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Abstract. We apply some tools developed in categorical logic to give
an abstract description of constructions used to formalize constructive
mathematics in foundations based on intensional type theory. The key
concept we employ is that of a Lawvere hyperdoctrine for which we
describe a notion of quotient completion. That notion includes the exact
completion on a category with weak finite limits as an instance as well
as examples from type theory that fall apart from this.
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1. Introduction

Category theory provides a language to investigate the syntax and the se-
mantics of formal systems on the same ground, as it provides an appropriate
abstraction useful to bring to the foreground an algebraic structure that usu-
ally remains hidden behind both. In fact, the present paper is a plain example
of how category theory offers a language which is suitable to describe a key
property that foundations of constructive mathematics should have according
to [23].

In the following part of the Introduction, we address the relevance of
such abstract properties. After that we describe the category-theoretic con-
cepts that are dealt with in the paper. Finally, we examine two quotient
models based on intensional type theory.
The need of quotient completion to found constructive mathematics. There
are various foundations for constructive mathematics available in the litera-
ture: some are formulated in axiomatic set theory, others in category theory,
yet others in type theory. In fact there is no foundation for constructive
mathematics as standard as the theory ZFC is for classical mathematics.

Project MIUR-PRIN McTAFI provided support for the research presented in the paper.
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The authors of [23] propose to look for a minimalist foundation which could
form a common core for the most relevant constructive theories. Its finalized
construction is in [21].

In loc.cit. the authors also state that a foundation for constructive math-
ematics should make it evident which key aspects differentiate it from classical
mathematics. For instance, contrary to classical proofs, constructive proofs
enjoy the existence property, i.e. one can extract programs that compute wit-
nesses of existential statements occurring in them. Even more, any proof of
a constructive system should be seen as a program. Hence, ideally, a founda-
tion for constructive mathematics should be at the same time a set theory,
in which to formalize mathematical theorems, and a programming language
in which to extract the computational contents of mathematical proofs.

Type theory provides examples of such formal systems, such as Martin-
Löf’s Intensional Type Theory [25] or Coquand’s Calculus of Constructions
[8]. But there is a problem in adopting such type theories as a foundation
for constructive mathematics. First of all they do not validate extensional
features used in the everyday practice of mathematics such as extensional
equality of sets or of functions, nor do they offer quotient constructions.
Indeed, if one wants that these systems act as useful functional programming
languages, they must meet decidability issues on typing of proofs which are
incompatible with extensional features. This is argued in more formal terms
(with the notion of proofs-as-programs theory) in [23].

The solution adopted in practice in the formalization of mathematics in
type theory is to represent extensional concepts in a model built on top of
the type theory, for example by using setoids, see [12, 1]. A main drawback of
this approach for a constructive mathematician is that working with setoids—
and especially with dependent setoids—is extremely complicated compared
to adopting a foundation in the same vein as ZFC for classical mathematics,
like for instance Aczel’s CZF or Friedman’s IZF. A natural solution is to
work with an axiomatization of the quotient model of setoids supported by the

intensional type theory instead of working directly in the model. In a sense,
someone who would like to have a foundation for constructive mathematics
based on a type theory is naturally led to abandon the traditional view of
having a unique system to formalize mathematics in favour of a two-level
foundation where one level is used for program extraction and the other to
formalize mathematics.

This is the central idea of the notion of constructive foundation put
forward in [23]. There it is required that a foundation for constructive math-
ematics should be a two-level theory: one level, named intensional, should
be used as a programming language; the other, which is called extensional,
should be closed under standard extensional constructs in order to be used
as the actual formal system in which to perform mathematical proofs, and it
should be seen as an abstraction of the intensional level according to Sam-
bin’s forget-restore principle, see [28]. In [21] it was stated that to satisfy the
link between the two levels in [23] it is enough to interpret the extensional
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level in the intensional one by means of a quotient completion of the latter,
i.e. to see the extensional level as a fragment of the internal language of a
quotient completion built on the intensional one. The two-level minimalist
foundation in [21] provides an example of such a constructive foundation.

What remains to specify in the notion of constructive foundation in [21]
is what one means “abstractly” by quotient completion.

In particular one wants to see whether the construction performed in
[21]—the quotient model built over the intensional level to interpret the ex-
tensional level—is an instance of a free construction on categories with struc-
ture.

In the literature on category theory various constructions of quotient
completion have been studied, for example in [7, 2, 6]. These constructions all
rely on defining quotients as stable effective coequalizers of monic equivalence
relations. Hence, they all produce exact categories—and indeed they usually
go under the name of exact completions.

But, as we observe in the present paper, the construction of quotients
adopted in [21] does not necessarily lead to an exact category and therefore it
cannot be an exact completion. This motivates the quest for a more general
notion of quotient completion than the exact completion.

In this paper we accomplish this task by relativizing the notion of quo-
tient to that of a suitable hyperdoctrine: the fibers act as the “logic” in which
to consider equivalence relations. With respect to those, we introduce a no-
tion of quotient in the base category of the hyperdoctrine, and we prove that
that notion is algebraic. In other words, there is a universal construction
that “freely adds” quotients for the equivalence relations without adding any
further power to the logic.

We use a weakened notion of Lawvere hyperdoctrine [16, 18, 17, 19],
here simply called “elementary doctrine”, with respect to which we present
a universal construction of quotient completion, which we call “elementary
quotient completion”.

Instances of this construction include both the quotient model in [21]
and the exact completion of a category with finite limits in [5]. Indeed, the
study of the elementary quotient completion helps to isolate, in the doctrine
setting, the properties of a model “with quotients” and to handle those prop-
erties independently from one another. Thanks to the more general setting
than that, say, of categories with (weak) finite limits, it is also possible to
analyse the properties of the elementary quotient completion that are similar
to the exact completion, such as closure under exponentials in [6].

As a biproduct of all this, we also obtain a clear explanation of the
well-known result that the category of total setoids à la Bishop built over
Martin-Löf’s type theory is the exact completion of an appropriate category
with weak finite limits, see [26, 4, 2].
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2. Doctrines

We introduce the notion of doctrine that will be used to specify that of quo-
tient. This notion is an obvious generalization of that of a hyperdoctrine. Hy-
perdoctrines were introduced, in a series of seminal papers, by F.W. Lawvere
to synthesize the structural properties of logical systems, see [16, 18, 17, 19].
His crucial intuition was to consider logical languages and theories as indexed
categories and to study their 2-categorical properties. For instance, connec-
tives and quantifiers are determined by adjunctions. That approach proved
to be extremely fruitful, see [24, 15, 14, 30, 31] and the references therein.

Recall from [16] that a hyperdoctrine is a functor F :C op −→ Heyt from
a cartesian closed category C to the category of Heyting algebras satisfying
some further conditions: for every arrow f :A→ B in C , the homomorphism
Ff :F (B) → F (A) of Heyting algebras—Ff denotes the action of the functor
F on the arrow f—has a left adjoint

E

f and a right adjoint

A

f satisfying the
Beck-Chevalley condition.

The intuition is that a hyperdoctrine determines an appropriate cate-
gorical structure to abstract both notions of first order theory and of inter-
pretation.

