Once upon a time...

“Life is worthless without love!”
- told Snow White the Seven Dwarfs
Once upon a time...

...and fell asleep
Once upon a time...

...for a long-long while.
Who will wake Snow White up?

- Prince (P)
Who will wake Snow White up?

- Prince (P)
- Prince Charming (C)
Who will wake Snow White up?

- Prince (P)
- Prince Charming (C)
- Little Prince (L)
Who will wake Snow White up?

- Prince (P)
- Prince Charming (C)
- Little Prince (L)
Who will wake Snow White up?

- Prince (P)
- Prince Charming (C)
- Little Prince (L)
- Batman (B)
The dwarfs have to choose

So they vote:

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>C</th>
<th>L</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The dwarfs have to choose

So they vote:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P, C, L are tied (2 points)
The dwarfs have to choose

So they vote:

<table>
<thead>
<tr>
<th>P</th>
<th>C</th>
<th>L</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

C is elected (ties broken alphabetically)
The dwarfs have to choose

So they vote:

<table>
<thead>
<tr>
<th>P</th>
<th>C</th>
<th>L</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

C is elected (ties broken lexicographically)
But wait a minute...

The voters have the following preferences regarding the outcome:

1: $P \succ B \succ L \succ C$
2: $P \succ B \succ C \succ L$
3: $C \succ L \succ P \succ B$
4: $C \succ B \succ P \succ L$
5: $L \succ \ldots$
6: $L \succ \ldots$
7: $B \succ \ldots$
The dwarfs have incentives to strategise

So they may change their mind:

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>C</th>
<th>L</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

C, L, B are tied (2 points)
The dwarfs have incentives to strategise

So they may change their mind:

\[
\begin{array}{c|c|c|c|c}
P & C & L & B \\
2 & 3 & 4 & 5 & 6 & 1 & 7 \\
\end{array}
\]

B is elected (lexicographic tie-breaking)
... and change the outcome!
It’s not yet the end...

The voters have the following preferences regarding the outcome:

1: $P \succ B \succ L \succ C$
2: $P \succ B \succ C \succ L$
3: $C \succ L \succ P \succ B$
4: $C \succ B \succ P \succ L$
5: $L \succ \ldots$
6: $L \succ \ldots$
7: $B \succ \ldots$
The dwarfs have incentives to strategise

So they may change their mind:

<table>
<thead>
<tr>
<th>P</th>
<th>C</th>
<th>L</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

L is elected (unique winner)
It’s not yet the end...

The voters have the following preferences regarding the outcome:

1: \(P \succ B \succ L \succ C \)
2: \(P \succ B \succ C \succ L \)
3: \(C \succ L \succ P \succ B \)
4: \(C \succ B \succ P \succ L \)
5: \(L \succ \ldots \)
6: \(L \succ \ldots \)
7: \(B \succ \ldots \)
The dwarfs have incentives to strategise

So they may change their mind:

<table>
<thead>
<tr>
<th>P</th>
<th>C</th>
<th>L</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

B is elected (lexicographic tie-breaking)
No more objections!

<table>
<thead>
<tr>
<th>P</th>
<th>C</th>
<th>L</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

1: $P \succ B \succ L \succ C$
2: $P \succ B \succ C \succ L$
3: $C \succ L \succ P \succ B$
4: $C \succ B \succ P \succ L$
5: $L \succ \ldots$
6: $L \succ \ldots$
7: $B \succ \ldots$
Happy end!
What are we after?

- Agents have to agree on a joint plan of action or allocation of resources.
- Their individual preferences over available alternatives may vary, so they vote.
What are we after?

- Agents have to agree on a joint plan of action or allocation of resources.
- Their individual preferences over available alternatives may vary, so they vote.
 - Agents may have incentives to vote strategically.
What are we after?

- Agents have to agree on a joint plan of action or allocation of resources.
- Their individual preferences over available alternatives may vary, so they vote.
 - Agents may have incentives to vote strategically.
- We study the convergence of strategic behaviour to stable decisions, from which no one will wish to deviate—equilibria.
What are we after?

