Role of the initial conditions in the FPU problem

MPIPKS, Dresden - December 3, 2008

Antonio Ponno

University of Padova, Italy
www.math.unipd.it/~ponno

most of results from a preprint - under review, JSP - in collaboration with G. Benettin (Padova) and R. Livi (Firenze)
To begin with...
To begin with...

THANKS!
Outline part I

Historical foreword: motivations
Outline part I

1. Historical foreword: motivations
2. Model, relevant quantities, numerics
Outline part I

1. Historical foreword: motivations
2. Model, relevant quantities, numerics
 - Normal modes and interactions
Outline part I

1. Historical foreword: motivations
2. Model, relevant quantities, numerics
 - Normal modes and interactions
 - Role of phases
Outline part I

1. Historical foreword: motivations
2. Model, relevant quantities, numerics
 - Normal modes and interactions
 - Role of phases
 - Scaling laws
Outline part I

1. Historical foreword: motivations
2. Model, relevant quantities, numerics
 - Normal modes and interactions
 - Role of phases
 - Scaling laws
3. Numerical results
Theory I: “clean” results
Theory I: “clean” results

- Resonant normal form construction: *FG-truncation* of the Korteweg-de Vries equation

\[U_T = \delta^2 U_{XXX} + \frac{1}{2} U U_X, \quad X \in \mathbb{T} = \mathbb{R}/\mathbb{Z} \]
Theory I: “clean” results

- Resonant normal form construction: *FG-truncation* of the Korteweg-de Vries equation

\[U_T = \delta^2 U_{XXX} + \frac{1}{2} U U_X , \; X \in \mathbb{T} = \mathbb{R}/\mathbb{Z} \]

- Scaling properties
Theory I: “clean” results

Resonant normal form construction: *FG-truncation* of the Korteweg-de Vries equation

\[U_T = \delta^2 U_{XXX} + \frac{1}{2} UU_X, \quad X \in \mathbb{T} = \mathbb{R}/\mathbb{Z} \]

- Scaling properties
- Regularity of solutions
Outline part II

- Theory I: “clean” results
 - Resonant normal form construction: *FG-truncation* of the Korteweg-de Vries equation
 \[U_T = \delta^2 U_{XXX} + \frac{1}{2} UU_X, \quad X \in \mathbb{T} = \mathbb{R}/\mathbb{Z} \]

- Scaling properties
- Regularity of solutions
- Asymptotic reconstruction
Theory I: “clean” results

- Resonant normal form construction: *FG-truncation* of the Korteweg-de Vries equation

\[
U_T = \delta^2 U_{XXX} + \frac{1}{2} UU_X, \quad X \in T = \mathbb{R}/\mathbb{Z}
\]

- Scaling properties
- Regularity of solutions
- Asymptotic reconstruction

Theory II: heuristic estimates

Antonio Ponno
Role of the initial conditions in the FPU problem
Theory I: “clean” results
 - Resonant normal form construction: *FG-truncation* of the Korteweg-de Vries equation
 \[U_T = \delta^2 U_{XXX} + \frac{1}{2} U U_X, \quad X \in \mathbb{T} = \mathbb{R}/\mathbb{Z} \]
 - Scaling properties
 - Regularity of solutions
 - Asymptotic reconstruction

Theory II: heuristic estimates
 - Coherence effects: \(M_0 \) dependence
Outline part II

- Theory I: “clean” results
 - Resonant normal form construction: *FG-truncation* of the Korteweg-de Vries equation
 \[U_T = \delta^2 U_{XXX} + \frac{1}{2} U U_X , \ X \in T = \mathbb{R}/\mathbb{Z} \]
 - Scaling properties
 - Regularity of solutions
 - Asymptotic reconstruction

- Theory II: heuristic estimates
 - Coherence effects: \(M_0 \) dependence
 - Time-scales

- **Aim of the work**: numerical test of the ergodic hypothesis on simple models of quasi-integrable Hamiltonian systems having a large number of degrees of freedom.
Aim of the work: numerical test of the ergodic hypothesis on simple models of quasi-integrable Hamiltonian systems having a large number of degrees of freedom.

Unexpected result: for the examined systems, time-averages of relevant quantities do not approach the expected value (w.r. to the supposed ergodic measure) within the integration time.

- **Aim of the work:** numerical test of the ergodic hypothesis on simple models of quasi-integrable Hamiltonian systems having a large number of degrees of freedom.

- **Unexpected result:** for the examined systems, time-averages of relevant quantities do not approach the expected value (w.r. to the supposed ergodic measure) within the integration time.

- The motivation of the study goes back to previous works of Poincaré and Fermi himself on the subject.
Study the *prototype* Hamiltonian problem

\[
H_N(q, p) = \sum_{j=0}^{N-1} \left[\frac{p_j^2}{2} + \frac{r_j^2}{2} + \alpha \frac{r_j^3}{3} + \beta \frac{r_j^4}{4} \right]
\]
Study the *prototype* Hamiltonian problem

\[
H_N(q, p) = \sum_{j=0}^{N-1} \left[\frac{p_j^2}{2} + \frac{r_j^2}{2} + \alpha \frac{r_j^3}{3} \left(+\beta \frac{r_j^4}{4} \right) \right]
\]

\[r_j = q_{j+1} - q_j \quad , \quad q_0 = q_N = p_0 = p_N = 0 \]
Study the *prototype* Hamiltonian problem

\[H_N(q, p) = \sum_{j=0}^{N-1} \left[\frac{p_j^2}{2} + \frac{r_j^2}{2} + \alpha \frac{r_j^3}{3} \left(+ \beta \frac{r_j^4}{4} \right) \right] \]

\[r_j = q_{j+1} - q_j \quad , \quad q_0 = q_N = p_0 = p_N = 0 \]

\[\dot{q}_j = \frac{\partial H_N}{\partial p_j} \quad , \quad \dot{p}_j = -\frac{\partial H_N}{\partial q_j} \]
Study the *prototype* Hamiltonian problem

\[
H_N(q, p) = \sum_{j=0}^{N-1} \left[\frac{p_j^2}{2} + \frac{r_j^2}{2} + \alpha \frac{r_j^3}{3} \left(+ \beta \frac{r_j^4}{4} \right) \right]
\]

\[r_j = q_{j+1} - q_j \quad , \quad q_0 = q_N = p_0 = p_N = 0\]
\[\dot{q}_j = \frac{\partial H_N}{\partial p_j} \quad , \quad \dot{p}_j = -\frac{\partial H_N}{\partial q_j}\]

\[q_j(0) = \sum_{k=1}^{M_0} A_k \varphi_k(j) \quad , \quad p_j(0) = \sum_{k=1}^{M_0} B_k \varphi_k(j)\]
Study the *prototype* Hamiltonian problem

\[
H_N(q, p) = \sum_{j=0}^{N-1} \left[\frac{p_j^2}{2} + \frac{r_j^2}{2} + \alpha \frac{r_j^3}{3} \left(+ \beta \frac{r_j^4}{4} \right) \right]
\]

\[r_j = q_{j+1} - q_j, \quad q_0 = q_N = p_0 = p_N = 0\]

\[\dot{q}_j = \frac{\partial H_N}{\partial p_j}, \quad \dot{p}_j = -\frac{\partial H_N}{\partial q_j}\]

\[q_j(0) = \sum_{k=1}^{M_0} A_k \varphi_k(j), \quad p_j(0) = \sum_{k=1}^{M_0} B_k \varphi_k(j)\]

\[\varphi_k(j) = \sqrt{2/N} \sin \left(\frac{\pi kj}{N} \right)\]
(2) Model, relevant quantities, numerics

