Commutative Algebra Exam

Padova, 26/01/2017

Exercise 1. Let $L=\mathbb{Q}(\alpha)$, where $\alpha^{3}+\alpha^{2}-2 \alpha+8=0$. Let $A=\mathbb{Z}[\alpha]$ and write \mathcal{O}_{L} for the integral closure of \mathbb{Z} in L.
a) Compute $\Delta\left(1, \alpha, \alpha^{2}\right)$. Show that $A\left[\frac{1}{2}\right]=\mathcal{O}_{L}\left[\frac{1}{2}\right]$.
b) Describe the decompostion of 3,5 and 503 in L and compute the inertia and ramification degree above these primes.
c) Manipulating the equation defining α, show that $\beta=\frac{4}{\alpha} \in \mathcal{O}_{L}$.
d) Prove that $\alpha^{2}=-\alpha+2-2 \beta$ and that $\beta^{2}=-2 \alpha-2+\beta$. Conclude that $A \subsetneq \mathcal{O}_{L}$.
e) Show that $\{1, \alpha, \beta\}$ is a basis for \mathcal{O}_{L} as a \mathbb{Z}-module.
f) Let $\mathfrak{p} \subset \mathcal{O}_{L}$ be a prime ideal, $2 \in \mathfrak{p}$. Let $\pi: \mathcal{O}_{L} \rightarrow \mathcal{O}_{L} / \mathfrak{p}$ be the projection map. Computing the value of π on α and β, show that $\mathcal{O}_{L} / \mathfrak{p}=\mathbb{F}_{2}$.
g) Describe all the possible ring homomorphisms $\pi: \mathcal{O}_{L} \rightarrow \mathbb{F}_{2}$.
h) Compute the decomposition of 2 .
i) For every prime $\mathfrak{p} \ni 2$, find $\theta \in \mathcal{O}_{L}$ such that $\mathfrak{p}=(2, \theta)$.

Exercise 2. Let k be a field, A_{1} and A_{2} two k-algebras of finite type. Show that $\operatorname{dim}\left(A_{1} \otimes_{k} A_{2}\right)=\operatorname{dim} A_{1}+\operatorname{dim} A_{2}$. [Hint: Noether's Normalisation Lemma]

Exercise 3. Let k be a field, $A=k\left[X_{1}, \ldots, X_{n}\right]$. Let $\mathfrak{q}_{1}, \mathfrak{q}_{2} \subset A$ be prime ideals, put $A_{i}=A / \mathfrak{q}_{i}$ and $\pi_{i}: A \rightarrow A_{i}$ the natural projections. Let $\mathfrak{p} \subset A$ be a prime ideal, minimal among those containing $\mathfrak{q}_{1}+\mathfrak{q}_{2}$.
a) Let $\varphi=\pi_{1} \otimes \pi_{2}: A \otimes_{k} A \rightarrow A_{1} \otimes_{k} A_{2}$. Show that $J=\operatorname{ker} \varphi=\mathfrak{q}_{1} \otimes_{k} A+A \otimes_{k} \mathfrak{q}_{2}$.
b) Let $\mu: A \otimes_{k} A \rightarrow A$ be the multiplication map. Recall (remark 1.3.8) that $I=\operatorname{ker} \mu$ is the ideal generated by the elements $X_{i} \otimes 1-1 \otimes X_{i}$ for $i=1, \ldots, n$. Show that $\mu(I+J)=\mathfrak{q}_{1}+\mathfrak{q}_{2}$.
c) Let $\widetilde{\mathfrak{p}}=\mu^{-1}(\mathfrak{p})$. Show that $\widetilde{\mathfrak{p}}$ is minimal among the primes containing $I+J$.
d) Let $\overline{\mathfrak{p}}=\varphi(\widetilde{\mathfrak{p}})$. Show that $\overline{\mathfrak{p}} \subset A_{1} \otimes_{k} A_{2}$ is prime and minimal among those containing $\varphi(I)$.
e) Show that ht $\overline{\mathfrak{p}} \leq n$.
f) Using exercise 2 and proposition 6.1.35, show that ht $\mathfrak{p} \leq h t \mathfrak{q}_{1}+$ ht \mathfrak{q}_{2}.

