
A Compositional Approach to Multimedia Documents Dynamics

P. Bertolotti

Università di Torino

bertolot@di.unito.it

O. Gaggi

Università Ca’ Foscari di Venezia

ogaggi@dsi.unive.it

M.L. Sapino

Università di Torino

mlsapino@di.unito.it

V.S. Alagar

Concordia University

alagar@cs.concordia.ca

1 Introduction

Multimedia presentations can be described as collections of media items coherently synchronized and
presented to the user. Each media item is an independent atomic component with its own behavior.
Depending on their types, distinct media may exhibit different behavior. For example, it is possible for
a user to stop or pause an already started video stream (i.e. a dynamic object), before it naturally ends.
Otherwise, a static object, like a text page or an image, once displayed, remains on the screen until the
user stops it.

In [4], Celentano et al address the problem of retrieving fragments of multimedia presentations modelled
according to [7], that have to be consistent with the synchronization relationships defined by the authors
of the presentation. To do so, they define an automaton, which formally describes the presentation states
entered by the events which trigger media playback. A state contains at any time instant, the set of media
that are active at that time, according to the set of synchronization relationships defined by the author,
and the corresponding channel occupation. Before the presentation starts, no media item is active, thus all
channels are free. When an event occurs, the state of the presentation changes: some items that were not
active become active, some active items end, other items could be forced to stop due to some interruption.

In this paper, we are still interested in modelling the presentation behavior, but at a different granularity
level, and with different goals. Specifically, we aim at describing the behavior of the single media appearing
in any given presentation, by means of finite state machines, and modelling the behavior of complex dynamic
systems by composition of their single atomic components. This solution makes a step further to a fine
grain modelling of a multimedia presentation and considers many aspects relating the actual execution of
a multimedia document that are not detailed in the previous work [4].

The model we are discussing in this paper associates each single media item with an independent
finite state machine, which describes its evolution, from its activation, to its end or stop. Different states
correspond to different phases of the media execution. If we assume to deal with a distributed environment,

1



like the World Wide Web, before its playback, a media item must be downloaded to the local machine1

and buffered. We call these activities pre-fetching of a media component.
State transitions are triggered by specific external (that is, user observable) events, like users’ requests

to start or stop the media, and by internal (non observable) events, mainly capturing modification in the
buffer occupation. In the presence of those events, transitions are fired provided some conditions, expressed
in terms of logical predicates, hold.

The model presented in this paper is a general approach that can be applied to several problems relating
the modelling of dynamic systems, like for example scheduling problems, estimation of time needed to pre-
fetch complex component of a multimedia document, etc. The model is also suited for formal verification
[5] of the coherence and correctness of synchronization constraints designed by the author.

2 Multimedia Presentations

For modelling multimedia presentations we refer to the synchronization model previously defined in [4, 7].
The model is oriented to web-based hypermedia presentations, and describes the structure of a presentation
and the temporal behavior of its components. In [4] a complete and detailed description of the model can
be found. We discuss here only the issues relevant to scope of this paper.

A multimedia presentation is a 4–tuple P = 〈MI, CH, E ,SR〉 where MI is a set of media items which
build the presentation, CH is a set of channels, i.e. virtual devices used to reproduce media components
and mapped to actual resources during their playback, E is a set of events which will be detailed in Section
3, and SR is a set of temporal relationships which describe the presentation behavior.

Therefore, an author can design the presentation evolution by imposing a set of temporal constraints
among the objects. The proposed model defined five synchronization primitives:

• a plays with b (written a ⇔ b), which models the parallel composition of two objects,

• a activates b (written a ⇒ b), which models the sequential composition of two objects,

• a is replaced by b (written a ⇀↽ b), which models the substitution of media item a with b in the same
channel,

• a terminates b (written a ⇓ b), which models the simultaneous forced stop of media item b when
object a is forced to stop by the user or some other external event and

• a has priority over b with behavior α (written a
α
>b), which can be used to design presentation

behavior during user interactions. Media item b is paused (α = p) or stopped (α = s) when the user
starts object b.