Study the *prototype* Hamiltonian problem

\[H_N(q, p) = \sum_{j=0}^{N-1} \left[\frac{p_j^2}{2} + \frac{r_j^2}{2} + \alpha \frac{r_j^3}{3} \left(+ \beta \frac{r_j^4}{4} \right) \right] \]

\[r_j = q_{j+1} - q_j \quad , \quad q_0 = q_N = p_0 = p_N = 0 \]
\[\dot{q}_j = \frac{\partial H_N}{\partial p_j} \quad , \quad \dot{p}_j = -\frac{\partial H_N}{\partial q_j} \]

\[q_j(0) = \sum_{k=1}^{M_0} A_k \varphi_k(j) \quad , \quad p_j(0) = \sum_{k=1}^{M_0} B_k \varphi_k(j) \]

\[\varphi_k(j) = \sqrt{2/N} \sin (\pi k j / N) \]

\[M_0 / N \ll 1 \]
Study the *prototype* Hamiltonian problem

\[H_N(q, p) = \sum_{j=0}^{N-1} \left[\frac{p_j^2}{2} + \frac{r_j^2}{2} + \alpha \frac{r_j^3}{3} \left(+\beta \frac{r_j^4}{4} \right) \right] \]

\[r_j = q_{j+1} - q_j \quad , \quad q_0 = q_N = p_0 = p_N = 0 \]

\[\dot{q}_j = \frac{\partial H_N}{\partial p_j} \quad , \quad \dot{p}_j = -\frac{\partial H_N}{\partial q_j} \]

\[q_j(0) = \sum_{k=1}^{M_0} A_k \varphi_k(j) \quad , \quad p_j(0) = \sum_{k=1}^{M_0} B_k \varphi_k(j) \]

\[\varphi_k(j) = \sqrt{2/N} \ \sin (\pi kj/N) \]

\[M_0/N \ll 1 \quad ; \quad E_N = H_N(q(0), p(0)) = N\epsilon \]
Transformation to *Complex normal mode variables*
Transformation to *Complex normal mode variables*

\[(q, p) \mapsto (Q, P) \mapsto (z, z^*)\]
Transformation to *Complex normal mode variables*

\[(q, p) \mapsto (Q, P) \mapsto (z, z^*)\]

\[Q_k = \sum_{j=1}^{N-1} q_j \varphi_k(j), \quad P_k = \sum_{j=1}^{N-1} q_j \varphi_k(j)\]
Transformation to *Complex normal mode variables*

$$(q, p) \leftrightarrow (Q, P) \leftrightarrow (z, z^*)$$

$$Q_k = \sum_{j=1}^{N-1} q_j \varphi_k(j), \quad P_k = \sum_{j=1}^{N-1} q_j \varphi_k(j)$$

$$z_k = \frac{\omega_k Q_k + iP_k}{\sqrt{2\omega_k}}$$
Transformation to *Complex normal mode variables*

\[(q, p) \mapsto (Q, P) \mapsto (z, z^*)\]

\[Q_k = \sum_{j=1}^{N-1} q_j \varphi_k(j), \quad P_k = \sum_{j=1}^{N-1} q_j \varphi_k(j)\]

\[z_k = \frac{\omega_k Q_k + iP_k}{\sqrt{2\omega_k}}, \quad \dot{z}_k = -i \frac{\partial H_N}{\partial z_k^*}\]
Normal modes & interactions

Transformation to **Complex normal mode variables**

\[(q, p) \mapsto (Q, P) \mapsto (z, z^*)\]

\[
Q_k = \sum_{j=1}^{N-1} q_j \varphi_k(j), \quad P_k = \sum_{j=1}^{N-1} q_j \varphi_k(j)
\]

\[
z_k = \frac{\omega_k Q_k + iP_k}{\sqrt{2\omega_k}}, \quad \dot{z}_k = -i \frac{\partial H_N}{\partial z_k^*}
\]

\[
\omega_k = 2 \sin \left(\frac{\pi k}{2N} \right)
\]

(dispersion relation)
Normal modes & interactions

Transformation to \textit{Complex normal mode variables}

\[(q, p) \mapsto (Q, P) \mapsto (z, z^*)\]

\[Q_k = \sum_{j=1}^{N-1} q_j \varphi_k(j), \quad P_k = \sum_{j=1}^{N-1} q_j \varphi_k(j)\]

\[z_k = \frac{\omega_k Q_k + iP_k}{\sqrt{2\omega_k}}, \quad \dot{z}_k = -i \frac{\partial H_N}{\partial z_k^*}\]

\[\omega_k = 2 \sin \left(\frac{\pi k}{2N}\right)\]

\[k = 1, \ldots, N - 1\] (dispersion relation)
\[H_N(z, z^*) = \sum_{k=1}^{N-1} \omega_k |z_k|^2 + \frac{2\alpha}{3\sqrt{N}} \sum_{k_1, k_2, k_3=1}^{N-1} \Delta_{k_1, k_2, k_3} \prod_{s=1}^{3} \sqrt{\omega_{k_s}} \text{Re}(z_{k_s}) \]
\[H_N(z, z^*) = \sum_{k=1}^{N-1} \omega_k |z_k|^2 + \frac{2\alpha}{3\sqrt{N}} \sum_{k_1, k_2, k_3=1}^{N-1} \Delta_{k_1, k_2, k_3} \prod_{s=1}^{3} \sqrt{\omega_{k_s}} \text{Re}(z_{k_s}) \]

\[\Delta_{k_1, k_2, k_3} = \delta_{k_1, k_2+k_3} + \delta_{k_2, k_1+k_3} + \delta_{k_3, k_1+k_2} - \delta_{k_1+k_2+k_3, 2N} \]
\[H_N(z, z^*) = \sum_{k=1}^{N-1} \omega_k |z_k|^2 + \frac{2\alpha}{3\sqrt{N}} \sum_{k_1, k_2, k_3=1}^{N-1} \Delta_{k_1, k_2, k_3} \prod_{s=1}^{3} \sqrt{\omega_{k_s}} \text{Re}(z_{k_s}) \]

\[\Delta_{k_1, k_2, k_3} = \delta_{k_1, k_2+k_3} + \delta_{k_2, k_1+k_3} + \delta_{k_3, k_1+k_2} - \delta_{k_1+k_2+k_3, 2N} \]

