Sequenze, collezioni, spartizioni, risoluzioni e partizioni.

b2) Vi è una ed una sola 0-partizione di I_0: la *partizione vuota*. Per ogni $n \in \mathbb{N}_{\geq 1}$ non esistono né 0-partizioni di I_n, né n-partizioni di I_0.

pag. 26, tabella

<table>
<thead>
<tr>
<th>n</th>
<th>n!</th>
<th>$\approx \sqrt{2\pi n} (n/e)^n$</th>
<th>Err. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.92</td>
<td>7.79%</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1.92</td>
<td>4.05%</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>5.84</td>
<td>2.73%</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>23.51</td>
<td>2.06%</td>
</tr>
<tr>
<td>5</td>
<td>120</td>
<td>118.02</td>
<td>1.65%</td>
</tr>
<tr>
<td>6</td>
<td>720</td>
<td>710.08</td>
<td>1.38%</td>
</tr>
<tr>
<td>7</td>
<td>5040</td>
<td>4980.4</td>
<td>1.18%</td>
</tr>
<tr>
<td>8</td>
<td>40320</td>
<td>39902.4</td>
<td>1.04%</td>
</tr>
<tr>
<td>9</td>
<td>362880</td>
<td>359536.87</td>
<td>0.92%</td>
</tr>
<tr>
<td>10</td>
<td>3.6288×10^6</td>
<td>3.5987×10^6</td>
<td>0.83%</td>
</tr>
<tr>
<td>11</td>
<td>3.99168×10^7</td>
<td>3.9616×10^7</td>
<td>0.75%</td>
</tr>
<tr>
<td>12</td>
<td>4.79002×10^8</td>
<td>4.7569×10^8</td>
<td>0.69%</td>
</tr>
<tr>
<td>13</td>
<td>6.22702×10^9</td>
<td>6.1872×10^9</td>
<td>0.64%</td>
</tr>
<tr>
<td>14</td>
<td>8.7178×10^{10}</td>
<td>8.6661×10^{10}</td>
<td>0.59%</td>
</tr>
<tr>
<td>15</td>
<td>1.3077×10^{12}</td>
<td>1.3004×10^{12}</td>
<td>0.55%</td>
</tr>
<tr>
<td>16</td>
<td>2.0923×10^{13}</td>
<td>2.0814×10^{13}</td>
<td>0.52%</td>
</tr>
<tr>
<td>17</td>
<td>3.5569×10^{14}</td>
<td>3.5395×10^{14}</td>
<td>0.49%</td>
</tr>
<tr>
<td>18</td>
<td>6.4024×10^{15}</td>
<td>6.3728×10^{15}</td>
<td>0.46%</td>
</tr>
<tr>
<td>19</td>
<td>1.2165×10^{17}</td>
<td>1.2111×10^{17}</td>
<td>0.44%</td>
</tr>
<tr>
<td>20</td>
<td>2.4329×10^{18}</td>
<td>2.4228×10^{18}</td>
<td>0.42%</td>
</tr>
</tbody>
</table>

pag. 39, l. 16: sostituire “$P(B) = 4^2 \times 14/14^4 = 4^2/14^2 = 2/7^2 \approx 4\%$” con “$P(B) = 4^2 \times 14/14^4 = 4^2/14^2 = 2/7^2 \approx 8\%$”.

pag. 71, l. -9: $|A_i| = C(48,6)$, $|A_i \cap A_j| = C(44,2)$ e $|A_i \cap A_j \cap A_k| = 0$.

pag. 74, l. -5: ad esempio $|A_M|$ si tratta di contare [...]

pag. 76, l. 13: sostituire “l’i-esimo elemento” con “il numero i”.

pag. 83, l. 1: sostituire “...maggiore od uguale ad 1” con “...maggiore od uguale a 0”.

pag. 117, sostituire il punto 2 dell’Esercizio 6.7 con

2. Provare il famoso criterio dell’integrale per serie decrescenti e infinitesime: si supponga che $f : [a, +\infty[\to \mathbb{R}$ tenda a 0 all’infinito: la serie $\sum_{k=a}^{+\infty} f(k)$ converge
se e solo se l’integrale \(\int_{a}^{+\infty} f(x) \, dx \) esiste finito.