Solutions

Exercise 1. The minimal polynomial of α if $F(X)=X^{3}+X^{2}-2 X+8$, hence $\Delta\left(1, \alpha, \alpha^{2}\right)=$ $-N_{L / \mathbb{Q}}\left(F^{\prime}(\alpha)\right)=-N_{L / \mathbb{Q}}\left(3 \alpha^{2}+2 \alpha-2\right)$. Writing the matrix of multiplication by $3 \alpha^{2}+2 \alpha-2$ in the basis $\left\{1, \alpha, \alpha^{2}\right\}$ we get

$$
\Delta\left(1, \alpha, \alpha^{2}\right)=-N_{L / \mathbb{Q}}\left(3 \alpha^{2}+2 \alpha-2\right)=-\operatorname{det}\left(\begin{array}{ccc}
-2 & -24 & 8 \\
2 & 4 & -26 \\
3 & -1 & 5
\end{array}\right)=-2^{2} 503 .
$$

Only 2 and 503 may ramify, and 503 ramifies for sure, since it appears with odd exponent. Moreover, by exercise 5.8 , we get $A\left[\frac{1}{2}\right]=\mathcal{O}_{L}\left[\frac{1}{2}\right]$.
We may compute the decompositions of the odd primes using Kummer's lemma. $F(X)$ has no roots $\bmod 3$, so it is irreducible. Therefore 3 is inert in L.
$F(X) \equiv(X+1)\left(X^{2}+3\right) \bmod 5$, and the quadratic factor is irreducible. Therefore $5 \mathcal{O}_{L}=\mathfrak{p}_{1} \mathfrak{p}_{2}$, with $e_{1}=e_{2}=f_{1}=1$ and $f_{1}=2$.
We know that 503 ramifies. Writing $503 \mathcal{O}_{L}=\prod_{i=1}^{r} \mathfrak{q}_{i}^{e_{i}}$ with $\sum_{i=1}^{r} e_{i} f_{i}=3$ and $e_{1} \geq 2$, we have only two possibilities: either $503 \mathcal{O}_{L}=\mathfrak{q}_{1}^{3}$ or $503 \mathcal{O}_{L}=\mathfrak{q}_{1}^{2} \mathfrak{q}_{2}$ and $f_{i}=1$ in any case. From Kummer's lemma, we see that the first case occurs if F has a triple root mod 503, while the second if it has a double root. In the first case F^{\prime} must have a double root, while in the second it has simple roots. $F^{\prime}(X)=3 X^{2}+2 X-2$ has discriminant $28 \not \equiv 0 \bmod 503$. Hence F^{\prime} has no double roots and F can't have a triple one, hence $503 \mathcal{O}_{L}=\mathfrak{q}_{1}^{2} \mathfrak{q}_{2}$. If you really must know, $F(X) \equiv(X+299)(X+354)^{2}$, but it's advisable not to compute this by hand.
Dividing $\alpha^{3}+\alpha^{2}-2 \alpha+8=0$ by α^{3} we get $1+\frac{1}{\alpha}-\frac{2}{\alpha^{2}}+\frac{8}{\alpha^{3}}=0$. Multiplying by 8 we get $8+2 \frac{4}{\alpha}-\left(\frac{4}{\alpha}\right)^{2}+\left(\frac{4}{\alpha}\right)^{3}=0$, thus β is a root of $G(Y)=8+2 Y-Y^{2}+Y^{3} \in \mathbb{Z}[Y]$ hence integral. Dividing $\alpha^{3}+\alpha^{2}-2 \alpha+8=0$ by α we get $\alpha^{2}=-\alpha+2-2 \beta$ and dividing $8+2 \beta-\beta^{2}+\beta^{3}=0$ by β we get that $\beta^{2}=-2 \alpha-2+\beta$. The first equation gives $\beta=1-\frac{1}{2} \alpha-\frac{1}{2} \alpha^{2} \notin A$, while $\beta \in \mathcal{O}_{L}$.
From equation $\alpha^{2}=-\alpha+2-2 \beta$ we see that $A \subset \mathbb{Z} \oplus \mathbb{Z} \alpha \oplus \mathbb{Z} \beta \subseteq \mathcal{O}_{L}$ and we get that the matrix expressing the basis $\left\{1, \alpha, \alpha^{2}\right\}$ in terms of the basis $\{1, \alpha, \beta\}$ is

$$
U=\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -1 \\
0 & 0 & -2
\end{array}\right)
$$