- If \(\alpha = 0 \) then \(E_k = \omega_k |z_k|^2 \) are \(N - 1 \) constants of motion;
\(H_N(z, z^*) = \sum_{k=1}^{N-1} \omega_k |z_k|^2 + \frac{2\alpha}{3\sqrt{N}} \sum_{k_1, k_2, k_3=1}^{N-1} \Delta_{k_1, k_2, k_3} \prod_{s=1}^{3} \sqrt{\omega_{k_s}} \text{Re}(z_{k_s}) \)

\[\Delta_{k_1, k_2, k_3} = \delta_{k_1, k_2+k_3} + \delta_{k_2, k_1+k_3} + \delta_{k_3, k_1+k_2} - \delta_{k_1+k_2+k_3, 2N} \]

- If \(\alpha = 0 \) then \(E_k = \omega_k |z_k|^2 \) are \(N - 1 \) constants of motion;
- \(\alpha \neq 0 \) switches on normal mode interactions;
$$H_N(z, z^*) = \sum_{k=1}^{N-1} \omega_k |z_k|^2 + \frac{2\alpha}{3\sqrt{N}} \sum_{k_1, k_2, k_3=1}^{N-1} \Delta_{k_1, k_2, k_3} \prod_{s=1}^{3} \sqrt{\omega_{k_s}} \text{Re}(z_{k_s})$$

$$\Delta_{k_1, k_2, k_3} = \delta_{k_1, k_2+k_3} + \delta_{k_2, k_1+k_3} + \delta_{k_3, k_1+k_2} - \delta_{k_1+k_2+k_3, 2N}$$

- If $\alpha = 0$ then $E_k = \omega_k |z_k|^2$ are $N - 1$ constants of motion;
- $\alpha \neq 0$ switches on normal mode interactions;
- the system eventually relaxes to equilibrium, characterized by modal energy equipartition: $E_1 = \cdots = E_{N-1} \simeq \varepsilon$;
\[H_N(z, z^*) = \sum_{k=1}^{N-1} \omega_k |z_k|^2 + \frac{2\alpha}{3\sqrt{N}} \sum_{k_1, k_2, k_3=1}^{N-1} \Delta_{k_1, k_2, k_3} \prod_{s=1}^{3} \sqrt{\omega_{k_s}} \Re(z_{k_s}) \]

\[\Delta_{k_1, k_2, k_3} = \delta_{k_1, k_2+k_3} + \delta_{k_2, k_1+k_3} + \delta_{k_3, k_1+k_2} - \delta_{k_1+k_2+k_3, 2N} \]

- If \(\alpha = 0 \) then \(E_k = \omega_k |z_k|^2 \) are \(N - 1 \) constants of motion;
- If \(\alpha \neq 0 \) switches on normal mode interactions;
- the system eventually relaxes to equilibrium, characterized by modal energy equipartition: \(E_1 = \cdots = E_{N-1} \sim \epsilon \);
- a *metastable state*, or “quasi-state” characterized by an exponentially decaying energy spectrum -
 \[E_k \sim C \left(\frac{k}{N} \right)^p e^{-\gamma(\epsilon)k/N} \] - persists for very long times.
INITIAL DATA:

\[z_k(0) = \frac{A_k \omega_k + i B_k}{\sqrt{2} \omega_k} \quad , \quad E_k(0) = \frac{B_k^2 + \omega_k^2 A_k^2}{2} \]
INITIAL DATA:

\[z_k(0) = \frac{A_k \omega_k + iB_k}{\sqrt{2 \omega_k}}, \quad E_k(0) = \frac{B_k^2 + \omega_k^2 A_k^2}{2} \]

An interesting example:

\[z_k(0) = \sqrt{\frac{N\varepsilon}{M_0 \omega_k}} \cdot e^{-i \phi_k}, \quad E_k(0) = \frac{N\varepsilon}{M_0} \]

\((k = 1, \ldots, M_0, \text{ zero otherwise})\) with different choices of the initial phases \(\phi_k\).
INITIAL DATA:

\[
z_k(0) = \frac{A_k \omega_k + iB_k}{\sqrt{2} \omega_k}, \quad E_k(0) = \frac{B_k^2 + \omega_k^2 A_k^2}{2}
\]

An interesting example:

\[
z_k(0) = \sqrt{\frac{N \varepsilon}{M_0 \omega_k}} e^{-i \phi_k}, \quad E_k(0) = \frac{N \varepsilon}{M_0}
\]

\((k = 1, \ldots, M_0, \text{zero otherwise})\) with different choices of the initial phases \(\phi_k\).

One defines the (normalized, time-averaged) modal energy spectrum:

\[
\frac{\bar{E}_k(t)}{\varepsilon} = \frac{1}{\varepsilon t} \int_0^t E_k(s) ds \quad \text{vs.} \quad k/N
\]
Figure: Snapshots of a modal energy spectrum: $N = 1024$, $\varepsilon = 2.5 \cdot 10^{-4}$, 10% of modes initially excited, random phases; notice the persistence of the exponential tail
The effective number $M(t)$ of active modes at time t is measured by a Boltzmann-Shannon-like counter:

$$M(t) = \exp\{S(t)\},$$
The effective number $M(t)$ of active modes at time t is measured by a Boltzmann-Shannon-like counter:

\[
M(t) = \exp\{S(t)\}, \quad S(t) = -\sum_k p_k \ln(p_k)
\]
The effective number $M(t)$ of active modes at time t is measured by a Boltzmann-Shannon-like counter:

$$M(t) = \exp\{S(t)\}, \quad S(t) = -\sum_k \mathcal{P}_k \ln(\mathcal{P}_k)$$

$$\mathcal{P}_k = \frac{E_k(t)}{\sum_h E_h(t)} = \frac{\omega_k |z_k(t)|^2}{\sum_h \omega_h |z_h(t)|^2}$$
The effective number \(M(t) \) of active modes at time \(t \) is measured by a Boltzmann-Shannon-like counter:

\[
M(t) = \exp\{S(t)\}, \quad S(t) = -\sum_k \mathcal{P}_k \ln(\mathcal{P}_k)
\]

\[
\mathcal{P}_k = \frac{E_k(t)}{\sum_h E_h(t)} = \frac{\omega_k |z_k(t)|^2}{\sum_h \omega_h |z_h(t)|^2}
\]

Effective density \(f(t) \) of active modes:

\[
f(t) = \frac{M(t)}{N} = \frac{e^{S(t)}}{N}
\]

\(\mathcal{P}_k = 1/N \) at equilibrium, and \(f_{eq} = 1 \).
Effective density $f = \frac{M}{N}$ of active modes vs. time; $N = 1024$, $\varepsilon = 2.5 \cdot 10^{-4}$ and $\varepsilon = 10^{-3}$, $f(0) = 0.1$
Initial excitation of M_0 low-frequency, consecutive normal modes with the same energy. Two kinds of choices for their phases.
Initial excitation of M_0 low-frequency, consecutive normal modes with the same energy. Two kinds of choices for their phases.

- **Random phases**: ϕ_k's i.i.d. random variables with uniform density in $[0, 2\pi]$ ($k = 1, \ldots, M_0$).
Initial excitation of M_0 low-frequency, consecutive normal modes with the same energy. Two kinds of choices for their phases.

