
Motivation for the theory of Perfectoid Spaces

Bruno Chiarellotto

August 27, 2015

Contents

1 Introduction 1

2 The first case 6

3 The Construction 8

4 From ch.0 to ch.p 11

5 Galois Correspondance 14

6 The non perfect fields 16

7 How to justify the iso of Galois extensions 18

8 Other motivations 20

1 Introduction

Perfectoid spaces are a in one sense a tool. It is just a relatively new method to
translate problems from ch. 0 to ch.p, where one may expect to get a solution...
Before starting to deal with the very definition of such a spaces we would like to give
some motivation on the study. The motivations are mainly connected with Galois
representations. We will give in this paragraph a primary motivations, at the end
we will open the landscape. This in order to answer to the following question: why
to study Galois representations?

First of all we would like to say what we mean about Galois representations.
Some notation. We indicate as usual Q the field of rational numbers, by Q the
algebraic closure and by GQ = Gal(Q/Q) the Absolute Galois Group. It is naturally
a topological group. A basis of open neighborhood of the identity automorphism is

1



given by the subgroups of finite index i.e. Gal(Q/K), where K is a finite extension
of Q in Q. In fact it is a profinite group (at level of topology); it is given by

lim
←
Gal(K/Q)

where the limit is taken all over the normal finite extensions K as before (seen as
discrete sets). We want to study such a group: one may consider other structures
than only the abstract (topological ) group structure. Remember that Q is the
fraction field of Z and then one may think at the primes in Z. In fact, we can define
for a prime number p, an absolute value | − |p such that in α ∈ Q is given by
| α |p= ps, where s ∈ Z and α = a

b
ps, where we ask that a, b ∈ Z are coprime with p.

We may complete Q with respect to such an absolute value and we get the field
of p-adic numbers Qp: totally disconnected and locally compact topological field.
Naturally we can take its algebraic closure Qp and to get GQp . Naturally we have

Q ↪→ Qp (not unique), and to any such an embedding we have a closed embedding
of groups GQp → GQ. Even if we don’t have a unique inclusions they form a class
for the conjugation.

Remark 1.1. The prrof of this fact gives some insights on the techniques one has
to use. In fact call j : Q ↪→ Qp (choice). Of course if you use a different one, you will
have to conjugate the final result by GQp . In order to define ι : GQp → GQ, if g is an
element of the local (p-adic) Galois group GQp we can consider g ◦ j and j : they are

Q mono from Q to Qp. But Q is normal over Q hence these two embeddings have

the same image (all the elements of Qp which are sep. algebraic over Q). Hence we
can write ι(g) = j−1 ◦ g ◦ j (teh inverse only in the image), which is an elelmnt of
GQ. The kernel of j is Gal(Qp/j(Q), Krasner Lemma tells us that the P-completion

of j(Q) is Qp (where P is a prime over p and in particular that all teh Galois are
continuos.

The situation is different than in the case of the prime p as∞ i.e. for the absolute
archimedean value on Q. The completion now is the field R and its algebraic closure
is just C. As before an embedding Q→ C gives rise to a map

GR = Gal(C/R) = {id, σ} → GQ

it is an immersion of a group of two elements and as the embeddings of Q in C vary
we obtain a coniugacy class of elements σ in GQ of order 2 ...which we call complex
conjugations.

Remark 1.2. Differences between the completions: Qp is not complete and it
is an infinite extension of Qp. We can take its completion which maintains the fact
it is algebraically closed. We indicate such a field as Cp: of course by continuity and
density Galcontinuos(Cp/Qp) = GQp (Ax-Tate and Krasner Lemma).
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It is then clear that one may study GQp inside GQ. But in which sense? Let’s

study at the same time also Cp and Qp. All such a fields have an absolute value
and the elements of absolute value less than or equal to 1 form a closed subring that
we will indicate by Zp and OCp and OQp

(for Qp, Cp and Qp) . They are local ring

and their maximal ideal are pZp, MCp and MQp
. Note that while for Zp we have

the maximal ideal generated by p for the other we have all the roots hence they
are not discrete valued... hence not generated by only one element. The quotients
OCp/MCp = OQp

/MQp
is an algebraic closure of Zp/pZp = Fp (separable one?). We

may denote them by Fp. We then have a surjective map

GQp → GFp

Its kernel is the inertia group of GQp and we will denote it as usual with IQp . It
is a normal subgroup of GQp . The group GFp is procyclic and it has a generator
which is called the Frobenius element. It is associated to x→ xp morphism (we are
in ch=p!). This is a first decomposition of our Galois group.... we will use another
one... so far we have Frobenius element and the Inertia... see [SE] for a complete
description...

Remark 1.3. We may see in this decomposition a first instance of a geometry
setting. In fact one may think about SpecZp, it has only two prime ideal: a maximal
ideal pZp and the generic point associated to (0). For both of them we have a fiber:
the residue field for the generic point is Qp, while for the closed point is Fp. We may
think to GQp as an object at the generic point which has a specialization as GFp ....in
this specialization it loses something...the inertia...

.
Another way of studying a group is connected with the study of its representa-

tions. Representations arise naturally from arithmetic algebraic geometry. Actually
suppose that we have X/Q a projective and smooth variety , take an embedding of Q
in C. Then we may consider the topological space associated to the complex points
of X: X(C). It is a topological space, hence we can define its singular cohomology
H i(X(C),Z). If we extend the coefficients to Ql (l a prime of Z), we can consider
H i(X(C),Ql), then a theorem of Artin (SGA4 exp XI thm 4.4) is going to tell us
that we have an isomorphism between

H i(X(C),Ql) ' H i
et(X ×Q Q,Ql)

and the last cohomology has an action of GQ hence a natural representation!! (Def-
inition of étale cohomology? some time to explain it in the afternoon. In fact the
proof is rather articulate. One starts with the definition of étale coh. over Ql:
limit over Z/lnZ and then tensor by 1

l
. Then one note that H i

et(X ×Q Q,Ql) '
H i
et(X ×Q C,Ql) by flat base change (Milne Étale Cohomology , page 232, 4.3 ).

