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What is this text?

My first paper on formal topology [32] was sent to the publisher fifteen years ago. Tt was the
result of two years of intense work, in close collaboration with Per Martin-Lof. Since then, T never
ceased to think and lecture about formal topology, and to discuss it with several people, mainly
with Martin-TL.of, Silvio Valentini (since 1991) and Thierry Coquand (since 1993), but later also
with Giovanni Curi, Silvia Gebellato and Milly Maietti. T thank all of them, and all other people
with whom formal topology has been shared.’

Since fifteen years ago, a lot has changed in formal topology, in technical and in conceptual
understanding. Tndeed, developing formal topology in a strictly constructive way, that is over an
intuitionistic and predicative foundation (such as Martin-TLof’s type theory, see helow for a short
introduction), has forced me to develop an alternative mathematical intuition and has helped me
to reach a new global attitude towards the foundations of mathematics.

When T first gave a full course on formal topology, in Padua in 1990, T also first conceived
the idea of writing a book on it. My manuscripts and typescripts have increased in number and
length since then. However, in December 1995 it happened that T was able to materialize my
new foundational attitude into a new fragment of mathematical thought, and T discovered what
T called the basic picture: a clear, very simple structure underlying topology and consisting of
symmetries and logical dualities. Mathematically, the basic picture is a natural generalization
of topology, obtained by considering relations rather than functions as transformations. For the
debate on foundations, it should be interesting that it is well visible only over an intuitionistic and
predicative foundation, and this probably explains why it was not noticed before.

The discovery of the basic picture caused a radical and extensive reformulation of formal
topology itself, in particular by the introduction of a binary positivity predicate, the presence
of co-induction and the generalization to nondistributive topology. This long paper contains the
principles and the comments which T consider useful for the actual further development of this re-
formulation (and thus also of the book, whose writing has to be postponed). My ideal reader here
18 a colleague sincerely interested in constructive topology, including its conceptual motivations up
to philosophical generalizations. So my aims are:

1. to give information on what has been done in formal topology since [32], and to give answers
to some of the frequently asked questions about formal topology;

2. to show how the basic picture serves as the starting point for a new conception and a new
technical development of constructive topology;

3. to verbalize my present understanding of how and why one should develop mathematics in a
way which is different from usual ones.

'T also thank Giovanni Curi, Per Martin-T.6f and Peter Schuster for comments which have been useful in the
revision of a first draft.



These three items correspond to the three sections below, which can be read in any order.
Readers less familiar with pointfree topology could look at the first parts of section 2 and af
section 3.2.2 for some help.

The percentage of comments and personal opinions will be higher than what is to be expected
according to a well-established tradition. T hope the readers (at least two, so that T can use “they”
or “them” with no reference to gender) will forgive me and think that my effort of giving a general
picture was worthwhile.

Some ideas about type theory

Martin-TL.of’s type theory [27] (henceforth type theory) aims at a constructive foundation of mathe-
matics, which is alternative to usual axiomatic set theories such as ZFC and to categorical universes
like topoi. T explain my reasons for choosing type theory as a foundation in part 3, and T show
how this can be done in practice in section 1.3.1. T recall here very briefly (and necessarily with
imprecisions and gaps) some general facts about type theory, in particular those which make it
different from ZFC or from topos theory. My aim is just to warn the readers, and possibly make
them curious to learn more.

The name “type theory” is due to the fact that any entity goes together with its (logical) type.
To know that A is a set means that we know by which rules all its elements are formed; these rules
must be in front of us, hence in finite number, and cannot change with time.

If we know that A is a set, then we know the rules to produce its elements, and so clearly to say
that a is an element of A means that a is produced by the rules; we write a € A. Tn type theory
one considers also objects which are not elements of a set, but rather belong to a collection, or
logical type (or category in [27]). Two typical and important examples are the collection of subsets
of a given set (see section 1.3.1) and the collection of all sets (or propositions).

We can be in the position of knowing that B(a) is a set, on the assumption that a is an element
of a set A; this is called a family of sets indexed by A, and written B(a) set (a € A). Similarly, we
can be in the position of knowing that b(a) is an element of a set B, on the assumption that a € A;
this is just our notion of function from A to B, and is written b(a) € B (a € A). More generally,
if B is not a set. but a family of sets depending on an index set A, b(a) € B(a) (a € A) means
that we know b(a) to be an element of B(a) whenever a € A. By abstracting on the variable a, we
obtain the elements of a new set (TTz € A)B(x), called the direct product. Tf ¢ € (TIz € A)B(x)
and a € A, by applying ¢ to a, we obtain an element of B(a), which we here denote again by ¢(a).
In the special case in which B does not depend on A, the direct product is denoted by A — B; if
c€ A— Bandag€ A, then ¢(a) € B.

All other definitions of sets in type theory are given in a similar way. In particular, given a set
A and a family B(a) set (a € A), we can form the disjoint union (X2 € A)B(z), whose canonical
elements are pairs {a,b) with a € A and b € B(a). The special case in which B does not depend
on A gives the cartesian product A x B, the set of ordered pairs from A and B.

The standard formulation of type theory, as in [27] or [30], includes the interpretation of
propositions as sets. So the judgement that P is a proposition obeys formally the same rules as the
judgement that P is a set, reading p € P as p is a verification, or proof of P. In the proposition-
as-set interpretation, (TTz € A)B(z) is identified with (Vz € A)B(2) and (Xx € A)B(z) with
(3z € A)B(2), also in the sense that logical inference rules are just another reading of the rules for
corresponding sets. When B does not depend on A, (Vx € A)B(x) becomes implication A O B,
here often written also as A — B, and (X2 € A)B(2) becomes conjunction A& B. But this
Justification of logic 1s not necessary in formal topology; a treatment of logic which is distinct from
the theory of sets is equally good, as long as it satisfies the rules of intuitionistic logic.

The only way to give a constructive proof that a certain property P holds for all the infinitely
many elements of a set A, that is the only way to give meaning to a universal quantification over



an infinite domain A, is by proving that P holds on an element only by virtue of its possible forms,
which are only finitely many, that is one for each rule of A.

Type theory is quite different from an axiomatic theory of sets, such as ZF or ZFC. Using 7F
as a foundation means assuming that 7ZF has a model, and this model is taken as a universe of all
sets, in which mathematics is done using only the properties of sets as specified by the axioms. But
such universe is considered as given, and thus there is no information on how the sets, and hence
all other mathematical entitites, are built up. When topos theory is assumed as a foundation, the
universe is assumed to be a topos, and in this sense the situation i1s similar even if less properties
are valid.

In type theory, the universe in which mathematics is done is built up in the same time as
mathematics is built up. Tn practice, this means that whenever we use anything, we have total
information about it, or total knowledge of what it is and by which ingredients it has been built
up (while in ZF everything is reduced to only one ingredient, viz. sets, and only one relation, viz.
membership). Note that this methodological request is not. at all as unreasonable and diffieult to
fulfil as an education inside the ZF tradition might lead one to believe. On the contrary, it is very
natural and simple when any entity must be constructed: indeed, it is enough to keep information
about it in the same moment it is constructed. Tn type theory, the control of information is so
strict that any proof of any statement is automatically also an algorithm, or computer program
fulfilling that statement. This is the main source of strong interest in type theory by the computer
science community.

In the classical approach, information is often lost in an irreversible way. An important example
is the distinction between subset and characteristic function. Here a subset U/ of a set S is just
a property, or propositional function U(z) prop (# € S); we write as usnal U C S. Note that a
subset 1s never a set, because of the type difference.

Tf the collection of subsets is identified with the set. of functions S — {0, 1}, namely character-
istic functions, as it is done in ZF or in a boolean topos, then any subset I/ becomes decidable,
in the sense that for each 2 € S one can decide whether U(z) is true or not by calculating the
characteristic function at z.

Here the collection of subsets of a set S is not a set, since by the well known phenomenon of
diagonalization there is no way to give a finite stock of rules prescribing all the possible forms
which all subsets should have (see [39]). This is what - in formal terms - blocks impredicativity,
that is quantifications over subsets to produce a new proposition, or subset: simply, the subsets of
a set. do not form a set.

Note that it is not just a matter of names: one could call collections as “big sets” and sets as
“tiny sets”, or any other similar variation. The crucial point remains that a quantification over tiny
sets does not produce a tiny set. This distinction is what makes the strict control of information at,
all possible. Tn particular, it allows to justify strong rules for disjoint unions, or for the existential
quantifier. They permit to obtain, inside the formal system, two projection functions p, ¢ which
applied to a proof ¢ € (2 € A)B(z) produce an element p(¢) € A and the proof that B holds on
it, ¢(c¢) € B(p(c)). This allows to justify also the axiom of choice: if (V2 € A)(Jy € B)C(x,y) is
provable, then also (3f € A — B)(Vx € A)C(x, fz) is provable (see [27]).

This justification of the axiom of choice rests on the proposition-as-set interpretation. So, if
logic is given independently of set theory, the axiom of choice is no longer justified. But the
examples in which the axiom of choice is necessary seem, by experience, to be rare enough in
formal topology that one can point them out case by case.

To be able to actually develop mathematics over type theory, one needs a number of tools,
mainly notation and some auxiliary definitions, which are introduced in section 1.3.1 below. T
suggest the readers to read that section to be able to understand the notation which is used here
from now on and which is by now standard in formal topology.



1 Some remarks, some results

Tn this first section, T discuss the motivation of formal topology (section 1.1), T justify the original
definition and answer to some questions about it (section 1.2), and briefly review the developments
up to present (section 1.3). The new approach to formal topology, which T have called the basic
picture, will be treated in section 2.

1.1 The point of formal topology

A topological space is classically defined (cf. e.g. [22], [15]) as a pair (X, OX) where X is a set,
whose elements z,y, ... are called points, and @ X is a family of subsets of X, which contains §, X
and is closed under finite intersections and arbitrary unions. The family O X is called a topology
on the space X and the subsets in O X are said to be open.

The conditions on QX are written more precisely as:

01 §,XeoXx
02 forany F, I, CX,if /,)F € OX then FNF € 0X
O3 for any family of subsets F, if F C OX, then | JF € OX

This formulation of the notion of topological space is unacceptable, as it stands, from a predicative
point, of view, since apparently a quantification not only over subsets, but over families of subsets
(hence of the third order) is to be used. Though usually this is given meaning by conceiving the
collection of subsets as a completed totality, we now see that actually no intrinsic impredicativity
is involved, and that one can easily find a definition of topological space which is fully acceptable
also predicatively.

A collection of subsets, and @ X is one such, is most simply given in type theory as a set-indexed
family, that is a function, which we call ext , from some set,, which we call S, into PX. Tn this way
a quantification over open subsets - we cannot dispense with it in topology - can be reduced to a
quantification over the set S.

However, one cannot expect ext to give all open subsets as values; the special case in which
OX 1is the whole of PX - the discrete topology - would require P X to become indexed by the set
S, and this is not welcome in type theory.? Moreover, the expression of @3 would still require an
impredicative quantification.

These difficulties are solved by asking the family ext(a) C X (a € S) to be a base for the
topology. Thus subsets ext (a) are called (basic) neighbourhoods, and open subsets are defined as
arbitrary unions of neighbourhoods. That is, a subset D of X is open if and only if D = ext (U)
for some I/ C S, where ext () = |J,,;; ext (b). Without loss of generality,® we may assume that
the usual conditions on bases are satisfied in the sense that S 1s provided with a binary operation -
and with a distinguished element 1 such that

ext(1)= X and ext(a)N ext(b) = ext(a-b)

The resulting structure is called a concrete space (in [32], example 2.1), or a concrete presentation
of a topological space.

From our constructive point of view, this definition is certainly acceptable, but not sufficient to
develop topology. One has to add two further notions, that of formal topology and that of formal
point, and hence also that of formal space, as the collection of all formal points. Tn fact, in many
interesting examples, the collection X of points of a classical topological space is not given directly

2By adapting to type theory the well-known argument due to Diaconescu, it is shown in [24] that this would
bring to classical logic.

3This is actually not completely true: for ten years it has prevented me from seeing an important generalization,
see section 2.



as a sef, in the constructive sense. And this may happen also when basic neighbourhoods of X
can be given as a family ext indexed on a set S. The reason for this is that an infinite amount of
information, which means infinitely many basic neighbourhoods, may be necessary to determine
a point. The idea 1s then to consider elements a, b, c... of S as formal neighbourhoods, and hence
subsets [/, V, ... of S as formal substitutes of open subsets. One has to define, however, when two
subsets of S are topologically equivalent, that is when they produce the same open subset. This
leads to the definition of formal topology, which thus is a specific structure on the set of formal
neighbourhoods. Then an infinite amount of information can be given by a subset o of S, and
when o has some properties which make 1t formally similar to a point, it will be called a formal
point.

The method to obtain the definition of a formal notion, those of formal topology and formal
point to begin with, 13 always the same, and it can be described as formed by three steps:

1. Study the notion to be defined in the presentable case, in which both a set of points X and a
set, of formal neighourhoods S are present. This allows to choose some new primitives to be added
to the formal side, in view of step 2.

2. Analyse the structure induced on the formal side, and write down all those properties of the
primitives on S which can be expressed without mentioning the points of X. Of course, the best
choice of primitivesis that which allows to describe the original concrete notion in the best possible
way.

3. Abandon points altogether, and retain those properties of formal primitives as an axiomatic
definition.

We apply this method first of all to obtain the definition of formal topology itself. Tn the
concretely presentable case, two subsets U7, V' of S correspond to the same open subset of X when
ext V = ext /. To express this in pointfree terms, it is enough to express ext V C ext I/, and this
in turn, by the definition extV = U,.v ext a, reduces to (Va ¢ V)(exta C extU). So we add an
infinitary relation a < U as primitive, with the idea that it corresponds to exta C ext [/; using it
one can define V< U = (Va € V)(a < U), which then corresponds to extV C extl/, and finally
V=g U=VaU&U <V will correspond to extV = ext /.

The distinguished element 1 and the operation - are also kept, and the idea 1s that ext1 = X
and that ext (a-b) = exta N exth. Finally, we also add a unary predicate Pos(a) prop (a € S),
whose meaning in the concrete case is that ext a is inhabited; in fact, this 1s constructively not
reducible to exta # (. The result of applying now steps 2 and 3 of the method above is the
definition of formal topology given in next section.

The method by which we reached the definition says that any concrete space gives a formal
topology, which is then called (conecretely) presentable. But note that not all formal topologies are
presentable:* if it were so, their introduction would be much less motivated. A detailed discussion
of the motivations for the introduction of the notion of formal topology is in section 3.2.2.

1.2 A formal topology is. ..

The first result of the method described in the previous section is the definition of formal topology
itself. The following is a minor variant (but equivalent from many aspects)® of the original in [32]:

Definition 1.1 A formal topology S consists of:

a set S,

4 An example of non-presentable formal topology is given in [9], but simpler, finite examples can be built up.

5 The aim of this variant is to avoid problems connected with equality; usually (S,-,1) is assumed to be a
monoid or a semilattice, which is expressible only using equality of S. Fquivalence holds in the sense that putting
a=gb=(a<d{b} &b {a}), one can show that (S5,-,1,=4) is a semilattice.



a distinguished element 1 and a binary operation - on S,

a relation < between elements and subsets of S, called (formal) cover, which for arbitrary

a,be S, U,V CS satisfies:

eflenivit aell
reflerivity oy
<l UaVv
transitivity ¢4 < where U V= (VbeU)baV
aaV

a<all a<al

- Left
o bl ba<l

<l <V
--Right % where U -V ={a-b:aelbeV}
top a<1

a predicate Pos(a) on S, called positivity predicate, which for arbitrarya € S, U C S satisfies:

Pos(a) a<al]
(3b € U)Pos(b)

monotonicity

Pos(a) » a< U

ositivit
P Y aal

A frequently asked question about formal topology is whether quantification over subsets is
really avoided; the claim is that the very definition of formal topology involves a quantification
over subsets. The crucial point is of course the use of “for arbitrary /7, especially in a formalistic
reading of the definition. The answer is that we use subset variables as arguments of (higher
order) functions, that is we do not use them to build up new propositions (that is, new subsets) of
the form VU ..., but keep always the quantification at the meta-level (formally: subset variables
remain free). So the definition with all details should read:

Definition 1.2 A formal topology S consists of:

a set S, which is determined by specifying its introduction and elimination rules;
a distinguished element 1 and a binary operation - on S, that isa-b € S (a € S,b € S);

a relation < between elements and subsets of S, that is a < U prop (a € S,U C S) (which
will be defined as usual for any proposition by furnishing iniroduction and elimination rules,
etther directly or indirectly by means of an exrpression like a logical formula, of which we
already know that it produces propositions), and siz functions refl, trans, Iy, ls, 1 and r of
the convenient types which satisfy:

reflexivity refl(a,U) € U(a) > a<alU (a € S,U CS),
transitivity trans(a, U, V) € aqU&U aV —wa<V (a€ S,U,V CS),

Left Li(a,bU,V)Ea<dlU —a-b<aV (a€ S, U CS)
Iy(a,b, U VYEa<alU = b-aqV (a€8,UCS),

“Right  r(a,U,V)ca<aU&aV =aall -V (aeSU,VCS),
top tla)caxl;

a predicate Pos(a) on S, that is Pos(a) prop (a € S), and two functions m and p which
satisfy:



monotonicity m(a,U) € Pos(a)& a < UU — (b e U)Pos(b) (a € S,U C S),
positivity pla,U) € (Pos(a) wa<lU)—>a<lU (aeS,UCS).

This formalistic definition (with proof-terms spelled out to please a computer language) has
absolutely no quantification over subsets. T never wrote it explicitly before, because T assumed it was
understood.® The notation with hidden proof-terms is more suitable to human mathematicians.
Keeping explicit track of all the proof-terms, that is of computational content, would impede a
more abstract understanding, or at least would make it much harder.” Tn any specific example,
of course, one has to produce, at least in principle, all the required information, so including
the functions in variant 1.2, simply to be sure that one has actually given an example of formal
topology.

The apparent quantification over subsets needed in the definition of formal topology is of the
same kind as the quantification over propositions A, B which is needed to understand a simple
inference rule such as

A
AV B

In fact, one understands here that the rule applies to any propositions A and B, but nobody has
ever questioned whether a second-order quantification is here involved, since it is clear that the
quantification involved remains at the metalevel.