- **Random phases**: ϕ_k’s i.i.d. random variables with uniform density in $[0, 2\pi]$ ($k = 1, \ldots, M_0$).
- **Coherent phases**: either ϕ_k’s all equal, or regularly spaced ($\phi_k = \phi_1 + (k - 1)\psi$).
Initial excitation of M_0 low-frequency, consecutive normal modes with the same energy. Two kinds of choices for their phases.

- **Random phases**: ϕ_k’s i.i.d. random variables with uniform density in $[0, 2\pi]$ ($k = 1, \ldots, M_0$).
- **Coherent phases**: either ϕ_k’s all equal, or regularly spaced ($\phi_k = \phi_1 + (k - 1)\psi$).

Does it matter at all?
Initial excitation of M_0 low-frequency, consecutive normal modes with the same energy. Two kinds of choices for their phases.

- **Random phases:** ϕ_k’s i.i.d. random variables with uniform density in $[0, 2\pi]$ ($k = 1, \ldots, M_0$).

- **Coherent phases:** either ϕ_k’s all equal, or regularly spaced ($\phi_k = \phi_1 + (k - 1)\psi$).

Does it matter at all? Look at an example:
Figure: Effective density $f = \frac{M}{N}$ of active modes vs. time; $N = 1024$, $\varepsilon = 2.5 \cdot 10^{-4}$, $f(0) = 0.1$ ($M_0 = 102$); six different choices of phases
Independently of phases one finds the following two phenomenological scaling laws satisfied by the effective density of active modes $f(t, N, \varepsilon, M_0)$:
Independently of phases one finds the following two phenomenological scaling laws satisfied by the effective density of active modes $f(t, N, \varepsilon, M_0)$:

\[f(\lambda^{-3/4} t, \lambda^{-1/4} N, \lambda \varepsilon, M_0) = \lambda^{1/4} f(t, N, \varepsilon, M_0) \]
Independently of phases one finds the following two phenomenological scaling laws satisfied by the effective density of active modes $f(t, N, \varepsilon, M_0)$:

\[f(\lambda^{-3/4} t, \lambda^{-1/4} N, \lambda \varepsilon, M_0) = \lambda^{1/4} f(t, N, \varepsilon, M_0) \]

\[f(\mu^{3/2} t, \mu N, \varepsilon, M_0) = f(t, N, \varepsilon, M_0) \]
Independently of phases one finds the following two phenomenological scaling laws satisfied by the effective density of active modes $f(t, N, \varepsilon, M_0)$:

(S1) \[f(\lambda^{-3/4} t, \lambda^{-1/4} N, \lambda \varepsilon, M_0) = \lambda^{1/4} f(t, N, \varepsilon, M_0) \]

(S2) \[f(\mu^{3/2} t, \mu N, \varepsilon, M_0) = f(t, N, \varepsilon, M_0) \]

where $\lambda, \mu > 0$.
Independently of phases one finds the following two phenomenological scaling laws satisfied by the effective density of active modes $f(t, N, \varepsilon, M_0)$:

\begin{align*}
\text{(S1)} & \quad f(\lambda^{-3/4}t, \lambda^{-1/4}N, \lambda\varepsilon, M_0) = \lambda^{1/4}f(t, N, \varepsilon, M_0) \\
\text{(S2)} & \quad f(\mu^{3/2}t, \mu N, \varepsilon, M_0) = f(t, N, \varepsilon, M_0)
\end{align*}

where $\lambda, \mu > 0$.

(S1) can be predicted exactly from KdV scaling; (S2) has no clear explanation (but for some a fortiori heuristic estimate).
(3) Numerical results

Figure: Check of scaling (S1); $\lambda_j = 2^{-j+2}, j = 0, \ldots 7$, $\varepsilon_{\text{ref}} = 2.5 \cdot 10^{-4}$, $N_{\text{ref}} = 4096$; random phases.
Figure: Check of scaling (S1); $\lambda_j = 2^{-j+2}, j = 0, \ldots, 7$, $\varepsilon_{ref} = 2.5 \cdot 10^{-4}$, $N_{ref} = 4096$; equal phases: kick-like initial condition.
Figure: Check of scaling (S2); $\mu_j = 2^j, j = 0, \ldots 4$, $\varepsilon = 2.5 \cdot 10^{-4}$, $N_{\text{ref}} = 1024$, $M_0 = 26$ random phases.
Figure: Check of scaling (S2); $\mu_j = 2^j$, $j = 0, \ldots, 4$, $\varepsilon = 2.5 \cdot 10^{-4}$, $N_{\text{ref}} = 1024$, $M_0 = 26$ equal phases: zero initial velocities.
FIRST CONCLUSION
FIRST CONCLUSION

Combining the scaling laws (S1) and (S2) together, one gets
FIRST CONCLUSION

Combining the scaling laws (S1) and (S2) together, one gets

$$f(t, N, \varepsilon, M_0) = \varepsilon^{1/4} \mathcal{F}(\varepsilon^{3/8} N^{-3/2} t, M_0)$$
FIRST CONCLUSION

Combining the scaling laws (S1) and (S2) together, one gets

\[f(t, N, \varepsilon, M_0) = \varepsilon^{1/4} \mathcal{F}(\varepsilon^{3/8} N^{-3/2} t, M_0) \]

where \(\mathcal{F} \) is a suitable function of two variables depending on the choice of the phases.
FIRST CONCLUSION

Combining the scaling laws (S1) and (S2) together, one gets

$$f(t, N, \varepsilon, M_0) = \varepsilon^{1/4} F(\varepsilon^{3/8} N^{-3/2} t, M_0)$$

where F is a suitable function of two variables depending on the choice of the phases.

In other words: if M_0 is kept fixed - independent of N - then $f \sim \varepsilon^{1/4}$ on a time-scale $\tau_1 \sim N^{3/2} \varepsilon^{-3/8}$.
In the case of finite density $f_0 = M_0/N$ of modes initially excited, the dependence of \mathcal{F} on M_0 is strongly affected by the initial choice of the phases.
In the case of finite density $f_0 = M_0/N$ of modes initially excited, the dependence of \mathcal{F} on M_0 is strongly affected by the initial choice of the phases. One finds:

- **Random phases:**

\[
 f(t, N, \varepsilon, M_0) = \varepsilon^{1/4} G(\varepsilon^{3/8} f_0^{3/2} t) \quad (RP)
\]
In the case of finite density $f_0 = M_0/N$ of modes initially excited, the dependence of \mathcal{F} on M_0 is strongly affected by the initial choice of the phases. One finds:

- Random phases:

$$ f(t, N, \varepsilon, M_0) = \varepsilon^{1/4} G(\varepsilon^{3/8} f_0^{3/2} t) \quad (RP) $$

i.e. $f \sim \varepsilon^{1/4}$ on a t.s. $\tau_1 \sim \varepsilon^{-3/8} f_0^{-3/2} > \varepsilon^{-3/4}$.
In the case of finite density $f_0 = M_0/N$ of modes initially excited, the dependence of F on M_0 is strongly affected by the initial choice of the phases. One finds:

- **Random phases:**

 \[f(t, N, \varepsilon, M_0) = \varepsilon^{1/4} G(\varepsilon^{3/8} f_0^{3/2} t) \]
 (RP)

 i.e. $f \sim \varepsilon^{1/4}$ on a t.s. $\tau_1 \sim \varepsilon^{-3/8} f_0^{-3/2} > \varepsilon^{-3/4}$.

