
clear. By Noether’s Normalisation Lemma, there exists polynomial algebras R; C A; such that
A; is a finitely generated R;-module. Therefore A1 ®; As is a finitely generated Ry ®p Ro-module,
hence A; ®; As is integral over R ®; Ro. It now follows from proposition 6.1.32 that

dim (A1 Rk Az) = dim (R1 Ok Rz) = dim Ry + dim Ry = dim A1 + dim As.

Exercise 3. Identifying A ®; A = k[Xy..., X, Y1,...,Y,], if q1 = (F1,...,F,) and q2 =
(Gl,...,Gs) then J = (Fl(g),,Fr(i),Gl(X),,GS(Z)) >~ g Qr A+ AR qe. It is now
trivial that u(I + J) = p(J) = q1 + qa.

Since p is surjective, the minimality of p = p~!(p) follows from b) and the correspondence
between primes in A = (A ®; A) /I and primes in A ®; A containing I.

Since ¢ is surjective and p contains its kernel, the statement follows from the correspondence
between primes in A ®j A containing J and primes in (A ®y A) /J.

Since [ is generated by n elements, ¢(I) is generated by their images. We conclude by the
generalised Principal Ideal theorem 6.1.19.

By proposition 6.1.35, we have
dim [(A; ®k A2)] = htp + dim [(A; @k A2) /P] (2)

By exercise 2, dim (A; ®; A2) = dim A; + dim Ay. From the definitions of the ideals, we have
(A; @ A) /p = (A® A) /p = A/p. Substituting this in (2) we get

dim A/q; + dim A/qy = htp + dim A/p (3)
Recalling that A; = A/q; and dim A = n, applying proposition 6.1.35 to both sides of (3) we get
(n—htqy) + (n —htge) =htp +n — htp.
Therefore ht p = ht q; + ht q2 + (htp — n). The claim now follows from e): htp < n.