A many-sorted first order theory gives rises directly to a hyperdoctrine
F :C op −→ Heyt—a detailed presentation is given as example 2.2:

• the objects of C are declarations of sort variables
• a morphism f :A → B of C is a list of terms of the sorts in B, in the
variables in the declaration A

• an object P in F (A) is a property written with the variables declared
in A

• a morphism P ≤ Q in F (A) shows that property Q follows from the
property P

• a functor Ff :F (B) → F (A) represents the substitution, in properties
of the sort B, of the terms f for the variables in B

• the adjoints

E

f and

A

f represent the existential quantifier and the uni-
versal quantifier, respectively.

Another instance of hyperdoctrine F :C op −→ Heyt is the following:

• the objects of C are sets
• a morphism f :A→ B of C is a function into the set B from the set A
• an object P in F (A) is a subset of the set A
• a morphism P ≤ Q in F (A) indicates that Q contains P
• a functor Ff :F (B) → F (A) acts by inverse image along f on subsets of
the set B

• the adjoints

E

f and

A

f must be evaluated, on a subset P of A, respec-

tively as

E

f (P ) = {b ∈ B | ∃a ∈ A[b = f(a) ∧ a ∈ P ]}

A

f (P ) = {b ∈ B | ∀a ∈ A[b = f(a) ⇒ a ∈ P ]}

Thus a model of the many-sorted first order theory determines precisely a
functor from the former hyperdoctrine to the latter, as already pointed out
in [16, 18].
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Our aim is to take advantage of the algebraic presentation of logic of-
fered by hyperdoctrines and we shall consider a more general notion with the
structure needed to define a quotient of an equivalence relation from that per-
spective. We shall follow [18] and use the word “doctrine” with some attribute
to christen the more general notion and others derived from it. We shall be
able to separate the logical components producing a universal construction
of completion by quotients of doctrines.

Somehow reflecting the essential logical structure that is needed in order
to present the theory of an equivalence relation, the basic concept is that of a
contravariant functor from a category with finite products into the category
of inf-semilattices and inf-preserving maps.

Definition 2.1. A primary doctrine is a functor P :C op −→ InfSL from (the op-
posite of) a category C with finite products to the category of inf-semilattices,
i.e. a contravariant functor P :C op −→ Pos in the category of partial orders
Pos such that

• for every object A in C , the partial order P (A) has finite infs
• for every arrow f :A → B in C , the monotone map Pf :P (B) → P (A)
preserves them.1

The structure of a primary doctrine is just what is needed to handle a
many-sorted logic with binary conjunctions and a true constant, as seen in
the following example.

Example 2.2. The leading logical example is the indexed order LT :V op −→
InfSL given by the Lindenbaum-Tarski algebras of well-formed formulae of a
first order theory (with only one sort).

Given a theory T in a first order language L, the domain category of
the functor is the category V of lists of variables and term substitutions:

object of V are lists2 of distinct variables ~x = (x1, . . . , xn)
arrows are lists of substitutions3 for variables [~t/~y]: ~x→ ~y where each term

tj in ~t is built in L on the variables x1, . . . , xn

composition ~x
[~t/~y]

//~y
[~s/~z]

//~z is given by simultaneous substitutions

~x
[s1[~t/~y]/z1,...,sk[~t/~y]/zk]

// ~z

The product of two objects ~x and ~y is given by a(ny) list ~w of as many
distinct variables as the sum of the number of variables in ~x and of that in
~y. Projections are given by substitution of the variables in ~x with the first in
~w and of the variables in ~y with the last in ~w.

1Here and in the sequel we write the action of a doctrine P on an arrow as Pf .
2The empty list is included.
3We shall employ a vector notation for lists of terms in the language as well as for si-
multaneous substitutions such as [~t/~y] in place of [t1/y1, . . . , tm/ym]. We shall also ex-

tend vectorial notation to conjunctions and quantifiers writing ~t = ~s for the conjunction
t1 = s1 ∧ . . . ∧ tℓ = sℓ, provided the lists ~t and ~s are the same length, and writing ∃~x
instead of ∃x1

. . .∃xn .
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The functor LT :V op −→ InfSL is given as follows: for a list of distinct
variables ~x, the category LT (~x) has

objects equivalence classes
⌊
W

⌉
of well-formed formulae W of L with no

more free variables than x1,. . . ,xn with respect to provable reciprocal
consequence W ⊣⊢T W ′ in T .4

arrows
⌊
W

⌉
→

⌊
V
⌉
are the provable consequencesW ⊢T V in T for some

pair of representatives (hence for any pair)
composition is given by the cut rule in the logical calculus
identities

⌊
W

⌉
→

⌊
W

⌉
are given by the logical rules W ⊢T W

Observe that, in particular, for a list of distinct variables ~x, the category
LT (~x) has finite limits: products are given by conjunctions of formulae and
a terminal object is any provable formula, such as ~x = ~x, that is any formula
equivalent to the true constant.

Example 2.3. The following example of primary doctrine S:S op −→ InfSL

is the set-theoretic hyperdoctrine described in the introduction and it can
be considered in an(y) axiomatic set theory such as ZF. We briefly recall its
definition:

• S is the category of sets and functions,
• S(A) is the poset category of subsets of the set A whose morphisms are
inclusions,

• a functor Sf :S(B) → S(A) acts as the inverse image f−1U on a subset
U of the set B.

The example 2.2 suggests that, by considering only doctrines, from a
logical point of view one restricts attention to the mere existence of a proof
of a consequence, i.e. one only deals with proof irrelevance.

As already pointed out in [16, 18], a set-theoretic model of a first order
theory determines precisely a functor from the doctrine LT to the doctrine
S that preserves all the structure of a primary doctrine.

As the example 2.3, also the example 2.2 gives rise to a Lawvere hy-
perdoctrine when performed on a many-sorted first order theory giving rise
to a cartesian closed base category. And the characterization of set-theoretic
model extends directly, see loc.cit.

Remark 2.4. In many senses it is more general—and more elegant—to treat
the abstract theory of the relevant structures for the present paper in terms
of fibrations. For instance, a different, but equivalent presentation of the
structure above is as a faithful fibration p:A → C between categories with
binary products such that p preserves them and has a right inverse right
adjoint.

In fact, a primary doctrine P :C op −→ InfSL determines a faithful fibra-
tion pP :GP → C by a well-known, general construction due to Grothendieck,
see [11, 14], which applies to indexed categories. We recall very briefly that

4We shall denote an equivalence class with representative x as
⌊

x
⌉

in order to leave plain

square brackets available for other situations.
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construction in the present situation. The data for the total category GP of
P are as follows:

objects of GP are pairs (A,α) such that A is an object in C and α is an
object in P (A).

an arrow (f, φ): (A,α) → (B, β) is a pair of an arrow f :A → B in C and
an arrow φ:α → Pf (β)

composition of (f, φ): (A,α) → (B, β) and (g, ψ): (B, β) → (C, γ) is (g ◦
f, Pf (ψ) ◦ φ).