- **Coherent phases:**

 \[f(t, N, \varepsilon, M_0) = (f_0 E)^{1/4} G(E^{3/8} f_0^{3/2} t) \]
 (CP)
In the case of finite density $f_0 = M_0/N$ of modes initially excited, the dependence of \mathcal{F} on M_0 is strongly affected by the initial choice of the phases. One finds:

- **Random phases:**

 $$f(t, N, \varepsilon, M_0) = \varepsilon^{1/4} G(\varepsilon^{3/8} f_0^{3/2} t) \quad (\text{RP})$$

 i.e. $f \sim \varepsilon^{1/4}$ on a t.s. $\tau_1 \sim \varepsilon^{-3/8} f_0^{-3/2} > \varepsilon^{-3/4}$.

- **Coherent phases:**

 $$f(t, N, \varepsilon, M_0) = (f_0 E)^{1/4} G(E^{3/8} f_0^{3/2} t) \quad (\text{CP})$$

 i.e. $f \sim (f_0 E)^{1/4}$ on a t.s. $\tau_1 \sim E^{-3/8} f_0^{-3/2} > (f_0 E)^{-3/4}$
Figure: Check of scaling (RP), two values of ε, four values of N.
Figure: Check of scaling (CP); left: $\phi_k = \pi/2$; right: $\phi_k = k\pi/2$
CONCLUSION:
CONCLUSION:

- The FPU scenario with extended initial excitations and random phases might persist in the thermodynamic limit.
CONCLUSION:

- The FPU scenario with extended initial excitations and random phases might persist in the thermodynamic limit.
- No t.d. limit persistence is expected to be possible with extended excitations and coherent phases.
Mode-coupling is ruled by the selector

\[\Delta_{k_1, k_2, k_3} = \delta_{k_1+k_2, k_3} + \delta_{k_2+k_3, k_1} + \delta_{k_3+k_1, k_2} - \delta_{k_1+k_2+k_3, 2N} \]

with corresponding processes

\[\omega_{k_1} + \omega_{k_2} \simeq \omega_{k_3 = k_1+k_2} \]

small denominators: forbidden to low modes
Resonant normal form construction

STRA TEGY
Resonant normal form construction

STRATEGY

\[(q, p)_{FPU} \xrightarrow{\text{Perturbation theory}} (\xi, \xi^*)_{FPU}\]

\[U_{KdV} \xleftarrow{\text{analyticity}} (u, u^*)_{FG-KdV} \xrightarrow{\text{reconstruction}} \]

Normal form
Perform the canonical rescaling \((z, t, H_N) \mapsto (\zeta, \tau, K_N)\) defined by

\[
\zeta_k = \frac{z_k}{N \sqrt{2\epsilon}}, \quad \tau = \frac{t}{2N}, \quad K_N = \frac{H_N}{N\epsilon}
\]
Perform the canonical rescaling \((z, t, H_N) \mapsto (\zeta, \tau, K_N)\) defined by

\[
\zeta_k = \frac{z_k}{N\sqrt{2\epsilon}} , \quad \tau = \frac{t}{2N} , \quad K_N = \frac{H_N}{N\epsilon}
\]

where \(0 < \epsilon = \varepsilon + O(\varepsilon^{3/2})\). Define \(\mu = \alpha\sqrt{\epsilon}\), \(L = 2N\sqrt{\mu}\) (\(\alpha > 0\) w.l.g.) and expand \(\omega_k\).
Perform the canonical rescaling \((z, t, H_N) \mapsto (\zeta, \tau, K_N)\) defined by

\[
\zeta_k = \frac{z_k}{N\sqrt{2\epsilon}} , \quad \tau = \frac{t}{2N} , \quad K_N = \frac{H_N}{N\epsilon}
\]

where \(0 < \epsilon = \varepsilon + O(\varepsilon^{3/2})\). Define \(\mu = \alpha\sqrt{\epsilon}, \quad L = 2N\sqrt{\mu}\) \((\alpha > 0 \text{ w.l.g.})\) and expand \(\omega_k\). Then

\[
K_N(\zeta, \zeta^*) = \sum_{k=1}^{N-1} (2\pi k)|\zeta_k|^2 + \mu W(\zeta, \zeta^*) + O(\mu^2)
\]
Perform the canonical rescaling \((z, t, H_N) \mapsto (\zeta, \tau, K_N)\) defined by

\[
\zeta_k = \frac{z_k}{N \sqrt{2\epsilon}}, \quad \tau = \frac{t}{2N}, \quad K_N = \frac{H_N}{N\epsilon}
\]

where \(0 < \epsilon = \epsilon + O(\epsilon^{3/2})\). Define \(\mu = \alpha \sqrt{\epsilon}\), \(L = 2N \sqrt{\mu}\) \((\alpha > 0 \text{ w.l.g.})\) and expand \(\omega_k\). Then

\[
K_N(\zeta, \zeta^*) = \sum_{k=1}^{N-1} (2\pi k)|\zeta_k|^2 + \mu W(\zeta, \zeta^*) + O(\mu^2)
\]

where

\[
W = -\sum_{k=1}^{N-1} \frac{(2\pi k)^3}{24L^2} |\zeta_k|^2 + \frac{2}{3} \sum_{k_1, k_2, k_3=1}^{N-1} \Delta_{k_1, k_2, k_3} \prod_{s=1}^{3} \sqrt{2\pi k_s} \operatorname{Re}(\zeta_{k_s})
\]

Antonio Ponno
Role of the initial conditions in the FPU problem
Unperturbed \((\mu = 0)\) motion: \(\zeta = e^{-i2\pi J \tau} \zeta(0),\) 1-periodic in time,
\(J = \text{diag}(1, \ldots, N - 1)\) (i.e. \(\zeta_k = e^{-i2\pi k \tau} \zeta_k(0))\).
Unperturbed ($\mu = 0$) motion: $\zeta = e^{-i2\pi J_\tau} \zeta(0)$, 1-periodic in time, $J = \text{diag}(1, \ldots, N-1)$ (i.e. $\zeta_k = e^{-i2\pi k\tau} \zeta_k(0)$).