- Agents have to agree on a joint plan of action or allocation of resources.
- Their individual preferences over available alternatives may vary, so they vote.
 - Agents may have incentives to vote strategically.
- We study the convergence of strategic behaviour to stable decisions, from which no one will wish to deviate—*equilibria*.
 - Agents may have no knowledge about the preferences of the others and/or no communication.
What are we after?

- Agents have to agree on a joint plan of action or allocation of resources.
- Their individual preferences over available alternatives may vary, so they vote.
 - Agents may have incentives to vote strategically.
- We study the convergence of strategic behaviour to stable decisions, from which no one will wish to deviate—equilibria.
 - Agents may have no knowledge about the preferences of the others and/or no communication.
Voting setting

- \(V = \{1, \ldots, n\} \) – set of voters (or agents)
- \(C = \{c_1, \ldots, c_m\} \) – set of candidates (or alternatives)
- \(\mathcal{L}(C) \) – set of all strict linear orders (transitive, antisymmetric and total relations) on \(C \)
- \(\succeq_i \in \mathcal{L}(C) \) – agent \(i \)’s private preference order over the candidates, for each \(i \in V \)
Voting profile

- $P_i \in \mathcal{L}(C)$ – vote of voter i (may or may not coincide with \succ_i)
- $P = (P_1, \ldots, P_n) \in \mathcal{L}(C)^n$ – voting profile
 - $P = (P_i, P_{-i})$ where P_{-i} – set of partial votes of a subset $V \setminus \{i\}$ of all the agents but i
- $P = (\succ_1, \ldots, \succ_n)$ – truthful profile
Voting rule

- $F : \mathcal{L}(C)^n \to 2^C \setminus \{\emptyset\} \quad \text{– voting rule}$
 - determines *the winners* of the election
Voting rule

- $F : \mathcal{L}(C)^n \rightarrow C$ – *resolute* voting rule
 - returns a single winner
 - paired with a *tie-breaking rule*
 - deterministic (e.g., lexicographic)
 - randomised
CONVERGENCE TO EQUILIBRIA IN PLURALITY VOTING

Model

Voting rule

- $F : \mathcal{L}(C)^n \rightarrow C$ – resolute voting rule
 - returns a single winner
 - paired with a tie-breaking rule
 - deterministic (e.g., lexicographic)
 - randomised
CONVERGENCE TO EQUILIBRIA IN PLURALITY VOTING

Model

Plurality

- Each voter reports his top candidate:
 - $P_i \in C$
- Voters may have different weights: $w_i \in \mathbb{N}$, $\forall i \in V$.
Plurality

- Each voter reports his top candidate:
 - \(P_i \in C \)
- Voters may have different weights: \(w_i \in \mathbb{N}, \forall i \in V \).
- The score of a candidate \(c \) is the total weight of agents voting for him:

\[
s(c) = \sum_{i \in V : P_i = c} w_i
\]
Plurality

- Each voter reports his top candidate:
 - \(P_i \in C \)
- Voters may have different weights: \(w_i \in \mathbb{N}, \forall i \in V \).
- The score of a candidate \(c \) is the total weight of agents voting for him:
 \[
 s(c) = \sum_{i \in V : P_i = c} w_i
 \]
- The winner is selected from the candidates with the highest score.
Plurality

- Each voter reports his top candidate:
 - $P_i \in C$
- Voters may have different weights: $w_i \in \mathbb{N}, \forall i \in V$.
- The score of a candidate c is the total weight of agents voting for him:
 $$s(c) = \sum_{i \in V: P_i = c} w_i$$
- The winner is selected from the candidates with the highest score.
Game-theoretical interpretation

The (Plurality) voting game is a normal form game $\langle V, C, F, \succ \rangle$ where:

