Decision Making and Social Networks

Lecture 3: Understanding the structure of a network

Umberto Grandi

Summer 2013
An interesting experiment

In 1967, Stanley Milgram from Harvard wanted to measure the “distance” between two random persons in the United States:

How many acquaintances does it take to connect them?

Two cities selected: Wichita, Kansas and Omaha, Nebraska. Intuitively? Around 100 steps? No...25 % of the letters made it to the recipient, and the median number of steps required was 5.5: the famous six degrees of separation.
A second interesting experiment

“The strength of weak ties”, influential paper by Mark Granovetter in 1973

Reporting on experiments on labour market. How did people get their jobs?

- Mostly through their network of friends (Myers and Shultz, 1951, Rees and Shultz, 1970...)
- Not exactly through friends but through acquaintances

Weak ties are very important in small world networks!
A nice graph
Overview

1. Understanding the structure of a network:
 A lot of definitions to identify important features of networks.

2. How networks form and evolve:
 Networks are not given, how do they grow?

3. How networks influence decision processes:
 Your presentations.
Introduction:

Understanding the structure of a network
Power structure: the Medici family

Power structure: the Medici family

- How **popular** are they? They are connected with 6 families. Strozzi: 4, Guadagni: 4. Not enough as explanation of their rise to power...

- How **connected** are they?

- How **tight** are they?

- How **important** are they?

Let's inspect the power structure...
Power structure: the Medici family

- \(P(i,j) \) number of shortest paths connecting family \(i \) to family \(j \)
- \(P_k(i,j) \) number of shortest paths between \(i \) and \(j \) including \(k \)
- Barbadori-Guadagni: 2, Barbadori-Guadagni including Medici: 2, Barbadori-Guadagni including Strozzi: 0

One possible definition of power

The average fraction of shortest path between two families including the Medici (M) can be expressed as follows:

\[
\sum_{\{i,j| i \neq j, M \not\in \{i,j\}\}} \frac{P_M(i,j)/P(i,j)}{(n-1)(n-2)/2}
\]

Power of the Medici: 0.522. Strozzi: 0.103, Guadagni: 0.255.

Basic Definitions:

Understanding the structure of a network
Basic definitions: Network

Definition

A network is given by a set of nodes (agents, vertices...) \(N = \{1, \ldots, n\} \) and an adjacency matrix \(g \).

- Default is undirected: \(g \) is symmetric
- Default is irreflexive: \(g_{ii} = 0 \)
- Weighted networks are modelled by matrices of real numbers

```
0 1 1 0 0 1 0 0
1 0 0 0 0 0 0 0
1 0 0 1 1 1 0 0
0 0 1 0 1 0 1 0
0 0 1 1 0 0 0 0
1 0 1 0 0 0 1 0
0 0 0 1 0 1 0 0
```
Basic Definitions: Notation

- A subnetwork $g' \subset g$ if $g'_{ij} \Rightarrow g_{ij}$
- $ij \in g$ stands for $g_{ij} = 1$
- g and g' are isomorphic if there exists a relabelling ρ (i.e., bijection) of N that brings g to g', i.e., such that $g'_{\rho(i)\rho(j)} = g_{ij}$
- $g|_S$ is the restriction of g to $S \subseteq N$
- The neighbourhood of $i \in N$ is $N_i(g) = \{j \mid ij \in g\}$.
- The $k + 1$-neighbourhood of i is defined (recursively) as:

$$N_{i}^{k+1}(g) = N_{i}^{k}(g) \cup \bigcup_{\{j \in N_{i}^{k}(g)\}} N_{j}(g)$$
Basic Definitions: Paths and Cycles

- A path between \(i \) and \(j \) is a sequence of links \(i_1i_2 \ldots i_k \) between distinct nodes with \(i_1 = i \) and \(i_k = j \) (formal: such that \(i_ti_{t+1} \in g \) for all \(t < k \)).

- A geodesic between \(i \) and \(j \) is the shortest path connecting \(i \) and \(j \).

- A walk between \(i \) and \(j \) is a sequence of links \(i_1i_2 \ldots i_k \) with \(i_1 = i \) and \(i_k = j \) (nodes can repeat in a walk).

- A cycle is a walk that starts and end at the same node \(i \).

- \(g \) is connected if there is a path between each pair of nodes. A connected component of \(g \) is a maximal connected subgraph of \(g \).

Exercise: how to calculate the number of walks of length \(k \) between \(i \) and \(j \)? What is the length of the shortest path between \(i \) and \(j \)?
Basic Definitions: Last Slide

- A tree is:
 - A connected graph with no cycles.

- A forest is:
 - Such that each connected component is a tree.

- A star is:
 - A network with one node $i \in \mathbb{N}$ such that $g_{ij} = 1$ for all j and $g_{jj} = 0$ otherwise.

- A circle is:
 - A network with a single cycle and such that each node has exactly two neighbours.

Exercise: how many graphs with 30 nodes?
Basic Definitions: Last Slide

- A **tree** is: a connected graph with no cycles.
- A **forest** is:
Basic Definitions: Last Slide

- A **tree** is: a connected graph with no cycles.
- A **forest** is: such that each connected component is a tree.
- A **star** is:
Basic Definitions: Last Slide

- A **tree** is: a connected graph with no cycles.
- A **forest** is: such that each connected component is a tree.
- A **star** is: a network with one $i \in N$ such that $g_{ij} = 1$ for all j and $g_{jj'} = 0$ otherwise.
- A **circle** is:
Basic Definitions: Last Slide

- A tree is: a connected graph with no cycles.
- A forest is: such that each connected component is a tree.
- A star is: a network with one $i \in N$ such that $g_{ij} = 1$ for all j and $g_{jj'} = 0$ otherwise.
- A circle is: a network with a single cycle and such that each node has exactly two neighbours.

