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Abstract. The reduced product of abstract domains is a rather well known
operation in abstract interpretation. In this paper we study the inverse op-
eration, which we call complementation. Such an operation allows to sys-
tematically decompose domains; it provides a systematic way to design new
abstract domains; it allows to simplify domain verification problems, like cor-
rectness proofs; and it yields space saving representations for domains. We
show that the complement exists in most cases, and we apply complementa-
tion to two well known abstract domains, notably to the Cousot and Cousot’s
comportment domain for analysis of functional languages and to the complex
domain Sharing for aliasing analysis of logic languages.

1 Introduction

Compositionality is a fundamental feature of the standard Cousot and Cousot the-
ory of abstract interpretation ([8, 9]). Compositionality can be both related with
the underlying semantics, yielding the compositional design of program analyses in-
ductively on the program’s structure, and with data-approximation, providing some
basic operators to compose abstractions. The latter case, being independent from
any specific programming language and semantics, is a key feature of abstract inter-
pretation. In this case, abstract domains for analysis can be incrementally designed
by successive abstractions, and more precise approximations can be obtained by
composing domains or by lifting them by suitable property-completions (e.g. the
disjunctive completions in [12, 13, 16]).

The reduced product ([9]) is probably the most common and well known opera-
tion that composes abstract domains. It provides a systematic way to achieve more
descriptive abstract domains from simpler ones, and it corresponds to the cardi-
nal, attribute independent product of domains. The reduction is essential in this
process to achieve a minimal representation for abstract denotations. In this case,
tuples of abstract objects are considered equivalent (and therefore reduced) provided
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that their conjunction represents the same concrete denotation. The cost/precision
tradeoff between separate abstract interpretations and their reduced product has
been experimentally evaluated in [3] for analysis of logic programs. This operation
is also essential in attribute-dependent or relational analysis, where it can be com-
bined with disjunctive completions (e.g. those described in [12, 13]) to generalize the
relational tensor product ([27]).

A natural question that arises in this setting is whether it is possible to define
the inverse operation for reduced product , namely, an operation which, starting from
any two domains C and D, with D more abstract than C, gives as result the most
abstract domain C ∼D, whose reduced product with D is exactly C. The closure
operator approach to abstract interpretation provides a very useful mathematical
framework for studying this question. Indeed, every abstract domain that enjoys
a Galois insertion with the concrete domain C, can be associated with an upper
closure operator on C, and the operation of reduced product between abstract do-
mains can be interpreted as the corresponding lattice-theoretic operation of greatest
lower bound on the complete lattice uco(C) of upper closure operators on C ([9]).
Thus, technically, the question above is equivalent to ask whether uco(C) is pseudo-
complemented. A recent result in [19] shows that the lattice of closure operators of
a complete lattice C is pseudo-complemented whenever C is chain inf-distributive,
namely when the glb of C is a continuous binary operation.

It is also important to remark that the above definition of complementation can-
not be strengthened by requiring also that C ∼D be disjoint from D. In fact, this
stronger definition would be equivalent to the requirement that uco(C) is comple-
mented , and Dwinger ([15]) and, successively, Morgado ([23]) proved that uco(C) is
complemented if and only if C is a complete well-ordered chain. This condition is
clearly too restrictive to be applied in static analysis and abstract interpretation of
programming languages, because concrete and abstract domains for semantics and
analysis are not in general complete chains.

In this paper, we observe that the condition of chain inf-distributivity is satisfied
by most of the known concrete and abstract domains for semantics and analysis.
Thus, exploiting the above mentioned result of [19], we introduce the notion of com-
plementation in abstract interpretation, calling abusively complement of an abstract
domain the pseudo-complement of its associated closure operator.

As the theory developed in Section 4 shows, complementation allows to system-
atically decompose abstract domains into simpler factors. This is important for four
main reasons: (i) it provides a systematic way to design new abstract domains;
(ii) it helps understanding the internal workings of complex domains; (iii) it sup-
ports verification problems for complex domains, like correctness proofs, by allowing
decomposition into simpler problems for their factors; (iv) it provides compact rep-
resentations of complex domains that enhances space saving techniques.

As examples of use of complementation for domain decomposition, we consider
a domain for aliasing analysis in logic programming, notably Sharing introduced by
Jacobs and Langen in [21], and the Cousot and Cousot’s comportment analysis for
higher-order functional languages ([13]), which generalizes Mycroft’s strictness and
termination analysis ([25, 26]), Hughes and Wadler’s projection analysis ([30]) and
Hunt’s PER analysis ([20]). In the latter case we apply complementation to factorize
the domain of comportment analysis which is originally obtained by disjunctive com-



pletion of a simpler domain, providing a sensible reduction of the lattice-structure
of comportments. In the case of Sharing, we use complementation to characterize
what is left when we eliminate from it the information useful for ground-dependency
analysis. In [5] it is proved that the information for ground-dependency analysis of
Sharing is expressed by a more abstract domain, which we show to coincide with the
domain Def . Def was introduced by Dart in [14] for groundness analysis in deductive
databases, and used by Marriott and Søndergaard for ground-dependency analysis
in [22]. As expected, the complement of Def with respect to Sharing , called Shar-
ing+, captures precisely variable aliasing and no ground-dependency information,
and shares with Sharing an elegant representation.