Proposition (Averaging)

There exists a canonical transformation $(\zeta, \zeta^*) \mapsto (\xi, \xi^*)$, μ-close to the identity, such that

$$K_N(\xi, \xi^*) = \sum_{k=1}^{N-1} (2\pi k)|\xi_k|^2 + \mu \overline{W}(\xi, \xi^*) + O(\mu^2)$$

where

$$\overline{W}(\xi, \xi^*) = \int_0^1 W(e^{-i2\pi J_\tau} \xi, e^{i2\pi J_\tau} \xi^*) \, d\tau$$

Antonio Ponno
Role of the initial conditions in the FPU problem
Introducing the time-dependent transformation to noncanonical co-rotating coordinates

\[(\xi, \tau, K_N) \mapsto (u, T, \overline{W} + O(\mu))\]

\[u = \sqrt{2\pi J} \ e^{i2\pi J \tau \xi}, \quad T = \mu \tau\]
Introducing the time-dependent transformation to noncanonical co-rotating coordinates

\[(\xi, \tau, K_N) \mapsto (u, T, \overline{W} + O(\mu))\]

\[u = \sqrt{2\pi J} \ e^{i2\pi J \tau} \xi, \quad T = \mu \tau\]

the resonant normal form Hamiltonian of the FPU system is

\[
\overline{W}(u, u^*) = -\sum_{k=1}^{N-1} \frac{(2\pi k)^2}{24L^2} |u_k|^2 + \frac{1}{4} \sum_{k_1, k_2, k_3=1}^{N-1} \delta_{k_1+k_2+k_3}(u_{k_1}^* u_{k_2}^* u_{k_3} + c.c.)
\]

up to a remainder \(O(\mu)\).
Introducing the time-dependent transformation to noncanonical co-rotating coordinates

\[(\xi, \tau, K_N) \mapsto (u, T, \overline{W} + O(\mu))\]

\[u = \sqrt{2\pi J} \ e^{i2\pi J \tau \xi}, \quad T = \mu \tau\]

the resonant normal form Hamiltonian of the FPU system is

\[
\overline{W}(u, u^*) = - \sum_{k=1}^{N-1} \frac{(2\pi k)^2}{24 L^2} |u_k|^2 + \frac{1}{4} \sum_{k_1, k_2, k_3=1}^{N-1} \delta_{k_1+k_2+k_3}(u_{k_1}^* u_{k_2}^* u_{k_3} + c.c.)
\]

up to a remainder $O(\mu)$. The equations of motion are

\[
\frac{d u_k}{dT} = -i(2\pi k) \frac{\partial \overline{W}}{\partial u_k^*}
\]
Proposition

The Hamilton equations of $\overline{W}(u, u^*)$ coincide with the Fourier-Galerkin truncation to the first $N - 1$ modes of the KdV equation

$$U_T = \frac{1}{24L^2} U_{XXX} + \frac{1}{2} U U_X, \quad X \in \mathbb{T}(= \mathbb{R}/\mathbb{Z})$$

with initial datum satisfying: $\int_0^1 U \, dX = 0$, $\int_0^1 U^2 \, dX = 2$
Proposition

The Hamilton equations of $\overline{\Omega}(u, u^*)$ coincide with the Fourier-Galerkin truncation to the first $N - 1$ modes of the KdV equation

$$U_T = \frac{1}{24L^2} U_{XXX} + \frac{1}{2} U U_X, \; X \in T(= \mathbb{R}/\mathbb{Z})$$

with initial datum satisfying: $\int_0^1 U \; dX = 0$, $\int_0^1 U^2 \; dX = 2$

Thus the KdV equation in the small dispersion regime ($L \propto N \epsilon^{1/4}$ very large) ”formally” describes the dynamics of the FPU problem on the time-scale $t \sim N/\sqrt{\epsilon}$ (recall that $T = t \sqrt{\epsilon}/N$).
The Fourier-Galerkin projection operator P^N is defined by

$$(P^N U)(X, T) = \sum_{k=-N+1}^{N-1} \hat{U}_k(T) e^{-i2\pi kX}.$$
The Fourier-Galerkin projection operator \mathbf{P}^N is defined by

$$(\mathbf{P}^N U)(X, T) = \sum_{k=-N+1}^{N-1} \hat{U}_k(T) e^{-i2\pi kX}.$$

Define

$$u^N(X, T) \equiv \sum_{k=1}^{N-1} u_k e^{-i2\pi kX} + u_k^* e^{i2\pi kX}$$
The Fourier-Galerkin projection operator P^N is defined by

$$(P^N U)(X, T) = \sum_{k=-N+1}^{N-1} \hat{U}_k(T) e^{-i2\pi kX}.$$

Define

$$u^N(X, T) \equiv \sum_{k=1}^{N-1} u_k e^{-i2\pi kX} + u_k^* e^{i2\pi kX}$$

One has

$$\overline{W} = - \frac{1}{48L^2} \int_0^1 (u^N_X)^2 dX + \frac{1}{12} \int_0^1 (u^N)^3 dX$$
The Fourier-Galerkin projection operator \mathbf{P}^N is defined by

$$(\mathbf{P}^N U)(X, T) = \sum_{k=-N+1}^{N-1} \hat{U}_k(T) e^{-i2\pi kX}.$$

Define

$$u^N(X, T) \equiv \sum_{k=1}^{N-1} u_k e^{-i2\pi kX} + u_k^* e^{i2\pi kX}$$

One has

$$\overline{W} = -\frac{1}{48L^2} \int_0^1 (u^N_X)^2 dX + \frac{1}{12} \int_0^1 (u^N)^3 dX$$

and

$$\frac{du_k}{dT} = -i(2\pi k) \frac{\partial \overline{W}}{\partial u_k^*} \iff u^N_T = \partial_X \mathbf{P}^N \left(\frac{\delta \overline{W}}{\delta u^N} \right)$$
Recall that \(U_T = \frac{1}{24L^2} U_{XXX} + \frac{1}{2} U U_X \) and \(L \propto N \epsilon^{1/4}, \; T \propto \sqrt{\epsilon t / N} \).
Recall that $U_T = \frac{1}{24L^2} U_{XXX} + \frac{1}{2} UU_X$ and $L \propto N \epsilon^{1/4}$, $T \propto \sqrt{\epsilon t}/N$. Then, the rescaling

$$\epsilon \to \lambda \epsilon, \quad N \to \lambda^{-1/4} N, \quad t \to \lambda^{-3/4} t$$

leaves the KdV equation invariant.
Recall that \(U_T = \frac{1}{24L^2} U_{xxx} + \frac{1}{2} U U_x \) and \(L \propto N \epsilon^{1/4}, \; T \propto \sqrt{\epsilon t} / N \).