One checks that a product of objects (A,α) and (B, β) is given by

(A,α) (C, χ)
(pr1,π1)
oo (pr2,π2)

// (B, β)

where

A C
pr1oo pr2 // B

is a product in C and

Ppr
1
(α) χ

π1oo π2 // Ppr
2
(β)

is a product in P (C).
The first projection extends to a functor pF :GP → C which is easily

seen to be faithful with a right inverse right adjoint.
On the other hand, given a faithful fibration p:A → C , one considers

the functor p̂:C op −→ InfSL which maps an object A in C to the partial
order which is the poset reflection of the preorder of the vertical arrows on
A, see [14], i.e. one first considers the subcategory pA of A consisting of
those objects α such that p(α) = A and a map g:α → α′ of A is in pA

if p(g) = idA; faithfulness of p ensures that the category pA is a preorder.
Product preservation ensures that pA has binary products, the right inverse
right adjoint ensures that pA has a terminal object. So the poset reflection
of pA produces the partial order p̂(A) on the equivalence classes of objects of
pA with respect to the equivalence given by isomorphism, where

⌊
α
⌉
≤

⌊
α′
⌉

if there is an arrow g:α → α′ in pA for some pair of representatives (hence
for any pair), and the partial order has finite infs.

For an arrow f :B → A in C , the functor p̂f : p̂(A) → p̂(B) sends an
equivalence class

⌊
α
⌉
to the equivalence class

⌊
β
⌉
such that there is a cartesian

lifting g:β → α of f .
Setting up an appropriate 2-category for each structure (one for primary

doctrines, one for faithful fibrations as above), it is easy to see that the two
constructions extend to an equivalence between those 2-categories.

Computing the total category of each of the examples of doctrines in
2.2 and 2.3, one gets the following.

The total category GLT is the syntactic presentation of the L-definable
subsets of (the finite powers of) a set underlying a model of the theory T
with functions defined by terms in L.

The total category GS is the full subfibration on subset inclusions of the
codomain fibration cod:S → −→ S on the category of sets and functions.
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Definition 2.5. A primary doctrine P :C op −→ InfSL is elementary if, for
every A and C in C , the functor PidC×∆A

:P (C× (A×A)) → P (C×A)5 has
a left adjoint

E

idC×∆A
, and these satisfy

Frobenius reciprocity : for every A and C in C , for α in P (C × (A × A)),
β in P (C ×A), the canonical arrow

E

idC×∆A
(PidC×∆A

(α) ∧C×A β) ≤ α ∧C×(A×A)

E

idC×∆A
(β)

in P (C × (A×A)) is iso (hence an identity).
Beck-Chevalley condition: for any pullback diagram

B ×A
idB×∆A//

f×idA

��

B ×A×A

f×idA×A

��
C ×A

idC×∆A// C ×A×A

the canonical arrow

E

idB×∆A
Pf×idA(α) ≤ Pf×idA×A

E

idC×∆A
(α) is iso

in P (B ×A×A) for any α in P (C ×A).

We refer the reader to [18, 14] for a thorough analysis of the concepts
in the definition just given.

Remark 2.6. For an elementary doctrine P :C op −→ InfSL, for any object A
in C , taking C a terminal object, the conditions in 2.5 ensure the existence
of a left adjoint

E

∆A
to P∆A

:P (A×A) → P (A). On an object α in P (A) it
can be written as

E

∆A
(α) = Ppr

1
(α) ∧A×A

E

∆A
(⊤A) = Ppr

2
(α) ∧A×A

E

∆A
(⊤A). (1)

where ⊤A is the terminal object of P (A).
Because of (1), an abbreviation like δA for the object

E

∆A
(⊤A) is useful.

Example 2.7. For T a first order theory, the primary fibration LT :V op −→
InfSL, as defined in 2.2, is elementary exactly when T has an equality predi-
cate.

Example 2.8. The standard example of an elementary doctrine is the fibration
of subobjects. Consider a category X with finite products and pullbacks, i.e.

with right adjoints to the diagonal functors X → X 2 and X → X
↓

→· . The
functor S:X op −→ InfSL assigns to any object A in X the poset S(A) whose

objects are subobjects
⌊
α:X // //A

⌉
in X with codomain A⌊

α
⌉
≤

⌊
α′
⌉

if there is a commutative diagram

X
��

α
��✸

✸✸
✸✸
✸

x // X ′

��

α′

��✡✡
✡✡
✡✡

A

for a (necessarily unique) arrow x:X → X ′.

5We write ∆A and f × f ′ respectively for the map 〈idA, idA〉 and for the map 〈f ◦pr1, f
′ ◦

pr2〉:A× A′ → B × B′, provided f :A → B and f ′:A′ → B′.
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For an arrow f :B → A, the assignment mapping an equivalence
⌊
α
⌉
in S(A)

to that represented by the left-hand arrow in the (chosen) pullback

Y

β

��

// X

α

��
B

f
// A

produces a functor Sf :S(A) → S(B) which preserves products.

Post-composition with an equalizer provides the elementary structure
since equalizers are monic.

In example 2.8, we used the same notation for the functor S as in exam-
ple 2.3 because that is a particular instance of 2.8 when X is the category
S of sets and functions since each subobject

⌊
α:X // //A

⌉
has a unique

inclusion U�
�

//A among its representatives.

Example 2.9. Consider a cartesian category C with weak pullbacks, i.e. for
every pair f :B → A, g:C → A of arrows in C , there is a commutative
diagram

Vf,g

pr2,f,g

��

pr
1,f,g

// C

g

��
B

f
// A

such that, for any s:T → B, t:T → C satisfying f ◦ s = g ◦ t, there is
u:T → Vf,g such that t = pr1,f,g ◦ u and s = pr2,f,g ◦ u.

One can consider the functor Ψ:C op −→ InfSL given by the poset re-
flection of each comma category C /A as A varies over the objects of C . So,
for a given object A in C , one first considers the preorder whose

objects are arrows α:X → A in C with codomain A
α ≤ α′ if there is an arrow x:X → X ′ in C providing a commutative

diagram

X

α
��✹

✹✹
✹✹

✹
x // X ′

α′

��✠✠
✠✠
✠✠

A

Then quotients that preorder with respect to the reciprocal relation α <1 α′

to obtain the poset Ψ(A).

For an arrow f :B → A, the assignment that maps an equivalence class⌊
α
⌉
in Ψ(A) to that represented by the left-hand arrow pr2,f,α:Vf,α → B in
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the weak (chosen) pullback

Vf,α

pr2,f,α

��

pr
1,f,α

// C

α

��
B

f
// A

produces a functor Ψf : Ψ(A) → Ψ(B). It is easy to check that it preserves
products—which are given by weak pullbacks over A.

The elementary structure is given by post-composition with the equal-
izer.

This example is a slight generalization of a similar one given in [18].

Remark 2.10. Note that the apparently minor difference between the example
in 2.8 and that in 2.9 depends crucially on the possibility of factoring an
arbitrary arrow as a retraction followed by a monomorphism: for instance,
in the category S of sets and functions, the fact that the two doctrines are
equivalent can be achieved thanks to the Axiom of Choice.

Consider the 2-category ED of elementary doctrines:

a 1-arrow from P to R is a pair (F, b) where F :C → D is a functor which
preserves finite products and b is a natural transformation

C op
P

))❚❚❚
❚❚❚

❚❚❚

Fop

��

InfSL

Dop R

55❥❥❥❥❥❥❥❥❥

b ·

��

such that for every object A in C , the functor bA:P (A) → R(F (A))
preserves all the structure. More explicitly, bA preserves finite meets
and, for every object A in C ,

bA×A(δA) = R〈F (pr1),F (pr2)〉
(δF (A)). (2)

a 2-arrow θ: (F, b) → (G, c) is a natural transformation θ:F
. //G such

that in the diagram

C op
P

,,❨❨❨❨❨
❨❨❨❨❨

❨❨❨❨❨
❨❨❨❨

Fop

��

Gop





InfSL

Dop R

22❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡

b ·
��

· c
��

.