1This step can be omitted using the RTSP[12] as transfer protocol, or any other protocol implementing the streaming

technology.

2



d e m o 1

a u d i o 1

d e m o 2

a u d i o 2

d e m o 3

a u d i o 3

Figure 1: Synchronization schema of a training multimedia presentation

As an example, let us consider a multimedia presentation design to train users to deal with a new
program. The multimedia presentation is composed by a set of animations, which reproduce demos of the
program at work, while an audio comment explains what the user has to do.

Figure 1 depicts a portion of the synchronization schema of this presentation where audioi and demoi
for i = 1 . . . 3 are the animations and the corresponding three audio comments which explain how to use
the program, respectively. The comments and the animations use two different channels, an audio channel,
called comments and a window on the user screen, called display.

The relationship plays with (⇔) models the parallel execution of each audio comment with the asso-
ciated animation, and the relationship activates (⇒) imposes a temporal order on the set of audio files,
i.e. first demo1 is displayed during audio1 playback, then audio2 comments demo2 and last, audio3 and
demo3 are activated. If the user stops the audio comments, also the active animation must be stopped:
this behavior is modelled by relationship terminates (⇓).

Therefore, P = 〈MI, CH, E ,SR〉 where:

• MI = {audioi, demoi ∀i = 1 . . . 3},

• CH = {comment, display},

• E = {em}, where m ∈ MI and e describes the type of event which will be discussed in Section 3
and

• SR = {audioi ⇔ demoi, audioi ⇓ demoi ∀i = 1 . . . 3} ∪ {audioi ⇒ audioi+1 i = 1, 2}.

P describes the static structure of a multimedia presentation, i.e. the media components, the user
interface organization, defined by the channels definition, and the temporal constraints among the media
items.

Then each item has its internal behavior, e.g a static medium is displayed on the screen, a continuous
media components starts its playback and can be paused or stopped before its natural end. This behav-
ior can be formally described with a finite state machine, which shows media reactions to a particular
event. Therefore, the presentation evolution can be described by composing several finite state machines
representing the behavior of single items.

3



3 A formal model for complex multimedia documents

We introduce an independent finite state machine modelling a single media object, that encapsulates the
functional and timing properties of the media item.

A media item can be in six different states:

• idle: all objects which are not active are in this state, waiting to be activated. Each media item,
when it naturally ends, becomes idle again;

• init: this state corresponds to the time used to pre-fetch the media;

• playing: the actual playback of the object;

• paused: when the media item is paused;

• stopped: when the media item is forced to terminate by the user or some other external event;

• terminating: this state describes the situation in which the object is terminating. We consider
distributed presentations in which the media involved have to be transferred to be played. This
usually requires bufferization. Then we can consider a media object of size S, divided into N segments
(whose length is equal to the size of the buffer associated with the object), the media enters the state
”terminating” when it begins playing the last segment.

For the sake of simplicity, in this characterization we do not explicitly distinguish between continuous
media and static media. For static media, states terminating and paused are meaningless, and in this case
playing is intended to model the fact of being displayed.

Another simplification concerns our modelling of bufferization. In this preliminary work, we do not
capture information about different buffer sizes and timings. We instead abstract from single buffer details,
and work under the hypothesis that every media is associated with a specific buffer, and that the relevant
information about that buffer only concern its being empty, full, or partially filled.

The association of distinct media items with their buffers, is expressed by means of the function
buffer(), having the considered medium as its argument. Analogously, we also assume that every medium
is associated to a playback channel, and a stream of data. To denote this association we use the functions
channel(), and stream(), having the medium as their argument. The relevant information to be checked,
when a single medium is modelled, is the status of its buffer, its channel and its stream. To check the status
of buffers and streams we use the predicates isEmpty(), and isFull(). The status of channels is checked by
means of the predicate isFree().