- V – set of agents = set of voters
- C – set of strategies = set of candidates
- F – voting rule (paired with a tie-breaking rule)
- \succ – profile of voters’ preferences over the candidates
Game-theoretical interpretation

The (Plurality) voting game is a normal form game $\langle K, C, F, \succ \rangle$ where:

- $K \subseteq V$ – set of agents = set of strategic voters
- $B = V \setminus K$ – sincere (non-strategic) voters
- C – set of strategies = set of candidates
Game-theoretical interpretation

The (Plurality) voting game is a normal form game \(\langle K, C, F, \succ \rangle \) where:

- \(K \subseteq V \) – set of agents = set of strategic voters
- \(B = V \setminus K \) – sincere (non-strategic) voters
- \(C \) – set of strategies = set of candidates
- \(F(P) \), where \(P = (P_K, P_B) \), is an outcome
Game-theoretical interpretation

The (Plurality) voting game is a normal form game $\langle K, C, F, \succ \rangle$ where:

- $K \subseteq V$ – set of agents = set of strategic voters
- $B = V \setminus K$ – sincere (non-strategic) voters
- C – set of strategies = set of candidates
- $F(P)$, where $P = (P_K, P_B)$, is an outcome
- Agent $i \in K$ prefers profile P' over profile P if $F(P') \succ_i F(P)$
The (Plurality) voting game is a normal form game $\langle K, C, F, \succ \rangle$ where:

- $K \subseteq V$ – set of agents = set of strategic voters
- $B = V \setminus K$ – sincere (non-strategic) voters
- C – set of strategies = set of candidates
- $F(P)$, where $P = (P_K, P_B)$, is an outcome
- Agent $i \in K$ prefers profile P' over profile P if $F(P') \succ_i F(P)$
Voting as a normal form game

3 candidates with initial scores:

- $s_B(a) = 7$
- $s_B(b) = 9$
- $s_B(c) = 3$
Voting as a normal form game

3 candidates with initial scores:

- $s_B(a) = 7$
- $s_B(b) = 9$
- $s_B(c) = 3$
Voting as a normal form game

3 candidates with initial scores:

- $s_B(a) = 7$
- $s_B(b) = 9$
- $s_B(c) = 3$

<table>
<thead>
<tr>
<th></th>
<th>$w_1 = 3$</th>
<th>$w_2 = 4$</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(14, 9, 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td>(11, 12, 3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Voting as a normal form game

3 candidates with initial scores:

- $s_B(a) = 7$
- $s_B(b) = 9$
- $s_B(c) = 3$

<table>
<thead>
<tr>
<th></th>
<th>$w_1 = 3$</th>
<th>$w_2 = 4$</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td></td>
<td>(14, 9. 3)</td>
<td>(10, 13, 3)</td>
<td>(10, 9. 7)</td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td>(11, 12, 3)</td>
<td>(7, 16, 3)</td>
<td>(7, 12, 7)</td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
<td>(11, 9. 6)</td>
<td>(7, 13, 6)</td>
<td>(7, 9, 10)</td>
</tr>
</tbody>
</table>
Voting as a normal form game

Agents’ preferences:

- 1: \(a \succ b \succ c \)
- 2: \(c \succ a \succ b \)

\[
\begin{array}{cccc}
\text{a} & \text{b} & \text{c} \\
\text{a} & (14, 9.3) & (10, 13, 3) & (10, 9, 7) \\
b & (11, 12, 3) & (7, 16, 3) & (7, 12, 7) \\
c & (11, 9.6) & (7, 13, 6) & (7, 9, 10) \\
\end{array}
\]
Convergence to Equilibria in Plurality Voting

Model

Voting as a normal form game

Agents’ preferences:

- 1: \(a \succ b \succ c\)
- 2: \(c \succ a \succ b\)

<table>
<thead>
<tr>
<th>(w_1 = 3)</th>
<th>(w_2 = 4)</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(14, 9, 3)</td>
<td>(10, 13, 3)</td>
<td>(10, 9, 7)</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>(11, 12, 3)</td>
<td>(7, 16, 3)</td>
<td>(7, 12, 7)</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>(11, 9, 6)</td>
<td>(7, 13, 6)</td>
<td>(7, 9, 10)</td>
<td></td>
</tr>
</tbody>
</table>
Voting in turns (a.k.a. “iterative voting”)

- Agents start from some initial profile (e.g., truthful).
- They change their votes in turns.
- At each step, a single agent makes a move.
- The game ends when there are no more objections.