θop
oo

it is bA(α) ≤ RθA(cA(α)) for every object A in C and every α in P (A).

The following definition is similar to 2.5 and contribute the final part
of the essential “logical” structure of an indexed poset.
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Definition 2.11. A primary doctrine P :C op −→ InfSL is existential if, for A1

and A2 in C , for a(ny) projection pr:A1 × A2 → Ai, i = 1, 2, the functor
Ppri :P (Ai) → P (A1 ×A2) has a left adjoint

E

pri , to which we shall unimag-
inatively refer as existential, and these satisfy

Beck-Chevalley condition: for any pullback diagram

X ′ pr′
//

f ′

��

A′

f

��
X

pr
// A

with pr a projection (hence also pr′ a projection), for any β in P (X),
the canonical arrow

E

pr′Pf ′(β) ≤ Pf

E

pr(β) in P (A
′) is iso;

Frobenius reciprocity : for pr:X → A a projection, α in P (A), β in P (X),
the canonical arrow

E

pr(Ppr(α) ∧X β) ≤ α ∧A

E

pr(β) in P (A) is iso.

About this notion we refer the reader to [16, 14].

Examples 2.12. (a) The primary fibration LT :V op −→ InfSL, as defined
in 2.2 for a first order theory T , is existential. An existential left adjoint
to Ppr is computed by quantifying existentially the variables that are not
involved in the substitution given by the projection, e.g. for the projection
pr = [x/z]: (x, y) → (z) and a formula W with free variables at most x and
y,

E
pr(W ) is ∃y(W [z/x]).

We stop to note that the example reveals the meaning of the Beck-
Chevalley condition: suppose S and T are sorts and consider the morphism
[x/z]: (x, y) → (z). On a formula W with free variables at most x and y, for
any morphism [t/z]: (w1, . . . , wn) → (z), the diagram

(w1, . . . , wn, y)

[t/x,y]

��

[w1/w1,...,wn/wn]
// (w1, . . . , wn)

[t/z]

��
(x, y)

[x/z]
// (z)

is a pullback and the Beck-Chevalley condition rewrites the fact that substi-
tution commutes with quantification as

∃y(W [t/x]) ≡ (∃yW [z/x])[t/z]

since the declaration (w1, . . . , wn) ensures that y does not appear in t.

(b) For a cartesian category C with weak pullbacks, the elementary doctrine
Ψ:C op −→ InfSL given in 2.9 is existential. Existential left adjoints are given
by post-composition.

(c) The primary doctrine in example 2.3 is existential: on a subset P of A,
the adjoint

E

pr, for a projection pr:A → B, must be evaluated as

E

pr(P ) ={
b ∈ B | ∃a ∈ A[a ∈ pr−1 {b} ∩ P ]

}
, usually called the image of P along pr.
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Remark 2.13. In an existential elementary doctrine, for every map f :A→ B
in C the functor Pf has a left adjoint

E

f that can be computed as

E

pr2(Pf×idB
(δB) ∧ Ppr1(α))

for α in P (A), where pr1 and pr2 are the projections from A×B.

Example 2.14. For a categoryX with products and pullbacks, the elementary
doctrine S:X op −→ InfSL in 2.8 is existential if and only if X has a stable
proper factorization system (E ,M), see [13, 27]. So, in particular, for X

regular, the subobject doctrine S:X op −→ InfSL is elementary existential.

Consider the 2-full 2-subcategory EED of ED whose objects are elemen-
tary existential doctrines.

The 1-arrows are those pairs (F, b) in ED such that b preserves the left
adjoints along projections.

Hence, by 2.13, the second functor of a 1-arrow in EED preserves left
adjoints along all arrows in C .

3. Quotients in an elementary doctrine

The structure of elementary doctrine is suitable to describe the notion of an
equivalence relation and that of a quotient for such a relation.

Definition 3.1. Given an elementary doctrine P :C op −→ InfSL, an object A
in C and an object ρ in P (A×A), we say that ρ is a P -equivalence relation

on A if it satisfies

reflexivity : δA ≤ ρ
symmetry : ρ ≤ P〈pr2,pr1〉

(ρ), for pr1, pr2:A× A → A the first and second
projection, respectively

transitivity : P〈pr1,pr2〉
(ρ)∧P〈pr2,pr3〉

(ρ) ≤ P〈pr1,pr3〉
(ρ), for pr1, pr2, pr3:A×

A×A→ A the projections to the first, second and third factor, respec-
tively.

Examples 3.2. (a) Given an elementary doctrine P :C op −→ InfSL and an
object A in C , the object δA is a P -equivalence relation on A.
(b) Given a first order theory T with equality predicate, consider the elemen-
tary doctrine LT :V op −→ InfSL as in 2.7. An LT -equivalence relation is a
T -provable equivalence relation.
(c) For a category X with products and pullbacks, consider the elementary
doctrine of subobjects S:X op −→ InfSL as in 2.8. An S-equivalence relation
is an equivalence relation in the category X .
(d) For a cartesian category C with weak pullbacks, consider the elementary
doctrine Ψ:C op −→ InfSL. A Ψ-equivalence relation is a pseudo-equivalence
relation in C , see [5].

Remark 3.3. Let P :C op −→ InfSL be an elementary doctrine. For an arrow
f :A→ B in C , the functor Pf×f :P (B×B) → P (A×A) takes a P -equivalence
relation σ on B to a P -equivalence relation on A.



Quotient completion for the foundation of constructive mathematics 13

Definition 3.4. Let P :C op −→ InfSL be an elementary doctrine. Let ρ be a
P -equivalence relation on A.

A quotient of ρ is an arrow q:A→ C in C such that ρ ≤ Pq×q(δC) and,
for every arrow g:A → Z such that ρ ≤ Pg×g(δZ), there is a unique arrow
h:C → Z such that g = h◦ q. Such a quotient is stable when, for every arrow
f :C′ → C in C , there is a pullback

A′

f ′

��

q′
// C′

f

��
A q

// C

in C and the arrow q′:A′ → C′ is a quotient.

Let f :A → B be an arrow in C . The P -kernel of f :A → B is the
P -equivalence relation Pf×f (δB). A quotient q:A → B of the P -equivalence
relation ρ is effective if its P -kernel is ρ.

Examples 3.5. (a) Given an elementary doctrine P :C op −→ InfSL and an
object A in C , a quotient of the P -equivalence relation δA on A is the identity
arrow idA:A→ A. It is trivially stable and effective by definition.

(b) In the elementary doctrine S:X op −→ InfSL obtained from a category
X with products and pullbacks, a quotient of the S-equivalence relation⌊
r:R // //A×A

⌉
is precisely a coequalizer of the pair of

R
pr1◦r //
pr

2
◦r

// A

—hence of any such pair obtained from the class
⌊
r:R // //A×A

⌉
. In partic-

ular, all S-equivalence relations have quotients which are stable and effective
if and only if the category C is exact.

4. Set-like doctrines

We intend to develop doctrines that may interpret constructive theories for
mathematics. We shall address two crucial properties that an elementary
doctrine should verify in order to sustain such interpretations. One relates to
the axiom of comprehension and to equality, the other to quotients.