pag. 132, l. 4:
\[
\{ i \in \mathbb{N} : [X^n] a_i B^i(X) \neq 0 \} \subseteq \{ i \in \mathbb{N} : [X^n] B^i(X) \neq 0 \} \subseteq \{0, \ldots, n\} \forall n \in \mathbb{N}
\]

pag. 141, l. 1-8:
\[
(f - g)^{(n)}(0) = f^{(n)}(0) - g^{(n)}(0) = n!(a_n - a_n) = 0
\]

pag. 152, l. 1-3: sostituire le righe 1-3 con

\textit{Dimostrazione.} Procediamo per induzione su \(m \). L’asserto è vero per \(m = 0 \) dato che

pag. 307-308: La Proposizione 10.53 e la successiva Osservazione 10.54 sono condensate nella seguente che sostituisce entrambe

\textbf{Proposizione 10.53 (Somme di Riemann di ordine 2)} Sia \(g : [0, 1] \to \mathbb{R} \) di classe \(C^2 \) ed \(a \in \mathbb{N} \). Allora

\[
\sum_{a \leq k < n} \frac{g(k)}{n} = n \int_0^1 g(x) \, dx - \frac{1}{2} \left[g(1) - ag(0) \right] + O\left(\frac{1}{n}\right) \quad \text{per} \quad n \to +\infty
\]

\textit{Dimostrazione.} Invitiamo il lettore a percorrere la dimostrazione nel caso più semplice con \(a = 0 \). Poniamo \(f(x) = g(x/n) \). La formula di Eulero-Maclaurin (10.2) del Teorema 10.1 porge

\[
\sum_{a \leq k < n} f(k) = \int_a^n f(x) \, dx - \frac{f(n) - f(a)}{2} + \frac{1}{12} [f^n]_a^n + R_2(n)
\]

con \(|R_2(n)| \leq \frac{1}{12} \int_a^n |f''(x)| \, dx \). Ora

\[
f'(x) = \frac{1}{n} g'\left(\frac{x}{n}\right), \quad f''(x) = \frac{1}{n^2} g''\left(\frac{x}{n}\right);
\]

pertanto

\[
\frac{f(n) - f(a)}{2} = \frac{g(1) - g(a/n)}{2} = \frac{g(1) - g(0)}{2} + \frac{g(0) - g(a/n)}{2} = \frac{g(1) - g(0)}{2} + O\left(\frac{1}{n}\right) \quad \text{per} \quad n \to +\infty
\]
dato che, utilizzando lo sviluppo di Taylor con resto di Peano, si ha
\[g(a/n) = g(0) + g'(0) \frac{a}{n} + O\left(\frac{1}{n}\right) \quad n \to +\infty. \]
Si ha inoltre
\[\left[f^n\right] = \frac{g'(1) - g'(a/n)}{n} = \frac{g'(1) - g'(0)}{n} + \frac{g'(0) - g'(a/n)}{n} \]
\[= \frac{g'(1) - g'(0)}{n} + O\left(\frac{1}{n}\right) \quad \text{per} \quad n \to +\infty \]
dato che, utilizzando lo sviluppo di Taylor con resto di Peano alla funzione \(g' \),
\[g'(a/n) = g'(0) + g''(0) \frac{a}{n} + O\left(\frac{1}{n}\right) = g'(0) + O\left(\frac{1}{n}\right) \quad n \to +\infty. \]
Attraverso il solito cambio di variabile \(t = x/n \) negli integrali si ha poi
\[\int_a^n f(x) \, dx = n \int_{a/n}^1 g(t) \, dt = n \int_0^1 g(t) \, dt - n \int_0^{a/n} g(t) \, dt. \quad (1) \]
Applicando lo sviluppo di Taylor alla funzione \(F(x) = \int_0^x g(t) \, dt \) attorno a \(x = 0 \) si ha
\[\int_0^x g(t) \, dt = g(0) x + O(x^2) \quad x \to 0: \]
infatti è \(F'(x) = g(x) \). Si ha pertanto
\[\int_0^{a/n} g(t) \, dt = g(0) \frac{a}{n} + O\left(\frac{1}{n^2}\right) \quad n \to +\infty \]
e quindi
\[n \int_0^{a/n} g(t) \, dt = a g(0) + O\left(\frac{1}{n}\right) \quad n \to +\infty, \]
sicché la (1) porge
\[\int_a^n f(x) \, dx = n \int_0^1 g(t) \, dt - a g(0) + O\left(\frac{1}{n}\right) \quad n \to +\infty. \]
La conclusione è immediata. \(\Box \)