Then finally we have iso singular/etale for schemes over C: i.e. for any n we have
H i
et(X×QC,Z/lnZ) ' H i(X(C),Z/lnZ) an dthen the limit (SGA4 exp XI thm 4.4))
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Remark 1.4. If X = E is an elliptic curve, then we may describe

H1
et(E ×Q Q,Ql) ' HomZl

(lim
←
E[lr](Q),Ql) ' Q2

l

. This is l-adic Galois reprentation of GQ.

Of course we can take the restriction to GQp and we have a l-adic representation
(p can be equal to l). But this is not the only way of getting Galois representations.

a) Suppose to have X/Qp a scheme defined over Qp, we can take its H i
et(X ×Qp

Qp,Ql), which is l-adic representation of GQp . Of course we can take H i
et(X ×Qp

Qp,Qp), we will have a p-adic representation of GQp . If X/Qp is proper and smooth
then we would have dimQpH

i
dR(X) = dimCH

i
dR((X ×Qp C)(C)) what about the link

with étale cohomology? in this case all the cohomologies have the same dimension.
But what about the existence of a functor which gives an isomorphism between all
these vector spaces of the same dimension? Perhaps by enlarging the vector space
where they are defined to a a field of periods. This leads to the the mysterious
functor.

b) Consider X/Zp, projective and smooth. we have two fibers Xs/Fp and a
generic Xη/Qp. Then we may consider H i

et(Xs ×Fp Fp,Zl). It is l-adic represen-

tation of GFp . Note that in this case we have (l 6= p), dimH i
et(Xs ×Fp Fp,Zl) =

dimH i
sing(Xη(C)) = dimH i

dR(Xη), where we consider an immersion of Qp → C and
we then consider the topological space associated to the C points. There is an l-adic
proof of the Weil conjecture: the Zeta function of Xs is calculated via the l-adic
cohomology and the Frobenius action on it: such a cohomology can be seen as the
specialization at the special point s of a variety defined over Zp. By the base change
theorem all the fibers have the same dimension and for the generic one we have
Artin’s theorem. Hence the first identification. Secondly one has a second proof of
such Weil conjecture which is given by the crystalline cohomology (which is not the
p-adic etale!!!) and such a cohomology coincides (in this case) with the de Rham
cohomology of the generic fiber... hence the second identity (even with the de Rham
theorem..... of course...).

Remark 1.5. If the scheme X/Zp has not good reduction i.e. the special fiber
is not smooth then it is not clear anymore the identification (at least at level of
dimension) of the etale and the de Rham cohomology. what about the etale l-adic
in this singular case? Think about xy − p...the semistable case.

We will see other natural representations in the last paragraph. We are led now
to discuss different kinds of representations of GQp : the l-adic with l 6= p and the
padic ones. We have two cases. Remember that GFp is the profinite completion of
Z. We have a natural surjection GQp →> GFp .

i) First l 6= p, in this case we may see that a Grothendieck theorem (Monodromy
Theorem) tells us that the inertia is trivial on an open subset. Hence the Galois
representation is given by the action of the Weil-Deligne group + a nilpotent operator
([FOO], 1.3). This uses the decomposition of GQp using the inertia.
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ii) l = p i.e. the p-adic Galois Representations: the problem is more involved.
Here we cannot use anymore the decomposition of the Galois Group via the in-
ertia.....and this is exactly where the theory of perfectoid fields (spaces) is coming
from! One would like to decompose GQp on a part which is the the Galois group of
a field of ch. p (and not Fp). This way of acting will be the first instance of Tilting.

I would like to finish with an observation. In the scheme theory we can see a field
K as a point SpecK. Of course the first step further would be SpecA where A is a K
algebra or in general an algebra. In this sense we may seen K as associated to a point
and then we would like to generalize to SpecA. But what do we want to generalize?
What is the geometrical meaning of GQp? Or GQ? Because this is what we want to
study. The meaning is the fundamental group viewed as covering transformations
that in the schemes setting (the case of one point) is given by transformations of some
particular fields extensions or, more generally, of étale coverings. The fundamental
group is associated to the Galois group, GQp : the étale coverings of SpecQp are
the finite (separable) extensions of Qp. We want to find an intermediate extension
between Qp and Qp such that its Galois Group gives a relevant decomposition of
the absolute Galois Group.

i.e. Starting with a finite extension of Qp, K (but to avoid confusion, we may
think directly to Qp), we would like to find K∞

K ⊂ K∞ ⊂ Qp = K

such that Gal(Qp/K∞) is the galois Group of a field of charatcteristic p. i.e. the
etale covering of SpecK∞ are the étale coverings of a SpecK[

∞ where K[
∞ is a field of

ch.p!!! i.e. the finite separable extensions of K∞ are the finite separable extensions
of K[

∞ . And GK∞ = GK[
∞

. Why? Because p-adic Galois representations of fields in
ch.p are easy to handle.... Of course here we speak about one point.
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2 The first case

Here we want to deal with the first case i.e. that one studied by Fontaine-Winterberger
[FW] (that seems to be connecetd with Krasner, see the ICM [SC3]). We consider
Qp and its algebraic closure Qp and its Galois Group. The idea: to consider a sub-