- Implemented in polls via Doodle or Facebook.
Voting in turns (a.k.a. “iterative voting”)

- Agents start from some initial profile (e.g., truthful).
- They change their votes in turns.
- At each step, a single agent makes a move.
- The game ends when there are no more objections.

- Implemented in polls via Doodle or Facebook.
Improvement moves

Agents make rational moves to improve their state, when

▶ they do not know the preferences of the others,
▶ and cannot coordinate their actions.

⇒ The agents apply *myopic* (or, *local*) moves.
Improvement moves

Agents make rational moves to improve their state, when

- they do not know the preferences of the others,
- and cannot coordinate their actions.

⇒ The agents apply *myopic* (or, *local*) moves.
Improvement moves

3: \(C \succ L \succ P \succ B \)

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>C</th>
<th>L</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
CONVERGENCE TO EQUILIBRIA IN PLURALITY VOTING

Model

Improvement moves

3: \[C \succ L \succ P \succ B \]

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>L</th>
<th>P</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

\[B \overset{3}{\rightarrow} L \] is an *improvement move* (or *better reply*) of agent 3
Convergence to Equilibria in Plurality Voting Model

Improvement moves

3: \(C \succ L \succ P \succ B \)

<table>
<thead>
<tr>
<th></th>
<th>(P)</th>
<th>(C)</th>
<th>(L)</th>
<th>(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

\(B \rightarrow^3 P \) is a best reply of agent 3
Improvement moves

3: \[C \succ L \succ P \succ B \]

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>C</th>
<th>L</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(B \overset{3}{\rightarrow} C \) is a restricted best reply (which is unique) for agent 3
Convergence to Equilibria in Plurality Voting

Model

Variations of the game

Voting setting:

- Voting rule
 - Plurality
Variations of the game

Voting setting:

- Voting rule
 - Plurality
- Tie-breaking rule
 - Deterministic
 - Randomised
Variations of the game

Voting setting:

- Voting rule
 - Plurality
- Tie-breaking rule
 - Deterministic
 - Randomised
- Number of voters, number of candidates
Variations of the game

Voting setting:

- Voting rule
 - Plurality
- Tie-breaking rule
 - Deterministic
 - Randomised
- Number of voters, number of candidates
- Agent types
 - Weighted
 - Unweighted
Variations of the game

Voting setting:

- Voting rule
 - Plurality
- Tie-breaking rule
 - Deterministic
 - Randomised
- Number of voters, number of candidates
- Agent types
 - Weighted
 - Unweighted
Variations of the game

Dynamics:

- Initial state
 - Truthful
 - Arbitrary
Variations of the game

Dynamics:

- Initial state
 - Truthful
 - Arbitrary
- Improvement moves
 - Better replies
 - Best replies
 - Restricted best replies
Variations of the game

Dynamics:

- Initial state
 - Truthful
 - Arbitrary
- Improvement moves
 - Better replies
 - Best replies
 - Restricted best replies
Our results

We show how the convergence depends on all of these game/dynamic attributes.
Deterministic tie-breaking

Theorem

If all agents have weight 1 and use restricted best replies, the game converges to a Nash equilibrium from any state.
Proof sketch

(by Reyhani & Wilson 2012)