2 Preliminaries

Throughout the paper we will assume familiarity with the basic notions of lattice
theory (e.g. see [2]) and abstract interpretation ([8, 9]). Now, we briefly introduce
some notation and recall some well known notions.

If C and D are posets and α : C → D, γ : D → C are monotonic functions
such that ∀c ∈ C. c �C γ(α(c)) and ∀d ∈ D. α(γ(d)) �D d, then we call the
quadruple (γ,D,C, α) a Galois connection (G.c.) between C and D. If in addition
∀d ∈ D. α(γ(d)) = d, then we call (γ,D,C, α) a Galois insertion (G.i.) of D in C. In
the setting of abstract interpretation, C and D are called, respectively, the concrete
and the abstract domain, and they are assumed to be complete lattices, whereas α
and γ are called the abstraction and the concretization maps, respectively. Also, D
is called an abstraction (or abstract interpretation) of C, and C a concretization of
D. Further, D is a strict abstraction of C if γ ◦α 6= λx.x (or, equivalently, if D is an
abstraction of C, while C is not an abstraction of D). In the following, C�D denotes
that D is an abstraction of C. If (γ,D,C, α) is a G.i., then the concretization and
abstraction mappings, γ and α, are 1-1 and onto, respectively. Moreover, any G.c.
may be lifted to a G.i. identifying in an equivalence class those values of the abstract
domain with the same concrete meaning. This process is known as reduction of the
abstract domain.

Let 〈L,�,∧,∨,>,⊥〉 be a complete lattice. In the rest of the paper, we will
weaken or strengthen the hypotheses on the structure of L according to the case.
An (upper) closure operator on the poset L is an operator ρ : L → L monotonic,
idempotent and extensive (viz. ∀x ∈ L. x � ρ(x)). If L is a complete lattice then
each closure operator ρ is uniquely determined by the set of its fixpoints, which is its
image ρ(L) ([31]). A set X ⊆ L is the set of fixpoints of a closure operator iff X is a
Moore-family of L, i.e. > ∈ X and X is meet-closed (viz. for any non-empty Y ⊆ X ,
∧Y ∈ X). Furthermore, the set of fixpoints ρ(L) is a complete lattice with respect to
the order of L, but, in general, it is not a complete sub-lattice of L, since the lub in
ρ(L) might be different from that in L. In the following, we will often denote a closure
operator by the set of its fixpoints. We denote by 〈uco(L),v,u,t, λx.>, λx.x〉 the
complete lattice of all closure operators on the complete lattice L, where for every
ρ, η ∈ uco(L), {ρi}i∈I ⊆ uco(L) and x ∈ L: (i) ρ v η iff ∀x ∈ L. ρ(x) � η(x),
or equivalently ([31]), ρ v η iff η(L) ⊆ ρ(L); (ii) (ui∈Iρi)(x) = ∧i∈Iρi(x); (iii)
(ti∈Iρi)(x) = x ⇔ ∀i ∈ I. ρi(x) = x; (iv) λx.> is the top element, whereas λx.x is
the bottom element.



2.1 Abstract Interpretation and Closure Operators

A key point in Cousot and Cousot abstract interpretation theory ([9]) is the equiv-
alence between the Galois insertion and closure operator approach to the design of
abstract domains. Usually, the Galois insertion approach is the most used. In this
case, D is an abstraction of C if there exist α and γ such that (γ,D,C, α) is a Ga-
lois insertion. It is well known since [9] that the real essence of an abstract domain
lies with the closure operator associated with the corresponding G.i.. Actually, an
abstract domain is just a “computer representation” of its logical meaning, namely
its image in the concrete domain. In fact, using a different but lattice-theoretic iso-
morphic domain changes nothing in the abstract reasoning. This logical meaning of
an abstract domain is exactly captured by the associated closure operator on the
concrete domain. More formally, on one hand, if (γ,D,C, α) is a G.i. then the clo-
sure associated with D is the operator ρD = γ ◦ α on C. On the other hand, if ρ
is a closure on C and ι : ρ(C) → D is an isomorphism of complete lattices (with
inverse ι−1) then (ι−1, D,C, ι ◦ ρ) is a G.i.. By the above equivalence, it is not re-
strictive to use the closure operator approach to reason about abstract properties up
to isomorphic representations of abstract domains. Thus, in the rest of the paper,
we will feel free to use most of the times this approach, and whenever we will say
that D is an abstraction of C (or C a concretization of D), viz. C � D, we will
mean that D ∼= ρD(C) for some closure ρD ∈ uco(C). It is well known ([9]) that the
order relation on uco(C) corresponds to the order by means of which abstract do-
mains are compared with regard to their precision of representation. More formally,
if ρi ∈ uco(C) and Di

∼= ρi(C) (i = 1, 2), D1 is more precise than D2 iff ρ1 v ρ2

(i.e. ρ2(C) ⊆ ρ1(C)). Since, clearly, D1 is more precise than D2 iff there exists
ρ ∈ uco(D1) such that D2

∼= ρ(D1), then we can equivalently write D1 �D2. There-
fore, to compare domains with regard to their precision, we will only speak about
abstractions between them, and use � to relate both non-homogeneous domains,
i.e. domains which are not Moore-families of a more concrete domain, and homoge-
neous domains, i.e. closure operators on a concrete domain. Further, we will often
use the equality symbol = between domains instead of the more rigorous symbol of
isomorphism ∼=.