Galois extensions Qp ⊂ Q∞p ⊂ Qp such that its Galois group Gal(Qp/Qp∞) = GQ∞p
is the Galois Group of a field of ch. p. Why? Because in this case a Galois rep-
resentation of GQ can be seen as a representation of GQ∞p (i.e. of a field of ch.p)
plus an action of Gal(Q∞p /Q), which we hope to be easier. But where to be found
such a Q∞p ? (The notation with ∞ is not par hasard....). First of all: why the
case in ch.p should nbe easier? In fact we have a result of Fontaine [FO]. In 1.2 of
that article, Fontaine uses E a field of ch.p and consider Esep its separable closure.
The Galois group of E is denoted by GE and we take V a Zp adic representation
of GE. (or, more generally, Qp-representation? 0.1 of [FO].) We consider E be a
complete field for a discrete valuation of ch.0, whose valuation ring is denoted by
OE , absolutely not ramified (i.e. p is the generator of the maximal ideal) such that
its residue field is E = OE/pOE . This is called a Cohen Ring (field) (EGA IV IHES
20, paragraph.18). If we consider Enr: a maximal algebraic extension which is not
ramified over E then its residue field is an algebraic closure of the residue field E.
We indicate by Ênr its completion. Then we have GE = Gal(Enr/E) = Gal(Ênr/E).
(In general E is called the Cohen Ring of E if E is perfect it is called the fraction
field of the Witt vectors.....). Let’s define in the ring OE an endomorphism which
we will call of Frobenius given by σ whose reduction mod.p is σx = xp. We denote
its unique extension to Enr as ϕ. The theory of local fields (see [SE]) tells us that
GE = Gal(Enr/E) = Gal(Ênr/E). Hence if we start with a V a Zp-representation of
GE (always the module is a free of finite type..!!) then we may build:

DE(V ) = (OÊnr
⊗Zp V )GE

and DE(V ) is a OE -module endowed with a ϕ-action (semilnear with respect the
Frobenius lifting in E). This action is étale (i.e. the associated linear map is bijec-
tive). We denote by ΦMet

OE the category of étale (finite) OE -modules of finite type.
Then

Theorem 2.1. The two functors

DE : RepZp
(GE)→ ΦMet

OE

and VE , which for every étale ϕ-module M is given by

VE(M) = (OÊnr
⊗OÊ M)ϕ=1

give an equivalence of categories.

But what about our problem? If we start with a p-adic representation of GQp ,
then one may hope to have an intermediate field Q∞p as before such that the Galois
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Group Gal(Qp/Q∞p ) = GQ∞p is the Galois Group of a field of ch.p.Which we indicate
by E in that case (for notation reasons we will indicate Γ = Gal(Q∞p /Q)). if we
take a Cohen ring for E i.e. OE of fraction field E endowed with a lifting of the
Frobenius ϕ which commutes with the action of Γ then to a p-adic representation
of GQp we can associate a ϕ-OE module endowed with a Γ action...a (ϕ,Γ)-module
i.e. an object of ΦMet

OE .
But where to find such an intermediate field? Via the field of norms. This has

been the answer given by Fontaine (see also [FOO]).
If we take a field then SpecK is just a point, but it should be clear that the

set of all separable extension is associated to the étale extensions. I.e. to the
coverings...and the Galois is just the fundamental group. A SpecK is just a point...no
topology...what should be the analogue if we don’t have anymore just a point? the
perfectoid spaces associated to a perfectoid rings/field.
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3 The Construction

I want to stress again what we want: we want to translate a field in ch.0 to a field
in ch.p in such a way they will have the same absolute Galois group in such a way
we can use this ping-pong in order to get result from the (wild)side we like more i.e.
where we know more. In the sense, where we know more. The inspiring example
as we said was about a choice of a field in the algebraic closure of Qp. We denote
by Qp∞ or Qp(ζ

∞) both the infinity Galois extensions of Qp obtained by adding the

p
1
n roots of p (resp. of 1) to Qp. Both are absolutely unramified infinity extensions

of Qp with the same residue field.....with really big ramification....deeply....not with
a discrete valuation.... and such that if we take the ch.p quotient OQp∞/pOQp∞

or OQp(ζ∞)/pOQp(ζ∞) = Fp the Frobenius is surjective (being perfect....it is actually
bijective..)

Proposition 3.1. The field Qp∞ has the same (separable) absolute Galois group as
Fp((t)) ( the fraction field of the power series in t, t is an indeterminate over Fp).

(we could have given a similar statement for Qp(ζ
∞)) We will try to prove this

iso which is the basis of the theory. We pass from ch.0 to a non perfect field in ch.
p. Note that we can say even more: that we have an equivalence of categories for
the finite separable extensions. But: this is connected with the theory of Field of
Norms for non perfect field, while we will try to study the perfect case which is what
will be discussed in the perfectoid case.

Note that if we denote by E = Fp((u)), then it is easy to describe a Cohen ring
for it:

OE = {
+∞∑
i=−∞

ait
i | ai ∈ Zp , lim

i→−∞
| ai |= 0}

and E = OE ⊗Zp Qp.
Idea: to translate a field in ch.0 to a field in ch.p having the same Galois group.

This has been studied by Fontaine and Winteberger [FW]. They were able to as-
sociate to a APF field ( valuation field non archimedean with perfect residue field
even not a not a priori complete with some hypotheses about ramification) a field in
ch.p not a priori perfect, but with the same Galois Group. Such a correspondance
was also at level of intermediate separable extensions. In the same article they were
also able to associate a perfect field of norms in case the field is complete and this
is exactly along this line that Scholze has introduced his perfectoid fields (spaces).
For such a complete/perfect correspondance Fontaine-Winterberger do not have a
complete Galois (also intermediate) correspondance using their APF fields, but this
is exactly what Scholze did for Perfectoid fields!