However, one must be extremely careful on this topic, since not all quantifications at the met-
alevel are equally innocent. Tet me first recall one aspect of the intuitionistic meaning of quantifiers.
The meaning of a statement of the form (Vrz € S)A(z) in intuitionistic terms is that we have a
method proving A(a) for every a € S. So the meaning of (V2 € S)(Jy € S)A(z,y) is that we have
a method which applies to any a € S and produces a proof of (Jy € S)A(a,y), that is an element
e, depending on a, such that A(a,¢) holds.

Tt seems to me that there is no other way to give constructive meaning to a universal-existential
statement, also when quantifiers are meant to be kept at the metalevel. So T am able to grasp
that “for every U C S, there exists b such that A(U,b)” holds only when T have a function F such
that A(U, F(U)) holds for every U/ C S. One can debate whether this function should always he
expressible within the language. But assuming that the meaning of “for every U there exists b”
is always predicatively clear (which is implicit when such a combination of quantifiers is used to
define an object, like a subset) amounts to assuming that the function F can be obtained always,
and that it is expressible in the language, which means that a second-order axiom of choice of the
kind VUIbA(U, b) — IFVYU A(U, F(U)) must hold. But then this brings us immediately to classical
logic (see [24] for the precise statement and proof of this fact).

This is an example of a “powerful” principle which actually destroys the quality of information
or equivalently, at least in my own case, which destroys the possibility of an intuitive grasping (see
section 3.1.3). A consequence is that in formal topology one will always find directly the function
F', and never the combination “for every U, there exists ” (or “for every U, there exists W”) to
which it gives meaning (see for instance the case of the definition of U|V in section 2.1).

Another critique to the definition of formal topology i1s that... there are too many different
definitions. T would just like to recall that even what now looks as the most stable definition
of (usual) topology, namely that of topological space, is actually the result of a long historical
process, which stabilized relatively recently. One advantage of the variant given above is explained
in footnote 5. Two further variants will be introduced in section 2.1 and in section 2.4, together
with some good reasons to do it.

8Definition 1.2 was given for the first time explicitly in my talk at TYPES’98, Kloster Trsee, together with the
comments given in this section.

7To be pedantic, this is an example of the forget-restore principle (see section 3.1 .3): one should make sure that
hiding the proof-terms of all the propositions does not prevent us from obtaining them back when wished. This is
possible because all proofs will be intuitionistic, and thus preserve proof-terms.



1.3 A summary of developments

Starting from the definition of formal topology, the paper [32] contains other basic definitions
(formal open, formal point, formal space, continuous function,. ..) some technical tools (connection
with closure operators,...), and several examples (Scott domains, Stone representations, choice
sequences, real numbers,...); it also begins the use of inductive methods in topology, which is
peculiar to formal topology. T have grouped the subsequent developments under seven headings, as
follows. T do not insist on details, or any kind of information like dates and credits, whenever there
18 a good source for this. As often happens, the official dates of publication do not correspond to
the time things were first discovered.

1.3.1 A toolbox to do mathematics in type theory

In the preface of [32] it was said that a subset is just a propositional function, but the adherence
to this principle in the subsequent development was not based on a rigorous and full formalization
in type theory. A satisfactory understanding, both in practical and in formal terms, came only
a few years later (see [39]), and it mostly confirmed the first intuitions. Now T believe that
a comprehensive book on formal topology should contain a substantial chapter with a detailed
explanation of how mathematics can be developed in practice using type theory as a foundation.

Using type theory to do mathematics is not so different from using 7ZF, to the extent that in
both cases one needs a set of tools (definitions, macros, notation, abbreviations, ecc.), or toolhox, to
avoid clumsy formalities. The tuning up of such a toolbox for ZF has required some effort (think
for example of the time passed between Zermelo’s axioms and the formal treatment of ordered
pairs). The analogue process for type theory has started only relatively recently.

The main observation is that in the practice of mathematics one is often not interested in all the
amount of information which type theory is able to preserve (this is also true for ZF, but to a lesser
extent). The general idea is that, however, one should not forget information in an irreversible
way: ideal 1s the situation when any piece of information which does not appear explicitly can be
restored at will, maybe by passing through the metalanguage (see [39] and section 3.1.3 here).

Once the toolbox which is necessary to develop a certain field is built up, doing mathematics in
type theory is just doing mathematics: all the boring details of actual formalization in type theory
are taken care of once and for all at the time the toolbox is implemented. An essential aspect,
and a definite advantage, of this approach is that the basic (type) theory is kept fixed, while the
toolbox is expanded, and this allows stratification of knowledge and increase of confidence.

At present, a complete toolbox for snbsets® has been developed, in [39]. T here repeat - with
mild variations - the bare minimum to be able to read this text. As mentioned in the preface, a
subset U of a set S is just a propositional function, that is a proposition U(z) for each z € S.
We write I/ C S as usual. To be able to use spatial intuition, and to keep closer to mathematical
practice, we want to introduce the notion of element a of a subset I/, which we write as a eg U
(forgetting the subscript whenever possible). The idea is that a eg U is equivalent to a € S and
Uf(a) true. This is equivalently expressed by the conditions that
i. (Y2 €8) (2 eg U+ U(x)) must be true, that is, when a is known to be in S, a €5 U is logically
equivalent to U (a), and
1. ifa eg U true, then a € S, that is, the proposition a eg U true keeps the information that
a € S so that there is no need to recover a € S from a ¢ U by inspecting the proof.

These two conditions are satisfied for instance by setting a eg U = 1d(S, a,a) & U(a), where Id
is intensional propositional equality (see [30]), but other solutions are possible and equally good
for the purposes we are now discussing. In fact, the theory of subsets is developed on the basis of
the above two conditions only, so that one can ignore how they are actually implemented in type

#We also know how to deal with quotients and with quantifications over finite subsets; a paper on this is planned
with Venanzio Capretta and Maietti.



theory.”

The idea underlying ¢ can also be expressed as the wish to keep the notation {z € S : U(x)},
in the usual sense that a e {# € S: U(2)} ifand only if a € S and U(a) true. Thus{z € S:U(x)}
becomes just a “shorthand” for U. Another relevant fact is that any subset of S is equal (in
the sense below) to the image of a set T along a function f : T — S, which is defined by
fIlN={z e S: (3 e Ne = f(i)}. So one could say that the distance between a subset and
a sef. is only one function!

Equality between subsets is extensional. That is, for any U,V C S inclusion is defined by
UCV=WNzreS)(relU = zeV)and then equality by U = V=UCV&V CU.

The common pattern behind the definition of an operation on subsets 1s that it is simply
the abstraction, at the level of propositional functions, of a logical constant, which acts at the
level of propositions. For example, intersection N is the abstraction of conjunction &, that
isUNV ={x e S :U)&V(x)}. This is not sheer manipulation of symbols, but making
the link between visual intuition and logic explicit; for instance, the statement: a ¢ U NV if
and only if @ ¢ U and a ¢ V, without notation with ¢ would be just the definitional equa-
tion (U NV)(x) = U(x)&V(z), and thus its intuitive value would be partly lost. Similarly,
UUV ={z:U(x)vV(e)} and —=U = {z : =U(2)} (remind that, because of intuitionistic logic,
one cannot expect S = U U —U to hold in general).

A family of subsets of S indexed by a set T, written U; C S(7 € T), is just the same thing (but
not the same intuition!) as a binary relation between T and S, that is a propositional function with
two arguments U(i, 2) prop (i € I,z € S). Clearly, equality of families of subsets is extensional,
that is U; C S(i € T) and V; C S(i € T) are said to be equal if U; = V; for each i € T. This yields
also that two relations are said to be equal if they hold on the same arguments. All definitions
and results dealing with binary relations must be understood up to this equality.

Following the pattern mentioned above, the union of a set-indexed family of subsets U; C S(7 € T)
is defined by abstracting the existential quantifier: 2 ¢ U;erU; = (37 € T)(z € U;). Similarly for
intersection and universal quantifier.

The collection of subsets of a set S, equipped with extensional equality, is called the power of
S and is denoted by PS. The ahove operations give to it the structure of a frame (or complete
Heyting algebra, or locale). A rigorous proof of this is obtained by noting that, since an operation on
subsets 1s the abstraction of a logical constant, any informal argument about operations on subsets
18 always supported by a formal logical deduction about the corresponding logical constant. For
example, the properties of inclusion with respect to union and intersection, namely

a. Uierl; CVifand only ifforallie 7, U; CV
b. V CNierlU; if and only if forall i e 7, V C U;

are obtained immediately by a shift of quantifiers.

Since the writing of [39], an important improvement in notation has taken place. Since the
quantifier 3 is primitive, and not definable by means of ¥, it is convenient to introduce a notation
for the notion which is dual to that of inclusion. That is, for any [/, V C S we put

UDiV=FaeS) (aelU&aecV)

and we read “U/ meets V7. Note that I/ ( V is intuitionistically much stronger than U NV # (.
The property corresponding to a. and b. above is:

c. Uierl; ( V iff there exists 7 € T such that U; (0 V

We will see in section 2 that the notation () is very useful for the expression of some fundamental
mathematical properties.

? Another consequence is of course that the job of implementation of the whole theory of subsets reduces to the
implementation only of the two conditions, see section 3.2.1.
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One can define singletons by {a} = {2 € S| a = 2} (so that by logic a ¢ U iff {a} C U
iff {a} ( U), finite subsets by {ag,...,ap_1} = {2 € S

ag, ..., a,_1 € S (keeping in mind that several intuitionistically non equivalent notions are reason-

r=ayV...Vr = a,_1} whenever

able), etc.; T refer to [39] for details on these and other tools, like quantifiers relative to a subset,
subset-indexed family of subsets, etc.

Other tools are still to be tuned up and tested. Note that this is not a routine task. We know
for instance that requiring some among the common properties of powersets and of quotient sets,
or that the subsets of a set, or even the finite ones, form a set, would bring us to classical logic (see
[24] and [23]); this would mean destroying all the efforts of preserving constructivity. To develop
formal topology such properties are not essential; for instance, quantification over finite subsets of
a set (or of a subset) is reduced to quantification over a set, of lists.

1.3.2 Predicative completeness proofs

An important insight about intuitionistic logic, which goes back to the 30s, is that 1ts propositions
(or formulae) can be interpreted mathematically as the open subsets of a topological space. As
shown in [33], also formal topology provides with a complete semantics, by interpreting formulae
as formal open subsets (and by suppressing the predicate Pos). Since the notion of formal topology
1s fully predicative, the result is a proof of completeness of topological semantics which 1s also fully
predicative. As in the original proof by Henkin, the key step is the construction of a generic model
from the syntax itself; in our case, a suitable cover on the set. of formulae must be introduced. Two
such covers are studied in detail in [9], where it is shown that formal points over one of them are
exactly the same thing as Henkin sets. This gives a precise form to the idea that points correspond
to models [16]; for some other comments and references, see the introduction of [9].

The completeness proof in [33] is actually given in a modular way for a variety of logics, which
all are extensions of intuitionistic linear logic. To this aim, the notion of cover is generalized to
that of precover, in which the two assumptions on -, namely --Left and --Right, are replaced by the

single one:
g a<all baV
stability _——
a-balU -V
or 1ts equivalent
adl
localizati _ here U -b=U - {b
ocalization a0 where U -{b}

A pretopology is a commutative monoid equipped with a precover. A cover becomes exactly the
same as a precover satisfying the conditions corresponding to the structural rules of weakening and
contraction, which can be seen to be a-b<da and a < a - a, respectively (or some other equivalents).
On the other hand, pretopologies in which the double negation law is valid turn out to coincide
literally with phase spaces, that is the semantics of linear logic given by Jean-Yves Girard in [20].

1.3.3 Predicative presentation of frames

An infinitary relation < satisfying only the properties of reflexivity and transitivity, as in the
definition of covers, is called an infinitary preorder. Tt was discovered long ago (see [32]) that
infinitary preorders on a set S correspond biunivocally to closure operators on S (that is, functions
C:PS — PSsuch that U C CU, U CV — CU C CV and CCU C CU). Tn fact, by setting
AU = {a € S : a < U} one has that a < U is the same as a ¢ AU, so that reflexivity can be
rewritten as U C AU and transitivity as V C AU — AV C AU; one can then easily check that
these two conditions on A are equivalent to those in the definition of closure operator. Moreover,
it is well known that closure operators correspond to complete lattices (given a closure operator
A, the collection of saturated subsets Sat(A) = {U C S : U = AU} is a complete lattice, in which
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meet is given by intersection and join by the saturation of union, and conversely, given a complete
lattice, putting a e AU = a < \/ U gives a closure operator).

Building on these remarks, one can obtain a modular presentation of sup-lattices (that is,
lattices with arbitrary joins - and hence also meets - but in which only joins are preserved by
morphisms), quantales and frames by generators and relations. The sup-lattice freely generated
by a set S of generators is just PS. So the idea is to describe the ordering of any sup-lattice
generated by S by adding conditions, or axioms R(a, ), to be satisfied if a <\/, ;;b. The main
result (which generalizes a similar result in [21]) is that the least infinitary preorder <ig containing
R gives exactly the free sup-lattice satisfying the axioms given by R. The same result for quantales
and frames is obtained in a modular way, by adding suitable extra conditions.

This line of research was begun very early, see [2], and several earlier versions of the final paper
[3] circulated privately. Tn fact, it took a long time to understand properly how it is possible to
generate g above in a predicative way, and for which R this is possible (see [10]). One must
be very careful here: when one says that formal topologies (without Pos) form a category which
is equivalent to that of frames, one must realize that the proof cannot be predicative, unless one
previously restricts to a predicative definition of frames. The point here is that a predicative notion
of frame... 1s nothing but the notion of formal topology.

1.3.4 Domain theory as a branch of formal topology

The notion of formal point is defined and justified in section 2.4, and thus T do not repeat it
here. For any formal topology S, the collection of its formal points P#(S) is said to be a formal
space. This is a genetic characterization of formal spaces. Tn general, an axiomatic definition is not,
available; one can only define as usual the specialization ordering on formal points «, § by setting
a< B=p8Ca(aisless than 3 if it is more informative, i.e. contains more elements of S) and
observe that P#(S) thus becomes a complete partial order. But if we restrict our attention to the
class of unary formal topologies, which are those in which the cover 1s unary, or 1-compact,

a<alU iff Pos(a) = (Fbe U)(a<{b}),

then the associated class of formal spaces admits of an axiomatization, and actually a well-known
one, since it turns out to be exactly the class of Scott domains (the link with Scott domains was
present from the beginning, see [32], section 7, but it was spelled out. only later in [40]). Tn fact, a
unary cover is intuitively one in which no two neighbourhoods do cooperate to produce coverings.
So one can see that in any unary & all subsets of the form 1 a = {b : @ < b}, for any positive a,
are formal points of &, and all formal points are obtained by forming unions of these. Tn other
words, positive elements of S correspond to compact elements of the Scott domain Pt(S). Then
one can read both Scott’s definition of information systems [41] and the even simpler definition
of information bases in [40] either as an axiomatization of the structure of compact elements of
a domain or as a simplified characterization of unary formal topologies. This is to say that the
category of unary formal topologies, that of information systems, and that of information bases
are mutually equivalent, and Scott. domains are obtained by applying the functor Pt bringing
to formal spaces. So the definitions of domain theory become special cases of notions having a
general topological meaning, and in the end this has produced a simplified approach to the theory
of domains, which moreover is fully predicative. For instance, it has been proved predicatively, by
Valentini [47], that the category of information bases is cartesian closed.

The connection between formal topology and domain theory is clear also in the approach to
formal topology via the basic picture, which is described in section 2 below. A curious fact is
that, while the categories of (arbitrary) formal topologies, in the old and in the new sense, are
equivalent, this is no longer true for unary formal topologies. So unary formal topologies, in the
new sense, are equivalent to algebraic domains, and the extra condition characterizing P#(S) as a
Scott domain is not independent of the way § is given (see [34]). The next natural step is to extend
the connection with domain theory by finding predicative definitions of the way-below relation and
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of continuous domains; a common expectation is that the right idea should be that of bases with
the interpolation property (see [1]).

A nice topic for research 1s to reveal which of the results for unary formal topologies extend to
the case of finitary (or Stone) formal topologies, that is those in which the cover satisfies

a <1l ff there s a finite subsett K of [/ such that a < K.

In particular, it is still unknown to me whether it is possible to find an axiomatization of formal
spaces corresponding to finitary formal topologies.

Also quantitative domain theory can be dealt with predicatively. Curi has shown in [11] and
[12] that the notion of cpo’s with weight and distance of [49] can be generalized to the notion of a
formal topology with weight and distance.

1.3.5 Inductive generation of formal topologies and proof-theoretic methods

A formal topology, one could say, is just a way to present a frame (the frame Sat(A)) by generators
(the set S) and relations (the cover <1, or equivalently the closure operator A). The choices taken
when defining formal topologies are actually linked with the choice for predicative methods. But
whatever the reason is, the introduction of formal topologies has opened the way to the use of
inductive methods in topology. Actually, all the axioms or conditions are preferably written in
the form of inference rules exactly for the purpose of applying proof-theoretic methods or ideas.
This appears as a conceptual novelty in the field of topology, and gives to formal topology its
distinctive character: formal topology, which happened to begin as a theory of locales developed
over a different foundation (namely, type theory rather than topos theory), has later developed a
specific identity also from a strictly mathematical point of view. One typical result in this sense is
the normal form theorem for covers on real numbers, and the problem it leads to (see section 1.3.6
below). Another one is that the finitary content of a formal cover generated by axioms ¥ is just
the cover generated by the finitary part of 3, that is, by those axioms of ¥ in which only finite
subsets are involved.

The 1mportance of the inductive generation of formal topologies is clear, for a predicative
approach, when one observes that, for instance, the product of two formal topologies cannot be
defined predicatively, unless they are inductively generated (see [10]). This has raised the question
whether one should restrict one’s attention and add the requirement of inductive generation to the
definition of formal topology itself; this 1s discussed in section 2.6.

Any other information about the inductive generation of formal topologies can be found in [10];
in particular, the readers will discover there that all the examples of formal topologies which can
be found “in nature” do fall under the scope of the theorem on inductive generation. This gives a
solid argument in favour of formal topology, since it automatically means that all those examples
can be formalized into a computer language.