Definition 4.1. Let P :C op −→ InfSL be a primary doctrine. Let A be an
object in C and α an object in P (A).

A comprehension of α is an arrow {|α|}:X → A in C such that ⊤X ≤
P{|α|}(α) and, for every arrow g:Y → A such that ⊤Y ≤ Pg(α) there is a
unique h:Y → X such that g = {|α|} ◦ h. Such a comprehension is stable

when, for every arrow f :A′ → A in C , Pf (α) has a comprehension.

We say that P :C op −→ InfSL has comprehensions if, for every object
A in C , every α in P (A) has a comprehension.
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Again we refer the reader to [18].
The primary doctrine S:S op −→ InfSL of 2.3 has comprehensions given

by the trivial remark that a subset determines an actual function by inclusion.
Among the examples listed in 3.2, only example (c), the doctrine of

subobjects S:X op −→ InfSL for X a category with products and pullbacks,
has comprehensions.

Example (d), the elementary doctrine Ψ:C op −→ InfSL constructed as
in 2.9 for a cartesian category C with weak pullbacks, suggests to modify the
requirements in 4.1 by dropping uniqueness of the mediating arrows. Before
doing that, we note the following.

Remark 4.2. For f :A′ → A in C , the mediating arrow f ′ between the com-
prehensions {|α|}:X → A and {|Pf (α)|}:X

′ → A′ produces a pullback

X ′

f ′

��

{|Pf (α)|}
// A′

f

��
X

{|α|}
// A.

Hence a primary doctrine with comprehensions has comprehensions stable
under pullbacks.

Definition 4.3. Let P :C op −→ InfSL be a primary doctrine. Let A be an
object in C and α an object in P (A).

A weak comprehension of α is an arrow {|α|}:X → A in C such that
⊤X ≤ P{|α|}(α) and, for every arrow g:Y → A such that ⊤Y ≤ Pg(α) there is

a (not necessarily unique) h:Y → X such that g = {|α|} ◦ h.6

Such a comprehension is stable when, for every arrow f :A′ → A in C ,
Pf (α) has a weak comprehension and there is a weak pullback

X ′

f ′

��

{|Pf (α)|}
// A′

f

��
X

{|α|}
// A.

We say that P :C op −→ InfSL, has weak comprehensions if, for every
object A in C , every α in P (A) has a weak comprehension.

Remark 4.4. Suppose {|α|}:X → A is a weak comprehension of α. The arrow
{|α|} is monic if and only if it is a strict comprehension.

Thus, when a diagonal is a weak comprehension, the arrow itself satisfies
the condition strictly (as in 4.1). But some of its reindexings may satisfy the
weaker condition without uniqueness.

6When necessary to distinguish between the notions in definitions 4.1 and 4.3, we shall
refer to one as in 4.1 with the further attribute strict.
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Example 4.5. For a cartesian category C with weak pullbacks, the elementary
doctrine Ψ:C op −→ InfSL as in 2.9 has weak comprehensions.

Proposition 4.6. Suppose P :C op −→ InfSL is an elementary doctrine. If the

diagonal arrow ∆A:A→ A×A is a stable (weak) comprehension of δA, then

for every pair of parallel arrows X
f

//
g

//A in C , the (weak) comprehension

of P〈f,g〉(δA) is a (weak) equalizer of f and g.

Proof. It follows immediately from the construction of a weak equalizer of

X
f

//
g

//A as a weak pullback of ∆A: in the diagram

E

f◦{|P〈f,g〉(δA)|}

��

{|P〈f,g〉(δA)|}
// X

〈f,g〉

��

f

!!❉
❉❉

❉❉
❉❉

❉❉
❉❉

g

!!❉
❉❉

❉❉
❉❉

❉❉
❉❉

A
∆A

// A×A
pr1 //
pr2

// A

the square is a weak pullback. Since the bottom horizontal arrow is the equal-
izer of the parallel pair that follows it, the top horizontal arrow is a weak
equalizer. �

We say that an elementary doctrine P :C op −→ InfSL, has comprehen-

sive (weak) equalizers if, for every object A in C , the diagonal ∆A:A→ A×A
is a stable (weak) comprehension of δA.

Definition 4.7. Let P :C op −→ InfSL be a primary doctrine. Let A be an
object in C and α an object in P (A).

A (weak) comprehension {|α|}:X → A of α is full if α ≤A β whenever
⊤X ≤X P{|α|}(β) for β in P (A).

Note that the notion of full (weak) comprehension ensures that α ≤A β
is equivalent to ⊤X ≤X P{|α|}(β) for β in P (A).

In an elementary doctrine it follows directly from the definition of δA
that the diagonal arrow ∆A:A → A× A is a full comprehension if and only
if it is the comprehension of δA.

Corollary 4.8. Suppose that P :C op −→ InfSL is an elementary doctrine with

full comprehensions and comprehensive equalizers. If f :A → B is monic,

then Pf×f (δB) = δA.

Proof. It follows by fullness of comprehensions after noting that the compre-
hension of each side is the kernel of f , which in turn follows from 4.6 and the
fact that the kernel of a monic is the diagonal. �

The next lemma will be needed in section 6.
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Lemma 4.9. Let P :C op −→ InfSL be a primary doctrine with full weak com-

prehensions. Suppose also that, for a given α in P (A), a weak comprehension

{|α|}:X → A is such that the functor P{|α|}:P (A) → P (X) has a right ad-

joint

A

{|α|}:P (X) → P (A). Then α ∧ –:P (A) → P (A) has a right adjoint

α⇒ –:P (A) → P (A).

Proof. Consider α ⇒ β :=

A

{|α|}(P{|α|}(β)). To see that γ ≤

A

{|α|}(P{|α|}(β))
if and only if α ∧ γ ≤ β proceed as follows. If γ ≤

A

{|α|}(P{|α|}(β)) then
P{|α|}(γ) ≤ P{|α|}(β) and, since a weak comprehension {|α ∧ γ|}:Z → A of α∧γ
factors through {|α|}:X → A, then

⊤Z ≤ P{|α∧γ|}(α ∧ γ) ≤ P{|α∧γ|}(γ) ≤ P{|α∧γ|}(β)

and, finally full comprehension yields that α∧γ ≤ β. Next, if α∧γ ≤ β, then

P{|α|}(γ) ≤ ⊤X∧P{|α|}(γ) ≤ P{|α|}(α)∧P{|α|}(γ) ≤ P{|α|}(α∧γ) ≤ P{|α|}(β). �

Consider the 2-full 2-subcategory EqD of ED whose objects are elemen-
tary doctrines with full comprehensions and comprehensive equalizers.

The 1-arrows are those pairs (F, b) in ED such that F preserves compre-
hensions.

Remark 4.10. The functor F in a pair (F, b) in EqD preserves all finite limits.

The other aspect that we shall consider about set-like doctrines is that
every quotient should be of effective descent. We recall the notion of descent
data for a P -equivalence relation:

Definition 4.11. Given an elementary doctrine P :C op −→ InfSL and a P -e-
quivalence relation ρ on an object A in C , the partial order of descent data
Desρ is the sub-order of P (A) on those α such that

Ppr
1
(α) ∧A×A ρ ≤ Ppr

2
(α),

where pr1, pr2:A×A→ A are the projections.

Remark 4.12. Given an elementary doctrine P :C op −→ InfSL, for f :A→ B
in C , let ρ be the P -kernel Pf×f (δB). The functor Pf :P (B) → P (A) takes
values in Desρ ⊆ P (A).