Before giving the very definition of perfectoid spaces and the link to the old
cases, we would like to say why proposition 3.1 is true. This is something that have
been presented by Scholze in several examples [SC1], [SC2], here I would like to give
other examples and the aim of my lectures will be to give all the tools to understand
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the example as an exercise. Note that Qp∞ and Fp((t)) are both complete fields for
a non arch. valuation). Nothing changes if we pass to the completion K of Qp∞

in ch.0 and to K[ in ch.p the completion of the perfection Fp((t))(t
1

p∞ ) (completion
for the t-adic topology, it is also an absolute value). Hence it is enough to prove
the relation between K and K[. We will connect the two by considering p which is
deeply ramified to t which is also deeply ramified. So we may suppose to replace p
by the variable t....Note that if we take K◦ and K[◦ the subring of integral elements
then we have

K◦/p = Fp[p
1

p∞ ] ' Fp[t
1

p∞ ]/t = K[◦/t

Using this one can define a non additive map K[ −→ K sending x → x] which
should send p to t and on K[◦is given by sending x to limn→∞ y

pn

n where yn ∈ K◦ is

a lifting of the images of thex
1
pn ’s in K◦/p = K[◦/t In this terms we may seen

K[ = lim
←
K◦

where the inverse limit is given by the p=power and the map is

x→ (x], (x
1
p )], . . . . . . )

Note that K[ is perfect: if we take x ∈ K[, then x
1
pn are all uniquely defined by x,

so the map above is in one sense justified. So if we start with a finite extension L of
K[ then we would like to associate an extension L] of K. Say that L is the splitting
field of Xd + ad−1X

d−1 + . . . a0, because K[ is perfect, this is also the splitting field

of is Xd + a
1
pn

d−1X
d−1 + . . . a

1
pn

0 for all n ≥ 0 (same degree..) Then L] can be defined

as the splitting field of Xd + (a
1
pn

d−1)
]Xd−1 + . . . (a

1
pn

0 )]. for n large enough....: these
fields stabilize for n→∞.... This is the ”example” as explained by Scholze.

Remark 3.2. Here I would like to start with an example for p 6= 2. Consider X2−t,
over K[, because K[ is perfect then the splitting field of X2− t is the splitting field

of X2 − t
1
pn . Infact

t
1

2pn = (t
1
pn )

pn+1
2 p−

1
2

On the other hand one may define at this point the associated extension L] as the

splitting field of all the various liftings of X2 − t
1
pn , n ≥ 0, which can be written

easily as fn(X) = X2−p
1
pn , n ≥ 0. A priori we would have a sequence of extensions

Ln of K but one notes that the different ideal δ Ln
Kn

is generated by f ′n(p
1

2pn ): whose

p-adic valuation is 1
2pn

and it tends to zero as n → ∞. Because the different tells

us about ramification then we see that the extension Ln

Kn
is getting less ramified as

n goes to ∞. Kn = Qp(p
1
pn ) are the intermediate extensions of Qp (automatically

complete...). Then we are saying that at the limit we don’t have more ramification
but all is ruled by the square root of p.
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The example used by Scholze is X2 − 7tX + t5 as polynomial. To give a direct
proof of the proposition above.

Let’s do some math body building about the situation we have at hands. Re-
member we need to translate something from ch.0 to ch.p ....but maintaining some
properties...at least same Galois, or same finite separable extensions.
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4 From ch.0 to ch.p

Here we follow [BC] ( pararagraph 4). Consider B a Fp algebra.
V (∗) You may think (and this will be relevant for us) to any field K of charac-

teristic 0 that is complete ( we will indicate exactly when this condition is required!!)
with respect to a fixed valuation of rank 1 ( discrete or not...) that has a residue
field k of characteristic p 6= 0. In particular we will say K a p-adic local field if it is a
field as before but with perfect residue field and discrete valuation. Then for any K
as before we can take OK its ring of integers and then B can be chosen OK/(p)......
Of course this will be our ”champion” but one can take also a genuine B = Fp[t].....
So, let’s take

R(B) = lim
←

B = {(x0, x1, . . . ) ∈
∏
n≥0

B | xpn+1 = xn}

It has naturally a ring structure and it is perfect: the power p is surjective and
injective because if (xj)

p = 0 then xj−1 = xpj = 0 for all j. We have a natural map
R(B)→ B which is given by (xj)→ x0. If B was perfect of ch.p, then R(B) = B.

We will be mainly interested in the case when we start with a field as in (∗) before.
In that case we will use the notation R(OK/(p)). If we start with a K1 as before
which is not complete and such thatK is its completion, then we have by density that
R(OK/(p)) = R(OK1/(p)). Why (p)? Of course we could have taken (p) ⊂ A ⊂ OK
(we are saying that K is p-adically complete!!!!!now!!!!) such that AN ⊂ (p). then
we can construct R(OK/(A)). Note that in all these definitions an element x is

given by x = (x(0), x(1), . . . , x(n) . . . ) and x
1
pn is given by (x(n), x(n+1), . . . , x(m+m) . . . ).

Moreover one can also take
lim
←
OK

the inverse limit over the p-th power. This is indipendent of the ideal A as before.
Then we have a natural map

lim
←
OK → R(OK/(A))

just the reduction. But this map is a multiplicative one!! But it is a bijection!!

Proof. . We are going to propose an inverse. In fact we can define: take x = (xn) ∈
R(OK/(A)), take any lifting x̂(n) ∈ OK . then one can define for any n

ln(x) = lim
m→∞

x̂(n+m)
pm

In fact for any m′ ≥ m ≥ 0 we have x̂(n+m′)
pm
′−m

' x̂(n+m), mod.A. And because

(p) ⊂ A we have x̂(n+m′)
pm
′

' x̂(n+m)
pm

, modAm+1. Hence the limit is well defined
and it is indipendent upon the lifting (ex). Hence the inverse map x → (ln(x)) is
well defined and giving the inverse.

11



Remark 4.1. If we were using (p) = A then ln(x) = l0(x
1
pn ). And we have defined

l0(x) = (x)] in the notation of section 1.

Remark 4.2. In particular R(OK/(A)) ' R(OK/(p))!! In any case the inverse
from R(OK/(A)) ' R(OK/(p)) to

lim
←
OK

is given by (ln(x)) = (x(n)). Because we have an identification we can put an additive
structure on

lim
←
OK

. The multiplicative structure is just (xy)(n) = x(n)y(n). But for the addition we
have

(x+ y)(n) = lim
m→∞

(x(n+m) + y(n+m))
pm

Note that it is important to have a complete valuation!!!! In order to have the
inverse..if not we won’t have...such a construction even if we have an identifica-
tion..between R(K) and R(K̂) using the limit on the quotient. To go in reverse we
need complete!