1.3.6 The continuum as a formal space

Tn [32] it was suggested that the continunum could be presented via formal topology essentially as in
[21]. This idea was later worked out by my student Daniele Soravia in [45], where also the beginning
of real analysis is developed (all this appeared subsequently in [28]). The main idea is that a real
number is a formal point on a suitable formal topology where basic neighbourhoods are pairs of
rational numbers, (p, ¢) with p,¢ € Q. The positivity predicate is defined by Pos((p, q)) = p < ¢,
and the cover < is defined inductively by the following rules (which are a formulation in our context
of Joyal axioms, cf. [21], pp. 123-124):

g<p (p,q) €U
(pg) <l (r,g)<U
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W <p<qg<yq) )<l p<r<s<g (p,s)<U (r,q)<U
(pg) <l (r,g)<U

we((p,q)) U
(pg) U

where in the last axiom we have used the abbreviation we((p,q)) = {(p,¢") : p < V', ¢ < q}.
(where we stands for ‘well-covered’). This presentation of the cover is essentially due to Coquand.
The formal reals are just the formal points of such a formal topology.

We have then the following normal form theorem, by which the ‘infinitary’ rule oo is isolated:

Theorem of canonical form. Any derivation of a statement a <1 U/ can be brought to a form
where the only application of the rule co is the last one, just above the conclusion.

In this way the finitary part of the cover is distinguished from its infinitary component, and the
logical tool we make use of is limited to a finitary inductive definition. The proof is by induction
on the derivation of @ < U, as standard in proof theory. Tf <, is the (finitary) compactification of
<, which by the remarks in the previous section coincides with the cover generated by the rules
above except 0o, this amounts to have proved that,

(p,q) < U if and only if we((p, ¢)) <w U,

providing thus a definition of (p, ¢) < U as we((p, q)) < U, that is an elementary definition over a
finitary inductive definition.

T express here the expectation that a similar (proof-theoretic) procedure can be used to separate
the infinitary content of a cover from its finite part for a wider class of topologies (which presumably
should be compact in some sense; cf. for instance [6]). This is still an open problem.

The above notion of well-covered elements can be generalized to an arbitrary formal topology,
by setting

we(a) = {b: S <ab*U{a}}

where b* = {c: elb <1 (0} is the subset of neighbourhoods which are apart from b. Then b € we(a)
is classically equivalent to saying that ext (b) is well covered by ext (a) if the closure of ext (b) is
contained in ext (a). This brings us to define regular formal topologies as those topologies in which
a < we(a) for any a. Tt can be shown that such definition has some of the properties one would
expect. For instance, one can prove that for any two formal points o and 3, if o C 3 then o = 3,
that is, the ordering on formal points is discrete (a paper with Curi is in preparation; see also [13]).

1.3.7 Classical theorems constructivized

A natural and reasonable question is of course how many of the classical theorems of (classical)
topology can be obtained in the framework of formal topology. T am firmly convinced that, as with
any form of constructive mathematics, the fact that relatively few results have been found up to
now is not due to intrinsic obstacles, but mainly to the relatively little research energy which has
been put in finding them.

Two important examples making explicit use of results of formal topology are Tychonoff’s
theorem [29] (building on previous work in [8]) and the Hahn-Banach theorem [7]. Tn [14], by
introducing elementary diameters, a predicative version of Urysohn’s metrization theorem is ob-
tained.

More generally, formal topology is one of the ingredients of a new phase in the constructivization
of classical mathematics, which is visible in the the recent work by Coquand and others. Since no
summary would do justice to this, T encourage the readers to look directly at his papers.
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2 Some points, some novelties: the approach via the basic
picture

Though successful, the definition of formal topology, as given in [32] or here in section 1.2, still
leaves something to be desired. One desire is a convincing definition of formal closed subsets.
Another is to avoid the operation - of formal intersection, which makes the treatment of some
important examples, like P X and upper subsets in a preorder, a bit artificial. A positive solution
to both requests has come from a deeper analysis of the notion of topological space. This has
actually brought up much more than that. Tn fact, a whole new ground structure has emerged,
which T have called the basic picture, since it shows how the main definitions of topology are
deeply rooted to very basic ingredients, such as symmetry and logical duality. Topology, either
with or without points, turns out to be obtainable simply by adding a principle of additivity of
approximations (expressed by B2, in section 2.1, and by |-Right, in section 2.4), that is adding
a notion of convergence. This in my opinion gives a very satisfactory explanation of the ground
concepts of topology, which is independent of any foundational theory.

The basic picture has, moreover, a precise mathematical raison d’étre, which has recently
started to become clear. Tn fact, it seems that it is characterizable as the theory of what remains
invariant under transfer along a continuous relation, in the same sense as topology can be seen as
the theory of invariance under transfer along a continuous function.

T give here a short introduction to the ideas and to the main definitions of the basic picture.
Some of them first appeared in [38]. For a complete development, see the series of papers in
preparation [36], [17], [37], [18], [19], and other to follow. For some general observations connected
with the basic picture, see section 3, in particular subsections 3.1.4 and 3.2.

2.1 From concrete spaces to basic pairs

Let us resume our analysis of the notion of topological space, in section 1.1, and more precisely af
the moment in which we assumed the base to be closed under intersection. We now see that this is
not necessary, and that actually relaxing that assumption allows one to see a simpler and deeper
structure.

So assume, as before, that X is a set (of points), S is a set of indexes, and ext is a function
from S into subsets of X. We consider all the subsets obtained by union, that is, all subsets of
X of the form ext (V) = Ugqyext (a) for some U C S. Then we want to find out under which
conditions on ext the subsets ext (U), U C S, form a topology, that is, satisfy O1 — O3.

To this end, it is convenient to adopt a notation better suited than ext, as we now explain. Since
a subset of X is nothing but a propositional function over X, a family of subsets ext (a) C S (a € S)
is nothing but a propositional function with two arguments, one in X and one in S, in other words
a binary relation between X and S (see section 1.3.1). Then it is better to write such a relation as

zlkaprop (v € X,a € S)
and to define ext in terms of 1t, by setting
ext(a)={re X :zlka} foranyaeS.

Tn this way the abstraction is kept at a lower level, both intuitively and formally (since exta is
obtained from xz Ik a by abstraction on z). Elements of S are called formal basic neighbourhoods,
or more briefly observables, and » IF a 1s read as “x lies in a”, or “z satisfies a”, or more neutrally
“r forces a”. The choice of the name ext should then be clear: ext (a) is called the extension of
the observable a. The notation with IF 18 extended to subsets by setting

rlFU=(FbeS)(2lkb& bel) = e U ext(b)



which agrees with the reading “z lies in U” since ext (V) = Upyext(b) = {x : 2 I+ U}. Tt
is easy to check, at any desired level of formal details (using the definitions of [39] repeated in
section 1.3.1), that the family of subsets ext (/) C S (U C S) is closed under unions. By this we
mean, of course, that for any family of subsets U; C S (i € 7) indexed by a set I, it holds that
Uierext (U;) = ext (U;erU;). Tn fact, @ € Uierext (U;) = (31 € T)(3b € U;)(x IF b) is equivalent to
(Fb e UierUi) (2 IF b) = o € ext (UjerlU;). So O3 is automatically satisfied.

Condition Q1 also is easily expressed. Tn fact, § = ext (f)) because a ¢ §§ holds for no @, and
X = ext (U) for some U C S is equivalent to X = ext (S), that is:

B1 x kS for any z € X.
We thus can concentrate on Q2. If we express it without care, writing
(YU, V C S)YAW C S)(extU N extV = ext W),

again an impredicative quantification comes up. However, this luckily is not really necessary. The
quantification of the form VU, V AW is solved if we find a uniform method which associates a subset,
W satisfying ext U N ext V = ext W with any pair of subsets U/, V. The simplest such method 1s
to pick the largest among the open subsets contained in extU/ N ext V. That is, if ext U/ N extV
is open, which means that it is equal to ext W for some W, then 1t is bound to be equal to
ext 7 where 7 is formed by all ¢ € S whose extension is contained 1n ext/ N ext V', in symbols
Z={ceS:ext(c)C extUNextV}. So D2 isequivalent to ext U N ext V = ext 7. However, we
can do much better than this. Tf we apply the same idea to open subsets of the form exta with
a € S, we obtain
B2 extaN exth = ext (a | b)

where a | b ={c € S : exte C extaN exth} is the largest subset whose extension is contained
in exta N exth. Tt is now easy to see, by the distributivity property of P X, that B2 is the right
condition. Tn fact for any I/, V C S we have

ext U N ext V = (Ugery exta) N (Upey exth) by definition of ext on subsets,
= Ugetr Upev (exta N exth) by distributivity of PX|
= Ugetr Upev ext (a l b) by B2,
= ext (Upetr Unev @ | b)) because ext distributes over unions.

So we put,

ULV =Usrr Upev a | b.

Tf B2 holds, then also ext U N ext V = ext (I | V) holds, and hence 02 is satisfied. Note that now
U L V is not necessarily the largest subset 7 as defined above. But this is irrelevant. In fact, if
extUNextV = ext (I | V), then also ext UNext V = ext 77 because ext (U | V) C ext 7 C extUN
ext V.

The reason for names B1 and B2 is that they are just a compound expression, in our language,
of the standard conditions for bases for a topology (see e.g. [15], p. 38). B1 is clear: it says that
the whole X is open. The inclusion ext(a | b) C exta N exth of B2 always holds, and the other
can be written as

Ve(zlka & oIk b — (Fe)(z Ik c & ext (¢) C ext (a) N ext (b)),

that is, for any point 2 lying in the basic neighbourhoods ext (a) and ext (b), there is a neighbour-
hood ext (¢) of 2 which is contained both in ext (a) and in ext (b).

So we have proved that the collection of subsets ext 7 C X (U C S), where ext I/ = U,y ext (a),
1s a topology on X, that is, it satisfies O1 — @3, if and only if ext is a base, that 1s, it satisfies Bl
and B2 above.
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We have thus reached a definition of concrete space (see section 1.1) which is free of the
operation - of formal intersection, as we wished. To help the intuition, we express Bl and B2 in
the notation with I+

Definition 2.1 A concrete space is a structure X = (X, Ik, S) where
X is a set, whose elements x,y, z, ... are called concrete points;
S 15 a set, whose elements a,b,c, ... are called observables, or formal basic neighbourhoods;
Ik is a binary relation from X to S, called forcing, which satisfies

Bl xIFS foranyzx e X,

xlFa xlkb
B2 ——— foranya,be S andx e X.
xlkalb
This brings us easily to a new formulation of the notion of formal topology, which is obtained from
definition 1.1 by suppressing -, 1 and their axioms, and by replacing them with the single condition
(which expresses B2 in formal terms)

adll a<xV

Right
V-Rig a<a ULV

where ULV ={d: (Fb e U)(d < {b}) & (e e V)(d < {c})}. This variant on the definition (see also
[42] for a similar approach) has been adopted in [10] since it allows a smoother approach to the
topic of inductive generation. Note also that now both P.S and the collection of upper subsets of
a preordered set (S, <) fall easily and naturally under the definition of formal topology. Moreover,
it can be proved that for any formal topology & with | there is a formal topology &' with - (as
in section 1.2) such that & and &’ produce the same frame of formal open subsets. The condition
J-Right is present also in the new definition of formal topology which will be given in section 2.4.

These are useful technical improvements. However, the most important consequence of the
analysis which led to definition 2.1 above is conceptual, rather than technical. At an impredicative
reading, the above definition of concrete space is just a cumbersome formulation, but perfectly
equivalent to the usual definition of topological space. Predicatively, the notion of set 18 much
stricter, and hence many examples of spaces do not fall under definition 2.1 simply because the
collection of points X is not a set: this is a good reason to develop formal topology. Nevertheless,
although keeping this crucial remark in mind, one can see that the framework provided by definition
2.1 1s fully sufficient to define the notions of open and closed subset in a way which is perfectly
acceptable also constructively. Tn fact, as we will see, the way to dispense with the powerset
axiom and second-order quantifications is to reduce systematically to quantifications over basic
neighbourhoods, that is over the set S. Thus the set S is an essential ingredient of the definition,
and it should not be forgotten (in the sense of section 3.1.3), contrary to the common approach
which tends to avoid any reference to bases.

The usual definition can be rephrased by saying that a subset F C X is open if: whenever
x € F, then this is true in a continuous way, that is not only =, but also a whole neighourhood of
x 18 contained in F. Tn our notation this becomes

reF = (JaeS)(rlkak exta CE).

We put as usual int £ ={z € X : (Ja € S)(z IF a& exta C F)}. Such operator int, for interior,
can be thought of intuitively as a rejector, or thinner, which makes F as thin as possible, that
is, which throws away from F all isolated points, but is unable to throw away from F a whole
neighbourhood exta. So F is open if F/ C int I/, which is equivalent to saying that the rejector
operator has no effect on F.

The definition of closed subset can be put in perfectly dual terms. Tn fact, the usual definition
can be expressed by saying that 1) C X is closed if whenever it is continuously satisfiable for x to
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be in D, then actually x ¢ D. T here say that x ¢ 1) is continuously satisfiable if any neighbourhood
of x touches . We now can see that the notion of meet () begins to be useful. Tn fact, the above
intuitive definition is formally expressed by

(Vae S)(zlka— exta ) D) — zeD.

The subset el D = {x : (Va € S)(z Ik a — exta ( D)} is the closure of D, and one can
intuitively think of ¢l as an aftractor, or fattener operator: it adds to D all points x which
“continuously touch” 1, in the sense that any neighbourhood of x meets 1. Note that this is
a positive way of affirming that x cannot be continuously separated from D, which would be
—Ja(z Ik a & ext (a) N D = @) and which is equivalent to Va(z Ik @ — ext (@) ( D) only classically.
So D 1s closed 1f the attractor operator cl has no effect on D, that is, 1 is already as big as it is
consistent to be.

The notation we adopted, together with explicit expression of the logical formalism involved,
allows one to see immediately the strong logical relation between interior and closure. The defini-
tion of closure is logically dual to that of interior, in the sense that 3 is replaced by V, & is replaced
by — (which in type theory are special cases of 3 and V, respectively) and C is replaced by ()
(whose definitions are in turn obtained one from the other by interchanging ¥ with 3). We want to
keep this duality, and actually build on it and make it clearer. Adopting classical logic here would
immediately reduce it to the much simpler duality between a subset and its complement. Tn fact,
by classical logic we would have: D closed = (Va € S)(z IF a — exta § D) — =z e D
if and only if =(3a € S)(z Ik a& —(exta ) D)) — =z e Difand only ifz e —D —
(Ja e S)(zlkak exta C —D) = —D open.

So, in the same way as classical logic reduces the meaning of existential quantification to a
negation of a universal quantification, here it would reduce the definition of closed subset, which
in the essence is a quantification of the form V3, to that of open subset, which is of the form V.

An obvious remark, which however is of crucial importance for what follows, 1s that the condi-
tions B1 and B2 have no role in the definitions of open and of closed subsets. Then it 1s worthwile
to analyse the logical duality between closure and interior in the more general structure given sim-
ply by two sets X, S and any binary relation Ik between them. T call 1t a basic pair. Moreover, the
simple remark that the notion of basic pair is perfectly self-symmetric, will lead to the discovery
of the role of symmetry in topology.

2.2 A structure for topology

From now on, we keep the sets X and S always fixed, also in the sense that we think of X as
situated at the left, and of S as situated at the right as in Picture 1 below.

points observables
Picture 1
We systematically use xz,y,... for elements and D, F, ... for subsets of X, a,b,... for elements
and U, V, ... for subsets of S. Tn this way we can avoid to mention the domain of quantifications,
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and we shall do so from now on. One can think intuitively of z,y, ... as points and of a,b, ... as
observables (cf. [43]), so that 2 IF @ means that the observable a applies to the point .

The relation x I a is expressed af the left by the synonym x ¢ exta, where exta = {z : z IF a}
is the extension of a, and at the right by the synonym a ¢ Crx, where Oz = {a : z IF a}. The
relation IF induces four monotone operators on subsets; in the language of categories, these are just
functors from P X into PSS or conversely, when both P X and PS are seen as preordered categories.
First we define the functors ext and rest from PS into PX by setting:

reext(U)=Cx 0 U
rerest(U)=Ca CU

These are, respectively, just the definitions of weak, or existential, and of strong, or universal,
anti-image of the subset I/ along the relation IF. The name rest is due to the idea of conceiving
rest [/ as the restriction to those points of X which livein U, in the sense that all their observables
belong to /. Tf the relation from X to S is denoted more simply by R, or even better by a
small r (because we will think of it also as a function from X into PS, and not only as a binary
propositional function), a good notation is v~ for the weak, and r* for the strong anti-image. That
is, using the notation ra = {a : xra} for the r-image of = (which is Oz when r is denoted by IF),
we put,

rer~(U)=re 0 U
rer*(U)y=ra CU

An important little observation, which will often be used tacitly, is that the existential anti-image
is just the union of anti-images of elements, that is ext (I/') = Upy ext b; note also that this gives
in particular ext ({b}) = exth, and this is why we can use the same letter ext without confusion
both for the operator on elements and for that on subsets. Note also that r= and r* coincide when
r is the graph of a function, because = § U if and only if 7z C I/ when rx is a singleton.

The same definitions apply also to the inverse relations. So we have two functors & and O from

PX into PS which are defined by'®
aeOD=exta () D
aeOD=extaC D

Note that, as for ext, OG({b}) = Ob. Tn the abstract notation with r, we write r= for the relation
which is inverse of r, that is, which is defined by ar~z = zra and also extend to r~ the notation
for images of elements, so that r=a = {x : zra}; this notation is justified since the r~-image of
the element a coincides with the weak anti-image of the singleton subset {a} along r as defined
before, that is r~a = r={a}. Then we can put:

aerD=r"a (D
aer~*D=r-aCD

Note that the weak anti-image of U along 7, as defined before, coincides with the (direct) image
of U7 along the inverse relation r~, and so both are denoted by r~U/. As before for ext and r—,
one can see also that r{z} = rz and that rD) = U,.prz.

The starting point of the basic picture is the discovery that the operators int and cl as defined
in the preceding section are nothing but the composition of the operators just defined:

int = extO and cl = rest &

10 learly, the signs & and O are taken from modal logic; if S = X and IF is the accessibility relation, then &D
and OD are the valuations of formulae C¢ and O¢, repectively, if D is the valuation of ¢. The operators ext and
rest then correspond to possibility and necessity in the past, respectively, as in temporal logic.
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Tn fact, one can easily see that # ¢ intD = Ja(z IF a & exta C D) = Oz () OD and that
recdD=Va(zlka— exta § D) =Ox COD. So one can see that the duality between int and
cl is the result of a deeper duality between & and O, and between ext and rest .