We denote the set of events that can cause a state transition with E ; it includes: start (when a user
asks for the activation of a medium), ready (when the buffer of a starting media is full), pause (when a
medium playout is temporally interrupted), stop (when a user forces the termination of a medium playout),
ending (when the last segment of the media is starting playing) and end (when a medium playout reaches
its natural termination).

4



In the above list of possible events, we distinguish between external and internal events. External events
are those that have an effect immediately perceived by the user. For example, start, that corresponds to
the user’s action of clicking the bottom to activate a medium, is an external event as well as stop, which
corresponds to the user’s request of interrupting a medium playout, pause and end.

Internal events correspond to some modification in the internal state of the system, that the user is not
necessarily aware of. This is the case with ready, which represents the fact that the buffer associated with
a medium is full, which makes it possible to effectively activate the playout, and ending, which indicates
that the buffer associated with the object is filled for the last time, then the item is finishing.

Definition 3.1 (Single Item Finite State Machine) The finite state machine characterizing a given
media item mi is MSM(mi) = 〈S, s0, F, next, T 〉, where

• S = {idle, init,playing,paused, stopped, terminating};

• s0 = idle;

• F = {idle, stopped};

• next is the function defined as follows:

next(idle, start) = init next(init, ready) = playing
next(init, pause) = paused next(init, stop) = stopped
next(playing, ending) = terminating next(playing, stop) = stopped
next(playing, pause) = paused next(terminating, end) = idle
next(terminating, stop) = stopped next(terminating, pause) = paused
next(paused, stop) = stopped next(paused, start) = playing
next(stopped, start) = init

• T is a set of 4-tuples 〈s, e, C, P 〉 describing transitions, where:

– s ∈ S is the initial state;

– e ∈ E is an event;

– C is a set of enabling conditions for the transition from state s when the event e occurs;

– P is a set of postconditions, that is, conditions holding after the transition takes place.

In the following, to characterize state transitions we use the following notation, where statei is the
initial state and stater is the resulting state.

[C] statei
e
→ stater [P]

State transitions take place when an event occurs, and their enabling conditions are satisfied. Pre-
conditions and postconditions mentioned in our transitions only concern local predicates, i.e., predicates
whose truth value might be affected by the firing transition.

5



[isFree(channel(mi))] idle
start
→ init [¬isEmpty(buffer(mi))∧

¬isFree(channel(mi))]

[isFull(buffer(mi))] init
ready
→ playing [true]

[true] init
pause
→ paused [true]

[true] init
stop
→ stopped [isEmpty(buffer(mi))∧

isFree(channel(mi))]

[isEmpty(stream(mi))] playing
ending
→ terminating [true]

[true] playing
stop
→ stopped [isEmpty(buffer(mi))∧

isFree(channel(mi))]

[isEmpty(buffer(mi))] terminating
end
→ idle [isEmpty(buffer(mi))∧

isFree(channel(mi))]

[true] playing
pause
→ paused [true]

[true] paused
stop
→ stopped [isEmpty(buffer(mi))∧

isFree(channel(mi)]

[true] terminating
stop
→ stopped [isEmpty(buffer(mi))∧

isFree(channel(mi)]

[isFree(channel(mi))] paused
start
→ playing [¬isFree(channel(mi))]

[true] terminating
pause
→ paused [true]

[isFree(channel(mi))] stopped
start
→ init [¬isFree(channel(mi))∧

¬isEmpty(buffer(mi))]

Table 1: Set of transition rules for single media items

The set of transitions characterizing a single media item is shown in the following Table 1.
The model we have introduced so far characterizes the behavior of a single media. Given this represen-

6



tation, we can model a presentation which contains several media objects, by composing the corresponding
finite state machines. Several unrelated media may exist in the presentation, therefore we first model a
system simply containing a number of independent media. Then, we specialize some transition rules, to
model synchronization primitives. In the following definition, we will make use of footers to distinguish
different media, and use the footer corresponding to each medium also to refer to its states and events,
thus distinguishing between analogous states and events for different media.