Since $\Delta\left(1, \alpha, \alpha^{2}\right)=\operatorname{det} U^{2} \Delta(1, \alpha, \beta)=4 \Delta(1, \alpha, \beta)$, from a) we conclude that $\Delta(1, \alpha, \beta)=-503$. As this has no square factors, we conclude that $\{1, \alpha, \beta\}$ is a \mathbb{Z}-basis for \mathcal{O}_{L}. We also deduce that 2 is unramified, as it does not divide the discriminant anymore.
As $2 \in \mathfrak{p}$ we have $2=0$ in $\mathcal{O}_{L} / \mathfrak{p}$. Since the latter is a domain, from the equation $\alpha \beta=4$ in \mathcal{O}_{L} we get $\pi(\alpha \beta)=\pi(\alpha) \pi(\beta)=0$, so either $\pi(\alpha)=0$ or $\pi(\beta)=0$. Put $\bar{\alpha}=\pi(\alpha)$ and $\bar{\beta}=\pi(\beta)$. If $\bar{\alpha}=0$, from $\beta^{2}=-2 \alpha-2+\beta$ in \mathcal{O}_{L} we get that $\bar{\beta}^{2}=\bar{\beta}$, so either $\bar{\beta}=1$ or $\bar{\beta}=0$. Similarly, if $\bar{\beta}=0$, from $\alpha^{2}=-\alpha+2-2 \beta$ in \mathcal{O}_{L} we get that $\bar{\alpha}$ is idempotent, so either $\bar{\alpha}=1$ or $\bar{\alpha}=0$. In all cases $\bar{\alpha}, \bar{\beta} \in \mathbb{F}_{2} \subseteq \mathcal{O}_{L} / \mathfrak{p}$. Since $\{1, \alpha, \beta\}$ is a \mathbb{Z}-basis for \mathcal{O}_{L} and π is \mathbb{Z}-linear, the classes $1, \bar{\alpha}, \bar{\beta}$ generate $\mathcal{O}_{L} / \mathfrak{p}$ as a \mathbb{Z}-module, hence as a $\mathbb{Z} / 2 \mathbb{Z}$-module. Thus $\mathcal{O}_{L} / \mathfrak{p}=\mathbb{F}_{2}$. Therefore all primes above 2 have inertia degree 1: we conclude that 2 splits completely.

The map π is determined by its values on the basis elements. From the computations in f), we get that there are only three \mathbb{Z}-linear maps $\pi_{i}: \mathcal{O}_{L} \rightarrow \mathbb{F}_{2}$, defined by

$$
\pi_{0}(\alpha)=\pi_{0}(\beta)=0 ; \quad \pi_{1}(\alpha)=1, \pi_{1}(\beta)=0 ; \quad \pi_{2}(\alpha)=0, \pi_{2}(\beta)=1
$$

Since 2 splits completely, there must be three different ring homomorphisms $\mathcal{O}_{L} \rightarrow \mathbb{F}_{2}$, so the π_{i} must be ring homomorphisms. We can check this directly: from the relations in d) and $\alpha \beta=4$ we get the multiplication formula for $\xi=x+y \alpha+x \beta$ and $\eta=u+v \alpha+w \beta$ in \mathcal{O}_{L} :

$$
\xi \eta=(x u+4 y w+4 z v+2 y v-2 z w)+(x v+y u-y v-2 z w) \alpha+(x w+z u-2 y v+z w) \beta
$$

Therefore we need to check the identity in \mathbb{F}_{2}

$$
\begin{equation*}
(x+y \bar{\alpha}+x \bar{\beta})(u+v \bar{\alpha}+w \bar{\beta}) \stackrel{?}{=}(x u)+(x v+y u+y v) \bar{\alpha}+(x w+z u+z w) \bar{\beta} \tag{1}
\end{equation*}
$$

for the pairs $(\bar{\alpha}, \bar{\beta}) \in\{(0,0),(0,1),(1,0)\}$. It holds in all three cases, so the three maps π_{i} are ring homomorphism, hence $\mathfrak{p}_{i}=\operatorname{ker} \pi_{i}$ are distinct prime ideals containing 2 .
We conclude from g) that $2 \mathcal{O}_{L}=\mathfrak{p}_{0} \mathfrak{p}_{1} \mathfrak{p}_{2}$.
From g) we have $\mathfrak{p}_{0}=(2, \alpha, \beta), \mathfrak{p}_{1}=(2, \alpha-1, \beta)$ and $\mathfrak{p}_{2}=(2, \alpha, \beta-1)$. Using $\alpha \beta=4$ it is easy to get rid of one generator in \mathfrak{p}_{1} and \mathfrak{p}_{2} :

$$
\beta(\alpha-1)=4-\beta \quad \Longrightarrow \quad \beta=4-\beta(\alpha-1) \in(2, \alpha-1)=\mathfrak{p}_{1}
$$

and symetrically $\alpha=4-\alpha(\beta-1) \in(2, \beta-1)=\mathfrak{p}_{2}$. The case of \mathfrak{p}_{0} is more complicated and we need to exploit the relations d) to get $\mathfrak{p}_{0}=(2, \alpha-\beta)$ as

$$
\begin{gathered}
\alpha=2-\alpha^{2}-2 \beta=-2+\alpha \beta-\alpha^{2}-2 \beta=-\alpha(\alpha-\beta)-2(1+\beta) \in(2, \alpha-\beta) \\
\beta=2+2 \alpha+\beta^{2}=6+2 \alpha-\alpha \beta+\beta^{2}=-\beta(\alpha-\beta)+2(3+\alpha) \in(2, \alpha-\beta)
\end{gathered}
$$