This is a good point to repeat that the structure consisting of X, IF and S is absolutely
symmetric. Maybe it takes some effort to abandon the intuition of X as points and of S as
observables, but the plain mathematical content is only that they are two sets linked by an arbitrary
relation. So, in a fully symmetric way we can define two operators on P.S, which are symmetric of
int and of cl respectively:

J = Orest and A = Oext

In fact, they are obtained by replacing ext, O, rest, & with their symmetric O, rest, O, ext,
respectively. The meaning of such operators'’ becomes clearer by making definitions explicit.
Since a ¢ AU = exta C extU = Va(z Ik a — 2z |- U), then a ¢ AU means that all points lying in
a also lie in UU. So, a ¢ AU is something we know already, since it expresses the intuition of the
formal cover a <1 U/, as in section 1.1.

Tet us turn to a ¢ JU = exta () rest (U). The explicit definition is Jz(z Ik a & Cx C U),
which means that @ is inhabited by some point, about which we know in addition that all its
neighbourhoods are in /. Informally, a ¢ JU says that there 1s a point in exta, and U gives
positive information on where inside exta 1t is. In the special case I/ = S, a ¢ J.S means simply
that exta is inhabited; we met this in section 1.1 as the intuitive explanation of the predicate Pos.
So a € JU is the pointwise definition of a new formal relation between an element a and a subset
U of S; we denote it by Pos(a, ), or also by a x U, and call it a binary positivity predicate. As
it 18 evident from the preceding explanation, the idea of introducing J or x is quite natural by
structural reasons: symmetry, since J is symmetric to int, and logical duality, since 7 is dual to
A. Whatever is the way to reach it, however, it gives a new possible choice of primitive relation
on S, namely x, to be added to <1. So following the method in section 1.1 one is lead to a new
definition of formal topology, with a binary positivity predicate, see section 2.4. This is one of the
main conceptual novelties of the present. approach. Also, since A and 7 can be defined on any
basic pair, one can apply the same method on an arbitrary basic pair and obtain a weaker notion
than that of formal topology, see section 2.4. This is another important conceptual novelty. Some
comments will be given after the mathematical development.

Since the operators are defined in terms of a relation, through existential and universal quantifi-
cations, it follows that there is an adjunction between each existential operator and the universal
operator in the opposite direction. So ext is left adjoint of O and <& s left adjoint of rest:

ext 40 that is ext U/ C D if and onlyiff U/ C OD, for any D, U,
& A rest that 1« OGD C U if and only if D C rest U, for any D, U.

A formal proof is based on the equivalence between 3z Az — B and Vz(Axz — B), in intuitionistic
logic. Tn the notation with r, these are just the adjunctions:

r= dr=* that is »=U C D if and only if U Cr=*D, for any D, U,
r-r* that is »D C U if and only if D C r*U, for any D, U,

respectively. T call these the two fundamental adjunctions determined by the relation r.

Tt is a general well known fact that the composition of the left adjoint (existential) after the
right adjoint (universal) operator gives an interior operator. So J = Orest is an interior operator;
this means that J satisfies JU C U, U CV — JU C JV and JU C JJU, or equivalently
JU CU and JU CV — JU C JV. By symmetry, int = extO also is an interior operator.

""The choice of the letter .7 is due to the fact that T had no other available, and it should not be connected with
the so called j-operators of locale theory, see [21].
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Note that i. int is proved to be an interior operator on any basic pair (thus also when BT and
B2 are not assumed) and hence 7i. int does not. in general preserve finite intersections (one can
prove that this is actually equivalent to B2), that is, it is not what is sometimes called a topological
interior operator (see e.g. [43]).

Similarly, O after ext, namely A, and of rest after &, namely cl, are closure operators. This
means that 7 C AU, U CV — AU C AV and AAU C AU hold, or equivalently I/’ C AU and
U CAV — AU C AV. Similarly for cl; of course, two remarks analogous to those on int apply
to cl.

For a closure operator, such as A, we say that a subset I/ C S is A-saturated if U = AU. So
D C X is cl-saturated if D = cl D, that is when D is closed. We denote by Sat(A), and Sai(cl),
the collection of saturated subsets.

Similarly, for an interior operator, such as [J, we say that a subset /' C S is J-reduced if
U=JU. So D C X is int-reduced if 1) = int D, that is when D is open. The collections of
reduced subsets are denoted by Red(J) and Red(int).

For any operator C, either a closure or an interior operator, one can define suprema and infima
by putting

VierCU; = C(Ujefc[]j) and  A;jer CU; = C(mjefc[]j).

So Sat(A), Sat(cl), Red(J) and Red(int) are all complete lattices. Tt is not difficult to prove (by
making systematic use of the two fundamental adjunctions) that actually Red(int) is isomorphic
to Sat(A), via the isomorphism O : Red(int) — Sat(A) with inverse ext : Red(int) + Sat(A).
This is why A-saturated subsets are called formal open, and int -reduced subsets, viz. open subsets
of X, are called concrete open when there is danger of confusion.

The 1somorphism between formal open and concrete open subsets was somehow expected, see
the ideas in section 1.1. What come as a surprise is the fact that to be able to obtain a similar
isomorphism for concrete closed subsets one has to introduce a new primitive, namely 7 or x, and
define a subset of S to be formal closed if it 1s J-reduced.

Picture 2 sums up the situation. Note that in the top line we have two closure operators, which
are of the form V3, while in the bottom line we have two interior operators, of the form 3V. The
choice of names is due to the fact that we want the two lattices of (concrete and formal) open
subsets, and equally for closed subsets, to be isomorphic. This has the consequence that formal
open subsets are described by a closure operator and formal closed subsets by an interior operator.

concrete closed formal open
cdD=D symmetric AU =U

intD =D symmelric JU =U
concrete open formal closed

Picture 2
This concludes the first chapter of the basic picture (a full exposition is in [36]). We are now

going to see that similar structural characterizations can be obtained also for other notions of
topology.
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2.3 The essence of continuity

A common definition says that a function f : X — Y is continuous if, for any x € X, whatever
neighbourhood I of fr one considers, there is a whole neighbourhood D of # which is all sent
“close” to fx, that is inside F. Tn our framework, assume X and Y are the sets of points of
two basic pairs or concrete spaces XS and v2InT (we will omit subscripts unless strictly
necessary). Then the definition of continuity for f is formally expressed by:

(1) Vo(felbb = Fa(zlka& Vz(zIka— fzIF)))

As it 1s well known, f 1s continuous if and only if the inverse-images along f of open subsets of YV
are open in X. Tn our framework, this means that for each b € T, f~exthb = ext ({a € S : exta C
f~extb}). Tf we define a relation s : S — T by putting ash = exta C f~ exth, this equation
means that f~ olFs™ = IFy~ o s7. But then, to restore symmetry, one is lead to generalize the
treatment to a relation r also from X to Y. This move is of crucial importance, since it allows to
make the structure underlying continuity more clearly visible, and simpler, than with functions.

et us first find a suitable extension of (1) to relations. First, rewrite (1) as Vb(fz ¢ exth — Ja
(e exta & exta C f~ exth)). At this point, recall that fz is an element, while r z is a subset
of Y. So we can think of fr e exth as {fr} C extbor as {fz} ( extd; the second choice works
better. So we say that r : X — Y is continuous if

(2) re () exth— Ja(z e exta & exta Cr~ exth)

holds for any x € X, be T.
An important discovery is the equivalence of the following conditions:

a. r1s continuous,
b. 7~ is open, that is r~ ext b is open in X for any b€ T,

c. there exists s : S — T such that rx ) exth < Oz () s7bh,foranyxz e X, beT.

Note that the equivalence in ¢. is nothing but a way to express that IF or = so IF, that is
commutativity of the diagram
X 5 s
L
I+
Y — T

So we define a morphism from XS to VST to be a pair of relationsr : X - Y ands: S > T
which make the diagram commute. (r, s) is called a relation-pair. The presence of s in the definition
has the purpose of keeping the information which otherwise is restored only by a quantification
over relations, as in ¢. above.

Commutativity of a diagram 1s the clearest structural description one can find. The framework
of basic pairs shows that the essence of continuity is just a commutative square. In the case of
functions, we obtain the usual definition as a special case.

Several other equivalent formulations of continuity are possible. Since commutativity of the
diagram is equivalently expressed by r7o IF- = IF~ o5~ and r*o IF* = IF* os*, the notion of
relation-pair is equivalently presented by each of the equations

r extV = exts” V forany V C T,

r*restV = rest s*V for any V C T.

The first says that r»~ is open, and s~ is a method by which we determine the open subsets
of X which are the existential anti-images of open subsets of ¥V along r. The second says that

22



r* is closed, and s* gives a method by which we determine the closed subsets of X which are

universal anti-images of closed subsets of Y along . Tn other words, s gives the method by which
we know that 7~ is open and r* is closed. FEven if, given r, one can define a relation s such
that (r,s) is a relation-pair by putting ash = exta C r~ exth, to “forget” s thinking that it can
always be restored is not safe. For instance, only keeping the information s, some of the common
equivalent characterizations of continuity, like = 1s open if and only if »* 1s closed, can be proved
constructively. If s is lost, by knowing that »* is closed there is no way, not even impredicatively,
neither to restore s, nor to prove that r~ is open; in fact, two finite counterexamples in [18] show
that the two conditions are no longer equivalent when the formal side is forgotten.

The category BP with basic pairs as objects and relation-pairs as arrows differs from the well-
known category Rel?, of relations and commutative square diagrams, only in the fact that equality
between relation-pairs is explicitly defined. Two relation-pairs (r, s) and (r’, s’) are declared to he
equal 1if they behave in the same way with respect to open and to closed subsets, both concrete
and formal. This too turns out to be equivalent to a fully structural condition, namely that their
top-left bottom-right diagonals coincide,

I+
X — 9
1E
y —/ T

that is IFy or =IFy or’ = so Iy = s’ o IF;. The category BP is also different. from the category
of boolean Chu spaces (see [31]), since morphisms of Chu spaces are functions (one in the reverse
direction of the other).

Finally, the intrinsic symmetry of basic pairs and of relation-pairs is formally expressed by
the fact that the functor ()7, defined by (X, Ik, S)™ = (S,IF7, X) and by (r,s)” = (s7,r7), is a
self-duality of BP.

T refer the readers to [17] for a detailed exposition of the content of this section, with complete
proofs.

2.4 Basic topologies, formal topologies, formal spaces

The methodology to obtain the definition of a formal notion is always the same, and 1t has been
described in section 1.1 (see also section 3.2.2). The difference is that now for this task we can
make use of the preceding analysis of the structure induced on a basic pair, and hence also on a
concrete space. So on one hand it 1s easier, and on the other hand it produces a richer structure.
First we introduce a new notion, namely that of (formal) basic topology, which is obtained by
describing the structure induced on the formal side of a basic pair, and by taking the result as an
axiomatic definition. The new definition of formal topology 1s then obtained simply by adding a
formal condition expressing that the basic pair is actually a concrete space. Finally, the notion of
formal point is obtained as an axiomatic description of the subset Ox determined by a concrete
point. & on the formal side.

There are a few good reasons to do all this, that is, to study formal topology: the first is that
it is a natural way, and often the only one, to be able to deal predicatively with certain spaces.
After all, this is just how the real numbers are obtained from the topology of rational intervals.
The second reason is that it provides more general tools to topology (see section 3.2.2). A third
good reason to do it is simply that it can be done, and that nice new structures emerge in this
way. Thus it contributes to expand the territory of mathematical thought (see section 3.1.4).

Tn this section the definitions T propose will be introduced and shortly justified. The problem
of the correctness of such definitions will be discussed in section 2.6 in detail.
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We have already seen that any basic pair XS induces a closure operator A = Oext and an
interior operator J = Orest on the formal side, namely on the set S. This is all we can say given
that ext is left adjoint to O, and that < 1s left adjoint to rest, respectively. What we have to add
now is a condition linking A with 7 and expressing the fact that the two adjunctions ext 40 and
& A rest are induced by the same relation IF. For any a € S and U,V C S, the rule

exta () restV exta C extU
extlU/ () restV

clearly holds. Since exta () restV = a e JV, exta C extll = a ¢ AU and extU () restV iff
Abb e U & be JV), it says that a ¢ AU and a ¢ JV imply U (§ JV. Since the element a does

not appear in the conclusion, the conclusion is valid simply if such an element exists. So we have

the rule AT O TV

UvoyJgv
Thus the first definition is simply that a formal basic topology is a triple & = (S, A, J) where S is

compatibility

a set, A is a closure operator, J is an interior operator, and they are linked by compatibility (note
that compatibility is the same as the equivalence AU (§ JV < U ( JV, since the direction +
holds trivially). Tn the notation with a < U for a ¢ AU and a x V for a ¢ JV, this amounts to:

.. aeV a<aql UaV
reflexivity transitivity
aV a1V
. ax V ax T (V) (bx U = beV)
co-reflexivity co-transitivity
aeV axV
tibilit axV a<alU
compatibilit —_—
P Y UV

where we now add the shorthand U x V for (3b ¢ U)(b x V). Tt is just natural to carry over
the terminology from basic pairs and say that UV is formal closed if I/ = JU and formal open if
U=AU.

The intuitive meaning of compatibility 1s that any formal closed subset V' = JV must split any
cover, in the sense that if a < U and if a € V, then V must proceed and meet /. This is nothing
but the symmetric of the usual condition defining the concrete closure. To see this, first note that,
if we apply the same methodology to the concrete side, since a basic pair 1s fully symmetric we
obtain a fully symmetric definition: a concrete basic topology is a triple (X, int, cl) where X is a
set, int 1s an interior operator, cl is a closure operator, and they are linked by

cdD( intFe D intFE.

This equivalence is nothing but the characterization of closure in terms of all open subsets, rather
than subbasic neighbourhoods (as in section 2.1).

The structure of a concrete basic topology is, from a purely mathematical point of view, just
identical with that of a formal basic topology, and thus one could call each of them just a basic
topology. But note that terminology is quite different, since a concrete open in (X, int, cl) is kept
fixed by the interior operator int, while a formal open in (5,4, J) is kept fixed by the closure
operator A. This is what the adjective “concrete” or “formal” in front of “basic topology” recalls.

The definition of (concrete) basic topology is very simple, and should find its place together with
other definitions weaker than that of topological space which were given long ago by Kuratowski,
Frechet, Cech, and others. Tts peculiarity is that it has a purely structural justification, and that
it is meaningful only by assuming intuitionistic logic and a primitive notion of closed subset (see
section 2.6).

The fact that the definition of basic topology 1s not too weak is confirmed by some initial results
on the structure of possible combinations of the operators int, cl and opposite —. First, one can
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easily prove that the different combinations of int and cl are exactly seven, and that the mutual
inclusions are only'? those shown in the picture (in which inclusion appears as an edge upwards):

cl
clint cl
int cl clint  identity
int cl int
int
Adding the equation ¢l = —int — and classical logic, one can then easily obtain the well known
result by Kuratowski telling that there are at most 14 different combinations of —, int and cl.
Tn the general case, from compatibility one can obtain that <l DN int F =0 < DN intF =0,
and using this one can derive that the equations linking —, int and cl are:

cd—D C—intD=cl —intD
int —clD=1int—D C—clD

(the proofs were first given in [44]). Tt is easy to find out that the inclusions —int D C el — D
and —cl D C int — D do not hold in general. The above equations seem to express the basic
properties of closure, interior and opposite in the intuitionistic case. However, it is still not known
(to me) whether other inclusions or equations involving more occurrences of —, int and ¢l hold.
An initial study in [44] has shown that all the different combinations with only one occurrence of
— do not exceed the number of 22, and T still don’t know whether it 1s lower than that. With two
occurrences of —, the number seems to get much higher. Tn general, it 13 apparently still an open
problem even to decide whether the total number of combinations is finite or infinite.

Tt must be emphasized that all definitions and results so far have been obtained starting from
an arbitrary basic pair. Tt is now a relatively easy matter to find a formal condition corresponding
to the property we called B2, that is extUU N extV = ext (U}V). Tn fact, if we express it in
the equivalent form Va(z IF U & 2 IF V — =z Ik UlV) we see that, by replacing an arbitrary
concrete point x with an arbitrary observable a and the relation IF with the cover <, we obtain
Va(a U & a <1V — a < U]V). This is the same as the rule
adl a<xV

aqU]lV
Note that the formal expression of exth N exte = ext (ble), which by distributivity is equivalent,
to extUU N extV = ext (U|V), would bring to a b & a < ¢ — a < ble, which is trivial since
a<1b & a<ec gives a ¢ ble by definition. Tn fact, the purpose of |-Right is exactly to express
distributivity formally, and that is why we must start from ext U N extV = ext (U|V).

In this way we have obtained yet another definition of formal topology, simply as a formal basic

J-Right

topology in which |-Right holds. To distinguish it from that given in section 2.1, one could call it
a balanced formal topology, because the difference i1s the presence of a binary positivity predicate
and the absence of the condition of positivity (see section 1.2).

As T hinted at in section 1.2, the variety of possible definitions 1s a richness which one should
not be afraid of. Tn fact, at this stage of development it is hard to see which one will become
the standard one. The different requests on the positivity predicate x seem to be the analogue of
different separation principles in pointwise topology. Tike in pointwise topology, it will take time
to find out virtues and defects of each assumption.

2The method to find counterexamples for the other inclusions is interesting: one can choose a suitable basic pair,
and use the logical expressions for int and cl to show that they would give some implications which are not valid
intuitionistically.



Some of the advantages of the definition given above are already clearly visible. The first
is that it has a solid structural motivation. Tn fact, the new predicate x is the result of the
isomorphism between concrete closed and formal closed subsets, and at the same time it is the
symmetric of the interior operator int and the dual of the operator A, that is of the cover <. So
X seems to be exactly what is necessary to make the definition fully balanced. The second is that
in this way 1t allows to introduce a natural notion of formal closed subset; recall that a subset U/
is said to be formal closed if JU = U or equivalently if @ ¢ /' — a x /. The third 1s that the
richness of the structure allows to see that it is better to get rid of the condition called positivity
(and study it as an extra assumption, if wished). Tn this way one can obtain both the theory of
locales (or frames) and the previous version of formal topology as special cases. Tn fact, we say
that 7 is improper when JU = @ for any U/; then one is left, essentially only with the cover <,
which amounts to a predicative formulation of frames. We say that 7 is trivial when 7.5 and
() are the only two formal closed subsets. One can prove constructively that 7 is trivial exactly
when it satisfies a ¢ JU — a ¢ H & H C U for some monotone subset H (H is monotone if
ae H& a<U — H () U; when J is trivial, put H = {a : a x S}). So a formal topology in
the sense of definition 1.1 is obtained as a special case by defining Pos to be H and by requiring
the condition of positivity. Of course, a fourth advantage is that, as noticed with the definition in
section 2.1, some important examples of formal topologies fall under the new definition in a very
natural way.