- o_t – outcome at step t
- Restricted best replies at any step t are of 2 types:
 - **type 1:** $a \rightarrow b$ where $a \neq o_{t-1}$ and $b = o_t$
 - **type 2:** $a \rightarrow b$ where $a = o_{t-1}$ and $b = o_t$
- We will show that there are
 - $\leq m$ moves of type 1 in total, and
 - $\leq m - 1$ moves of type 2 for each voter.
Proof

\[PW_t = \{ c \mid \exists i \in K : o_t \rightarrow^i c \Rightarrow c = o_{t+1} \} \] - potential winners at step \(t \)

Lemma

For \(t < t' \) we have \(PW_{t'} \subseteq PW_t \).
Proof of the lemma

- Let $a \rightarrow b$ at step t. Then, $b = o_t$.
- Let $c \in PW_t$.
- Consider the scores of $b, c, y \ \forall y \in C \setminus \{a, b\}$:

\[
\begin{align*}
 s_{t-1}(c) + 1 &= s_t(c) + 1 \geq s_t(b) - 1 = s_{t-1}(b) \\
 s_{t-1}(c) + 1 &= s_t(c) + 1 \geq s_t(y) = s_{t-1}(y)
\end{align*}
\]

where $c \geq c'$ if $s(c) > s(c')$ or $s(c) = s(c')$ and c has a lower index.
Proof of the lemma (contd.)

- If $a \rightarrow b$ at step t is of type 2, then followed by $b \rightarrow c$ at step $t + 1$ results in the same scores as $a \rightarrow c$ at step t. Hence, $c \in PW_{t-1}$.
- Otherwise, let $a' = o_t$ and note $a' \neq a, b$.
- We have:

$$s_{t-1}(c) + 1 \geq s_{t-1}(a')$$

$$s_{t-1}(a') \geq s_{t-1}(y) \quad \forall y \in C$$

$$\Rightarrow \quad s_{t-1}(c) + 1 \geq s_{t-1}(a') \geq s_{t-1}(a)$$

Hence, $c \in PW_{t-1}$.

\square
Proof of the theorem (contd.)

- If $a \rightarrow b$ at step t is of type 1 then $a \notin PW_t$:
 - If $a \in PW_t$ then $b \rightarrow a$ makes a a winner, a contradiction to $a \rightarrow b$ being of type 1.
- By the lemma, $a \notin PW_{t'}$ for all $t' > t$
 \Rightarrow the number of type 1 moves is bounded by m.

- At every improvement step $a \overset{i}{\rightarrow} b$ of type 2, it must hold that $b \succ_i a$
 \Rightarrow each voter can make at most $m - 1$ steps of type 2.
Proof of the theorem (contd.)

- If $a \rightarrow b$ at step t is of type 1 then $a \notin PW_t$:
 - If $a \in PW_t$ then $b \rightarrow a$ makes a a winner, a contradiction to $a \rightarrow b$ being of type 1.

- By the lemma, $a \notin PW_{t'}$ for all $t' > t$
 \Rightarrow the number of type 1 moves is bounded by m.

- At every improvement step $a \xrightarrow{i} b$ of type 2, it must hold that $b \succ_i a$
 \Rightarrow each voter can make at most $m - 1$ steps of type 2.
(Not restricted) best replies

3 candidates with initial scores \((1, 0, 0)\)

2 voters with preferences

1: \(a \succ b \succ c\)
2: \(c \succ b \succ a\)

<table>
<thead>
<tr>
<th>voter 1</th>
<th>voter 2</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td>((1,2,0))</td>
<td>((1,1,1))</td>
</tr>
<tr>
<td>c</td>
<td></td>
<td>((1,1,1))</td>
<td>((1,1,1))</td>
<td></td>
</tr>
</tbody>
</table>
Better replies

4 candidates with initial scores \((2, 2, 2, 0)\)

3 voters with preferences

- 1, 3: \(d \succ a \succ b \succ c\)
- 2: \(c \succ b \succ a \succ d\)

\[
dcd(2, 2, 3, 2) \xrightarrow{1} bcd(2, 3, 3, 1) \xrightarrow{3} bca(3, 3, 3, 0)
\]
Better replies