Do we have other properties for such a ”correspondance”?
Consider that we start with a field K as before and we consider an algebraic

(separable) closure K and then its completion K̂ which is algebraically closed (??).

We can play the same game for K̂ . Note that the ideal A cannot be the maximal

ideal M of K̂ relative to its valuation... it doesn’t exist N such that MN ⊂ (p)!

We have to choose a different one (p) is ok....for example....(p
1
pn ) too... In any case

we can play the usual game for K̂ and to obtain the identification we had before
between

lim
←
O
K̂

and R(O
K̂
/(A)) for some choice of A ...among them (p) ..... We my call such a

perfect ring of ch.p simply R (even if it is built using an algebraic closure).
we have

Proposition 4.3. With the definition of R we had before: R is separated and com-
plete for an absolute value and it is algebraically closed. It is not noetherian.

Proof. we refer as usual to [BC] 4.3.3. We denote by | • |p the normalized absolute

value in K̂ which is given by |p|p = 1/p. Then we may define the abs.value | • |:
R → pQ ∪ 0 as |x| = |(x(n))| = |x(0)|p. The key point is that |x(n)|p = |x(0)|p

n

p . The
otehr point is the fact that we can see R as closed inside the product

∏
O
K̂
/(p)

endowed with the discrete topology. For the alg. closed see [BC] 4.3.5.
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Note that the valuation is not discrete.
So, if we start withK we may associatedR(OK/(A)), briefly denoted byR(OK) =

RK , even if it complete or not.... in any case RK = R(OK) ' R(OK̂) = RK̂ , its

completion and it is indipendent upon the ideal A one is going to use in K̂.

So we have a way to associate from ch.0 complete something perfect and complete
in ch.p. Naturally the same in ch.p: we associate something complete and perfect.....
Naturally we may consider K ⊂ L ⊂ K̂, L as before (complete..) and we can choose

an ideal A of OL as before. We can define RL and if we denote L̂ its completion we
will have RL = RL̂ and a presentation

RL = {(x(n)) ∈
∏
OL̂ | (x(n+1))

p = x(n)}

In particular we will have if L ⊂ L′ that RL ⊂ RL′ as perfects subrings and
all are subrings of R and R is complete for a valuation. But this valuation has a
meaning also on the various RL and in particular on Frac(RL) its fraction field and
this is complete for the | • |-adic topology of R! It is separeted, complete and for a
valuation. What about the Galois groups?

Here we cannot expect to have an exact correspondance and this is where we
have to put hypotheses on the field where we started from.
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5 Galois Correspondance

It is here, where the work of Fontaine-Winterberger [FW] and later Ramero-Gabber
[GR], Faltings and finally Scholze has been directed. In [FW] we have for the first
time the way of detecting a good set of p-adic fields where we could have a kind of
Galois correspondance. This has been done using the method of the field of norms,
which associated to a field even if not complete (and in all characteristic) another
valuation field complete but not perfect in ch.p.

This correspondance was a very sophisticated one (at the prize of loosing the
perfection of the ch.p field and not requiring to be complete), but required some
hypothesis on the field K but not really easy to be generalized. It has been Scholze
who has found the good definition and the good in order to have a ”fine tuning”
correspondance but also a correspondance that can be generalize. But changing the
original definition of good fields. Here we are only over ”one point”.

Remark 5.1. If we start with K = Qp then RL = Fp. ...we may consider then
Qp = K and in this case we can define RQp

.

As we said originally we had [FW] work: they were not interested on the com-
pleted fields and on the generalization but only in associating a correspondance
between for Galois Groups and for fields extensions. They worked with arithmeti-
cally profinite extensions L of a local field K (i.e. K discrete valuated and with
perfect ?? residue field). Their champion K of such a local field was Qp and/or
some of its finite extensions. But not only this. Not complete a priori...... neither
Galois.... even not of ch.0... Then the extensions they have in mind are of the type L
such that their Galois closure has Galois group whose higher ramification groups are
all open + some condition on the ramification. This is the case if the Galois group is
a p-adic Lie group and the inertia is open (see [FW] and [BC] 13.3) . Clearly a chain
of totally (wildly) ramified (or totally wildly ramified up to a finite) extensions of
Qp do the job.... a kind of deeply ramified... note that they ask the residue field to
be perfect. In any case the exetnsion should be infinite.

Remark 5.2. Qp∞ and Q(ζ
1

p∞ ) are of this kind... the example we should have in
mind is: let K a local p-adic field with (Kn)n≥0 an increasing sequence of finite Galois
extensions and we may define K∞ = ∪Kn, We can define Γ = Gal(K∞/K) assume
that from n0 on Kn/Kn0 is totally ramified and with Gal(Kn/Kn0) ' Z/pn−n0Z.
This has as a corollary that Gal(K∞/Kn0) is a Zp-extension totally ramified and it
satisfies our request. For these reasons we may speak of ”deeply ramified” extension.
A maximal totally ramified extension of Qp or any of its finite extensions is one of
them.

It is on the absolute Galois group of the field K∞ as in 5.2 where we can have a
kind of Galois correspondance for the Galois extensions.

Proposition 5.3. Let L1 ⊂ L2 finite extensions of K∞ in K. We can associate
as before, the perfect fields Frac(RL1) and Frac(RL2) inside Frac(R) = Frac(RK).

14



Then the extension (separable: they are perfect) Frac(RL2)/Frac(RL1) is of finite
degree [L2 : L1]. If L2/L1 is Galois, then we have an identification

Gal(L2/L1) ' Gal(Frac(RL2)/Frac(RL1)

The basic thing is that we work with fields with an infinite p-parts in their
ramification...deeply ramified. It does not say that we have an identification of any
Galois extension of K∞ with a Galois extension of Frac(RK∞). But only at level
of Galois groups...if we want the identification of the Galois extensions we need
the imperfect field of norms (i.e. we associate something which is not perfect) or
we should use perfectoid fields. In the proposition 6.3 we could have had a perfect
correspondance if we ask K∞ complete and we condider only extension of the similar
kind (Perfectoid), as we will see by Scholze.