T expect also other advantages, or applications, to become visible after learning how the new
expressive power - due to the presence of x - can be exploited. Before that, one has to adjust all
the definitions and results of formal topology to take care also of the binary positivity predicate x.
This does not look to be a routine task. As an example, T give here the new definition of formal
point. Another example is given in section 2.7.

The definition of formal point of a formal topology & = (5, <, x) is obtained as usual by
considering the case in which § is presentable. So assume that S is the structure induced by a
concrete space (X, IF,.S) on the set S. The idea is first, to describe the formal properties of a subset
Orx traced on S by a concrete point x, and take them as abstract conditions for a subset e C S to
be called a formal point (see also section 3.2.2). Recalling that |, < and x in the presentable case
are defined by means of concrete points, we see that the properties we need are simply

rlha xzI-b rlFa a<lU rlFa Oxr CU

zlFalb x kU ax U
The first says that (X, IF,.S) satisfies B2, the second and third are just a re-formulation of the
definitions e < U = exta C extU and a x U = exta (§ restU/. We also add Fb(z Ik b), which
corresponds to B1. Now we can transform such properties into properties of O by writing a € Ox
in place of z IF a, and of course Gz § U in place of z IF U/, and then take them as properties of
an arbitrary o« C S. But if we now write o IF a for a € o, we see that the definition we look for is
obtained by literally replacing « for = in the properties above. So we have that o C S is a formal

point, if
a is inhabited: a (S
. N alFa alkb
@ is convergent: o alh
lFa a<U
a splits < olfa adb (where alFU =« () U)
alk U
allFa oCU
a enters X: _—
ax

The condition that a splits < is actually redundant (in fact, it can be deduced from a enters Pos
and compatibility), but T prefer to leave it explicit both to help intuition and to see that, when &
is trivial, the above definition gives back the definition of formal point previously given in [32].
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As a last remark, note that the definition becomes much shorter in the notation with A, 7 and
0. Tleave it to readers to check that it is equivalentto o § S, 0 ( U & o ( V = a § U]V,
a0 AU a U, a UL CF—-U()JF.

2.5 Formal continuity and convergence

A notion of morphisms between formal (basic) topologies is introduced by following the same
methodology which led us to the notion of formal (basic) topology. That is, we consider the
notion of morphism between basic pairs, alias relation-pair, and we look for the properties which
are enjoyed by its component on the formal side, with respect to formal open and formal closed
subsets. These will be the properties we require to characterize morphisms between formal basic
topologies.

Tt can be shown that a relation-pair (r, 5) is equivalently presented by each of the following two
properties, symmetric to those mentioned in section 2.3:

sOND =Or D for any D C X,

which means that s is formal closed, and r 1s a method to determine the formal closed subsets of
T, which are the existential image of formal closed subsets of S along s;

s~*OD =0r"*D, forany D C X,

*

which means that s™* is formal open, and r=* 1s a method to determine the formal open subsets,

which are the universal image of formal open subsets of S along s.

*

When only the formal side is considered, the relations r and r=* are lost, and the properties

characterizing morphisms between formal basic topologies are then just the properties enjoyed by

*

s. However, once r and r=* are forgotten, it is no longer possible to prove the two conditions,

that s is formal closed and that s7 is formal open, to be equivalent to each other (two finite
counterexamples are given in [18]). Hence hoth of them are required. Thus a morphism between
two formal basic topologies § = (S, 4,7) and T = (T,B,H) is a relation s : S — T such
that 7. s is formal closed, that is I/ = JU — sU = HsU and . s~* is formal open, that
is U = AU — s7*U = Bs™*U. We call it a formal continuous relation, and we denote it by

s :8 — 7. One can prove (see [18]) that, in the notation with x and <, the two conditions on s

ash baV ash awxs*V
a<ds~V bx V

Several other equivalent characterizations are also possible, see [18].

are equivalent, to:

Given any formal basic topology S, one can always define the image of § along any relation
s S8 = T, by setting s§ = T’ = (T,s *As™,s7s*). This is a formal basic topology in which
formal open subsets are just the universal images of formal open subsets of S, and dually formal
closed subsets are just the existential images of formal closed subsets of S. Tt is the coarsest formal
basic topology which makes s a formal continuous relation.

Following this definition of image, it can happen that S satisfies |-Right, while its image 7’
does not. So the notion of formal continuous relation is not the right notion of morphism between
formal topologies. As the notion of formal topology was obtained by describing axiomatically
the formal side of a concrete space, that is a basic pair satisfying B1 and B2, now the correct
definition of morphism between formal topologies is obtained by describing axiomatically the right
component of a relation-pair which preserves the validity of B1 and B2.

So assume that S is the formal topology which is presented by a concrete space X' = (X, I, S).
One can see that the image of § along a relation s : S — T is the same thing as the formal
basic topology presented by the basic pair (X, so Ik, T). Since (so IF)™ = exts™, this satisfies B1
and B2 if exts™7T = X and exts™bhN exts~d = exts™ (bld), for any b,d € T. But then, since
X satisfies B1 and B2 (that is extS = X and extU N extV = ext (U]V)), these two equations
are equivalent to exts™T = extS and ext(s™hls™d) = exts™(bld), and hence finally, by the
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isomorphism Sat(A) = Red(int), also to As~T = AS and A(s~bls~d) = As~(bld), for any
b,d € T. Tn the notation with <, these are equivalent to

totality S <s™T convergence s~ blsTd <1 s7(bld)

So a morphism between formal topologies is defined to be a formal continuous relation which
satisfies totality and convergence; it is called a formal map. Now one can easily check that the
image 7' = s8 of a formal topology S along a formal map is a formal topology too.

The notion of morphism between formal topologies presented in [32] is easily seen to be a special
case of formal map. Tt 1s important to observe that the conditions of totality and of convergence
are automatically satisfied by a relation s when it is the right component of a relation pair (f, s),
where f: X — V is a function and (X,IF,S), (Y,IF,T) are concrete spaces (the proof is left to
readers). This shows that, when only functions are considered, the notion of continuity includes
that of convergence.

The reason motivating the name of formal mapsis that they induce functions between the formal
spaces determined by the formal topologies; actually, they are the predicative way to present such
maps. In fact, it is routine to check that whenever s : & — T is a formal map between formal
topologies and «a is a formal point of S, then the image sa of the subset a along s is a formal point
of 7. Hence s induces a map between P#(S) and Pi(T).

A detailed treatment of formal continuous relations and of formal maps is given in [18].

2.6 The problem of definitions

T have already noticed several times that the method to obtain the definition of a formal notion
is that of taking as formal axioms all the relevant properties which hold in the presentable case.
Tt 1s now time to analyse this more carefully. The main problems are: what does it mean to take
all properties? how can one be sure that there are no other? And in any case, which are the right
axioms for < and x?

Only recently i1t has become clear to me that the answers depend both on the choice of the
language (that is, of the primitives) and on the choice of the foundational theory. We now see
how the different choices give different results, in particular on three specific questions: should
closed subsets be uniquely determined by open subsets? should the cover be always assumed to be
inductively generated? should one assume the condition of positivity (Pos(a) = a <U) - a<1U?
T will argue that in the most basic approach the answer must be no to each question.

Assuming classical logic, as we have seen in section 2.1, in any basic pair the equation ¢l = —int —
holds. By the same reason, on the formal side J = —A—. Moreover, classical logic guarantees
compatibility of —A— with A to hold: AU § —A -V & U (§ —A —V is classically equivalent
to AU CA—-V < U C A—V, which is the characteristic property of closure operators. So our
definition of formal basic topology boils down classically to that of a set S with a closure operator
A. Tn this sense, it is not visible in a classical foundation. Note, however, that adding the law of
double negation on subsets — — I/ = U to our definition is not enough to make it trivial by forcing
J = —A— to hold: in fact, when A is the identity, any interior operator 7 is trivially compatible
with 1t. This seems to mean that the structure of basic topologies has after all some stability which
goes beyond foundations.

Allowing a quantification over subsets, like in topos theory, given a set X with an interior
operator int, one can define closure as usual by quantifying on all open subsets. In fact, the very
definition of ¢l in a basic pair, namely z ¢ ¢l D =Va(z Ik a — exta § D), can be expressed by

reCL(D)=VE(xeintE — intFE ( D).

One can check directly that such CI. is indeed a closure operator compatible with int, and that
actually it is the greatest of such operators. However, it i1s more instructive to note that impred-
icatively the collection of open subsets is actually a set, defined by {PD C X : D = int D}. Then
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the above definition of CI. coincides with the definition of ¢l = rest & in the basic pair formed by
X, the open subsets and 2z IF D=z e D.
On the formal side, by symmetry one can always define a cover < impredicatively in terms of
a positivity predicate x:
aQ’U=YW(ax W = U x W).

To get an intuitive grasp of this definition, one should compare it with the pointwise definition of
cover Vo (z Ik a — 2 IF U), and recall that a x W expresses formally the existence of a point in
exta N rest W.

So also in the impredicative case the full structure of basic topology would not be visible, since
one can always choose the cover, and hence formal open subsets, to be uniquely determined by
formal closed subsets. Moreover, when <1? is defined as above, the formal topology (S, <?, x) is
actually presentable (with X the set of formal closed subsets and U |- a = a € U). So the reasons
for introducing formal topologies in this context are not so compelling. Tt is still unknown to me
whether, conversely, one can find a similar impredicative definition of the positivity predicate in
terms of a given cover <. In the special case of a trivial positivity predicate Pos which moreover
satisfies positivity, this is well known, and the definition is Pos(a) =VU(a < U — U { S).

Also in a foundation based on the notion of computation, such as Martin-T1.of’s type theory,
there are some good reasons for a less general notion of formal basic topology than that given
here. Tn fact, because of the validity of the axiom of choice, the cover defined on the formal side
of a basic pair is always inductively generated (this was remarked by Martin-T.of, a proof is in
[10]). So it is natural to require inductive generation of the cover <1 as part of the definition. Tn
this case, a positivity predicate is uniquely determined, and it is the greatest positivity predicate
that is compatible with <1, which is defined by co-induction, as shown here in section 2.7. Tn the
same spirit, one can prove that for a relation between two such formal basic topologies to be a
formal continuous relation it is enough that it respects the axioms. Tn this sense the two conditions
defining formal continuous relations are no longer independent. Tt is to be recalled, however, that
here too the request that x be determined by < remains a choice, and is not a theorem (see the
result by Valentini mentioned in section 2.7).

The foundation we have been working with so far is essentially just intuitionistic many sorted
logic. No assumption 1s made on the nature of sets; in particular, no axiom of choice and no
powerset, axiom are assumed to be valid. So there 18 no principle which allows to reconstruct that
half of topology, dealing with existential statements and with closed subsets, in terms of the other
half, namely universal statements and open subsets. This is why one can never forget either of
them. The main conceptual advantage is that the resulting mathematics respects both the intuition
of computation, which underlies the justification of the axiom of choice, and the intuition of some
kind of continuity, by which one can sometimes be in the position of knowing a statement of the
form Va3y to hold also without having a function giving y in terms of .

A deeper analysis and a precise formulation of such a basic foundation is still to be done. This
should not be, however, an obstacle for doing mathematics. A firmer grasp will probably come
after some more advanced technical development and some specific applications. Tn my opinion,
however, studying that part of topology which is compatible both with Martin-T.of’s type theory
and with topos theory is definitely worthwhile.

Since the language is not fully specified, the problem of completeness remains open: does the
definition of formal basic topology gather all the properties induced on the formal side of a basic
pair? This is an interesting logical problem.'® Tn my opinion, however, rather than looking for

13 To solve this problem, one must deal with the specific problem of the property of positivity (see section 1). Tt
can be shown (see [37]) that positivity is equivalent to the equation AU = A(IU N 7S), which in the presentable
case is valid simply by intuitionistic logic. Still, T believe it is better not to put it among the axioms. One reason is
the fact that, as communicated to me by Coquand and Valentini, if the cover is finitary and positivity holds, then
J S, alias Pos, is decidable (so a statement in section 4 of [32] is wrong, by the subtle mistake of assuming wrongly
that the intersection of a finite subset with an arbitrary subset is again finite). This would mean that in general
the compactification of a given formal topology would not be a formal topology. Another reason is that it is still to
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a formal expression of existing definitions, it is more interesting to investigate whether working -
even informally - on a different foundation can bring to a theory, such as the basic picture, with an
mtrinsic mathematical meaning. Tt seems to me that this is possible, and that the basic picture
can be characterized structurally as the theory of what remains invariant under transfer along
a (continuous) relation. T now briefly explain some technical facts which seem to support this
expectation.

Since the whole basic picture begins with an analysis of images of subsets along a relation,
a crucial step forward 1s to obtain a structural, or mathematical characterization of arbitrary
relations and of images along them. To this aim, the language of categories is of great help. Thus
we think of PX and PS as categories with the operators N, U, [J;c7, ey and with the predicates
C and (. Then the operators on subsets, beginning with ext, rest, <, O, are best thought of as
functors. We have seen that they form two pairs of adjoint functors, ext 40 and & - rest. But,
if we consider two arbitrary pairs of adjoint functors ' 4 G and F/ 4 ', with F,G' : PX — PS
and F' G : PX « PS, nothing is said about the fact that they are induced by the same relation,
or better by a relation and by its converse.

Tt is well known that any adjunction F' - G between PX and PS is induced by a relation
between X and S. Tn fact, the left adjoint functor F' respects unions, and hence one can define
r: X — Shyputting zra = a e F{x} and then obtain that F(D) =], F{z}=U,.,rz=r(D).
So F'is the same as the existential image along r. Since r 4 r*, by the uniqueness of adjoints G = r*
holds. Assuming a second pair F/ 4 G’ of adjoint functors in the opposite direction tells us that
there is a second relation # : X <« S such that F/ =+ and G/ = '*. So now the problem is:
which condition should one add to characterize abstractly the fact that » = »=7 The answer is,
a posteriori, incredibly simple: ' = r~ holds if and only if the two existential functors F' and F’
are linked by

(3) F(D) § U ifand only if D ( F'(U), forany DC X, U C 5.
Tn fact, if # = = then (3) holds, because for an arbitrary r we have
(4) r(D) 0 U ifand onlyif D () »=(U), forany DC X, U C S.

(this is easily checked by intuitionistic logic). Conversely, if FF' = r, F/ = ¢’ and (3) holds, then for
every # € X and a € S we havez e r'a iff {2} ( Pa iffrz ( {a} iff {2} () r~a iff 2 e ra, that is
" = r~. Tcall (4) the fundamental symmetry, and say that two functors F', F’ satisfying (3) are
symmetric, written F |- F'.

Tt is thus proved that four functors F,G' : PX = PS and F/, G : PX + PS are those induced
by a relation r : X — S, thatis F=r, G =r* F' =r~, G = r~* if and only if they form two
adjoint pairs F 4 G, F/ 4 G’ and, moreover, F is symmetric to F', F -|- F'. This T suggest to call
a symmetric parr of adjunctions. This useful characterization is natural and simple only because
of the presence of (§ (and actually, it was discovered only after the introduction of this notation).
Tt is now possible to take it as a guideline to obtain formal definitions. One can now see that
the first formal definition, namely that of formal basic topology, is just the result of transferring
the structure of the power of the sett X (including also () onto the set S through a symmetric
pair of adjunctions. Tn fact, the compositions G'F’ and F(, acting on S, are well known to be a
closure and an interior operator, respectively. Recalling that when the relation r is denoted by I+
we use the notation r = O, r* = rest, r~ = ext and r=* = O, these compositions are nothing but
J=<Crest = FGand A= 0Oext = G'F’. We now can see further that compatibility is the result
of transferring () from X to S. Tn fact, G'F'U () FGV if and only if FFG'F'U () GV (because
F |- FYif and only if F'U (§ GV (because F/'G'F' = F') if and only if U (§ FGV (again because
F |- F".

be checked whether positivity is respected by continuous relations, and T suspect it is not. And finally note that in
any case one can add positivity as an extra assumption and study the class of topologies in which it holds.



We can similarly see the definition of formal continuous relation as the result of transferring
an arbitrary relation r : X — Y along two relations IF1: X — S and |Fo: Y — T In fact, defining
s 1S = T by setting s =IlFy or ol 7, and considering the formal basic topologies induced on S

* 1s formal open. Now the 1dea of

and on T, we see immediately that s 1s formal closed and that s~
invariance is that if we repeat the process, that is look for the structure which is preserved under
transfer along a relation starting from a formal basic topology & rather than P X and from a formal
continuous relation s rather than an arbitrary relation r, we should obtain again the same notions
of formal basic topology and of formal continuous relation. This is still to be understood better. A
remarkable result by Gebellato seems to be a good starting point. Tt says that the afore-mentioned
characterization of arbitrary relations as symmetric pairs of adjunctions can be “topologized” and
extended to a characterization of a formal continuous relation s : & — 7 as a symmetric pair of
adjunctions between the lattices of open and of closed subsets in & and 7. See [19] for a precise

statement and proof.

2.7 The dark side of the moon

The treatment of existential statements, or of statements of the form 3V like that in the definition
of interior, is the dark side of the mathematical planet. They have usually been reduced either
to a negation (as in classical logic, where 3 is the same as =V= and hence closed is the same
as complement of open, see section 2.1) or to an impredicative quantification (closure defined in
terms of all open subsets). The main aim of the basic picture, and of formal topology developed
on it, is the beginning of a more direct, positive exploration of that kind of information which is
usually treated as negative. Only time and further work will tell whether the mathematics which is
beginning to come out is interesting and with interesting new applications. My expectation is that
it should find applications in those sciences in which a careful management of information seems
important, like computer science, theoretical biology and perhaps quantum theory. However, the
task of a mathematician at this stage is still that of investigating the mathematical aspects, basing
on internal criteria, such as structure or mathematical aesthetics.