We will denote with Csi,ei
the enabling condition for the transition corresponding to event ei in the

state si, for the medium mi. Analogously for Psi,ei
.

Definition 3.2 Let m1, . . . ,mn be n independent (i.e. not related to one another by means of synchro-
nization rules) media items, and MSM1, . . . ,MSMn be the corresponding finite state machines. Let
MSMi = 〈Si, s

0
i , Fi, nexti, Ti〉, for all i = 1, . . . , n.

The overall behavior is modelled by the finite state machine MSM = 〈S, s0, F, next, T 〉, where

• S = {〈s1, . . . , sn〉 | si ∈ Si, i = 1, . . . , n};

• s0 = 〈s0
1, . . . , s

0
n〉 ;

• F = {〈sf1 , . . . , sfn
〉 | sfi

∈ Fi, i = 1, . . . , n};

• next(〈s1, . . . , si, . . . , sn〉, emi
) = 〈s1, . . . , nexti(si, emi

), . . . , sn〉, for any si ∈ Si, and any event emi
on

the the medium mi, i = 1, . . . , n.

• T contains the following transitions:

∀t, if t = 〈si, emi
, Csi,emi

,Psi,emi
〉 ∈ Ti for a given i then

〈〈s1, . . . , si, . . . , sn〉, emi
, Csi,emi

,Psi,emi
〉 ∈ T .

This composition models n objects which are completely independent from one another. Then we must
consider objects which are temporally related by the synchronization relationships described in Section 2.
For the sake of simplicity, we here introduce the composition of synchronized media only considering pairs
of media to be synchronized. The method can be easily generalized to the case of n media.

We can translate the temporal relations into four different kinds of composition, which are mostly based
on the one considered above.

Specifically, the finite state machine modelling any temporal composition miθmj , θ ∈ {⇔,⇒,⇓,⇀↽,
s
>,

p
>} is defined by: (i) applying the definition 3.2, to model the case of the general composition of items

mi and mj , and (ii) adding or overwriting some specific transition rules. Given a transition t ∈ T for an
event e from statei to stater, if t

′ = 〈statei, e, Cstatei,e,Pstater,e〉 ∈ T reaching the same state stater already
exists, t replaces t′, otherwise t is added to the set of transitions T .

Tables 2, 3, 4, 3, 6, and 7 list the rewritten rules for ⇔, ⇒, ⇓, ⇀↽,
s
>, and

p
>, respectively.

7



[Cidlei,starti∧ 〈si, sj〉
startm→ 〈initi, initj〉 [Pidlei,starti∧

Cidlej ,startj ] for m ∈ {i, j} and s ∈ {idle, stopped} Pidlej ,startj ]

[Ciniti,readyi
∧ 〈initi, initj〉

e
→ 〈playingi,playingj〉 [Piniti,readyi

∧
Cinitj ,readyj

] for all e ∈ {readyi, readyj} Pinitj ,readyj
]

[Cidlei,starti∧ 〈si, sj〉
starti→ 〈initi, sj〉 [Pidlei,starti ]

¬ Cidlej ,startj ] for all sj ∈ Sj and si ∈ {idlei, stoppedi}

[¬ Cidlei,starti∧ 〈si, sj〉
startj
→ 〈si, initj〉 [Pidlej ,startj ]

Cidlej ,startj ] for all si ∈ Si and sj ∈ {idlej, stoppedj}

[Cidlei,starti∧ 〈si, initj〉
readyj
→ 〈initi, initj〉 [Pidlei,starti∧

Cidlej ,startj ] for si ∈ {idlei, stoppedi} Pidlej ,startj ]

[Cidlei,starti∧ 〈initi, sj〉
readyi→ 〈initi, initj〉 [Pidlei,starti∧

Cidlej ,startj ] for sj ∈ {idlej, stoppedj} Pidlej ,startj ]