In view of this equivalence, the lub and glb on uco(C) get a clear meaning. Sup-
pose {ρi}i∈I ⊆ uco(C) and Di

∼= ρi(C) for each i ∈ I . Any domain D isomorphic to
the lub (ti∈Iρi)(C) is the most concrete among the domains which are abstractions
of all the Di’s. The interpretation of the glb operation on uco(C) is twofold. Firstly,
any domain D isomorphic to the glb (ui∈Iρi)(C) is (isomorphic to) the well known
reduced product ([9]) of all the domains Di. Further, the glb D, and hence the re-
duced product, is the most abstract among the domains (abstracting C) which are
more concrete than every Di. Thus, we will denote the reduced product of abstract
domains by the glb symbol u.

3 (Pseudo-)Complements of Abstract Interpretations

A consequence of the isomorphism between the lattice of abstract interpretations
of a concrete domain C and the corresponding lattice of closure operators uco(C),
is that it is not in general possible to define the lattice-theoretic complement of



abstract interpretations. This follows from results in [15, 23] saying that uco(C) is
complemented (or, equivalently, distributive or a Boolean algebra) iff C is a complete
well-ordered chain. This condition is clearly too restrictive for abstract interpretation
of programming languages. The following example shows this problem in a simple
finite lattice.

Example 1. Consider the following finite lattice C.
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The closure operators (or equivalently abstract interpretations) on C are the fol-
lowing: ρ1 = {>}, ρ2 = {>, a}, ρ3 = {>,⊥}, ρ4 = {>, b}, ρ5 = {>, a,⊥}, ρ6 =
{>, b,⊥}, ρ7 = {>, a, b,⊥}.
They form the lattice uco(C) depicted below.
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It is immediate to observe that uco(C) is not complemented. For instance, ρ3 does
not have the complement in uco(C). 2

The idea of this paper is to use a different and weaker notion of complementation
in uco(C) as a systematic approach for complementation of abstract interpretations.
Indeed, while uco(C) is not in general complemented, it is in practice always pseudo-
complemented, as proved in [19].

Let L be a meet semi-lattice with bottom element ⊥. The pseudo-complement
of x ∈ L, if it exists, is the (unique) element x∗ ∈ L such that x ∧ x∗ = ⊥ and
∀y ∈ L. (x ∧ y = ⊥) ⇒ (y � x∗). If every x ∈ L has the pseudo-complement, we say
that L is pseudo-complemented. In a complete lattice L, if the pseudo-complement
of x ∈ L exists then it is always defined as x∗ = ∨{y ∈ L | x ∧ y = ⊥}.

Example 2. Consider the lattice of closure operators of Example 1. It is easy to
verify the following pseudo-complements for the elements in uco(C): ρ∗1 = ρ7, ρ

∗
2 =

ρ4, ρ
∗
3 = ρ7, ρ

∗
4 = ρ2, ρ

∗
5 = ρ4, ρ

∗
6 = ρ2 and ρ∗7 = ρ1. 2

The following definition and results are recalled from the recent paper [19]. In
what follows, we assume that L is a complete lattice.

Definition 3. L is chain inf-distributive if for any chain C ⊆ L and for each x ∈ L,
x ∧ (∨C) = ∨y∈C(x ∧ y). 2



Remark. It is worth noting (as pointed out in [19]) that the chain inf-distributivity
property is strictly weaker than the well known complete inf-distributivity property
(viz. ∀x ∈ L.∀Y ⊆ L. x ∧ (∨Y ) = ∨y∈Y (x ∧ y)). For instance, any lattice satisfying
the ascending chain condition is obviously chain inf-distributive, but not necessarily
complete inf-distributive (which for a finite lattice amounts to be distributive). 2

This notion of chain inf-distributivity is central in the following result.

Theorem4. If L is chain inf-distributive then uco(L) is pseudo-complemented.

By the above remark, the following corollary is immediate.

Corollary 5. If L satisfies the ascending chain condition then uco(L) is pseudo-
complemented.

Therefore, it is possible to define a weaker notion of complementation for abstract
interpretation, which is precisely pseudo-complementation. In this case, the abstract
domain to factorize plays the rôle of L.

Suppose D is an abstraction of the complete lattice C, and assume that C is
chain inf-distributive. Exploiting Theorem 4 we can give the following definition of
complement of abstract interpretations1.

Definition 6. The complement of D with respect to C is the complete lattice C∼D
given by the set of fixpoints of the pseudo-complement ρ∗D (in uco(C)) of ρD. 2

It is immediate to observe that if C �D then C �C∼D. Therefore, the comple-
ment C∼D is an abstraction of C. As observed previously, the pseudo-complement
of ρD is expressible as ρ∗D = t{ρ ∈ uco(C) | (ρD u ρ)(C) = C}. This equality
makes clear the meaning of the complement: C ∼ D is the most abstract among
the domains (abstracting C and) such that their reduced product with D yields
C. Moreover, C may be thought of either as a concrete domain or as an abstract
domain. In both cases, the complement C ∼D intuitively captures what program
properties representable by the domain C are ignored and left out by its abstraction
D, allowing to understand more in depth how the abstraction process led from C to
D. By Definition 6, we fix in C the representation of the complement C∼D, being
C ∼D = ρ∗D(C), and hence a subset of C. Obviously, any other lattice isomorphic
to C∼D can be considered in all respects as the complement. From now on, when-
ever we will speak about complements we will suppose that the conditions for their
existence hold.