Specifically, the aim is to develop a mathematics which keeps on the scene as primitive also the
notions which are connected with existential quantifications. The introduction of the notation ( for
meet has this purpose; in fact, 1t allows to transform logical argumentations involving the existential
quantifier into mathematical arguments involving (), which are based on a spatial intuition. The
first, step 1s then to treat closed subsets as independent of open subsets. On the formal side, this
brings us to the introduction of the positivity predicate x besides the cover <. The exploration
of the dark side should now consist mainly in working out which are the right conditions which
must be added to previous definitions and which take care of (), closed subsets, x and of notions
connected with them. We have already seen one example, namely the definition of formal point.
We now see another, more striking example, that is the generation of the positivity predicate x
by co-induction.

Tt has been shown in [10] that the most general way to generate a formal cover on a set S is
to start from a family of sets T(a) set(a € S) and a family of subsets C'(a,i) C S (a € S,i € I(a)).
The intuition is that T(a) is a set of indexes for the covers of a, and that C(a, ) is the cover of a
with index 4, taken as an axiom. Then a cover < (T mean, < reflexive and transitive) is generated
inductively simply by the rules (see [10])

5) aell i€ l(a) Cla,i)y<U

al a<ql
The new 1dea now is to generate the largest predicate x compatible with <1 by co-induction, that

is by forcing compatibility to hold by successively taking away elements which do not satisfy it.
Given that < is generated from axioms a <1 C'(a, 1), to force compatibility it is enough to consider
this case. And of course one must also force reflexivity to hold. So the rules are

ax U ax U i€ I(a)
aell Cla,i) x U
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The relation < is the minimal relation satisfying the rules written in (5). This means that for every
subset U/, the subset A/ = {a € S : a < U} is the least among the subsets P satisfying I/ C P
and C'(b,i) C P = be Pforany b € S and 7 € T(h). Tn other terms, the following principle of
induction holds:

[i € 1(8),C(b,7) C P]
|
aldll UCP beP
ace P

Dually, for every U the subset JU = {a € S : a x U} is the largest among subsets @ such that

Q CUandbe@ — Cbi) ) Q forany b € S and i € T(h). So the following principle of
co-induction holds: ]
[be@,ie I(h)]

|
acQ QCU  C(hi))Q
ax J

Using these two principles, it is possible to prove that (S, <1, x) is indeed a formal basic topology.
By combining this with the treatment of |-Right in [10], one can also easily generate balanced
formal topologies. This shows at least that there is a wealth of examples for the new definitions.

Moreover, there is a wealth of examples also of formal continuous relations. Tn fact, assume
that S is generated as above by 7, ' and that T is similarly generated by J(b) set(b € T) and
D(b,j) CT(beT,j€ J(b)). Assume that s: .S — T is any relation respecting the axioms, that
is satisfying s=b <g s~ D(b,j) for any b € T and j € J(b). Then one can prove by induction that
s~* is formal open and by co-induction that s 1s formal closed.

The idea of a co-inductive generation of x first came to Martin-T.of, in July 1996 soon after
several conversations by the author on the basic picture and in particular on the V3-3V duality
between open and closed subsets. A joint paper is in preparation, which will include also a game
theoretic interpretation of < and x. Valentini has later shown that one can force x to satisfy
any given axioms, fully independently of the axioms for <1. This shows that there is a wealth of
examples in which formal closed subsets are by no means determined by formal open ones.

Some other mathematical developments connected with ( and x are in progress. Tn particular,
Sara Sadocco is working on an algebraization of the structure of PX in which ( is taken as
primitive, besides C.

3 Some principles, some reflections

The aim of this final section is to give an organic, though preliminary, exposition of the reflections
of a general character — on the meaning of mathematics, of constructive mathematics in particular,
and on the role of foundational assumptions in the specific case of topology — which have always
accompanied my work in formal topology (and which subjectively cannot be separated from it).

In my opinion, one should start from the beginning, that is from general questions like: what 1s
mathematics? what is its meaning? etc. My general attitude, which T call dynamic constructivism,
can now be found in [35]. So T can here concentrate, in section 3.1, on seven principles which are
a bit closer to the mathematical practice and a consequence of the general philosophy. Section 3.2
contains comments which apply to the specific case of topology, and of the present approach in
particular. They should help to understand the reasons of some mathematical choices made here.

T hope that the resulting survey will contribute to straighten an odd situation: in fact, T talk
explicitly about matters which mathematicians tend to leave to philosophers, while philosophers
treat them so generally that they produce very little interest among mathematicians. The reader
T ideally address to is an open-minded mathematician.



3.1 The seven principles of dynamic constructivism
3.1.1 Genuine answers

T believe that the first principle of any scientist, and premiss to all other, should be that of giving
nothing for true unless personally verified, a sort of cultural allergy to truth “by authority” and
to any matter of faith. Thus one should have a genuine answer, with good arguments, to any
question in and about mathematics, beginning with that one which 1s the simplest to put: what is
mathematics?

In my opinion mathematics is best conceived as a human tool for human knowledge. So no
God’s eye point of view is necessary, or convenient: also if God exists, 1t remains up to our
responsibility to interpret what he/she says. An acceptable definition is then that mathematics is
the study of abstract mental structures, related to counting, measure, grouping, shape, motions,
vicinity, etc., and their applications. Whatever definition one prefers, mathematics 1s considered
as the most reliable knowledge we can reach: one could even define it in this way.

The main reason to study constructive mathematics is in the end - in my opinion - simply that
it 1s more reliable and allows to know more than classical mathematics; this is not reliable enough,
since it betrays our intuition (see [35]).

3.1.2 Constructivism as awareness and modularity

Tt 1s well known that many kinds of constructivism have been proposed. Brouwer’s intuitionism has
appeared, in the scale of history, immediately after Cantor’s exploration of the infinite, and it can
be described as an answer to it. Tt can be characterized by the presence of mental constructions,
which means that no actual infinite is possible, and hence by the rejection of the excluded third.
In the dilemma of inward-outward reality, classical mathematics chooses outward reality, including
a notion of truth as already given. Tt was Brouwer who first spoke openly about intuition (which
etymologically comes from look inside) and internal reality, showing how it can be linked with a
conception of mathematics.

Among the possible ways to avoid the paradoxes, Poincaré and others insisted on predicativism:
a mathematical object (notably: a subset) cannot be defined in terms of the collection to which it
belongs. Hence, one cannot quantify over all subsets to introduce a new subset; or positively, one
can quantify only when a meaning can be given to V¥, 3, hence surely at least when all the elements
of the domain are generated by fixed rules.

Topos theory (on which locale theory is traditionally based) is intuitionistic but not predicative.
Martin-TL.of’s type theory (since 1970) is an intuitionistic and predicative set theory, which includes
logic via the “propositions-as-sets” interpretation, and solves the problems connected with Russell’s
type theory. The distinction between set and type is essential; all the elements of a set are generated
by rules which can be specified in advance.

Which kind of constructivism should one choose? We first have to make it clear what we
should mean by constructivism. We are lucky that today it is possible to appreciate the value of
constructivity without any specific ideological measure: the preservation of intuition, or faithful-
ness to reality, has now become also preservation of information, or of computational content (in
computers).

Tt is impossible to work in mathematics, intuitively and informally as usual, and in the same
time keep all the information. Tf we keep too close to the machine level, there will be too many
details, and hence too many complications. Some ideal notions are necessary.

So control can not be the same as preservation of all the information. My general principle is
that constructivism is not a static self-imposed limitation to full information, but rather awareness
of which idealization has been made to build up an abstract concept, and to express it formally.

To simplify the complexity of raw data, one has to idealize, that is, to forget or destroy some
data. Classical mathematics is simple, because 1t 18 based on a very strong idealization, or de-
struction, and with very little awareness. But also a rigid self-limitation, like when fixing a formal



system once for all, means little awareness of destruction. Dynamic constructivism cannot be re-
duced to a formal system, but it must remain a cultural attitude: to be aware of idealizations (that
is, of what is forgotten) and hence to know what one can obtain with certain tools and certain
principles.

In practice, an important aim is to develop mathematics, as much as possible, in a basic, or
minimal theory, which is so neuter that it preserves (and hence is compatible with) all kinds of
intuitions with which we feed 1t. Tn particular, it must be open-ended, both in the notion of
proposition and in that of truth of propositions, and hence it must be predicative and intuition-
istic, respectively. Tn fact, since in a constructive approach a subset of a sett X is the same as a
propositional function over X, a quantification over subsets of X in an essential way (that is, to
define a new entity) means considering the notion of proposition to be fully determined, and thus
leaving no room for future developments. Similarly, the law of excluded middle leaves no room for
future increase of knowledge, or truth.

T had chosen aft first Martin-T.of’s type theory as a foundation. Among the existing foundations,
it is in my opinion with no doubt the most convincing among those dealing both with technical and
with philosophical problems. Tn fact, it gives a clear meaning to all basic mathematical and logical
notions, and in the same time it 18 a formal system very carefully designed to keep full control of
information (and in fact it is also a computer language, see section 3.2.1). Exactly because of this
property, Martin-1.of’s type theory enjoys a strong existence property: the witness which allows
to prove an existential statement (32 € D)A(z) is encoded in a proof ¢ of (3z € D)A(z) and can
regained, within the formal system, by the projection functions giving p(¢) € D and ¢(c) € A(p(e)).
So the so-called axiom of choice 1s validated, actually, it is rigorously provable.

Martin-1.of’s type theory seems thus perfect to deal with computations. However it is well
known that the axiom of choice is constructively incompatible with powersets (see footnote 2).
But it is a fact that in the development of formal topology the axiom of choice is used rarely
enough that one can leave it out, and assume it only when necessary, and then with explicit
mention. Tt is certainly never used in all the results mentioned in section 2 here.

As regards the foundation as a formal system, this means that one has to abandon the
proposition-as-set, interpretation which is usually at the base of Martin-T.of’s type theory, and
give intuitionistic logic on propositions, with its usual inference rules, separately from sets. In
this way one can keep the notion of set exactly as in Martin-T1.of’s type theory, and have a notion
of proposition which does not satisfy the strong existence property (note: the existence property
continues to hold, it is just that to obtain the witness one has to pass through the metalanguage).
Tt 1s not my most urgent aim to formalize rigorously such a theory, but rather to see where it can
bring us in the development of mathematics (see section 3.1.4).

Such a foundation is fully compatible with the addition of quantifications over all subsets, and
thus also with a direct geometric intuition, such as that behind topos theory or choice sequences.
So most of the results of formal topology (that is, as long as the axiom of choice is not used) hold in
an arbitrary topos. Conversely, a considerable portion of locale theory (by which T mean pointfree
topology developed over the foundation of topos theory) is not possible predicatively, and hence is
absent from formal topology.

There are at least four good reasons which make well worth the trouble of developing a piece
of mathematics, like formal topology, over a “minimalist” foundation such as the one described
above. The first is that it works, in the sense that 1t is sufficient to express topological notions and
to work with them. The second is that it allows to see that the real basis of topology is explicitly
that of symmetry and logical duality, rather than implicitly that of some notion of set, which is
bound to often silent philosophical assumptions. The third reason is to begin a modular approach
to the development of mathematics and the study of its foundations. Starting from a minimal
foundational theory and developing mathematics over it, allows to analyse which parts and which
peculiarities of mathematics depend on further foundational assumptions. This, rather than the
choice of one foundational theory, should be in my opinion the study of foundations. Tn a certain
sense, all means, that is all assumptions are allowed, also if beyond the basic type theory, as long
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as it remains clear when they are active. In fact, the rejection of a principle i1s not due to some
kind of moralistic contempt or of ideological attitude, but rather seen as a method to keep some
positive general features of mathematics as developed in the basic theory. Then it should be clear
that there is nothing wrong, even for a convinced constructivist, to speak about some classical
or impredicative results, as long as no confusion is made. In fact, it is often useful to be able to
look at things from a certain distance and thus to put an upper bound to what one can hope to
prove constructively. The fourth reason is that the actual development of mathematicsin a “weak”
theory helps to extend the territory of mathematics itself (see section 3.1.4).

3.1.3 Forget safely

Assume that constructivism involves a strict control of information and, in particular, awareness
of the information which has been forgotten, or destroyed, to be able to obtain a certain idealized
concept. Then the idea is to develop mathematics directly treasuring constructivity, that is, being
very careful when throwing away some information, in case it is not possible to restore it. This
is the reason why a constructive treatment carries on more details than the classical one. The
computational content is kept along the way, rather than put on top of a finished non-constructive
work, when it may be too late. The typical example is that of the existential quantifier 9. There is
no way to prove constructively an existential statement except by having a witness or by a previous
existential quantifier (with its witness). This is why 3 is kept distinct from —=V—=. Tf 3 is identified
with =V, the information about the witness is soon lost in an irreversible way.'* So the choice
for such identification, which might look as the choice for a “stronger” logical principle, actually
means that the witness information is considered to be irrelevant.

If awareness of destruction is the aim, then the 1deal situation is to forget only when it 1s
safe, that 1s, forget only that information which can be restored when needed, maybe by passing
through the metalanguage (that is, for instance, by inspecting the proof of a certain statement). Tt
is possible to give a mathematical form to this principle, which T call the forget-restore principle: an
ideal notion can be introduced, by forgetting some information, only if it is effectively conservative,
that is, if it can be reduced to the underlying type theory in such a way that also proof-terms,
which express the computational content, can be restored.

The formal setup of Martin-T.of’s type theory works perfectly well for this purpose. Tn fact,
it provides us with a total control of information, and hence it is easier to keep track of what is
forgotten. Moreover, type theory is known to be correct, either by direct meaning explanations or
by normalization arguments. So to develop constructive mathematics it is enough to enrich 1t with
some abstract “utilities”, beginning with a notation closer to the usual style of mathematicians.
Purging mathematics from all what does not strictly fall into the formalism of type theory would
sacrifice human intuition, and in the end it would rightly be felt as a form of penance. Of course,
any abstract tool which is introduced must preserve not only consistency, but also constructivity,
and thus it must obey the forget-restore principle explained above. This has been done, for instance,
for the notion of subset, see section 1.3.1.

This also gives a new meaning - the only constructively possible, in my opinion - to Hilbert’s
program. One could call it the humble Hilbert program, because rather than trying to justify all of
mathematics in one shot, the goal is to do it bit by bit, and add each safe bit to the basic theory,
which is known to be safe.

Tt is certainly convenient to do this in a modular way, that is in such a way that different tools
can be put together at will, one on top of the other. For this purpose, preservation of predicativity
seems to be necessary. In fact, quantifying over all subsets to introduce a new tool means that the
notion of subset is blocked, and this can be incompatible with the addition of a second tool, like

a new set-constructor.

T4 A nice example, from everyday life, is when, contrary to the rules of a serious craftsman, an antique piece of
furniture is restored by cleaning it with sandpaper. One so abstracts from “dirt”, but in this way its patina is lost
and its age is forgotten, and hence the commercial value destroyed, in an irreversible way!



For some other comments, see [39] and section 3.2.1. See also [46] for another example following
the forget-restore principle.

3.1.4 New foundations must give new mathematics

Reality is too complex, chaotic even. Tt is a need of ours to organize it in some way, looking for
patterns, regularities, abstract concepts. This is anyway something we impose on reality, and to
obtain it we have to forget details, that is idealize. Mathematics is an important tool for this
general aim. The different foundations correspond to different choices of how reality is simplified.

Classical mathematics corresponds to the strongest idealization: all what is consistent is as-
sumed to exist by itself. All propositions, all subsets, all objects of mathematics live in a single
and static world, which has been and will always be as it is now. The task of mathematicians is
just that of discovering what is already there and true in itself.

There must be a good reason to push one to abandon such a simple view. Tt 18 a common opinion
that the purpose of constructive mathematics 1s to repeat constructively as much as possible of
classical mathematics. Tf this were the only aim, constructive mathematics would soon become
boring (T believe that this view is actually one of the reasons explaining why so few mathematicians
work in constructive mathematics, see section 3.2.5). On the contrary, T believe that the real
motivation for choosing a different foundation is that it leads to some new mathematics, which
would not be possible otherwise.

For instance, choosing category theory and intuitionistic logic has brought to the novelty of
topos theory. The novelty of mathematics over a predicative foundation 1s usually measured in
terms of computation. Tt is well known that mathematics developed predicatively, in particular if
within type theory, is automatically formalizable in a computer system, and hence can for instance
be checked mechanically (see section 3.2.1). This is sometimes considered to be the reason for
developing predicative mathematics. Certainly, 1t is extremely important and interesting, but
according to my personal taste not always so exciting intellectually. Tt would not be worthwhile for
me to take pains to avoid excluded third and powersets if the aim were only that of confirming what
already exists. The purpose of a new foundation must be that of finding some new mathematics,
that is new ways to organize reality into conceptual structures.

The crucial step for this change of attitude is to perceive the refusal of “powerful” principles not,
as a more or less meritorious deprivation, but rather as a refinement of mathematical instruments,
and hence a source of richness. After all, allowing oneself powerful principles for any purpose and
in any situation is not so different from using a butcher knife also when a surgeon knife would be
more suitable. A less brutal metaphor is that of wearing always a pair of coloured glasses, so that
not all colours can be distinguished.

A “weak” foundation allows for distinctions which are impossible otherwise. Tt is known that
intuitionistic logic is more refined than classical logic, in that it keeps logical constants distinct.
One begins to see that the same holds for a predicative foundation, which keeps the distinction
between a set and its power, otherwise lost in an irreversible way (see also section 3.2.2).

The method of reducing assumptions to obtain deep and general structures is well known in
mathematics, at least since the beginning of abstract algebra. The same happens with foundations:
trying to express a concept in a language with finer distinctions, like a weak foundation, often
produces deeper understanding and new structures, that is new mathematics. To see this happen
in practice, 1t is necessary to put that foundation at work and actually wuse it to do mathematics.
Proving metamathematically that something is possible does not help much to discover new things.
Conversely, the awareness acquired by users often improves the understanding of the role of some
foundational principles. So T see the study of foundations as a dynamic process which is active in
both directions, rather than a justification a posteriori of something taken as given.