[Cterminatingi,endi
] 〈terminatingi, sj〉

endi→ 〈idlei, stoppedj〉 [Pterminatingi,endi
∧

for all sj ∈ Sj \ {idlej, stoppedj} Psj ,stopj
]

[false] 〈terminatingi, sj〉
endi→ 〈idlei, sj〉 [Pterminatingi,endi

]
for all sj ∈ Sj \ {idlej, stoppedj}

Table 2: Transition rules for the mi ⇔ mj relationship

[Cplayingi,endingi
∧ 〈playingi, sj〉

endingi→ 〈terminatingi, initj〉 [Pplayingi,endingi
∧

Cidlej ,startj ] for all sj ∈ {idlej, stoppedj} Pidlej ,startj ]

[Cplayingi,endingi
∧ 〈playingi, sj〉

endingi→ 〈terminatingi, sj〉 [Pplayingi,endingi
]

¬ Cidlej ,startj ] for all sj ∈ {idlej, stoppedj}

[Cterminatingi,endi
∧ 〈terminatingi, initj〉

e
→ 〈idlei,playingj〉 [Pterminatingi,endi

]
Cinitj ,readyj

] for all e ∈ {endi, readyj}

Table 3: Transition rules for the mi ⇒ mj relationship

8



[Csi,stopi
] 〈si, sj〉

stopi→ 〈stoppedi, stoppedj〉 [Psi,stopi
∧ Psj ,stopj

]
for all si ∈ Si \ {idlei, stoppedi}
for all sj ∈ Sj \ {idlej, stoppedj}

Table 4: Transition rules for the mi ⇓ mj relationship

[Cinitj ,readyj
] 〈si, initj〉

readyj
→ 〈stoppedi,playingj〉 [Pstoppedi,stopi

∧

for all sj ∈ Sj \ {idlej, stoppedi} Pinitj ,readyj
]

Table 5: Transition rules for the mi ⇀↽ mj relationship

[Ciniti,readyi
] 〈initi, sj〉

readyi→ 〈playingi, stoppedj〉 [Piniti,readyi
∧

for all sj ∈ Sj \ {idlej, stoppedi} Pstoppedj ,stopj
]

Table 6: Transition rules for the mi

s
>mj relationship

[Ciniti,readyi
] 〈initi, sj〉

readyi→ 〈playingi,pausedj〉 [Piniti,readyi
]

for all sj ∈ Sj \ {idlej, stoppedj}

Table 7: Transition rules for the mi

p
>mj relationship

Example 3.1 Figure 2 and 3 depict a portion of the automata modelling the parallel and the sequential
composition of two media. Figure 2 illustrates the behavior obtained with the relationship audio1 ⇔ demo1

(see Figure 1). As the user starts media item audio1
2 the system begins to pre-fetch both media items

audio1 and demo1, which step in state init. Each media item is associated to a buffer; when it is filled,
the object is ready for its playback. The system waits until both the objects are ready, as described by the
precondition Cinitaudio1

,readyaudio1
∧Cinitdemo1

,readydemo1
= isFull(buffer(audio1))∧ isFull(buffer(demo1)).

When the last media item is ready3, audio1 and demo1 begin their playback and step to state playing. If
audio1 naturally ends, demo1 is stopped, while the natural termination of demo1 does not influence audio1

playback.
Figure 3 describes the behavior obtained with relationship audio1 ⇒ audio2. Both objects audio1 and

audio2 use the same channel, therefore audio2 cannot start during audio1 playback. The system begins the
pre-fetching of audio2 when the first audio track is terminating, therefore it steps to state s3, in which audio1

is in state terminating and audio2 is in state init as answer to event endingaudio1 . When audio1 ends,
the system waits until buffer(audio2) is full (precondition Cinitaudio2

,readyaudio2
= isFull(buffer(audio2)))

and then starts audio2
4.