Exercise 2. If $A_{i}=k\left[X_{1}, \ldots, X_{n_{i}}\right]$ then $A_{1} \otimes_{k} A_{2} \cong k\left[X_{1}, \ldots, X_{n_{1}}, Y_{1}, \ldots, Y_{n_{2}}\right]$ and the result is clear. By Noether's Normalisation Lemma, there exists polynomial algebras $R_{i} \subset A_{i}$ such that A_{i} is a finitely generated R_{i}-module. Therefore $A_{1} \otimes_{k} A_{2}$ is a finitely generated $R_{1} \otimes_{k} R_{2}$-module, hence $A_{1} \otimes_{k} A_{2}$ is integral over $R_{1} \otimes_{k} R_{2}$. It now follows from proposition 6.1.32 that

$$
\operatorname{dim}\left(A_{1} \otimes_{k} A_{2}\right)=\operatorname{dim}\left(R_{1} \otimes_{k} R_{2}\right)=\operatorname{dim} R_{1}+\operatorname{dim} R_{2}=\operatorname{dim} A_{1}+\operatorname{dim} A_{2}
$$

Exercise 3. Identifying $A \otimes_{k} A \cong k\left[X_{1} \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right]$, if $\mathfrak{q}_{1}=\left(F_{1}, \ldots, F_{r}\right)$ and $\mathfrak{q}_{2}=$ $\left(G_{1}, \ldots, G_{s}\right)$ then $J=\left(F_{1}(\underline{X}), \ldots, F_{r}(\underline{X}), G_{1}(\underline{Y}), \ldots, G_{s}(\underline{Y})\right) \cong \mathfrak{q}_{1} \otimes_{k} A+A \otimes_{k} \mathfrak{q}_{2}$. It is now trivial that $\mu(I+J)=\mu(J)=\mathfrak{q}_{1}+\mathfrak{q}_{2}$.
Since μ is surjective, the minimality of $\widetilde{\mathfrak{p}}=\mu^{-1}(\mathfrak{p})$ follows from b) and the correspondence between primes in $A \cong\left(A \otimes_{k} A\right) / I$ and primes in $A \otimes_{k} A$ containing I.
Since φ is surjective and $\widetilde{\mathfrak{p}}$ contains its kernel, the statement follows from the correspondence between primes in $A \otimes_{k} A$ containing J and primes in $\left(A \otimes_{k} A\right) / J$.

Since I is generated by n elements, $\varphi(I)$ is generated by their images. We conclude by the generalised Principal Ideal theorem 6.1.19.
By proposition 6.1.35, we have

$$
\begin{equation*}
\operatorname{dim}\left[\left(A_{1} \otimes_{k} A_{2}\right)\right]=\mathrm{ht} \overline{\mathfrak{p}}+\operatorname{dim}\left[\left(A_{1} \otimes_{k} A_{2}\right) / \overline{\mathfrak{p}}\right] \tag{2}
\end{equation*}
$$

By exercise $2, \operatorname{dim}\left(A_{1} \otimes_{k} A_{2}\right)=\operatorname{dim} A_{1}+\operatorname{dim} A_{2}$. From the definitions of the ideals, we have $\left(A_{1} \otimes_{k} A_{2}\right) / \overline{\mathfrak{p}}=\left(A \otimes_{k} A\right) / \widetilde{\mathfrak{p}}=A / \mathfrak{p}$. Substituting this in (2) we get

$$
\begin{equation*}
\operatorname{dim} A / \mathfrak{q}_{1}+\operatorname{dim} A / \mathfrak{q}_{1}=\mathrm{ht} \overline{\mathfrak{p}}+\operatorname{dim} A / \mathfrak{p} \tag{3}
\end{equation*}
$$

Recalling that $A_{i}=A / \mathfrak{q}_{i}$ and $\operatorname{dim} A=n$, applying proposition 6.1 .35 to both sides of (3) we get

$$
\left(n-\mathrm{ht} \mathfrak{q}_{1}\right)+\left(n-\mathrm{ht} \mathfrak{q}_{2}\right)=\mathrm{ht} \overline{\mathfrak{p}}+n-\mathrm{ht} \mathfrak{p}
$$

Therefore ht $\mathfrak{p}=h t \mathfrak{q}_{1}+h t \mathfrak{q}_{2}+(h t \overline{\mathfrak{p}}-n)$. The claim now follows from e$):$ ht $\overline{\mathfrak{p}} \leq n$.