Using type theory, and actually only the small fragment coinciding essentially with many sorted
intuitionistic logic, to develop topology has produced the new mathematics which T call the basic
picture. The materials on which it is based are (no plastic or sand, nor any ideological assump-



tion, but) the hardest a logician and a mathematician can expect, namely very elementary logical
dualities and geometrical symmetry. The duality underlying the notions of closed and open gives
a strong motivation for a study of topology, both pointwise and pointfree, in which the notion
of closed is primitive like that of open. The symmetry between the concrete and the formal side
allows to embed both the pointwise and the pointfree approach to topology in a unified framework.

A1l of this would probably never have seen the light in a different foundation. Tt is the use of
a minimalist foundation which forces one to find new explanations, and hence new structures. As
discussed in section 2.6, classical logic would bring to the identification of closed with complement,
of open, and thus their duality would collapse to complementation. Tmpredicativity would make
the set. on the formal side always definable as the set of open subsets. Thus in any case the basic
picture would remain just a consistent but funny option, and thus it would escape to our attention
(as it has been, as a matter of facts). One thus can see that in a precise sense stronger foundations
begin with being less constructive, and end with being more destructive.

3.1.5 Compatibility

At the origins of constructive mathematics, it was natural for Brouwer to oppose to classical
mathematics. He had to break the ice and conquer attention. Perhaps for this reason, he introduced
some principles which are incompatible with classical mathematics. These assumptions are actually
not necessary to develop constructive mathematics. For this reason (and for the birth of computers)
constructive mathematics today is less ideological.

As a principle, constructive mathematics should be developed while taking care that all defi-
nitions and proofs are compatible with a classical reading. This i1s possible by using a toolbox of
notions and notations which allows one to use common mathematical language and still gnarantees
formalizability in the basic type theory.

The main purpose of compatibility with a classical reading is communication between different,
traditions. So T also believe that some specific words introduced by Brouwer, like spread, species,
etc., should now be replaced by those common among mathematicians, like tree, set, etc. Tt is a
different reading which must give the different interpretations (in the same way as written Chinese
is read in different ways).

Full compatibility should avoid miserable fights, as at the times of Hilbert and Brouwer (as-
suming we don’t have the same difficult character). The matter should not be a choice of side in
the battle field, but simply of the kind of quality of information one 1s interested in.

Compatibility should encourage communication also at the level of contents. On one hand, high
idealization is often useful to constructivists, either to get inspiration or to foresee what cannot
be expected, that is to get negative information. On the other hand, classicists can appreciate at
least, the technical improvements often accompanying a constructive formulation. By the principle
of tolerance, they are left free to destroy information and structure, if this remains their will.

3.1.6 TImportance of definitions

The classical mathematician tends to believe that doing mathematics mainly coincides with produc-
ing proofs. Tn a constructive approach, choosing the right definitions is also important. Actually,
choosing definitions and testing them to be correct is the main part of the work. To choose the
right balance between simple idealization and the amount of information to be kept is at least
as difficult as to prove a theorem 1n a classical approach. But on the other hand, adopting good
constructive definitions usually has the effect that proofs become much easier, reasonable and per-
spicuous. And so it must be: if we want constructive mathematics to reflect our intuition better,
then a proof should not come so much as a surprise.

Two principles have turned out to be helpful when looking for good constructive definitions.
Since, as a matter of facts, the classical definitions exist and are well known, one can start from
them and consider them as a first, strong idealization. The phenomenon of the intuitionistic
“diffraction” of classical definitions is well known: many classically equivalent characterizations of
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the same notion are no longer equivalent in intuitionistic logic, and thus the same classical notion
may correspond to several different intuitionistic notions. Since the law of excluded third identifies
existential statements with negation of universal statements, to obtain the intuitionistic version
one has to understand which are the positive existential statements which have been confused
with negative ones. With predicativity another similar phenomenon becomes observable. Tn fact,
because of the powerset axioms, in an impredicative approach sets are confused with collections,
and the information that something is a set is lost. So to add predicativity one has to restore and
keep on the scene those sets, or other entities, which have been forgotten on the assumption that
they can be reconstructed by an impredicative principle.

In both cases something has been left out. Thus one should reverse the perspective: it is
not a matter of translating a classical definition which 1s assumed to be right. Rather, the first
principle is to assume that the constructive definition to be found is the correct one, and that a
less constructive one has been obtained by forgetting unsafely some of its components. Tn practice,
the difficult and creative part is to discover and put back what the standard definition has left out.
Type theory is very suitable for this purpose, since a predicative formulation is often nothing but
the expression of a given notion in the formalism of type theory (this is somehow analogous to the
fact that defining something in the categorical terms of objects and arrows often is the same as
finding its right structure).

The second principle is to recall that compatibility (see section 3.1.5) must include also defi-
nitions. That is, the constructive definition, whenever possible, should be readable, exactly with
the same words, by classical mathematicians and give an equivalent to their definition (of course,
their reading of “set” and “exists” will be different: this is their taste!).

All these general remarks become very well visible when specified to topology. First, in the
standard approach one assumes the family of open subsets to form a set (rather than a subcollection
of the collection of all subsets). Tn this way the information on how it has been presented, for
instance by means of a function from a second set as in a concrete space or by a direct inductive
generation of a formal topology, is lost completely. By these reasons the standard definition is
split into three different. constructive notions: concrete space, formal topology, formal space (see
section 3.2.2 for more on this). Secondly, the law of excluded third identifies closed subsets with
complements of open subsets. Here some creativity was necessary to realize that the real link
between open and closed is a rich logical duality, and not just complementation.

The basic picture somehow “proves” the correctness of the constructive definitions by showing in
detail on what ground structure they are based. And yet all is perfectly readable also for a classical
mathematician (who will anyway wonder about the reason for so many useless distinctions and
additions).

3.1.7 Harmony, ecology and aesthetics

Mathematics is one of the achievements of which humanity is rightly proud. Together with arts,
science, ethics, etc., it 1s a part of culture, and this can be seen as a continuation of natural evolution
within the human species. Creating and exploring the world of mathematics can be a fascinating
and exciting experience. Tt becomes also a pleasure and a real enrichment of mental life if this is
done in full harmony with nature and with the nature of human mind. Mathematical knowledge
should be free of any supernatural interference, that is will, prejudice, dogma, expectation or fear.
This cultural attitude is in my opinion the deepest motivation for constructive mathematics. One
could even say that it defines when mathematics is constructive. Brouwer was well aware of this,
but he was apparently ahead of his times.

When a notion of knowledge and truth as harmony with nature begins to be a part of one’s
view of the world, then one begins to realize that, contrary to a common belief, it is the classical
approach which is less free, since it forces reality into unnatural principles. The sharp division
of the world between good-truth and evil-falsity appears as the mathematical continuation of a
childish wish of omnipotence. To justify it, one is bound to adhere to some kind of faith, like the



existence of platonic ideas, or even worse to divide the self, that is split body from soul, form from
content, and retain only the shadow of truth which is materially perceivable in formulae.

A respectful attitude in doing mathematics is something one has to learn, or actually to teach
oneself, since very few of us have been educated to it (just as very few have been educated to a
respectful use of resources). Tt may look at the beginning that giving up supposedly strong princi-
ples is like self-inflicting a punishment or even a mutilation; even some followers of constructivism
have felt this way. Getting rid of dogmas, breaking the rigidity due to fears and accepting that
the world continues to be what it is independently of our personal absolute certainties: all of this
certainly is a cost in psychic terms. But only in this way one can learn to see things as they are,
and hence reach a higher stage of awareness and knowledge. And since mathematics is mostly
a mental organisation of abstract concepts, to reach a stage in which it becomes a fully natural,
meaningful and convincing activity, one has to strive for and keep a strong internal harmony be-
tween the different aspects of mathematical thought, namely spatial intuition, computation and
logical deduction. This is the therapy T suggest to get cured from the schizophrenia in contempo-
rary mathematics pointed out by Bishop [5] and reach what he calls “integrity”. Tn other words,
it is the recipe T propose to build a world of mathematics which is not strange to ourselves and
hence in which it is a pleasure to live and work.

T believe that this is really possible and not just wishful thinking. T am not proposing a dramatic
revolution, the repetition of a putsch or pure mystical contemplation with no practical value; this
fears should now be only a bad memory from the past. The aim is not to “hasten the inevitable day
when constructive mathematics will be the accepted norm” ([4], my italic), but the day in which
all mathematicians will be free and free to choose constructive mathematics, because they will be
fully aware of the right foundation for each purpose. If anything is at all inevitable, this to my
eyes is the day when it will be realized (perhaps after deeper use of computers) that the classical
foundation 1s not good for all purposes. The fact that so many still believe it is, remains to my
mind one of the unsolvable puzzles of our culture. In fact, even if one disregards positive arguments
in favour of alternatives, one should at least realize that depending on a single foundation in our
mental life is as dangerous as depending on a single source of energy (like oil) in our material life.

What T propose is simply to reach a more balanced view and to begin in practice by putting
more energy in the development of alternatives, that is in the direct development of mathematics
over different foundations. Tt makes no sense to charge any kind of constructive mathematics of
providing no really viable alternative, until the amount of work which is put on it remains marginal;
this is as silly as rejecting something like electric or hydrogen cars, comparing them with a Ferram
before they are properly developed and forgetting that their purpose is different.

The analogy with ecology is so strict and illuminating that it can be taken as a guide. Tn this
terms, my general proposal becomes simply common sense: do now all what is possible to preserve
integrity of the mathematical environment, in all its forms, and to improve the quality of life in it.
So the vitality of mathematics should not be measured only by the number of theorems produced.
To the contrary, just as producing more cars brings to more chaos and traffic jams, a blind over-
production of theorems at any cost has the negative effect that their meaning and significance are
lost. Tt is no longer clear what the real progress i1s. A good discipline to recover meaning is the
ecological principle of producing theorems with a minimal use of conceptual resources, that is, in
the weakest possible foundation. Most mathematicians, while being careful in choosing a minimal
stock of axioms for their theories, have little or no scruple about axioms in their meta-theories.
The enormous waste of foundational assumptions is made worse by the little knowledge of their
impact on the environment and on the theories themselves. For instance, little 1s known about,
the pollution they produce, in the sense of the collapse of different notions and hence the death of
important distinctions of meaning. One observable negative effect is the difficulty in building safe
mathematics and hence safe computer programs.

Similarly, one should avoid waste of ad hoc definitions, which are easy to produce but difficult
to recycle, like plastic products. They are often broken after short use, but remain there and
overpopulate our mental space.



In the world of mathematics, the various kinds of environments are just the different kinds
of mathematics provided by various foundations. As in the biosphere, plurality is an essential
ingredient of life and hence a source of richness. To save biodiversity one has to take care and
keep each foundation alive and in good health, by exploring and actively developing the specific
mathematics it gives rise to. Here there is a lot of mathematical work waiting for somebody to do
it. To be able to see it, one must first simply abandon the strong principles without fears, just like
to be able to see alternatives to cars one must first leave one’s own car in the garage.

Exploring the world of mathematics with a weak foundation is like travelling on foot, or riding
a bicycle, rather than by car or plane. The pleasure is not that of possessing as many places
as possible by passing through them, but of getting familiar with the landscape and harmonious
with nature. Tn this way, one can observe many facts which otherwise, due to speed or distance,
would remain unnoticed. This means acquiring a kind of knowledge which is impossible otherwise.
Moreover, a considerable side effect is that of avoiding crowds (up to now, at least).

Taking care of aesthetics is a good antidote against the uglyness of plastic definitions, the
absurdities of wasting the foundational resources, and the will of power over the environment.
In fact, it seems to me that our sense of beauty 1s a deep sign of harmony between our internal
world and the perceivable world. Tn mathematics, it is usually called elegant, or even beautiful,
what pleases our need of appropriate mental structures. T believe that mathematicians with some
maturity or sensitivity can understand what T mean without further explanations; or at least, they
have certainly experienced it sometimes. This is why in my own exploration T have often let myself
be inspired by my aesthetic discernment.

Certainly the inevitable day should be hastened when humanity will realize that its present
behaviour is destroying the world. Unfortunately, this has already happened locally in the past;
with globalization and increase of power, there is now much more at stake. Tuckily, this is not a
direct effect of careless mathematics, but perhaps it is precisely from mathematics that one can
begin to develop a new, more respectful culture and view of the world. Teaving any dream of
absolute virtual power and going out of the world they have built for this purpose, mathematicians
can become aware and responsible of their limited but real power. The new conception of con-
structivism is not a doctrine which is born out of new dogmas or restrictions. Tt is just the wish
of a real, trustable knowledge in harmony with nature, inside and outside our brains, and that is
in the end just love and respect of oneself and the others.

3.2 More concrete points in topology
3.2.1 Mathematics and computers

One should give for granted, T believe, that the role of computers in mathematics 18 going to
increase in the future. Computers will be used not only as calculators, but also as assistants in the
task of developing mathematics and checking it to be correct and safe. To this aim, mathematics
must be formalized in a programming language.

One of the most intriguing aspects of Martin-1.of’s type theory is that two important motiva-
tions, namely the foundation of constructive mathematics and of computing science, converge to
the same result. In fact, type theory has shown that the detailed formalization of an intuition-
istic and predicative set theory becomes ipso facto the specification of a high level programming
language (see [27], [26], [30]).

The same holds for mathematics, and not only its foundation. To obtain a piece of mathematics
which can be implemented in a machine, the most effective method is just to develop it directly
within type theory. Tn this way the philosophical arguments in favour of constructive mathematics
converge with (or are replaced by, according to taste) a practical, non-ideological motivation.

To be able to express a specific definition or theorem in type theory one often has to reduce it
to its deepest. constituents and understand it so well that it is no wonder that the computational
meaning can come to surface in the form of a computer program. In practice, however, the full
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formalism of type theory is so detailed that a piece of mathematics written with no abbreviations
becomes unreadable to the standard mathematicians. This is not a defect of type theory, since it
is designed precisely for a careful preservation of all the information, even that which is redundant
in usual mathematics; actually, type theory 1s totally trustable because of this. But if the aim
is to provide mathematicians with an assistant to their activity, it is a task of the assistant to
understand the language of mathematicians. This is the aim of building up a toolbox for type
theory, that is an interface providing type theory with notions and notations which on one hand
allow the mathematicians to work in their usual way, but on the other hand guarantee that the
computational content is not lost (see section 3.1.3). Even if the language is standard, methods
of proof remain fully intuitionistic and predicative. So the price that mathematicians have to pay
is the development of a new mathematical intuition, and this requires time and education; note
however that this holds also for the intuition underlying classical or impredicative mathematics,
even if a posteriori it is given for granted. Another price to pay is the development of the toolbox
and of its implementation. Tt seems just reasonable to try and make each tool as independent as
possible of specific implementations of type theory (since these change quickly, while mathematics
should remain more stable). For instance, the whole theory of subsets depends only on two simple
conditions (see section 1.3.1), whose implementation can change at will without affecting the tool
of subsets.

The presence of a toolbox for type theory makes the interaction between mathematics and
computer science simpler and more intense at the same time. As long as they use only the toolbox,
mathematicians can continue their job with no worry about making their results closer to formal-
ization in type theory, to please the person who is going to do it. They are responsible, so to say,
from toolbox up. And still they know that their results can be mechanically checked and proved to
be safe. Computer scientists should not worry about formalizing all what mathematicians produce,
but should take care only of what is necessary to implement the toolbox. They are responsible
from toolbox down.

If the aim of formalizing mathematics 1s to mechanically check its safety, some kind of tool 1s
not only useful, but also theoretically necessary. Tn fact, what would be the gain in safety if a
vast amount of human work is necessary to bring mathematics inside a formalism? How is that
checked?

The development of a rich toolbox should therefore be of general interest. The single tool
of subsets has been enough, up to now, for the purpose of developing formal topology. So, in
particular, all the mathematical development in this paper really is automatically formalizable in
type theory, hence mechanically checkable and (most probably) safe.

3.2.2 Do points exist?

The predicative approach to topology leads in a natural way to the consideration of opens as given
primitively, i.e. to the so called pointfree or formal approach (see [25], [21]; the name is due to
the fact that an open subset 1s only formally so, from the traditional perspective at least, since it
does not consist in a subset, of points). Actually, as T will show below, predicative topology must
contain the formal approach. For this reason, it is sometimes believed that it must coincide with
it.

Beginning in particular with the emergence of the basic picture, T have been developing a change
in conceptual understanding, which now looks to me as the most reasonable and open minded.
One can summarize it in three points as follows.

a. Keep concrete points, when there are some. Tt is a task of the predicative foundation and its
users to distinguish concrete points from formal points, that is concrete spaces from formal spaces.
b. Reappraisal of the pointfree approach not as a substitute of the pointwise one, but as interesting
in its own right.

c. Develop an intuitionistic and predicative topology as a primitive, and not as a way to recover
as much as possible of classical topology. This must then lead to some new mathematics (see
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section 3.1.4).

T now try to explain these points in all details, but not singularly since they are strictly inter-
connected.

The whole basic picture was born by analysing as deeply as possible the definition of formal
topology given in [32], with the aim of improving on it. The idea is to study in detail the case of
a topological space X in which the topology O X can be concretely presented by means of a base
of open subsets indexed by a second set S. To this aim, as with topological systems introduced by
Steve Vickers in [48], one has to keep both the points and the structure of opens in one framework,
to be able to formulate better their mutual relationship. A topological system is a triple (X, Ik, £)
where X is a set of points, £ is a frame (or locale) with a set S of elements and I is a relation
between X and S binding points with the structure of £ in the expected way (that is, = IF 1,
xlFaAnbifand only if 2 Ik a and = IF b, x IF \/7.6,})7- if and only if there exists 7 € T such that
x Ik b;). This definition is meant to include the case in which X is formed by all completely prime
filters, alias formal points of £. Tndeed, so it is, impredicatively; predicatively, such X is not a set,
since it is a collection of subsets of S. A predicative version of Vickers’ definition could then be:
a triple (X, IF,8) where X is a collection of points, § is a formal topology and IF binds X with 8§
in the expected way (that is, as in the definition of formal point, see section 2.4). This definition
would include formal spaces, that is triples (P#(S),IF, 8) where Pt(S) is the collection of formal
points of 8, and IF is of course reverse membership. Tt would however not allow an easy analysis,
since quantifications over Pt(8) are not. meaningful predicatively. So one has to take courage and
restrict to the case in which X is a set also predicatively. Tn this way formal spaces are ruled out,
but this is compensated by other important advantages. In fact, one can always define a formal
cover < on S by quantifying over points in X (which is now possible, since X is a set) and by
putting a U = (Ve € X)(z Ik a — (3b e U)(x Ik b)). Of course one can also define Pos by putting
Pos(a) = (3= € X)(x Ik a). Moreover, one can get rid of 1 and the operation - by introducing | (as
explained in section 2.1) and thus in the end obtain a formal topology (S, <1, Pos), as defined in
section 2.1. So the assumption that S comes equipped with the structure of a frame (or of formal
topology) can be dispensed with, and one is left with the notion of concrete space (see sections 1.1
and 2.1; the sign IF remains as a trace of the link with [48]).