2If the user starts media item demo1, he or she obtains the same behavior.
3In Figure 2, audio1 is assumed to be last media to fill the buffer.
4In Figure 3 we assume that buffer(audio2) is already full when audio1 naturally ends. Otherwise, the system steps to

9



s 0 = < i d l e a u d i o 1 , i d l e d e m o 1 >

s 1 = < i n i t a u d i o 1 , i n i t d e m o 1 >

s 2 = < p l a y i n g a u d i o 1 , p l a y i n g d e m o 1 > s 6 = < t e r m i n a t i n g a u d i o 1 , p l a y i n g d e m o 1 >

s 3 = < p l a y i n g a u d i o 1 , t e r m i n a t i n g d e m o 1 >
s 7 = < i d l e a u d i o 1 , s t o p p e d d e m o 1 >

s 4 = < p l a y i n g a u d i o 1 , i d l e d e m o 1 >
s 5 = < t e r m i n a t i n g a u d i o 1 , i d l e d e m o 1 >

s t a r t a u d i o 1

r e a d y a u d i o 1

e n d i n g a u d i o 1

e n d i n g d e m o 1

e n d a u d i o 1

e n d d e m o 1

e n d i n g a u d i o 1e n d a u d i o 1

Figure 2: The automaton modelling the relationship audio1 ⇔ demo1

s 0 = < i d l e a u d i o 1 , i d l e a u d i o 2 >

s 1 = < i n i t a u d i o 1 , i d l e a u d i o 2 >

s 2 = < p l a y i n g a u d i o 1 , i d l e a u d i o 2 > s 3 = < t e r m i n a t i n g a u d i o 1 , i n i t a u d i o 2 >

s 4 = < i d l e a u d i o 1 , p l a y i n g a u d i o 2 >

s 5 = < i d l e a u d i o 1 , t e r m i n a t i n g a u d i o 2 >
s t a r t a u d i o 1

r e a d y a u d i o 1 e n d i n g a u d i o 1
e n d a u d i o 1

e n d i n g a u d i o 2

e n d a u d i o 2

Figure 3: The automaton modelling the relationship audio1 ⇒ audio2

The abstract formal model introduced so far is well suited for reasoning on multimedia documents
dynamics, and to prove properties about them.

For example, the finite state machine associated with composite documents allows us to derive the set
of single media possibly playing in parallel, or to compute the sets of media that necessarily have to be
serialized.

To do so, given a description on the initial state of the overall system, expressed in terms of (positive)
predicates on media buffers and channels, and given a sequence of events concerning the involved media
items, we inductively reason on the feasibility of that sequence of events, and on the impact that the
sequence might have on the overall system, as follows.

Given an event, the corresponding transition can fire if its precondition is true in the current state.
If this is the case, the effects of the event are recorded in the new state by (i) deleting, from the current
state, those predicate instances which appear negated in the postcondition of the fired transition; (ii) for

state s4 as answer to event readyaudio2
.

10



any positive predicate instance appearing in the postcondition, inserting it in the resulting state. If the
predicate instance p(buffer(mi)) is the inserted one, (that is, a fact stating something about the buffer
of media item mi), any other predicate q(buffer(mi)) appearing in the current state (and concerning
the same media item) is then removed. This replacement captures the dynamic evolution of the buffer
condition.

In the future, we plan to develop a formal system to reason within this model, by properly defining
axioms and proof rules, according to the methods usually adopted for program verification and model
checking.

4 Related Work

Several synchronization models describe the temporal evolution of a multimedia presentation by defining
synchronization relationships among its objects [2, 8, 11, 13]. Candan et al [3], makes a step further,
deriving a correct schedule of the media items, which respects the specified temporal relations, and manages
different network throughput and buffers resource available.

The models proposed in [6, 10] are mostly based on well known formal models for modeling complex
systems. Specifically, in [6] a specification method based on Milner’s Calculus of Communicating Systems
is proposed, and a visual programming environment based on the specification mechanism is described. In
[10] the reference formal model is Petri Net Model.