Then, the rescaling

\[
\begin{align*}
\epsilon \rightarrow \lambda \epsilon, \quad N \rightarrow \lambda^{-1/4} N, \quad t \rightarrow \lambda^{-3/4} t
\end{align*}
\]

leaves the KdV equation invariant. Based on Cauchy estimates, for the effective density of active modes \(f = M / N \) one expects

\[
 f \propto \frac{L}{N} = \epsilon^{1/4} \quad \overset{(*)}{\Rightarrow} \quad f \rightarrow \lambda^{1/4} f
\]
Recall that $U_T = \frac{1}{24L^2} U_{xxx} + \frac{1}{2} UU_x$ and $L \propto N \varepsilon^{1/4}$, $T \propto \sqrt{\varepsilon t}/N$. Then, the rescaling

$$
\varepsilon \rightarrow \lambda \varepsilon, \quad N \rightarrow \lambda^{-1/4} N, \quad t \rightarrow \lambda^{-3/4} t
$$

leaves the KdV equation invariant. Based on Cauchy estimates, for the effective density of active modes $f = M/N$ one expects

$$
f \propto \frac{L}{N} = \varepsilon^{1/4} \quad \Rightarrow \quad f \rightarrow \lambda^{1/4} f
$$

which implies

$$
f(\lambda^{-3/4} t, \lambda^{-1/4} N, \lambda \varepsilon, M_0) = \lambda^{1/4} f(t, N, \varepsilon, M_0)
$$
Theorem (Kappeler-Pöschel 07)

Consider the KdV equation \(U_T = \delta U_{XXX} + \frac{1}{2}UU_X \).

If the initial datum \(U(X,0), X \in \mathbb{T} \), is analytic in the (maximal) complex strip \(\{ |\text{Im}(z)| \leq a \} \), then there exists \(0 < \rho(\delta) \leq 1 \) s.t. the corresponding solution \(U(X, T) \) is analytic in the complex strip \(\{ |\text{Im}(z)| \leq a\rho(\delta) \} \) for any \(T \in \mathbb{R} \).
Theorem (Kappeler-Pöschel 07)

Consider the KdV equation \(U_T = \delta U_{XXX} + \frac{1}{2}UU_X \).

If the initial datum \(U(X,0), X \in \mathbb{T} \), is analytic in the (maximal) complex strip \(\{ |\text{Im}(z)| \leq a \} \), then there exists \(0 < \rho(\delta) \leq 1 \) s.t. the corresponding solution \(U(X, T) \) is analytic in the complex strip \(\{ |\text{Im}(z)| \leq a\rho(\delta) \} \) for any \(T \in \mathbb{R} \).

That is to say: analytic initial data evolve into global solutions which are analytic in a possibly narrower but finite-width strip.
Regularity of solutions

Theorem (Kappeler-Pöschel 07)

Consider the KdV equation \(U_T = \delta U_{XXX} + \frac{1}{2} U U_X \).

If the initial datum \(U(X,0), X \in \mathbb{T} \), is analytic in the (maximal) complex strip \(\{ |\text{Im}(z)| \leq a \} \), then there exists \(0 < \rho(\delta) \leq 1 \) s.t. the corresponding solution \(U(X, T) \) is analytic in the complex strip \(\{ |\text{Im}(z)| \leq a\rho(\delta) \} \) for any \(T \in \mathbb{R} \).

That is to say: analytic initial data evolve into global solutions which are analytic in a possibly narrower but finite-width strip.

No estimate of \(\rho(\delta) \) available: we are interested in the limit \(\delta \to 0! \)
Consider the KdV equation $U_T = \frac{1}{24L^2} U_{XXX} + \frac{1}{2} UU_X$.
Consider the KdV equation \(U_T = \frac{1}{24L^2}\delta U_{XXX} + \frac{1}{2}UU_X \).

By the TKP thm \(U(z, T) \) analytic in \(\{|\text{Im}(z)| \leq \sigma(T; L)\} \).
Consider the KdV equation \(U_T = \frac{1}{24L^2} U_{XXX} + \frac{1}{2} U U_x \).

By the TKP thm \(U(z, T) \) analytic in \(\{ |\text{Im}(z)| \leq \sigma(T; L) \} \)

Define

\[
\mathcal{M}(T; L) \equiv \max_{\text{Re}(z) \in [0,1], |\text{Im}(z)| = \sigma(T; L)} |U(z, T)| ;
\]

Antonio Ponno
Role of the initial conditions in the FPU problem
Consider the KdV equation $U_T = \frac{1}{24L^2}U_{XXX} + \frac{1}{2}UU_X$.

By the TKP thm $U(z, T)$ analytic in $\{|\text{Im}(z)| \leq \sigma(T; L)\}$

Define

$$\mathcal{M}(T; L) \equiv \max_{\text{Re}(z) \in [0,1]} |U(z, T)| ;$$

then (Cauchy)

$$\frac{1}{24L^2} U_{XXX} \leq \frac{\mathcal{M}}{4L^2\sigma^3} , \quad \frac{1}{2}UU_X \leq \frac{\mathcal{M}^2}{2\sigma}$$
Consider the KdV equation \(U_T = \frac{1}{24L^2} U_{XXX} + \frac{1}{2} U U_X \).

By the TKP thm \(U(z, T) \) analytic in \(\{|\text{Im}(z)| \leq \sigma(T; L)\} \)

Define

\[M(T; L) \equiv \max_{\text{Re}(z) \in [0,1]} |U(z, T)| ; \]

\[\text{Im}(z)|=\sigma(T; L) \]

then (Cauchy)

\[
\frac{1}{24L^2} U_{XXX} \leq \frac{M}{4L^2 \sigma^3} \quad , \quad \frac{1}{2} U U_X \leq \frac{M^2}{2 \sigma} \]

Notice that as \(L \to \infty \) the KdV eqn approaches the Burgers-Hopf eqn \(U_T = \frac{1}{2} U U_X \), whose solutions display vertical slopes in a finite critical time \(T_c = O(1) \).
HEURISTIC ARGUMENTS:

- for any fixed $T > T_c$, $\sigma(T; L) \to 0$ as $L \to \infty$;
HEURISTIC ARGUMENTS:

- for any fixed $T > T_c$, $\sigma(T; L) \to 0$ as $L \to \infty$;
- requiring, in the limit, constant ratio of the above Cauchy upper bounds yields

$$\sigma(T; L) \sim \frac{c(T)}{L} \quad (L \to \infty)$$

where $c(T) > \overline{c} > 0 \ \forall T \in \mathbb{R}$ due to the KP thm.
HEURISTIC ARGUMENTS:

- for any fixed \(T > T_c \), \(\sigma(T; L) \to 0 \) as \(L \to \infty \);
- requiring, in the limit, constant ratio of the above Cauchy upper bounds yields

\[
\sigma(T; L) \sim \frac{c(T)}{L} \quad (L \to \infty)
\]

where \(c(T) > \bar{c} > 0 \ \forall \ T \in \mathbb{R} \) due to the KP thm.

- m.e.s.: \(E_k(T) = |\hat{U}_k(T)|^2 \leq C e^{-2\sigma|k|} \leq C e^{-\frac{2c|k|}{N_{\varepsilon}^{1/4}}} \);
HEURISTIC ARGUMENTS:

- for any fixed $T > T_c$, $\sigma(T; L) \to 0$ as $L \to \infty$;
- requiring, in the limit, constant ratio of the above Cauchy upper bounds yields

$$\sigma(T; L) \sim \frac{c(T)}{L} \quad (L \to \infty)$$

where $c(T) > \bar{c} > 0 \ \forall T \in \mathbb{R}$ due to the KP thm.