An extra benefit, which was not expected, is that the expression of the fact that S gives a base
for @ X takes the form of two conditions, called BT and B2, to be put on top of the relation I+.
Then one can realize that the usual definition of open and of closed subsets of X is possible also
when B1 and B2 are not assumed to hold. So one can further reduce to the most simple structure
consisting of the sets X, S and the now arbitrary relation IF between them; the properties B1 and
B2 can be added at will.

This is the conceptual path which brings to basic pairs, and to see them as a generalization of
concrete spaces (which impredicatively are the same as topological spaces). Now this path can he
reversed and one can use the ground notion of basic pair as a starting point to get a unified and
deeper perspective on topology, formal topology in particular. Tn fact, a basic pair is the most
elementary structure in which topological notions can be anatomized and reduced to their deepest
essence. By analysing basic pairs, one discovers that the notions of open and closed are linked by
a logical duality, and that the concrete side (of concrete points) and the formal side (of formal
basic neighbourhoods, or observables) are linked by symmetry (see section 2.2). The geometrical
and topological intuition is thus supported by a solid structure, which one can then extend to
less elementary situations. In practice, duality and symmetry are kept as guiding principles for a
correct. further development.

The examples of basic pairs, and hence also of concrete spaces, are not so many predicatively,
and perhaps also not so interesting. The reason for introducing formal topologies is precisely to
obtain a more general approach. One can then generalize also the notion of point by introducing
formal points over a formal topology and hence finally also that of concrete space by introducing
formal spaces. Thus the first task is that of finding a correct definition of formal topology; this
is the main purpose of the detailed analysis of the case in which points do form a set. Tn fact,
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the definition of formal topology is obtained by abstraction of the structure induced on the formal
side of a concrete space. Tn other words, let us call this structure a (concretely) presentable formal
topology; then we define formal topologies abstractly by requiring as axioms those properties
which are valid in the subclass of presentable formal topologies. Tt is clear that in this way the
importance of the notion of formal topology is not diminished, and that the number of spaces which
can be presented concretely is not increased (certainly not by subtly weakening the conception of
constructivity). What is increased is the epistemological value which is given to the special class
of presentable formal topologies, that is in the end concrete spaces. They are seen as a lucky case
in which one can analyse with all comforts the links between (concrete) points and (formal) opens,
as well as the effects they produce on the formal side, which are later to be taken as axioms. And
this idea would continue to work well even if the only interesting concrete spaces were the finite
ones.

The discoveries reached through the analysis of the special case in which concrete points do
form a set result in some conceptual improvements on formal notions. The first is that one can
consider basic pairs, rather than concrete spaces, and hence introduce the new notion of formal
basic topology (see section 2.4), which is obtained by abstraction of the structure induced on the
formal side of a basic pair. As a concrete space is nothing but, a basic pair in which (B1 and) B2
hold, so the definition of formal topology is now obtained as a special case by adding as axiom the
property which is induced by B2 on the formal side, and this is |-Right (see section 2.4). This
is the beginning of a generalization of formal topology, which is a part of what T called the basic
picture. Another improvement is that one can rely on the symmetry between the concrete and the
formal side of a basic pair, and hence transfer the duality between concrete open and closed subsets
also to the formal side; this means that it becomes natural to introduce a new relation, namely the
(binary) positivity predicate x which is dual to the cover <. This brings a long standing problem
to solution, namely the definition of a good predicative notion of formal closed subset.

A1l other notions of formal topology can be introduced by following the same method as de-
scribed above. Tn this way one arrives at the notions of formal continuous relation and of formal
map (see section 2.5), and at that of formal point (see section 2.4 and below). One could then say
that formal topology is obtained by “forgetting” concrete points and thus by describing a concrete
space (or more generally a basic pair) by using only what is available on its formal side, that of
the set S. T hope it is clear by now that this is a colourful but approximate way of speaking,
which can be useful for starting intuition. Though formal notions are introduced starting from
concretely presentable ones, the aim remains that of reaching more general notions; if all formal
(basic) topologies had happened to be concretely presentable, their introduction would have been
much less motivated. The real raison d’étre of formal topology is to include some topological
structures which otherwise would be inaccessible to a predicative treatment.

Thus, as was the case with the rejection of excluded third, the formal approach should be
perceived positively as an enrichment of topology, rather than negatively as a complicated way to
mimick predicatively the results of impredicative topology. The notions of formal topology and
of formal space are put aside that of concrete space, and they do not replace it. They are new
conceptual tools, with their own results and techniques, like inductive generation, which often
have no analogue in the pointwise approach. So in particular they are not just a skilful device
to study topological spaces better, by simplifying proofs or other technical improvements. Also,
they are not only a way to obtain more points, by the introduction of formal points (as discussed
below). Tn many cases it happens that the collection of formal points over a formal topology can he
indexed by a set; so the formal topology could possibly even become concretely presentable. But
this is conceptually only a posteriori, and hence still the formal definition remains more natural
and simple.

Formal topology provides us with another source of refinement of conceptual tools, and that is
the distinction between concrete and formal points. The reason for introducing formal points is best,
understood by assuming the constructive viewpoint as an improvement on the quality of knowledge,
rather than as doing without “strong” principles. Their aim is simply to increase expressive power
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while keeping constructivity. In fact, in the classical approach the most important examples of
topological spaces are formed by points, like real numbers, infinitely proceeding sequences, efc.,
which contain, or are determined by, an infinite amount of information. Constructively, the only
possibility 1s to conceive them as ideally determined by better and better approximations. One
usually gives mathematical form to this idea by defining such 1deal points as the collection of all
the approximations. This is also the course taken in formal topology. Tn fact, a formal point of
any formal topology & will be a subset o of the set S such that it makes sense to think of a € o
as meaning that the observable a is an approximation of a. To obtain a precise definition, one
follows the same general method as described above for the definition of formal topologies. So one
considers the case in which S is concretely presentable and takes the pointfree properties of the
subset Oz, which is the trace on S of a concrete point x € X, as the conditions to define a subset,
a C S to be a formal point. The same conditions are then used to define formal points over an
arbitrary formal topology (see section 2.4). One could say that a subset o is a formal point if it
enjoys enough properties to make it indistinguishable, in the presentable case, from (the trace of)
a concrete point.

The collection of all formal points of S is denoted by Pi(S), and it is called a formal space.
From a constructive point of view, it 18 important to keep points which are given concretely, i.e.
concrete points, well distinet from points which are only ideally so, i.e. formal points. Tt is the
predicative foundation given by type theory, with its distinction between set and collection (or
type), which allows one, and in the same time compels one to take care of this. Tn fact, each
formal point is a subset of S, and hence Pi#(S) is a collection of subsets, which is not a set.
In particular, quantifications over formal points are in general not meaningful. So the distinction
between concrete points (when they exist) and formal points is simply that the former are elements
and form a set,, while the latter are subsets and do not. This distinction is lost in an impredicative
approach, where P1(S) (or some other equivalent formulation) is considered to be a set as good
as any other. So one can see that in a predicative approach formal points are not an option to
reconstruct something which is there in any case, but a necessity to be able to deal with some
spaces unreachable otherwise. Tn this precise sense, formal topology is predicatively not a luxury,
but a must.

On the other hand, it should also be clear that in my opinion formal points are not a substitute
to soothe the pain for the loss of concrete points. One should not use energy to avoid concrete
points as evil, but to keep them distinct from the formal ones. The aim is just to develop topology
predicatively, and also concrete points have shown to be useful in this respect.

The attitude described here can be traced back to 1873, when Dedekind introduced his rigorous
explanation of the continnum. Tn his Stetigkeit und irrationale Zahlen, he analysed the effect of
a concrete point, that is a rational number, on the set of approximations, and discovered that it
gives what we now call a Dedekind cut. Then he reversed the perspective, and said that for any
Dedekind cut one ereates a new, ideal number. Tt was only later that Dedekind cuts, though infinite
entities, were treated as concretely given objects. With the help of a predicative set theory, we
can now refrain from that step. Formal topology 1s the general result growing out of this. So one
could say that classical topology has been obtained from topology by “forgetting” that P#(S) is
not a set, and hence also “forgetting” that half of topology which we now call pointfree or formal.

3.2.3 Deep connection between logic and topology

The basic picture shows that two sets linked by a relation are enough to give a beginning to
topology, or at least to something very close to what is usually meant by topology. Tn fact, usual
topology 1s obtained just by introducing the property of convergence of approximations, and this
can be done quite easily by adding a condition on top of each definition.

On the other hand, the basic picture is in essence just the study of images of subsets along
a relation, and such images are defined in terms of logical constants and quantifiers. Moreover,
subsets themselves are just propositional functions. So one cannot be wrong to say that the basic
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picture is just applied logic. Tt comes from the dynamics between two sets which is induced by
logic. That is precisely why T have called it the basic picture.

From the perspective of logic, the basic picture shows that topology is simply the study of
combinations of quantifiers by means of definitions which put into action a spatial intuition. One
could say that 1t gives a visual meaning to some combination of quantifiers.

From the perspective of topology, the basic picture offers a unifying structure which underlies
the common topological definitions and thus a way to understand their deepest meaning. Tn this
sense, 1t 18 a foundation of topology which is independent of any standard foundational theory.

In general, it seems safe to say that after the discovery of the basic picture the connection
between logic and topology appears to be much deeper than it looked before.

3.2.4 Nothing wrong with axiomatic definitions

Some constructivists tend to believe constructive mathematics to be incompatible, perhaps even
antithetic to the axiomatic method. This attitude is probably due to historical contingencies, bound
to the formalistic foundation of mathematics as a purely linguistic game, but it has apparently
no other reasonable motivation nowadays. An abstract, axiomatic definition can be useful in
constructive mathematics in the same way as it is in classical mathematics (and which goes well
beyond the formalistic view on foundations). First of all, it has the well-known and prosaic purpose
of saving work, by finding those properties which hold in a variety of examples. Tn this way it can
help the development of an abstract intuition, which may have a structural, logical or geometrical
nature. This too might be a reason for the opposition of many constructivists who see, as Bishop
did, the computational content as the only ingredient which should give meaning to mathematics.
But this looks to me as irrational as forbidding oneself the use of knives because other people use
them for bad purposes. In fact, one should trust in oneself and just avoid destructive misuse; the
development of the axiomatic theory is fully independent of the way in which examples of it are
conceived. These can (and must) remain as constructive as desired.

The lack of a tradition with axiomatic definitions in the field of constructive mathematics 1s
not a good reason to take a classical definition for granted and just try to adapt it as well as
possible to a constructive language. A reasonable criterion is that a good definition is the right
compromise between convenience and faithfulness to reality, that is preservation of information.
This is the criterion T followed in my choice of definitions in the specific case of the basic picture
and formal topology. As a consequence, in the definition of formal topology T have not taken as
axiom all what is valid in a concrete space (that is, a topological space to the eyes of classicists).
The criterion of validity in a topological space 1s certainly important, but not the only one. There
18 no good reason to assume topological spaces as given in the same way as reality, transcending
historical and human choices, and hence to conceive of formal topology as all what can be said
about classical points without ever mentioning them. The definition of formal topology has its
own status and autonomy (even if, of course, future understanding might. change its present form).

More specifically, T have not taken the property of positivity (that is, Pos(a) = a < U/a < U,
see section 1.2 and footnote 13) as axiom. This allows to avoid problems with compactifications
(see footnote 13); the compactification of a formal basic topology and of a formal topology (at
least. when it is provided with an operation - as in definition 1.1) now gives no problems. Note
also that if two formal topologies $ and &’ differ only in the sense that &’ is obtained from S
by adding positivity as an axiom in the generation of the cover, then & and &’ produce the same
formal space. The most important advantage is however that in this way the definition is kept
simple, general and (hopefully) deep.

For this same reason, T also believe that inductive generation should nof be a part of the
definition (this is also the choice taken in [10]). Tn fact, it can become a burden (also an impossible
task, in some cases, see [10]) to prove a cover to be inductively generated when it is given by an
elementary or an algebraic definition. Finally, avoiding the complexities of inductive generation
in the abstract definition (one should always ask for the presence of an axiom set I, (7, see [10] or
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also section 2.6 here) looks to me as an example of good will in the effort of communication with
the classical tradition.

3.2.5 Fun in doing constructive mathematics

One of the deep motivations pushing one into mathematical research is that one has fun in doing it.
Working mathematicians know that fun is a sign for good mathematics. This is perhaps because
fun is a measure of involvement and excitement for discoveries.

One of the deep reasons for little interest in constructive mathematics is, in my opinion, the
prejudice that it must be terribly boring. Analysing how this prejudice was born is not easy,
since it involves history, education, foundational attitude and even the global view of the world.
Tt seems that it is due mainly to two reasons. One 1s that constructivity 1s often felt only as a
moral duty, and this is often supposed to kill any fun. This is certainly due also to convinced
constructivists themselves, who do not insist enough on the advantages, which are not only of
moral nature, accompanying such a “duty”, and hence which make it worthwhile. The other is
simply the common, unjustified and condemnable ignorance about constructive mathematics. One
just cannot have fun with something totally unfamiliar.

Explaining to some people why doing constructive mathematics can be fun, is just like explain-
ing them why they should laugh for a certain joke. Terrible. What T can do 1s just on one hand to
present myself as an example, and swear that T have real fun when T work, and on the other hand
to warn that the kind of fun is a bit different from that experienced with classical mathematics. Tn
fact, 1t 1s certainly true that working in constructive mathematics is conceptually more complex
than in classical mathematics. Before having fun, one has to get a bit familiar with a foundation
which 1s more complex than the classical one, and hence also to acquire a specific intuition. For a
reader with a classical education, this means also abandoning some familiar schemes, and let one-
self go into new mental structures. In return, one gets much more than in classical mathematics:
computational meaning, safety, consistency, quality of information, contact with reality, etc. So
the fun will be less infantile than in classical mathematics, since the exploration i1s deeper.

Tt has been a source of intense excitement for me to discover the beginning of the basic picture
and to see how the correct definitions came out by purely structural reasons. Now there are several
further topics which need exploration, which T expect to be great fun to do. Here are just a few
examples: proof theoretic methods in topology (e.g. the problem in section 1.3.6), co-induction,
topology and mathematics with x and ( (see section 2.7), different assumptions on x and Pos,
and their role, compactifications of formal (basic) topologies, etc.

T also expect many other interesting results to be found. Tn fact, using a new, constructive net
does not mean throwing back to sea the treasures of mathematics so dear to Hilbert, but to the
contrary it allows to acquire new treasures, which Hilbert could not see (or didn’t want to).

3.2.6 Brouwer

Almost one century after Brouwer’s beginning, it would be extremely interesting to read his writ-
ings again and carefully analyse his thought and his mathematics at the light of more recent
developments of constructive mathematics, also in its connection with computers. A relaxed, less
biased view should now be possible.

The difficulties of Brouwer’s character (to which in the end all the difficulties in his thought can
be reduced, like his tendency to solipsism and to polemics) should not prevent one from recognizing
him as a pioneer and a prophet of exceptional depth. His insights, perhaps not all yet appreciated,
began the creation of a whole new world and way of thinking.

The best. way to continue his work is to follow his spirit, rather than his letter, in the develop-
ment of mathematics. Tn particular, we are now free to look in a more relaxed way at some topics
so dear to Brouwer in all his life, like choice sequences, continuity principles and bar induction,
and which make intuitionistic mathematics incompatible with classical mathematics. They are
certainly extremely interesting and subtle problems, but T believe not the essence of constructivity.
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Tncompatibility remains, but it i1s more a matter of conceptual views than of specific mathematical
principles. Still, a minimalist foundation, in which the axiom of choice is not valid and which is
compatible with a direct intuition of continuity, could be the correct basis to address Brouwer’s
problems. Tn particular, an improvement on the attitude described in [32], section 9, seems now
possible. Tn fact, maybe 1t is just a foundation with no axiom of choice which allows one to iden-
tify choice sequences with formal points (and not. a weakening of the definition of formal point, as
proposed in [32]).

3.2.7 Bishop

In all his writings, Bishop insists on the idea of giving meaning to mathematics only through its
computational content. He rightly does not identify mathematics with computer computation:
“Because the computer is lacking in judgement, the theorems of constructive mathematics do not
in general represent computer programs. They represent, person programs, which in some instances
can be transformed into computer programs and in other instances cannot.” ([4], pp. 354-355).
However, he seems to ignore that mathematics is done by persons using also spatial intuition, or
continuity, and abstract mental structures, or logic. Reducing everything to a single ingredient,
like Pythagoreans, 1s no winning strategy. In particular, Bishop’s opposition to general topology
seems to me just as a mistake: “the flamboyant engine” of general topology has already “collapsed
to constructive size” ([4], p. 63), and that is through formal topology.

3.3 Pointless endless metareflections

The paper is now finally completed and, as with any piece of work in which T have been deeply
involved, T deliver it with some trepidation. How will the readers receive 117 After long doubts, T
now believe 1t is pointless for me to suggest how they should. T believe that in the very end my
duty towards life and evolution is just to preserve biodiversity in a cultural sense. So T first must
exploit fully and personally the most precious organ T have as a human being, namely my brain,
with no delegation to other brains, and then T must make the results available to others. That
duty, at the moment, has been accomplished. As suggested by Bertolt Brecht (in his Leben des
Galilei), after dreaming like Galilei, T now prefer to go back to the humble wisdom of Frau Sarti:
Galilei (friihstiickend):  “Auf Grund unserer Forschungen, Frau Sarti, haben [... wir...] Fnt-
dekkungen gemacht, die wir nicht ldnger der Welt gegeniiber geheimhalten konnen. Fine neue Zeit
15t angebrochen, ein grofies Zeitalter, in dem zu leben eine Lust 1st.”

Frau Sarti: “So. Hoffentlich konnen wir auch den Milchmann bezahlen in dieser neuen Zeit, Herr
Galiles. "8
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