Definition 4.13. Given an elementary doctrine P :C op −→ InfSL and an arrow
f :A → B in C , let ρ be the P -kernel Pf×f (δB). The arrow f is of effective

descent if the functor Pf :P (B) → Desρ is an isomorphism.

Example 4.14. In the example of the doctrine S:S op −→ InfSL on the cate-
gory of sets and functions, as in 2.8, every canonical surjection f :A→ A/ ∼,
in the quotient of an equivalence relation ∼ on A, is of effective descent.
The condition in 4.13 recognizes the fact that the subsets of the A/ ∼ are
in bijection with those subsets U of A that are closed with respect to the
equivalence relation, in the sense that, for a1, a2 ∈ A such that a1 ∼ a2 and
a2 ∈ U , one has also that a1 ∈ U .
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Consider the 2-full 2-subcategory QD of EqD whose objects are elemen-
tary doctrines P :C op −→ InfSL in EqD with stable effective quotients of
P -equivalence relations and of effective descent.

The 1-arrows are those pairs (F, b) in ED such that F preserves quotients
and comprehensions.

Proposition 4.15. If P :C op −→ InfSL is an elementary doctrine in QD, then

the category C is regular. Moreover, if P :C op −→ InfSL is also existential,

every equivalence relation in C has a stable coequalizer.

Proof. The category C has pullbacks and these can be computed by means
of comprehensions: in the case of interest, given an arrow f :A → B, the
comprehension {|ρ|} ≡ {|Pf×f (δB)|}:K → A × A of the P -kernel of f gives a
pullback

K
pr

1
◦{|ρ|}

//

pr
2
◦{|ρ|}

��

A

f

��
A

f
// B

in C by 4.6. Moreover, thanks to fullness of the comprehension of ρ, the
quotient q:A→ C of ρ provides a coequalizer

K
pr1◦{|ρ|} //

pr
2
◦{|ρ|}

// A
q

// C

which is stable thanks to the stability of quotients and comprehensions in P .

For the second part, suppose that the doctrine P is existential. An equivalence
relation r:R // //A×A in C determines the P -equivalence relation

E

r(⊤R)
on A. To conclude note that the mediating arrow R → {|

E

r(⊤R)|} is monic.
�

The following result is a direct consequence of those accomplished in
[13], see also [27].

Proposition 4.16. Let P :C op −→ InfSL be a primary doctrine. P is an ex-

istential elementary doctrine in QD where every monomorphism in C is a

comprehension if and only if C is exact and P is equivalent to the doctrine

S:C op −→ InfSL of subobjects.

5. Completing with quotients as a free construction

There is a fairly obvious construction that produces an elementary doctrine
with quotients. We shall present it in the following and prove that it satisfies
a universal property.
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Let P :C op −→ InfSL be an elementary doctrine for the rest of the section.
Consider the category QP of “quotients in P”, the elementary quotient com-

pletion of P , defined as follows:

an object of QP is a pair (A, ρ) such that ρ is a P -equivalence relation on
A

an arrow
⌊
f
⌉
: (A, ρ) → (B, σ) is an equivalence class of arrows f :A →

B in C (with a chosen representative) such that ρ ≤A×A Pf×f (σ) in
P (A×A) with respect to the relation determined by the condition that
ρ ≤A×A Pf×g(σ)

Composition is given by that of C on representatives, and identities are rep-
resented by identities of C .

The indexed partial inf-semilattice P :QP
op −→ InfSL on QP will be

given by categories of descent data: on an object (A, ρ) it is defined as

P (A, ρ) := Desρ

and the following lemma is instrumental to give the assignment on arrows by
using the action of P on (any) representatives—in the sense that the action
of P on arrows will then be defined as P ⌊

f
⌉ := Pf for

⌊
f
⌉
: (A, ρ) → (B, σ).

Lemma 5.1. With the notation used above, let (A, ρ) and (B, σ) be objects in

QP , and let β be an object in Desσ.

(i) If f :A → B is an arrow in C such that ρ ≤A×A Pf×f (σ), then Pf (β)
is in Desρ.

(ii) If f, g:A→ B are arrows in C such that ρ ≤A×A Pf×g(σ), then

Pf (β) = Pg(β).

Proof. (i) is immediate.
(ii) Since β is in Desσ, one has that

Ppr′
1
(β) ∧ σ ≤B×B Ppr′

2
(β)

where pr′1, pr
′
2:B ×B → B are the two projections. Hence

Pf×g(Ppr′
1
(β)) ∧ Pf×g(σ) ≤A×A Pf×g(Ppr′

2
(β))

since Pf×g preserves the structure. By the hypothesis that ρ ≤A×A Pf×g(σ),

Pf◦pr
1
(β) ∧ ρ ≤A×A Pg◦pr

2
(β)

where pr1, pr2:A×A→ A are the two projections. Taking P∆A
of both sides

and recalling reflexivity of ρ

Pf (β) = Pf (β)∧⊤A = P∆A
(Pf◦pr

1
(β))∧P∆A

(ρ) ≤ P∆A
(Pg◦pr

2
(β)) = Pg(β).

The other direction follows by symmetry. �

Lemma 5.2. With the notation used above, P :QP
op −→ InfSL is a primary

doctrine.
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Proof. For (A, ρ) and (B, σ) in QP let pr1, pr3:A × B × A × B → A and
pr2, pr4:A × B × A × B → B be the four projections. The meet of two
P -equivalence relations on A×B

ρ⊠ σ := P〈pr
1
,pr

3
〉(ρ) ∧A×B×A×B P〈pr

2
,pr

4
〉(σ)

is a P -equivalence relation on A×B and it provides an object (A×B, ρ⊠σ)
which, together with the arrows determined by the two projections from
A×B, gives a product of (A, ρ) and (B, σ) in QP .
For each (A, ρ), the sub-partial order Desρ ⊆ P (A) is closed under finite
meets. �

Assume that P has weak comprehensions for the rest of the section.

Lemma 5.3. With the notation used above, P is an elementary doctrine with

comprehensions and comprehensive equalizers. If P has full weak comprehen-

sions, then P has full comprehensions.

Proof. First we show that QP has equalizers, hence all finite limits. Consider
a parallel pair

⌊
f
⌉
,
⌊
g
⌉
: (A, ρ) → (B, σ), and let e := {|P〈f,g〉(σ)|}:E → A be

a weak comprehension. It is easy to see that
⌊
e
⌉
: (E,Pe×e(ρ)) → (A, ρ) is an

equalizer as required.
A similar argument shows that P has comprehensions. More precisely, given
(A, ρ) and β in Desρ, let {|β|}:X → A be a weak comprehension for β over A

in the doctrine P . A comprehension for β over (A, ρ) in P is
⌊
{|β|}

⌉
: (X,P{|β|}×{|β|}(ρ)) → (A, ρ).

Fullness of weak comprehensions in P implies fullness of comprehensions in
P because objects of P on (A, ρ) are descent data related to P .
A left adjoint

E

⌊

∆A

⌉ for P ⌊

∆A

⌉ is computed by

E

⌊

∆A

⌉ (α) := Ppr
1
(α) ∧A×A ρ

for α in Desρ. Indeed, let θ be in Desρ⊠ρ such that α ≤(A,ρ) P ⌊

∆A

⌉ (θ), i.e.