15



6 The non perfect fields

We want to define an imperfect field in ch.p in order to link the Galois extension.
We do not carry all the calculations (we never did), but we only indicate the method
one is going to use and to give a reason to for the old name the field of norms.

We consider L as an APF extensions of a local field K (perfect residue field).
For our pourposes, K∞ as before. We denote by EL/K the set of finite extensions
of K0 (the maximal unramified extension of K inside L) and then we define XK(L)
the inverse limit of all E∗ ∈ EL/K where the maps are given by the norms between
E ′∗ ⊂ E∗. We add zero and we obtain XK(L).

Theorem 6.1. XK(L) as before is a field, it admits an absolute value α = (αE)E∈EL/K
∈

XK(L), ν(α) = νE(αE). With all these data it is a local field of ch.p, hence endowed
with a complete discrete valuation. The residue field kL is isomorphic to the residue
field of XK(L) (both perfect).

.

Remark 6.2. Every complete discrete valuation field in ch.p E whose residue field
is kE is isomorphic to kE((t)) where t is an indeterminated and seen as uniformizer
for the t-adic valuation. In particular XQp(Qp∞) ' Fp((t)). And t will correspond
to a chain of uniformizers for all E∗ compatible with the norms!

.
We finally have also a Galois correspondance. In fact we may consider L as an

APF extension of K in K. For each separable algebraic extension M of L, we can
write XL/K(M) as the limit of XK(L′) where L′ is a finite separable extension of L in
M (it is again APF). If M/L is finite then: XL/K(M) = XK(M). We don’t discuss
the fact that such a functor sends separable extension of L in separable extensions
of XK(L). In any case we have the fine tuning result:

Proposition 6.3. . As before, let M1,M2 be separable extensions of L in K. The set
of the separable L- immersions of M1 inside M2 coincides with the set of separable
XK(L)-immersions of XL/K(M1) in XL/K(M2). Moreover If X ′ is an algebraic
separable extension of XK(L) then there exists a separable algebraic extension M of
L such that there exists a XK(L) isomorphism of XL/K(M) with X ′. The conclusion
is the fact that if K is a separable closure of K which contains L, then X = XL/K(K)
is a separable algebraic closure of XK(L) and Gal(K/L) = Gal(XL/K(K)/XK(L)).
Moreover we have an identification among the separable finite extensions of L and
those of XK(L) (not only for the Galois ones)

Hence for the non perfect field of norms the tilting from ch.0 to ch.p (for APF
extensions or ”deeply ramified”) respects not only the Galois, but also gives an
equivalence for separable finite extensions hence an identification of the Etale site!.
What we are going to have is a caracterization of a certain type of fields (perfectoids
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or deeply ramified) where we can state a similar result. But with the following
advantages :

-not only for perfect residue field
-a direct functor along the line of the perfect field of norms
- such a functor transforms a perfectoid in another perfectoid (remember that

the field of norms works for ch.p i.e. sending ch.p in ch.p)

Remark 6.4. A final result which is going to be important for us is the fact that if
we start with L, APF over a local field (even not complete, for example Qp∞ = L a
maximal ramified extension of Qp = K in its algebraic closure), then we may take its

completion L̂, then link between the ”field of norms” XK(L) can be seen inside the
”perfect field of norms” i.e. that one associated with the limit of the pth-powers of
the completion RL̂ . I.e. and in particular RL̂ is the completion of the perfectization
of XK(L). So according to our example XQp(Qp∞) ' Fp((t)). And what we have
indicated as K[ is RQ̂p∞

.
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7 How to justify the iso of Galois extensions

Now we should be ready to justify Scholze’s assertion. We want to link separable

(they are all) extensions ofK[ = Fp((t))(t
1

p∞ ) with separable (they are all) extensions

of Q̂p∞ . The first is perfect and t has to be seen as a limit of elements of Q̂p∞/(p) =

Qp∞/(p). In particular formally we have x ∈ K[ = Fp((t))(t
1

p∞ ), but also x
1
pn ∈

K[, n ∈ Z (they are all uniquely determined by x) Remember that we have an

identification of K[ = Fp((t))(t
1

p∞ ) with limOQ̂p∞
(limit on the p-th powers), if

x ∈ K[ = Fp((t))(t
1

p∞ ), it can be seen as x = (x(0), x(1), x(2), . . . ) in the limit

(xp(j) = x(j−1), with x
1
p = (y(0), y(1), y(2), . . . ) where y(i) = x(i+1) and so on for all

the pn-roots of x!! The map we have built up aims to link K[ = Fp((t))(t
1

p∞ ) with

RQ̂p∞
. First we have defined K[ = Fp((t))(t

1
p∞ ) → K̂ = Q̂p∞ (here we need the be

completed). Remember that being K[ perfect limK[ = K[ (limit on p-powers). We

take x ∈ K[ = Fp((t))(t
1

p∞ ), we take its reduction mod. t, then we have

Q̂◦p∞/p = Fp[p
1

p∞ ] ' Fp[t
1

p∞ ]/t = K[◦/t

we take any lift of it Q̂◦p∞ and we call it y0, we consider x
1
p ∈ K[ = Fp((t))(t

1
p∞ ) (it

is perfect..), then again take its reduction mod.p and take any lift in Q̂◦p∞ , call it y1.
Then we have defined

x] = lim
n→∞

yp
n

n .

as a map K[ = Fp((t))(t
1

p∞ )→ Q̂p∞ . If we want the identification, we should take

K[ = Fp((t))(t
1

p∞ )→ lim
←

Q̂◦p∞

where the inverse limit is given by the p=power and the map is

x→ (x], (x
1
p )], . . . . . . ).