In both cases, the models are used to capture the system behaviours at the media item granularity
level, that is, the models capture the mutual relationships existing among different media items whose
composition results in the presentation. No specific attention is devoted to lower level phases needed to
play a presentation, such as pre-fetching, buffering, etc. For this reason, we can consider these models as
alternative approaches to model media composition, of the same granularity level as the model by Celentano
and Gaggi [7] that we choose as our starting point. This last seems more suitable to our purposes, since
its five synchronization primitives have an easy to understand semantics, and make the authoring process
easier to the user.

On the other hand, different alternative approaches to model complex systems exist in the literature.
Among them [1] provides a formal method for specifying the design of reactive objects and systems. The
considered systems have the main characteristics of having to react to stimuli from their environment, with
strong response synchronization constraints.

In our case, the reaction to the user interaction is not a dominant issue, while we mostly concentrate
on the inner dynamics of the single presented media.

Paulo et al. [9] describes a synchronization model based on hypercharts. Hyperchart notation extends
the statechart formalism in order to make it able to describe temporal constrains and synchronization
requirements of a multimedia presentation. The system performs a single step at each time unit, reacting
to all external changes that happen in that time interval.

11



References

[1] V.S. Alagar R. Achuthan and D. Muthiayen. TROMLAB: an object-oriented framework for real-time
reactive systemd development. Technical report, University of Montreal, Canada, 1998.

[2] J. F. Allen. Maintaining Knowledge about Temporal Intervals. Comm. ACM, 26(11):832–843, Novem-
ber 1983.

[3] K.S. Candan, B. Prabhakaran, and V.S. Subrahmanian. Retrieval Schedules Based on Resource
Availability and Flexible Presentation Specifications. Multimedia Systems, 6(4):232–250, 1998.

[4] A. Celentano, O. Gaggi, and M.L. Sapino. Retrieving Consistent Multimedia Presentation Fragments.
In Workshop on Multimedia Information Systems (MIS 2002), pages 146–154, Tempe, Arizona, USA,
November 2002.

[5] Jr. Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The MIT Press, 1999.

[6] S. B. Eun, E.S. No, H.C. Kim, H.Yoon, and S.R. Maeng. Specification of Multimedia Composition
and A Visual Programming Environment. In Proc. ACM Multimedia Conference, 1993.

[7] O. Gaggi and A. Celentano. A Visual Authoring Environment for Multimedia Presentations on the
World Wide Web. In IEEE International Symposium on Multimedia Software Engineering (MSE2002),
pages 206–213, Newport Beach, California, December 2002.

[8] P. King, H. Cameron, H. Bowman, and S. Thompson. Synchronization in Multimedia Documents. In
Jacques Andre, editor, Electronic Publishing, Artistic Imaging, and Digital Typography, Lecture Notes
in Computer Science, volume 1375, pages 355–369. Springer-Verlag, May 1998.

[9] F.B. Paulo, P.C. Masiero, and M.C. Ferreira de Oliveira. Hypercharts: Extended Statecharts to
Support Hypermedia Specification. IEEE Transactions on Software Engineering, 25(1):33–49, Jan-
uary/February 1999.

[10] B. Prabhakaran and S.V. Raghavan. Synchronization Models for Multimedia Presentations with User
Participation. Springer Verlag Journal of Multimedia Systems, August 1994.

[11] James A. Schnepf, Joseph A. Konstan, and David Hung-Chang Du. Doing FLIPS: FLexible Interactive
Presentation Synchronization. IEEE Journal on Selected Areas of Communications, 14(1):114–125,
January 1996.

[12] H. Schulzrinne, A. Rao, and R. Lanphier. Real Time Streaming Protocol (RTSP).
http://sunsite.auc.dk/RFC/rfc/rfc2326.html, April 1998. RFC 2326.

[13] M. Vazirgiannis, Y. Theodoridis, and T. Selling. Spatio-temporal composition and indexing for large
multimedia applications. Multimedia Systems, 6(4):284–298, 1998.

12