Exercise: how many graphs with 30 nodes?
Understanding the structure of a network: Questions

Let \((N, g)\) be a network, and \(i\) a node:

- How popular is \(i\)? \(\rightarrow\) Degree
- How large is a network? \(\rightarrow\) Diameter
- How tightly connected is \(i\)? \(\rightarrow\) Clustering
- How important is \(i\)? \(\rightarrow\) Centrality
Degree and Degree Distribution

Definition

The degree of node \(i \) is the number of nodes that are connected to \(i \)

\[
d_i(g) = |N_i(g)|
\]

Exercise: how to count this on the adjacency matrix?

Definition

The degree distribution \(p(d) \) of a network \((N, g)\) is the frequency (listed values or probability distribution) of nodes with degree \(d \).

This is a very important description of the network!
The Poisson Distribution

Assume links form randomly with probability p.

Degree distribution for large $|N|$ approximates:

$$p(d) = \frac{e^{-(n-1)p}((n-1)p^d)}{d!}$$

Image from wikipedia.
The Scale-free Distribution

Degree is \(p(d) = cd^{-\gamma} \)

- Scale-free because \(\frac{p(kd)}{p(d)} = \frac{p(kc)}{p(c)} \).
- Linear if plotted on a log-log scale.
- Examples: WWW, collaboration networks...(\(2 < \gamma < 3\) usually)
- Typically organised into hubs!

http://www.macs.hw.ac.uk/ pdw/topology/ScaleFree.html
Understanding the structure of a network: Questions

Let \((N, g)\) be a network, and \(i\) a node:

- How popular is \(i\)? \(\rightarrow\) Degree
- How large is a network? \(\rightarrow\) Diameter
- How tightly connected is \(i\)? \(\rightarrow\) Clustering
- How important is \(i\)? \(\rightarrow\) Centrality
The distance between i and j is the length of the geodesic between i and j.

Definition

The diameter of a network (N, g) (also applies to connected components or subgraphs) is the maximum distance between two nodes in N.

Exercise: what is the diameter of a tree? of a circle?

Other interesting measures: average path length, minimal path length...

Exercise: how to compute minimal path length between i and j?
Historically interesting question! Remember the 6 degrees of separation...

Here are some observations:

- Friendship network (Milgram, 1967, letter experiment): median 5.5 on 25% of letters that made it

- Math collaborations network (Grossmann, 2002): mean 7.6 max 27

- The internet (Adamic, Pitkow, 1999): mean 3.1

- Facebook (Backstrom Et Al, 2012): mean 4.74
Understanding the structure of a network: Questions

Let \((N, g)\) be a network, and \(i\) a node:

- **How popular is \(i\)?** → Degree
- **How large is a network?** → Diameter
- **How tightly connected is \(i\)?** → Clustering
- **How important is \(i\)?** → Centrality
Clustering: possible definitions

Are my connections connected between each other? And in average?

Definition

The clustering of node \(i \) is the ratio of pairs of nodes connected to \(i \) that are also connected between each other:

\[
Cl(g) = \frac{\sum_{i} |\{jk \in g \mid k \neq j, j, k \in N_i(g)\}|}{\sum |\{jk \mid k \neq j, j.k \in N_i(g)\}|}
\]

- average clustering coefficient can be measured (two different formulas).
- cliques and transitive triples are the main example of clusters.
- useful to detect small worlds networks

Clustering: example
Let \((N, g)\) be a network, and \(i\) a node:

- How popular is \(i\)? \(\rightarrow\) Degree
- How large is a network? \(\rightarrow\) Diameter
- How tightly connected is \(i\)? \(\rightarrow\) Clustering
- How important is \(i\)? \(\rightarrow\) Centrality
Measures of Centrality I

There are many notions to measure how central a node is (i.e., in a decision network, how powerful):

Degree Centrality

The degree centrality of node i can be measured by its discounted degree:

$$C^D_i (g) = \frac{d_i(g)}{|n - 1|}$$

Closeness Centrality

The closeness centrality of node i is the inverse of the average shortest distance between i and any other node:

$$C^C_i (g) = \frac{n - 1}{\sum_{i \neq j} \ell(i, j)}$$

Measures of Centrality II

Betweenness Centrality

The average fraction of shortest path between two arbitrary nodes including i:

$$C^B_i(g) = \sum_{\{k,j|k\neq j, i\notin \{i,j\}} \frac{P_M(k,j)/P(k,j)}{(n-1)(n-2)/2}$$

An elegant centrality measure: the Katz measure of prestige of node i is the sum of the prestige of the nodes connected to i discounted by their degree.

Exercise 1: show that the vector of Katz prestige of all nodes is an eigenvector of the adjacency matrix discounted by the degrees.

Exercise 2: show that this is equivalent up to a scalar to degree centrality.

Eigenvector Centrality

The eigenvector centrality of node i is the i-th coordinate of the eigenvector associated to the largest eigenvalue of the adjacency matrix g.

In this lecture we have defined interesting features of networks:

- Networks are represented as adjacency matrices, and this representation is very useful to compute the basic features of a network.
- There are several notions to characterise a node and describe features of a network: how popular (degree), how tightly connected (clustering), how important (centrality) ...

In the next lecture we are going to study how networks form and grow:

- Erdös-Rényi random graphs
- Preferential attachment and scale-free networks
- Strategic network formation