α ≤A P∆A
(θ). Thus

E

∆A
(α) ≤A×A θ and one has by remark 2.6

Ppr′
1
(α) ∧ P〈pr′

1
,pr′

2
〉(δA) ∧ P〈pr′

2
,pr′

3
〉(ρ) ≤A×A×A P〈pr′

1
,pr′

2
〉(θ) ∧ P〈pr′

2
,pr′

3
〉(ρ)

≤A×A×A P〈pr′
1
,pr′

3
〉(θ)

for pr′i:A × A × A → A, i = 1, 2, 3, the three projections. Hence Ppr1(α) ∧

ρ ≤A×A θ, which gives

E

⌊

∆A

⌉ (α) ≤(A×A,ρ⊠ρ) θ. It is easy to prove the con-

verse that, if

E

⌊

∆A

⌉ (α) ≤ θ, then α ≤ P ⌊

∆A

⌉ (θ).

More generally, a left adjoint

E

⌊

idC×∆A

⌉ for P⌊

idC×∆A

⌉ is computed analo-

gously by

E

⌊

idC×∆A

⌉ (α) := P〈pr
1
,pr

2
〉(α) ∧C×A×A P〈pr

2
,pr

3
〉(ρ)
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for α in P ((C, σ)× (A, ρ)) with pr1:C ×A×A→ C and pri:C×A×A→ A
for i = 2, 3 the corresponding projections.
Finally, P has comprehensive equalizers by construction. �

A careful reader may have noticed that the hypothesis on weak com-
prehensions in P in 5.3 was needed in order to construct all pullbacks and
characterize regular monos in QP .

Lemma 5.4. With the notation used above, P has effective quotients of P -
equivalence relations and those are of effective descent.

Proof. Since the sub-partial order Desρ ⊆ P (A) is closed under finite meets,

a P -equivalence relation τ on (A, ρ) is also a P -equivalence relation on A.
It is easy to see that

⌊
idA

⌉
: (A, ρ) → (A, τ) is an effective quotient and of

effective descent since ρ ≤A×A τ . �

Lemma 5.5. With the notation used above, a quotient of P -equivalence is

stable.

Proof. Let τ be a P -equivalence relation on (A, ρ), let
⌊
idA

⌉
: (A, ρ) → (A, τ)

be its quotient, and let
⌊
f
⌉
: (B, σ) → (A, τ) be an arrow in QP . By the

previous lemma 5.3, in QP there is a pullback diagram

(E, υ) //

��

⌊{|Pf×idA
(τ)|}⌉

❍❍
❍

$$❍
❍❍

(B, σ)

⌊f⌉

��

(B ×A, σ ⊠ ρ)

⌊pr
1
⌉

::✈✈✈✈✈✈✈✈✈

⌊pr2⌉
zz✈✈
✈✈
✈✈
✈✈
✈

(A, ρ)
⌊idA⌉

// (A, τ)

where υ := P{|Pf×idA
(τ)|}×{|Pf×idA

(τ)|}(σ ⊠ ρ). Let e := {|Pf×idA
(τ)|} and ω :=

Pe×e(σ ⊠ τ). The arrow 〈idB, f〉:B → B × A of C factors through the com-
prehension {|Pf×idA

(τ)|}:E → B ×A because

⊤B ≤ Pf (P∆A
(τ)) = P〈f,f〉(τ) = P〈idB ,f〉(Pf×idA

(τ)),

say 〈idB, f〉 = {|Pf×idA
(τ)|} ◦ g = e ◦ g. Moreover

σ ≤ P〈idB ,f〉×〈idB ,f〉(σ ⊠ τ) = Pg×g(Pe×e(σ ⊠ τ)) = Pg×g(ω)

hence producing a commutative diagram

(E,ω)

⌊{|Pf×idA
(τ)|}⌉

!!❈
❈❈

❈❈
❈❈

❈❈
❈

(B, σ)
⌊g⌉

oo

⌊〈idB ,f〉⌉

}}④④
④④
④④
④④
④④

(B ×A, σ ⊠ τ)

in QP . It is easy to see that
⌊
g
⌉
: (B, σ) → (E,ω) has a retraction

⌊
pr1 ◦ {|Pf×idA

(τ)|}
⌉
: (E,ω) → (B, σ)
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which is monic and hence an inverse of
⌊
g
⌉
. Therefore (B, σ) becomes a

quotient of ω on (E, υ). �

There is a 1-arrow (J, j):P → P in ED. The functor J :C → QP sends
an object A in C to (A, δA) and an arrow f :A→ B to

⌊
f
⌉
: (A, δA) → (B, δB)

since δA ≤A×A Pf×f (δB) by 3.2(a) and 3.3. The functor J is full.

For A in C , the partial order P (A, δA) = DesδA is P (A) since Ppr1α ∧

δA ≤A×A Ppr
2
α for any α in P (A). Take the function jA:P (A) → P (A, δA)

to be the identity.

Lemma 5.6. With the notation used above,

(i) every object in QP is a quotient of a P -equivalence relation on an object

in the image of J
(ii) every object in the image of J is projective with respect to quotients of

P -equivalence relation.

Proof. (i) The object (A, ρ) is a quotient of (A, δA).
(ii) A quotient of a P -equivalence relation is isomorphic to one that has an
identity as a representative. �

Assume that P has comprehensive weak equalizers for the rest of the section.

Lemma 5.7. With the notation used above, the functor J :C → QP is faithful.

Proof. For f, g:A→ B suppose that J(f) = J(g). In other words,
E

∆A
(⊤A) = δA ≤A×A Pf×g(δB)

and equivalently ⊤A ≤A P∆A
(Pf×g(δB)) =A P〈f,g〉(δB) since

E

∆A
⊣ P∆A

. It
follows that the identity on A equalizes f and g, thanks to lemma 4.6 and
the hypothesis that P has comprehensive weak equalizers. �

The doctrine P :C op −→ InfSL in 5.7 is obtained from P :QP
op −→

InfSL by change of base along J since j is the identity natural transformation.
In logical terms, this states that the theory expressing P extended with a
quotient constructor is conservative over the original theory.

We can now prove that the assignment P 7→ P gives a left bi-adjoint to
the forgetful 2-functor U :QD → EqD.

Theorem 5.8. For every elementary doctrine P :C op −→ InfSL in EqD pre-

composition with the 1-arrow

C op

P

**❚❚❚
❚❚❚

❚❚❚❚

J

��

InfSL

QP
op P

44❥❥❥❥❥❥❥❥❥

j ·

��

in EqD induces an essential equivalence of categories

− ◦ (J, j):QD(P ,X) ≡ EqD(P,X) (3)

for every X in QD.
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Proof. Suppose X is a doctrine in QD. As to full faithfulness of the functor in
(3), consider two pairs (F, b) and (G, c) of 1-arrows from P to X . By 5.6, the
natural transformation θ:F

.
→ G in a 2-arrow from (F, b) to (G, c) in QD is

completely determined by its action on objects in the image of J . And, since
a quotient q:U → V of an X-equivalence relation on U is of effective descent,
X(V ) is a full sub-partial order of X(U). Essential surjectivity of the functor
in (3) follows from 5.6. Preservation of comprehensions for J follows from 4.8
because a comprehension is monic. �

The reason why −◦ (J, j) need not be a strong equivalence in 5.8 is that
quotients in the doctrine X are determined only up to iso. Since quotients in
the doctrine P are determined by a specified construction, it is possible to
strengthen the result by restricting the 2-categories QD and EqD to doctrines
with a choice of the categorical structure.