- m.e.s.: $E_k(T) = |\hat{U}_k(T)|^2 \leq Ce^{-2\sigma|k|} \leq Ce^{-\frac{2c|k|}{N\varepsilon^{1/4}}}$
- d.a.m.: $f \propto \frac{1}{N\sigma} \propto \varepsilon^{1/4}$
$U(X, T)$: solution of the KdV eqn with in.dat. $U(X, 0)$;
Asymptotic reconstruction

$U(X, T)$: solution of the KdV eqn with in.dat. $U(X, 0)$;

$u^N(X, T)$: solution of the F-G truncation with in.dat. $P^N U(X, 0)$;

Antonio Ponno
Role of the initial conditions in the FPU problem
Asymptotic reconstruction

$U(X, T)$: solution of the KdV eqn with in.dat. $U(X, 0)$;

$u^N(X, T)$: solution of the F-G truncation with in.dat. $P^N U(X, 0)$;

Theorem (Kalisch 05)

Suppose $U(X, 0) \in \mathcal{H}^{a_0, s}$, where $a_0 > 0$ and $s > 0$; then, for any fixed $T > 0$ there exist two positive constants $\lambda(T)$ and $a(T)$ s.t.

$$\sup_{t \in [0, T]} \| U(\cdot, t) - u_N(\cdot, t) \|_{L^2} \leq \lambda(T) \frac{e^{-a(T)N}}{N^{s-1}}$$
Asymptotic reconstruction

$U(X, T)$: solution of the KdV eqn with in.dat. $U(X, 0)$;
$u^N(X, T)$: solution of the F-G truncation with in.dat. $P^N U(X, 0)$;

Theorem (Kalisch 05)

Suppose $U(X, 0) \in \mathcal{H}^{a_0, s}$, where $a_0 > 0$ and $s > 0$; then, for any fixed $T > 0$ there exist two positive constants $\lambda(T)$ and $a(T)$ s.t.

$$
\sup_{t \in [0, T]} \| U(\cdot, t) - u_N(\cdot, t) \|_{L^2} \leq \lambda(T) \frac{e^{-a(T)N}}{N^{s-1}}
$$

That is to say: u^N and U can be made arbitrarily close on any fixed time-interval if N is large enough.
Heuristic estimates of f are based on the dispersion-nonlinearity balance in the KdV equation written in Fourier space:
Heuristic estimates of f are based on the dispersion-nonlinearity balance in the KdV equation written in Fourier space:

$$\frac{1}{L^2} \hat{U}_{xxx} \approx \frac{1}{2} \hat{U}U_x$$
Heuristic estimates of f are based on the dispersion-nonlinearity balance in the KdV equation written in Fourier space:

\[
\frac{1}{L^2} \hat{U}_{XXX} \approx \frac{1}{2} \hat{U} \hat{U}_X
\]

i.e.

\[
\frac{k^2}{N^2 \sqrt{\varepsilon}} \approx \frac{(\hat{U} * \hat{U})_k}{\hat{U}_k}
\]
Heuristic estimates of f are based on the dispersion-nonlinearity balance in the KdV equation written in Fourier space:

$$\frac{1}{L^2} \widehat{U_{XXX}} \approx \frac{1}{2} \widehat{UU_X}$$

i.e.

$$\frac{k^2}{N^2 \sqrt{\varepsilon}} \approx \frac{(\hat{U} \ast \hat{U})_k}{\hat{U}_k}$$

The r.h.s. is evaluated on the initial condition

$$U(X, 0) = \frac{2}{\sqrt{M_0}} \sum_{k=1}^{M_0} \cos(2\pi kX + \phi_k)$$
One gets

\[\frac{k^2}{N^2 \sqrt{\varepsilon}} \approx \left\{ \begin{array}{c} \sqrt{M_0} \\ O(1) \end{array} \right\} \quad (CP) \quad (RP) \]
Coherence effects

One gets

\[\frac{k^2}{N^2 \sqrt{\varepsilon}} \approx \begin{cases} \sqrt{M_0} & (CP) \\ O(1) & (RP) \end{cases} \]

Thus

\[f \approx \frac{k_c}{N} \approx \begin{cases} (M_0 \varepsilon)^{1/4} = (f_0 E)^{1/4} & (CP) \\ \varepsilon^{1/4} & (RP) \end{cases} \]
Coherence effects

One gets

\[\frac{k^2}{N^2 \sqrt{\varepsilon}} \approx \begin{cases} \sqrt{M_0} & (CP) \\ O(1) & (RP) \end{cases} \]

Thus

\[f \approx \frac{k_c}{N} \approx \begin{cases} (M_0 \varepsilon)^{1/4} = (f_0 E)^{1/4} & (CP) \\ \varepsilon^{1/4} & (RP) \end{cases} \]

This is a rough, though eventually correct, explanation of the observed dependence of the dynamics on the phases.
Time scales are evaluated by comparing the time-derivative term with the linear one in the KdV equation, recalling that
\[t = \left(\frac{N}{\sqrt{\varepsilon}} \right) T: \]
Time scales are evaluated by comparing the time-derivative term with the linear one in the KdV equation, recalling that:

\[t = \left(\frac{N}{\sqrt{\varepsilon}} \right) T: \]

\[\omega \approx \frac{1}{\tau} \approx \frac{k^3}{N^3} \]
Time scales are evaluated by comparing the time-derivative term with the linear one in the KdV equation, recalling that
\[t = \left(\frac{N}{\sqrt{\varepsilon}} \right) T. \]

\[\omega \approx \frac{1}{\tau} \approx \frac{k^3}{N^3} \]

which, evaluated at \(f \approx k_c/N \), yields

\[\tau \approx \begin{cases} (M_0 \varepsilon)^{-3/4} = (f_0 E)^{-3/4} & (CP) \\ \varepsilon^{-3/4} & (RP) \end{cases} \]
Time scales are evaluated by comparing the time-derivative term with the linear one in the KdV equation, recalling that

\[t = \left(\frac{N}{\sqrt{\varepsilon}} \right) T \]

\[\omega \approx \frac{1}{\tau} \approx \frac{k^3}{N^3} \]

which, evaluated at \(f \approx k_c/N \), yields

\[\tau \approx \begin{cases} (M_0 \varepsilon)^{-3/4} = (f_0 E)^{-3/4} & (CP) \\ \varepsilon^{-3/4} & (RP) \end{cases} \]

both being lower bounds to \(\tau_1 \)!
Conclusions: open problems

- Rigorous estimate of $\sigma(T; L)$ - perhaps a possibility, in a paper by Venakides
Conclusions: open problems

- Rigorous estimate of $\sigma(T; L)$ - perhaps a possibility, in a paper by Venakides
- Extension to other models, in particular to the quartic one leading to the mKdV eqn - not so many results available
Conclusions: open problems

- Rigorous estimate of $\sigma(T; L)$ - perhaps a possibility, in a paper by Venakides
- Extension to other models, in particular to the quartic one leading to the mKdV eqn - not so many results available
- Second stage of the story: breakdown of KdV approximation and estimate of the time-scale to equipartition - difficult