4 candidates with initial scores \((2, 2, 2, 0)\)

3 voters with preferences

- 1, 3 : \(d \succ a \succ b \succ c\)
- 2 : \(c \succ b \succ a \succ d\)

\[
dcd(2, 2, 3, 2) \rightarrow bcd(2, 3, 3, 1) \rightarrow bca(3, 3, 3, 0)
\]

\[
2 \rightarrow bba(3, 4, 2, 0) \rightarrow cba(3, 3, 3, 0) \rightarrow cca(3, 2, 4, 0)
\]

Cycle from the truthful state!
Better replies

4 candidates with initial scores \((2, 2, 2, 0)\)

3 voters with preferences

\begin{itemize}
\item 1, 3 : \text{d} \succ \text{a} \succ \text{b} \succ \text{c}
\item 2 : \text{c} \succ \text{b} \succ \text{a} \succ \text{d}
\end{itemize}

\[
dcd(2, 2, 3, 2) \xrightarrow{1} bcd(2, 3, 3, 1) \xrightarrow{3} bca(3, 3, 3, 0)
\]

\[
\uparrow_1
\]

\[
\xrightarrow{2} bba(3, 4, 2, 0) \xrightarrow{1} cba(3, 3, 3, 0) \xrightarrow{2} cca(3, 2, 4, 0)
\]

Cycle from the truthful state!
Weighted voters

- No convergence for 3+ voters, even when they start from the truthful state and use restricted best replies.
- Convergence for 2 voters, if they both use restricted best replies or start from the truthful state.
Randomised tie-breaking

- \succeq_i does not induce a complete order over the outcomes, which are sets of candidates.
- We augment agents’ preferences with cardinal utilities:
 - $u_i(c) \in \mathbb{R}$ – utility of candidate c to voter i,
 - for multiple winners, $u_i(W) = \sum_{c \in W} \frac{u_i(c)}{|W|}$.
- A utility function u is consistent with a preference relation \succeq_i if
 \[
u(c) > u(c') \iff c \succeq_i c'\]
To prove convergence, we must show it is guaranteed for *any* utility function which is consistent with the given preference order.

To disprove, it is sufficient to show a cycle for a *specific* assignment of utilities: *weak* counterexample.

If the counterexample holds for any profile of utility scales, it is *strong*.

Randomised tie-breaking
Weighted voters

3 candidates with initial scores $(0, 1, 3)$

2 voters weighted voters with preferences

- $1: a \succ b \succ c$
- $2: b \succ c \succ a$

<table>
<thead>
<tr>
<th></th>
<th>$w_1 = 5$</th>
<th>$w_2 = 3$</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(8,1,3)</td>
<td>(5,4,3)</td>
<td>(5,1,6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>(3,6,3)</td>
<td>(0,9,3)</td>
<td>(0,6,6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>(3,1,8)</td>
<td>(0,4,8)</td>
<td>(0,1,11)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Weighted voters

3 candidates with initial scores (0, 1, 3)

2 voters weighted voters with preferences

- 1: \(a \succ b \succ \{b, c\} \succ c \)
- 2: \(b \succ \{b, c\} \succ c \succ a \)

<table>
<thead>
<tr>
<th></th>
<th>(w_1 = 5)</th>
<th>(w_2 = 3)</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td></td>
<td>(8,1,3)</td>
<td>(5,4,3)</td>
<td>(5,1,6)</td>
</tr>
<tr>
<td>b</td>
<td>(3,6,3)</td>
<td></td>
<td>(0,9,3)</td>
<td>(0,6,6)</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>(3,1,8)</td>
<td>(0,4,8)</td>
<td>(0,1,11)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No Nash equilibrium!
Weighted voters

3 candidates with initial scores \((0, 1, 3)\)

2 voters weighted voters with preferences

- 1: \(a \succ b \succ \{b, c\} \succ c\)
- 2: \(b \succ \{b, c\} \succ c \succ a\)