Let’s go back to Scholze’s example: X2 − 7tX + t5 as polynomial on K[ =

Fp((t))(t
1

p∞ ), and its splitting field. The first observation if the fact that the splitting
field does not change of we take roots of the coefficients! I.e. if we consider X2 −
7t

1
pnX+ t

5
pn , n ≥ 0. Then we should consider the linked splitting fields Ln over Q̂p∞

inside the its complete(!!) algebraic closure Q̂p = Cp of

X2 − 7(t
1
pn )]X + (t

5
pn )]

What we need to show is the fact that the solutions we have to add converge to a

solutions in Q̂p = Cp according to the (−)]-contruction. Because all the liftings are
the same we can have a rapresentation of the previous polynomial as

X2 − 7p
1
pnX + p

5
pn
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over Q̂p∞ , for each n ≥ 0. What we want to show is the fact that the two solutions
αn and βn converge

lim
n→∞

(αn)p
n

= α, lim
n→∞

(βn)p
n

= β

to two elements in Q̂p = Cp which give the expected extension of Q̂p∞ .
how: newton polygon and discriminant.
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8 Other motivations

We would like to mention some motivations of the study the representations of the
Galois group of Q or Qp and, in some cases, how the tilting to ch.p has been useful.
Other applications of the perfectoid fields and, more generally, to perfectoid spaces
(read rings) will be considered along the school.

a) As we tried to say there is a long history about the use of Galois represen-
tations. Chronologically we had: l-adic Tate module of the ln-torsion points for an
elliptic curve over some global field (read Q). In general later we had Grothendieck
and his school that where able to associate via étale methods l-adic cohomology
groups to algebraic varieties hence l-adic Galois representations. If we start with a
smooth and projective variety over a number field (global...) K , then for any prime
l one is able to attach (and for every i = 0, 1, . . . , 2dimX),

ρl : GK = Gal(K/K)→ AutQl
(HI

et(XK ,Ql)) = GLdi(Ql)

where di = dimHI
et(XK ,Ql). This is really indipendent upon l. If we choose l 6= l′,

hence we obtain ρl and ρl′ . If we take than a place ν not in the finite set of places
where X has bad reduction and not equal to l and l′ , one can state an equality
of the ch.polynomials of ρl(Frobν) and of ρl′(Frobν). And both are in Q[T ] (not
to mentions that the roots are...Weil Numbers...hence the Riemann Hypothesys).
A natural questions can be posed: what about the compatibility in the case the
place ν divides l (i.e. p-adic Galois represnetations of GQp)?? Or in the case of bad
reduction? More explicitely, if l = η = p and K = Q what about the restrcition of ρ
to GQp? I.e. a p-adic Galois representations? This has lead to the example we gave
at the beginning and it has been driving us all along our presentation.

b) Fontaine equivalence beteween GQp p-adic representions and (ϕ,Γ)-modules

associated to a decomposition Qp ⊂ Qp∞ ⊂ Qalg
and the fact that

-Γ = Gal(Qp∞/Qp)

- Gal(Qalg
/Qp∞) is a Galois group of a field of ch.p according to the field of

norms. namely GE where E = Fp((t)) (t is an indeterminate).
-Then a Qp representation of GE is nothing but a module over a Cohen ring

of E i.e. an absolute non ramified valuation ring (complete) such that its residue
field is E endowed with a Frobenius action. Hence we have a perfect candidate the
Amice Ring i.e. E (formal in positive and convergent in negative power series). ).
Moreover Cherbonnier and Colmez [CC] have proved that the equivalnec eis over the
Robba Ring R. (this is only true for the cyclotomic perfectoid field...). In fact we
have to remember that the first equivalence was between, for all K local fields (i.e.
finite extension of Qp, for us directly Qp) then the category of p-adic representations
of GQp is equivalent to the category of (ϕ,Γ)-modules over E , where E is the field
associated to the Cohen ring

OE = {
+∞∑
i=−∞

ait
i | ai ∈ Zp , lim

i→−∞
| ai |= 0}
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and the frobenius action ϕ commutes with the action of Γ = Gal(Qp∞/Qp) ' Zp ( a
maximal totally ramified extension, and teh iso is given by the cyclotomic character
χ). In particular ϕ(t) = (1 + t)p− 1 and for g ∈ Gal(Qp∞/Qp) g(t) = (1 + t)χ(g)− 1.
The action is semilinear. Cherbonnier-Colmez [CC] were able (in the case of the
totally ramified Qp∞ or, in general, on the cyclotomic tower over any local field) to
extend the action to the Robba Ring/field :

R = {
+∞∑
i=−∞

ait
i | ai ∈ Qp , ∃ε < 1, | lim

i→−∞
|ai|εi = 0}

(i.e. they converge in some annulus of radius ε ≤| − |p< 1, while, in general, the
elements of the Cohen E have not radius of convergence!). This has led Berger to
put some ”differental ”...at least on the de Rham Galois representation. But this
another story.

Remark 8.1. We may use different totally ramified extensions: not only the cyclo-
tomic one. The Lubin-Tate theory gives to us different ways of introducing them.
In fact what Cherbonnier-Comez did was to use the Lubin-Tate formal groups of
height 1! But we could have started from Qpn and to have introduced other totally
ramified extensions where to apply Fontaine theory. But not to extend the theory
to the level of Cherbonnier-Colmez’s one i.e. to the Robba’s ring. This has been
Kisin-Ren’s work [KR] and more recently [BE].

b) Another use of the Galois representationhas been Colmez’s proof of the Lang-
lands correspondance for n = 2 (Completed after with Paskunas and Dopinescu). In
fact the starting point is the fact that one can associate to a p-adic galois represen-
tation a (ϕ,Γ) module over the Robba Ring R. ....This has bounded the Langlands
correposndance to p-adic representation of GQp ...not for every local field!!! Not
to mention the fact that the proof is linked only to n = 2 i.e. representation to
GL2(Qp).

c) Other global Galois representations are given via modular and automorphic
forms. Reference: [GO] . The classical space of complex modular forms of weight k
on Γ1(Np