The following result, which is recalled from [7, Theorem 4.2.0.4.7], provides a
simple way to generalize the pseudo-complement to arbitrary abstractions in the
lattice of abstract interpretations.

Proposition7. Let L be a complete lattice, and η ∈ uco(L). Then, uco(η(L)) ∼=
↑η = {ρ ∈ uco(L) | η v ρ}.

1 We abuse terminology by (re)naming complement the notion of pseudo-complement.



Therefore, we can apply Theorem 4 to arbitrary pairs of elements in the lat-
tice of abstract interpretations, namely we can always complement a domain with
respect to any more concrete chain inf-distributive domain in the lattice of ab-
stract interpretations. In particular, assume C be a concrete domain, D an ab-
straction of C and E an abstraction of D, with corresponding closures ρD and
ρE , respectively. In this case, while the computation of D ∼ E requires that D is
chain inf-distributive, the domain C can be merely a complete lattice. The com-
plement D ∼ E is given by the set of fixpoints of the pseudo-complement ρ∗E =
t{ρ ∈ uco(D) | (ρE u ρ)(D) = D}, a closure operator on D. Proposition 7 says
that uco(D) and {ρ ∈ uco(C) | ρD v ρ} are isomorphic complete lattices. Hence,
the complement D∼E can be obtained as a pseudo-complement on the domain C,
namely ρ∗E ◦ ρD = t{ρ ∈ uco(C) | (ρE ◦ ρD) u ρ = ρD}, which corresponds precisely
to the expected intuitive meaning of D∼E.

The following algebraic properties of the complement operation ∼ on abstract
interpretations can be easily derived from similar properties of pseudo-complemented
lattices (see [2, 17, 29]).

Proposition 8. Let C be a chain inf-distributive lattice, C �D,E, and > the most
abstract interpretation of C. Then,

(a) D � C∼(C∼D);
(b) (D �E) ⇒ (C∼E) � (C∼D);
(c) (C∼D) = C∼(C∼(C∼D));
(d) (C∼D = >) ⇔ (D = C);
(e) C∼> = C and C∼C = >.

There exists a wide class of abstract domains for which we can always compute
the complement. Indeed, the overwhelming majority of the abstract domains used
as basis of a static analysis satisfies the ascending chain condition (even, most of
them are finite domains). Furthermore, even if the abstract domain does not satisfy
the ascending chain condition (this happens whenever some widening/narrowing
operators used to accelerate the convergence above least fixpoints are provided),
the chain inf-distributivity property can be checked for it. To this aim, it is worth
noting that any powerset ordered with the subset (or supset) relation is complete inf-
distributive, and hence chain inf-distributive. Moreover, as a remarkable example,
the abstract lattice of intervals of integer numbers introduced in [8] to analyze the
values of an integer variable does not satisfy the ascending chain condition and is
not distributive, but it is chain inf-distributive.

4 Complements to Decompose Abstract Domains

Complements of abstract interpretations can be used to design new abstract domains
for analysis. The following two sections apply this idea, in particular exploiting
factorizations of abstract domains. Very often, abstract domains for analysis are
incrementally designed using the reduced product operation of simpler domains (e.g.,
in logic programs analysis see [3, 24, 28]). This introduces modularity in domain
design, which is helpful both to design domain dependent abstract operations and
to simplify proofs of correctness for complex domains of analysis.



Definition 9. A decomposition for a domain D is a tuple 〈Di〉i∈I such that D =
ui∈IDi. 2

Obviously, if 〈Di〉i∈I is a decomposition of D then each Di is an abstraction of D.
Moreover, notice that a trivial decomposition always exists. In fact, for any domain
D the pair 〈D,>〉 (and 〈>, D〉) is evidently a decomposition of D.

Clearly, the complement operation provides a systematic way to factorize a given
domain into binary decompositions. This may be helpful to decompose domains
that are not originally designed by incremental products of more abstract domains.
The case of the domain Sharing for aliasing analysis of logic programs ([21]) is a
typical case of a complex abstract domain for which no decomposition is known in
the literature. This case will be discussed in Section 6. The advantage of abstract
domain decompositions is therefore evident: instead of proving properties for general
domains, e.g. correctness for abstract operations, we can prove properties for more
abstract (and simple) factors, provided that these properties are preserved under
composition, which is in our case the reduced product of abstract interpretations.

As mentioned above, an example of such properties is correctness for abstract
operations. Let (γ,D,C, α) be a Galois insertion. An abstract operation opa : D → D
is a correct approximation of op : C → C iff α ◦ op ◦ γ �D opa ([8]).

Proposition10. Let C be a domain, op : C → C be a monotonic operation, and
C � D. If 〈DI〉i∈I is a decomposition of D with Galois insertions (γi, Di, D, αi)
(i ∈ I), and opi : Di → Di (i ∈ I) are corresponding correct approximations of op,
then λx. ∧i∈I γi(opi(αi(x))) is a correct approximation of op.

More in general, we can characterize a class of properties of abstract domains
which is compositional with respect to the reduced product.