<table>
<thead>
<tr>
<th>(w_1 = 5)</th>
<th>(w_2 = 3)</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(8,1,3)</td>
<td>(5,4,3)</td>
<td>(5,1,6)</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>(3,6,3)</td>
<td>(0,9,3)</td>
<td>(0,6,6)</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>(3,1,8)</td>
<td>(0,4,8)</td>
<td>(0,1,11)</td>
<td></td>
</tr>
</tbody>
</table>

No Nash equilibrium!
Unweighted voters

Theorem

If all agents have weight 1 and use restricted best replies, the game converges to a Nash equilibrium from the truthful state.
Proof (skipped)

We show that in each step, an agent votes for a less preferred candidate.

- Clearly holds for the first step. Proceed by induction.

Hence, each voter can make only $m - 1$ steps.
Less restricted dynamics

- **Arbitrary state:**
 - weak counterexample with 3 unweighted agents, even if they use restricted best replies

- **Better replies:**
 - strong counterexample with 3 unweighted agents
 - weak counterexample with 2 agents, even if they start from the truthful state
Summary

Deterministic Tie breaking

<table>
<thead>
<tr>
<th>Dynamics Initial state</th>
<th>R. best reply</th>
<th>Best reply</th>
<th>Any better reply</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Truth</td>
<td>Any</td>
<td>Truth</td>
</tr>
<tr>
<td>Weighted ((k > 2))</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Weighted ((k = 2))</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>Non-weighted</td>
<td>V</td>
<td>V</td>
<td>X</td>
</tr>
</tbody>
</table>

Randomized Tie breaking

<table>
<thead>
<tr>
<th>Dynamics Initial state</th>
<th>R. best reply</th>
<th>Any better reply</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Truth</td>
<td>Any</td>
</tr>
<tr>
<td>Weighted</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Non-weighted</td>
<td>V</td>
<td>X</td>
</tr>
</tbody>
</table>
Summary

Deterministic Tie breaking

<table>
<thead>
<tr>
<th>Initial state</th>
<th>R. best reply</th>
<th>Best reply</th>
<th>Any better reply</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Truth</td>
<td>Any</td>
<td>Truth</td>
</tr>
<tr>
<td>Weighted ($k > 2$)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Weighted ($k = 2$)</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Non-weighted</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>

(#) Reijngoud & Endriss, 2012

Randomized Tie breaking

<table>
<thead>
<tr>
<th>Initial state</th>
<th>R. best reply</th>
<th>Any better reply</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Truth</td>
<td>Any</td>
</tr>
<tr>
<td>Weighted</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Non-weighted</td>
<td>√</td>
<td>X</td>
</tr>
</tbody>
</table>
Other remarks

- Truth biased agents
 - Vangelis’s talk tomorrow
Other remarks

- Truth biased agents
 - Vangelis’s talk tomorrow

- Quality of outcomes
Other remarks

- Truth biased agents
 - Vangelis’s talk tomorrow

- Quality of outcomes
 - Simina’s talk tomorrow
Other remarks

- Truth biased agents
 - Vangelis’s talk tomorrow

- Quality of outcomes
 - Simina’s talk tomorrow
Future work
Past future work
Past future work

- Rules other than Plurality
- Restricted Iterative Processes
Past future work

- Rules other than Plurality
- Restricted Iterative Processes
- Iterative processes as a single-round game
Past future work

- Rules other than Plurality
- Restricted Iterative Processes
- Iterative processes as a single-round game
 - Today’s talks
Past future work

- Rules other than Plurality
- Restricted Iterative Processes
- Iterative processes as a single-round game
 - Today’s talks
Future work

- Rules other than Plurality
- Restricted Iterative Processes
- Iterative processes as a single-round game
- Weak acyclicity?
- Dynamics leading to desirable outcomes?
CONVERGENCE TO EQUILIBRIA IN PLURALITY VOTING

Happy end!

THE END