ν) has a basis consisting of modular forms whose q-expansions at infinity
have all the coefficients which are integers. By a modular form defined over Zp
we understand a Zp-linear combination of all of them. Later Katz gave a more
intrinsic definition: there exists an algebraic curve defined over the localization of Z
at (p): Q∩Zp, and a canonical invertible sheaf ω such that the global sections of ωk

correspond to the classical (cuspidal) modular forms of weight k on Γ1(Np
ν) defined

over Zp (almost..). In such a space we have Hecke operators, Tl, l not dividing Np.
One has also the operators U`, ` | N . We consider the eigenforms i.e. the forms
which are simultaneous eigenfunctions for all the Hecke operators. We have also a
diamond operator. But the conclusion is the following: given a modular forms of
weight k on Γ1(Np

ν) defined over Zp which is an eigenform for all T`, ` not dividing
Np and for the diamond operators then one can construct a Galois representation
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(Eichler, Deligne, Shimura, Serre) with value in Zp of GQ,S (maximal extension of
Q unramified outside S, in this case S are the primes which divide N , p and ∞).
We see this as ”deformation of representations” because we can change the prime
where we take GQ`

. Again we would like to study all the reductions. What about
the case GQp? Via the (ϕ,Γ)-modules...

We can have another application of the theory in families (geometrically this
time). This is connected with the Eigencurve. Here we are talking about classical
p-adic modular form. Again we don’t want to go through the definition. But want
also to mention that they can be seen as limit of classical modular forms of weight
k on Γ1(Np

ν) defined over Zp. again in this set we can define Hecke operators, Up
and diamonds. We can speak about eigenforms, but of course, we have new objects
other than the old one.......we can associate to each of them a Galois representation
as before. The fact is that all these new eigenforms form a geometric objects and we
would like to study the defomations (in the curves or in the eigenvariety) of such a
representations on this geometric object. Again the way to study is via the reduction
to (ϕ,Γ)-modules over the Robba ring R. In particular, even if each point is a global
p-adic Galois representation, its restriction to GQp and its associated (ϕ,Γ)-modules,
tell us if the point is associated to a classical modular forms of weight k on Γ1(Np

ν)
defined over Zp...([KI], [EM]). For all of this [GO] and the whole volume where
it is found. For example, the Fontaine-Mazur conjecture (now a theorem in many
cases by work of Kisin [KI] and Emerton [EM]) predicts that if the restriction is
potentially semi-stable at p then it is a classical modular eigenform. This is an
amazing conjecture because it predicts something global from a very local condition
on the Galois representation (This strongly suggests that a good understanding of
p-adic representations of p-adic Galois groups is necessary to understand the global
Langlands correspondence). For example, what local condition at p singles out the
global Galois representations coming from the eigencurve?

Definition 8.2. We say that a p-adic GQp representation is trianguline of rank
2 if the associated (ϕ,Γ)-modules Drig(V ) is the successive extension of rank one
(ϕ,Γ)-modules over R.

In [KI2] Kisin proves that for any point on the eigencurve the associated Galois
representation is trianguline at p. In [EM] Emerton shows that under mild technical
restrictions this condition exactly determines those representations occuring on the
eigencurve up to a twist. Hence, very very roughly speaking, the eigencurve is the
moduli 2-dimensional representations of GQ with prescribed ramification away from
p, together with a choice of triangulation at p.

d) Herr’s Galois cohomology. If we have a group G and a reprsentation V as a
free A-modules (A is a commutative ring with unit), then we can see V as a module
over the group algebra Z[G]. As a module over such a group algebra we can define
a functor (to abelian groups, say) given by V → V G, where V G are the invariant
objects under the G action of V . This a functor and one would like to study its
derived functors. If the group G is a Galois group: we will indicate it as Galois
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Cohomology. A reference [SE]. If G = GQp and V is a Zp representation we can
have a different way of calculating such a groups via (ϕ,Γ)-modules. This has been
given by Herr in [H] and [H1].

His method starts with a field E of ch.p, consider V ∈ RepFp
(GE) and define ,

with σ : Esep → Esep the Frobenius.

D(V ) = (Esep ⊗Fp V )GE

We have dimED(V ) = dimFp(V ) and the Frobenius map ϕ = σ ⊗ idV acts on
D(V ) in a semilinear way and ϕ(D(V )) generates D(V ). A finite dimensional vector
space M over E is called étale Φ-module over E if there exists a σ- semilinear ϕ
such that ϕ(M) generates M . We denote such a category as ΦM et

E .

Proposition 8.3. (see [FO])The functor V → D(V ) is an equivalence of category
between RepFp

(GE) and ΦM et
E .

Hence V GE = D(V )ϕ=idD(V ) = H0(GE, V ). For M ∈ ΦM et
E we consider the

following complex C(M) of abelian groups

0→M →M → 0

where the map between the M is ϕ − idM . Then if we start with V ∈ RepFp
(GE),

we can calculate H i(GE, V ) and we may also tale D(V ) and hence C(D(V ). We
have [H]6.1.2

H i(C(D(V )) = H i(GE, V )

Such a result can be generalized to the case of Zp-representations of GQp . We
know that RepZp

(GQp) is equivalent to the category of (ϕ,Γ)-modules over OE as
we saw in proposition 2.1. In the case we use the cyclotomic tower Qp∞ the the
Γ = Gal(Qp∞/Q) ' Zp and we denote γ a generator. Then we can build the
following complex C2(M) for a M a (ϕ,Γ)-modules over OE

0→M →M ⊕M →M → 0

where the first map M → M ⊕M is given by α(x) = ((ϕ− idM)(x), (γ − idM)(x))
while the second map M⊕M →M , is given by β(y, z) = ((γ−idM)(y)−ϕ−idM)(z).
Again we can start with V ∈ RepZp

(GQp), we can associate a (ϕ,Γ)-modules over

OE : DE(V ) = (OÊnr
⊗Zp V )GE and then we can construct C2(DE(V )). Again Herr’s

result says that
H i(C2(DE(V )) = H i(GQp , V )

[H]6.4.4.
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