Definition 11. Let C be a domain and uco(C) the corresponding lattice of abstract
interpretations of C. A conjunctive property of abstractions is a set of abstractions
of C, π ⊆ uco(C), such that if {Di}i∈I ⊆ π then ui∈IDi ∈ π. 2

Clearly, any closure on uco(C), i.e. an element of uco(uco(C)), identifies a conjunc-
tive property of abstractions of C, being a Moore-family of abstract domains. It is
therefore immediate to prove the following result.

Proposition12. Let C �D, and π be a conjunctive property on C. If D ∈ π and
C∼D ∈ π then C ∈ π.

Example 13. Cousot and Cousot introduced in [9] the notion of disjunctive abstract
domain. An abstract domain D ∈ uco(C) is disjunctive iff D is an additive closure.
Let π∨ ⊆ uco(C) be the set of disjunctive abstractions of C. It is easy to verify
that π∨ is actually a Moore-family when C is a completely distributive lattice.
Thus, by Proposition 12, π∨ can be verified compositionally on abstract domain
decompositions. A simple example is in Example 16. 2

Analogously, domain decomposition may help to minimize space-complexity in
presence of complex domains. This may provide more compact representations for
abstract domains as tuples of factors.



Definition 14. Let 〈Di〉i∈I and 〈Dj〉j∈J be decompositions of D. 〈Di〉i∈I is better
than 〈Dj〉j∈J if

∑
i∈I |Di| ≤

∑
j∈J |Dj |. A decomposition for a domain is minimal

if it has no better decompositions. 2

Complementation can also be used to optimize reduced product of abstract do-
mains. Let us consider a decomposition 〈Di〉i∈I for a domain D. The complement
(ui∈IDi) ∼Dk (k ∈ I) of Dk with respect to the product ui∈IDi is the most ab-
stract domain such that the product with Dk is (isomorphic to) ui∈IDi. Thus, fixing
I = {1, 2} and k = 1, (D1 uD2)∼D1 is an abstraction of D2, and (D1 uD2)∼D1

may be used to substitute D2 in the decomposition of D. Indeed, in this case,
〈D1, (D1 u D2) ∼ D1〉 (and 〈(D1 u D2) ∼ D2, D2〉) is better than 〈D1, D2〉. This
decomposition is also the least decomposition among the decompositions having D1

(D2) as factor. A further improvement can be obtained by introducing the following
equivalence relation on abstract domains.

Definition 15. Let D be a domain, and D�D1, D2. Then, D1 ≈D D2 iff D∼D1 =
D∼D2. 2

Clearly, ≈D is an equivalence relation on uco(D). Also, it is immediate to prove
that D1 ≈D D2 iff D ∼ (D ∼ D1) = D ∼ (D ∼ D2). Since λx.D ∼ (D ∼ x) is a
closure operator on uco(D) (by (a), (b) and (c) in Proposition 8), then ≈D is a join-
complete congruence relation on uco(D) ([9]). Thus, t[D1]≈D

is the most abstract
domain which factorizes D as D1 does. In particular, (t[D1]≈D

) u (D∼D1) = D.
Hence, a further improvement of the decomposition 〈D1, D∼D1〉 can be obtained
by considering 〈t[D1]≈D

, D∼D1〉.
This approach provides a way to avoid possible redundancies due to elements

which can be recostructed by composing more abstract factors, and may help to
improve the space-complexity of the product. Furthermore, this is clearly the best
we can do in this direction. Of course, a decomposition can be decomposed further
by complementing one of the factors. Examples of this use of the complement will
be given later on. We now give a simple example to illustrate how the notion of
complement actually works.

Example 16. Let us consider the typical example of the rule of signs ([8, 9]). The
concrete domain is ℘(ZZ) (ordered with inclusion ⊆), whereas the abstract domain
D is depicted below. The concretization and abstraction maps are the most natural.
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≥ 0
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It is easy to verify that all the possible abstractions of this domain, i.e. all the
closures on D, are the following: ρ1 = {>}, ρ2 = {>,≥ 0}, ρ3 = {>, 0}, ρ4 =
{>,⊥}, ρ5 = {>,≤ 0}, ρ6 = {>,≥ 0,⊥}, ρ7 = {>,≥ 0, 0}, ρ8 = {>, 0,⊥}, ρ9 =
{>,≤ 0, 0}, ρ10 = {>,≤ 0,⊥}, ρ11 = {>,≥ 0, 0,⊥}, ρ12 = {>,≤ 0,≥ 0, 0}, ρ13 =
{>,≤ 0, 0,⊥}, ρ14 = D.



Since D is a finite lattice, by Corollary 5, uco(D) is a pseudo-complemented lattice.
In fact, uco(D) is the lattice depicted below, and it is simple to verify the pseudo-
complementation of uco(D) straight from its Hasse diagram.
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Indeed, the pseudo-complements, i.e. the complements with respect to D of the
abstractions, are as follows: ρ∗1 = ρ14, ρ

∗
2 = ρ10, ρ

∗
3 = ρ14, ρ

∗
4 = ρ12, ρ

∗
5 = ρ6, ρ

∗
6 =

ρ5, ρ
∗
7 = ρ10, ρ

∗
8 = ρ12, ρ

∗
9 = ρ6, ρ

∗
10 = ρ2, ρ

∗
11 = ρ5, ρ

∗
12 = ρ4, ρ

∗
13 = ρ2, ρ

∗
14 = ρ1.

Suppose D has been incrementally designed by reduced product of the domains
D1 and D2 corresponding to the closures ρ2 and ρ13, respectively. The complement
(D1 u D2) ∼D1 is just the domain corresponding to the closure ρ∗2 = ρ10. In this
case, (D1uD2)∼D1 is a strict abstraction of D2. Therefore, we can safely substitute
D2 by (D1 uD2)∼D1, getting a more concise and less expensive representation of
the product (see the figure below).
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(D1 uD2)∼D1

Moreover, both D1 and (D1 uD2)∼D1 (or D2) are disjunctive, and ℘(ZZ) is clearly
completely distributive. Hence, by Example 13, D is disjunctive as well. 2

5 Functional Programming: Complementing Comportment
Analysis

In this application we consider complements with respect to the lattice of com-
portment analysis designed by Cousot and Cousot in [13] to generalize Mycroft’s
strictness and termination analysis ([25, 26]), Hughes and Wadler’s projection anal-
ysis ([30]), and Hunt’s PER analysis ([20]). This provides a decomposition of the



truth γβ→β(top) = Dβ→β

strictness γβ→β(str) = {f | f(⊥) = ⊥}
totality γβ→β(tot) = {f | ∀x ∈ Dβ \ {⊥}. f(x) 6= ⊥}
identity γβ→β(ide) = {f | ∀x ∈ Dβ. f(x) = ⊥ ⇔ x = ⊥}
divergence γβ→β(div) = {f | ∀x ∈ Dβ. f(x) = ⊥}
convergence γβ→β(con) = {f | ∀x ∈ Dβ. f(x) 6= ⊥}
falsity γβ→β(∅) = ∅

Table 1: Basic comportment analysis BC.

comportment lattice into sensible factors, whose conjunction corresponds precisely
to the original domain.

The comportment analysis applies to higher order monomorphically typed lazy
functional programming languages. To illustrate the Cousot and Cousot’s comport-
ment analysis, we consider abstract interpretation of a simply typed lambda calculus
with basic types β. Denote Dτ the domain of values of a type τ , and by ⊥ its bottom
element. For simplicity we consider abstraction of function basic types β → β (i.e.,
elements in Dβ→β = Dβ → Dβ , the lattice of total monotonic functions from Dβ

to Dβ ordered pointwise). The following abstract domain BC represents the lattice
of basic comportment analysis, ordered with respect to the approximation order, for
function types β → β.
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tot

top
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∅

div con

Basic comportment BC

The meaning of basic comportments in BC is given in Table 1, in terms of a con-
cretization function γβ→β mapping basic comportments into ℘(Dβ→β), the concrete
domain of the standard collecting semantics.
It is easy to verify that both the standard Mycroft’s strictness S and termination T
analyses are actually abstract interpretations of BC , yielding the following simpler
domains, respectively.

•

•

•

div

str

top

Strictness S

•
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•

con

tot

top

Termination T

It is easy to see that BC ∼ S = T and BC ∼ T = S, namely the complement of
the strictness (termination) analysis with respect to the basic comportment is the



termination (strictness) analysis. In particular, the identity information ide as well
as ∅ can be constructed by conjunction of strictness and termination values (str
and tot for ide, div and con for ∅). Therefore, the basic comportment lattice BC

is precisely the reduced product of strictness and termination, being strictness and
termination the most abstract factors of comportment analysis. As we will show
later on, the identity information will be always definable as conjunction of factors
involving strictness information (i.e., in factorizations by complements of analysis
involving strictness, like strictness or projection analysis), even though the comport-
ment lattice will be lifted at a powerset level.

As proved by Cousot and Cousot in [13], more precise comportment proper-
ties for higher-order functional languages can be characterized by abstraction of a
collecting semantics. The abstraction of sets of functions in Dβ→β yields a corre-
sponding abstract domain for comportments which can be systematically derived
by a powerset completion on the basic comportment lattice BC . In this case, the
meaning of sets Ψ of basic comportments is given by a concretization function γ℘

such that γ℘(Ψ) = ∪{γβ→β(ψ) | ψ ∈ Ψ}. The following lattice C, ordered by the
approximation order, corresponds precisely to this (extended) comportment analy-
sis. It is obtained by (e.g. anti-chain) powerset completion and reduction (viz. sets
of basic comportments denoting the same object in ℘(Dβ→β) are identified ([13])).
The new element abs corresponds here to the set of basic comportments {con, div}
and represents absence.
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Comportment C

As shown in [13], this lattice generalizes: projection P and dual-projection DP de-
picted respectively below, as well as the above strictness S and termination T anal-
yses (in the latter case, the concretization of an element x is the singleton {x}).
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Some interesting properties of comportment analysis can be studied by looking
at the complements of projection, dual-projection, strictness and termination with
respect to C. In particular, we observe that new abstract domains can be systemat-
ically derived as factors of the comportment lattice.

Note that C∼P characterizes possible divergence in total functions. This domain
factorizes C, where in particular the (disjunctive) identity information, i.e. {ide}
and {ide, div}, as well as the convergence {con} can be reconstructed by composing
C ∼P with projection P . The identity and convergence informations are therefore
redundant for the factors 〈P , (C∼P)〉.

A domain for totality analysis can be obtained by factorizing comportment with
respect to strictness, i.e. considering the domain C ∼S. This domain characterizes
precisely the non-strictness comportments. It is worth noticing that also in this case,
the identity information as well as ∅ can be reconstructed by composing C∼S with
strictness, and it is therefore redundant for the factors 〈S, (C∼S)〉.

We finally observe that C ∼T = C ∼DP . This domain characterizes exactly the
non-terminating (or divergent) comportments.
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C∼T = C∼DP

Note that both 〈P , (C ∼P)〉 and 〈S, (C ∼S)〉 provide minimal binary factorizations
of the comportment lattice, which are actually better than 〈T , (C∼T )〉.

A domain for non-terminating & non-strictness comportments can be further
obtained as the complement of strictness with respect to C ∼T , or equivalently as
the complement of termination with respect to C ∼ S. Notice that (C ∼ S) ∼ T =
(C ∼ T ) ∼ S = (C ∼ DP) ∼ S, and this domain characterizes non-termination &
non-strictness analysis, as depicted below.

{tot, div}

{top}

{abs}
•

•

•

(C∼S)∼T = (C∼T )∼S = (C∼DP)∼S

This application shows the logical relation between comportment analysis and
strictness, projection, dual-projection and termination analysis in higher-order ab-
stract interpretation of functional languages. In particular, it shows that comport-
ment analysis cannot be obtained as reduced product of projection and dual-pro-
jection, as the elements {tot, div} and {ide, div} cannot be reconstructed. Indeed,



C ∼P is not comparable (as abstract interpretation) with DP . However, note that
C = P u DP u (C ∼ P) may provide an alternative factorization of the comport-
ment domain. The Cousot and Cousot’s comportment lattice is essential in order
to apply our complement factorization to strictness, termination, projection and
dual-projection analysis. This because it provides a common base to reason about
these analyses in the standard framework of abstract interpretation based on Galois
insertions.

6 Logic Programming: Complementing Def w.r.t. Sharing

In this section, we apply the theory developed previously to the case of Sharing , a
well known domain for variable aliasing and groundness analysis of logic programs,
introduced by Jacobs and Langen in [21]. The ability of this domain to represent, in
addition to variable sharing, ground-dependency (also called covering) has already
been studied in [5]. In particular, in [5] it has been shown that Sharing enjoys a
Galois insertion with a more abstract domain that completely captures its ability
to express ground-dependency. We show that indeed this domain coincides with the
domain Def , introduced by Dart in [14]. It is natural then to try to characterize what
is left of Sharing once we take Def out of it, i.e. the complement of Def with respect
to Sharing . Of course, this domain must capture exactly the information that is
represented by Sharing but ignored by Def . Thus, on the one hand, it must represent
variable independence and sharing, and, on the other hand, it must disregard ground-
dependency. We will show that such a domain is characterized by a surprisingly
simple closure operator on Sharing.

6.1 The Domain Sharing

Let Var be a countable set of variables, and let VI be any (non-empty) finite sub-
set of Var containing the variables of interest. As usual, variables are denoted by
x, y, z, u, . . .. We assume that the concrete domain of computation of a given logic
program is the powerset ℘(Subst) of idempotent substitutions, ordered with set-
theoretic inclusion. Every substitution σ ∈ Subst is an idempotent function mapping
each x ∈ Var to a term σ(x) built on the variables in Var , such that σ(x) 6= x for
a finite number of variables x. A substitution σ is typically specified by listing its
non-trivial bindings, viz. σ = {x/σ(x) | σ(x) 6= x}.

In what follows, several abstract domains will de described. For the sake of sim-
plicity, the abstraction and concretization functions for a domain will be denoted
simply by α and γ, since the context will allow to disambiguate them correctly.

The abstract domain Sharing is defined by {S ⊆ ℘(VI ) | S 6= ∅ ⇒ ∅ ∈ S}.
Sharing is a finite distributive lattice with respect to the partial order given by set-
theoretic inclusion. It enjoys a Galois insertion into the concrete domain ℘(Subst).
For y ∈ Var , let occ(σ, y) = {z ∈ VI | y ∈var (σ(z))}. The abstraction of a sin-
gleton {σ} is defined as α({σ}) = {occ(σ, y) | y ∈ Var}. Thus, the abstraction
and concretization functions between ℘(Subst) and Sharing are defined as follows:
α(Σ) = ∪{α({σ}) | σ ∈ Σ} and γ(S) = ∪{Σ | α(Σ) ⊆ S}. Hence, the fol-
lowing points hold about α({σ}). Let x and y be in VI : (i) x and y share in



σ iff ∃A ∈ α({σ}) such that {x, y} ⊆ A; (ii) x is ground in σ iff for no ele-
ment A ∈ α({σ}), x ∈ A. For instance, assuming VI = {x, y, z, u}, the element
{∅, {y, z}, {y, z, u}} is an element of Sharing representing substitutions with respect
to which x is ground, and z and y may share, and so may y and u, and z and
u. In particular2, σ1 = {x/a, y/b, z/c} and σ2 = {x/b, y/v, z/v, u/v} satisfy these
properties. Therefore, {σ1, σ2} ⊆ γ({∅, {y, z}, {y, z, u}}).

6.2 Def : an Abstraction of Sharing Expressing its Ground-Dependency

Information

The ground-dependency information on VI represented by Sharing has been char-
acterized in [5] by means of another domain whose elements are Boolean functions
on VI . As shown below, this domain coincides exactly with the well known domain
Def ([14]). It is well known that Boolean functions can be represented by means of
propositional formulae (e.g. see [1, 22]). Recall that a Boolean function f is positive
if f(true,. . . , true) = true. Def is the finite lattice (with respect to the usual impli-
cation partial order |=) of positive Boolean functions whose models are closed under
intersection, plus the bottom element false (for more details see [1]). The abstrac-
tion and concretization maps between Def and ℘(Subst) are well known, and can be
found, e.g., in [22]. For instance, assuming VI={x, y, z, u}, the formula x∧(y ↔ z) is
an element of Def that represents the substitutions σ such that for any instance σ′ of
σ the following conditions hold: the term σ′(x) is ground, and σ′(y) is ground iff also
σ′(z) is ground. In particular, σ1 = {x/a, y/b, z/c} and σ2 = {x/a, y/w, z/w, v/u}
satisfy this property. Thus, {σ1, σ2} ⊆ γ(x ∧ (y ↔ z)).

The abstraction function which maps an element S in Sharing into a formula
capturing its ground-dependency information is defined as follows3 ([5]):

C(S) = ∧{∧W1 → ∧W2 | W1,W2 ⊆ VI , ∀A ∈ S. (W2 ∩ A 6= ∅) ⇒ (W1 ∩ A 6= ∅)}.

For instance, if VI = {x, y, z, u} and S = {∅, {x, y}, {x, z}}, then the formula C(S) =
u ∧ (x → (y ∧ z)) outlines the fact that for every σ ∈ γ(S) the variable u is ground
in σ, and {x} covers {y, z} in σ.

Actually, the image of Sharing through the abstraction map C is the domain
Def , as stated below.

Proposition 17. The abstraction map C defines a G.i. of Def into Sharing.

The interest in this abstraction of Sharing relies also on the fact that it completely
captures the computational behaviour of Sharing with respect to groundness, i.e. if
we consider any abstract computation in Sharing starting from an element S and
resulting in the element S′, the corresponding computation in Def starting from
C(S) produces C(S′) as result ([6]).

2 We adopt the usual notation denoting ground terms by a, b, c, . . ..
3 If W is a set of formulae then ∧W denotes the conjunction of these formulae.



6.3 Sharing+: the Complement of Def w.r.t. Sharing

We have already observed that the elements of Sharing contain several sorts of
information on variable instantiation and dependency. An important rôle is played
by the singletons. Consider, for instance, S ∈ Sharing that contains the singleton
{x}, for some x ∈ VI ; the following two points hold for such an S.

(i) From the definition of C, it follows that there is no W ⊆ VI such that x 6∈W and
C(S) |= ∧W → x. This means that S carries neither groundness nor covering
information about x.

(ii) From the observations at the end of Subsection 6.1, it easily follows that if we
consider S and S′ = S \ {x}, then for all y, z ∈ VI , there exists σ ∈ γ(S) such
that y and z share in σ iff there exists σ′ ∈ γ(S′) such that y and z share in it.
Thus, singletons have no influence on the sharing information contained in S.

Using the above two points together, we can conclude that adding singletons to
an element S ∈ Sharing eliminates its groundness and covering information and
preserves its sharing information. This suggests to define a new abstract domain,
that we call Sharing+, by considering only those elements of Sharing that contain
all the singletons of VI . Let T = {{x} | x ∈ VI } ∪ {∅} ∈ Sharing , and consider the
operator (·)+ on Sharing defined as S+ = S ∪ T , for all S ∈ Sharing .

Proposition18. (·)+ : Sharing → Sharing is a closure operator.

Thus, the domain Sharing+ is exactly the image, i.e. the set of fixpoints, of this
closure operator, namely Sharing+ = {S ∪ T | S ∈ Sharing}.

By point (i) above, next result follows easily. It makes formal the intuition that
each element of Sharing+ expresses no covering information.

Proposition19. ∀S ∈ Sharing+. C(S) = true.

Next theorem states the main result of this section: Sharing+ is the complement
of Def with respect to Sharing , and Def is the most abstract domain that factorizes
Sharing into Sharing+.

Theorem20. Sharing∼Def = Sharing+ and Sharing∼Sharing+ = Def .

The interest of the above theorem is twofold. First, it is an example of the practical
impact of the notion of complement presented in the paper. Secondly, it is an example
of modularization of abstract domains, that can be easily integrated with the results
in [3] to improve efficiency and precision of the analysis.

7 Conclusion

In this paper we have introduced the notion of complementation in abstract interpre-
tation. Complementation can also be used for semantics related by abstract interpre-
tation. Cousot and Cousot proved in [10, 11] that abstract interpretation can be used
to systematically design hierarchies of semantics. In particular, both the standard
denotational and axiomatic semantics can be derived by abstract interpretation of



a generalized SOS operational semantics of the language. This technique has been
recently applied in logic programming in [4, 18], where hierarchies of collecting se-
mantics are designed by abstracting SLD resolution. In particular, [18] proved that
it is always possible to design “optimal” collecting semantics for analysis of logic
programs, by composing (with reduced product) the declarative semantics of Her-
brand models with the specific property to model. The interest in complementation
is therefore apparent in this field: semantics, as well as analyses, can be composed
and complemented, providing a real algebra of observable properties and semantics
of programming languages.
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