Examples 5.9. (a) The structure of the elementary quotient completion for
the doctrine LT :V op −→ InfSL from a first order theory T with an equality
predicate depends heavily on the choice of basic operation symbols used to
present the theory T , see 4.9 and 6.7.
(b) For a cartesian category C with weak pullbacks, the elementary quo-
tient completion of the elementary doctrine Ψ:C op −→ InfSL given in 2.9 is
essentially equivalent to the exact completion of C , see [7].

Remark 5.10. By 4.15, the elementary quotient completion QS of an ele-
mentary doctrine S:X op −→ InfSL in EqD, obtained from a category X

with products and pullbacks as in 2.8, is regular. Then, it may seem natu-
ral to compare QS with the regular completion of X , see [4], or with the
exact/regular completion of X in case X is regular, see [10, 4]. The three
constructions are in general not equivalent; that will be treated in future
work. Also, an example of an elementary quotient completion that is not
exact will be presented in section 7.2.

In case an elementary doctrine P :C op −→ InfSL with comprehensive
equalizers fails to have all comprehensions, it is possible to add these freely
(hence fully) preserving the rest of the structure by taking the fibration of
vertical maps on the total category of P , see [14, 30].

6. Applications to richer doctrines

We shall now analyse the extent to which the elementary quotient completion
construction produced in the previous section behaves with respect to further
logical structure. We start with existential doctrines.

Theorem 6.1. Suppose P :C op −→ InfSL is an existential elementary doctrine.

Then the doctrine P :QP
op −→ InfSL is existential and the pair (J, j):P → P

is a 1-arrow in EED.

Proof. The left adjoint along a projection with respect to P is given by the
left adjoint along the underlying projection in C with respect to P . �
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We now consider other logical structures such as implications and uni-
versal quantification, always remaining within Lawvere’s unifying schema of
“logical constructs as adjoints”, see [16, 14].

Definition 6.2. A primary doctrine P :C op −→ InfSL is implicational if, for
every object A in C , every α in P (A), the functor α ∧ –:P (A) → P (A) has
a right adjoint α ⇒ –:P (A) → P (A).

Examples 6.3. (a) The primary fibration LT :V op −→ InfSL, as defined in 2.2
for a first order theory T , is implicational since, for V and W in LT (~x), the
formula V ⇒W gives the value of the right adjoint of V ∧ – on W .

(b) The primary doctrine in example 2.3 is implicational: on a subset P of
A, the right adjoint P ⇒ – on a subset Q of A is computed as

P ⇒ Q := {a ∈ A | a ∈ P ⇒ a ∈ Q}

Definition 6.4. A primary doctrine P :C op −→ InfSL is universal if, for A1

and A2 in C , for a(ny) projection pri:A1 × A2 → Ai, i = 1, 2, the functor
Ppri :P (Ai) → P (A1 × A2) has a right adjoint

A

pri , and these satisfy the
Beck-Chevalley condition:
for any pullback diagram

X ′ pr′
//

f ′

��

A′

f

��
X

pr
// A

with pr a projection (hence also pr′ a projection), for any β in P (X), the
canonical arrow Pf

A

pr(β) ≤

A

pr′Pf ′(β) in P (A′) is iso;

Examples 6.5. (a) The primary fibration LT :V op −→ InfSL, as defined in 2.2
for a first order theory T , is universal. A right adjoint to Ppr is computed by
quantifying universally the variables that are not involved in the substitution
given by the projection, e.g. for the projection pr = [z/x]: (x, y) → (z) and a
formula W with free variables at most x and y,

A

pr(W ) is ∀y(W [z/x]). As in
the case of the left adjoints in 2.11, the Beck-Chevalley condition expresses
the correct interplay between term substitution and universal quantification.
(b) The primary doctrine in example 2.3 is universal: on a subset U of A, the
adjoint

A

pr, for a projection pr, is given by

A

pr(U) :=
{
b ∈ B | pr−1 {b} ⊆ U

}
.

Remark 6.6. In an elementary doctrine P :C op −→ InfSL which is implica-
tional and universal for every map f :A→ B in C the functor Pf has a right
adjoint

A

f that can be computed as

A

pr2(Pf×idB
(δB) ⇒ Ppr1(α))

for α in P (A), where pr1 and pr2 are the projections from A×B—similarly
to 2.13.

Moreover, if P has full weak comprehensions, then the converse also
holds by 4.9.
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The following is an instance of a general situation for the quotient com-
pletion: a weak representation in the doctrine P gives rise to a strict repre-
sentation in the completion P . Recall from [6] that a weak evaluation from A
to B is an arrow w:

[
BA

]
×A→ B such that for every arrow f :X ×A→ B

there is an arrow f ′:X →
[
BA

]
with f = w ◦ (f ′ × idA). In loc.cit., the

notion above was instrumental to give a characterization of those exact com-
pletions which are locally cartesian closed; it helps to show how the more
general structure in the present paper extends that of exact completion, see
also [31]. We follow [6] and say that C is weakly cartesian closed if it has a
weak evaluation for each pair of objects.

Proposition 6.7. Let P :C op −→ InfSL be an elementary, implicational, uni-

versal doctrine with weak comprehensions. If C is weakly cartesian closed,

then QP is cartesian closed and P is implicational and universal. Moreover,

the 1-arrow (J, j):P → P preserves the implicational and universal structure.

Proof. Suppose that (A, ρ) and (B, σ) are objects in QP and w:
[
BA

]
×A→

B is a weak evaluation from A to B in C . Recalling 4.9, consider the object
ϕ of P (

[
BA

]
×
[
BA

]
):

ϕ =

A

pr
3

A

pr
4
(P〈pr

3
,pr

4
〉(ρ) ⇒ P〈w〈pr

1
,pr

3
〉,w〈pr

2
,pr

4
〉〉(σ))

where pr1, pr2:
[
BA

]
×

[
BA

]
× A × A →

[
BA

]
and pr3, pr4:

[
BA

]
×

[
BA

]
×

A×A→ A are the projections. Within the logic provided by the doctrine, it
can be described as the intension of those pairs (e1, e2) of “elements of

[
BA

]
”

such that

∀a3∈A∀a4∈A(a3 ρ a4 ⇒ w(e1, a3) σ w(e2, a4))

where we have used the same indices for the variables as those for the projec-
tions. It is easy to see that ϕ satisfies the conditions of symmetry and tran-
sitivity in 3.1 so that, considered a weak comprehension {|P∆[BA]

(ϕ)|}:F →
[
BA

]
of P∆[BA]

(ϕ) in P (
[
BA

]
), the object ψ := P{|P∆

[BA]
(ϕ)|}×{|P∆

[BA]
(ϕ)|}(ϕ)

is a P -equivalence relation. It is straightforward to prove that

w ◦ ({|P∆[BA]
(ϕ)|} × idA): (F, ψ)× (A, ρ) → (B, σ)

is a (strict) evalutation from (A, ρ) to (B, σ).

The right adjoints required for the implicational and universal structures
on P are computed by the corresponding right adjoints with respect to P . �

As an application, we shall consider the Axiom of Unique Choice (AUC)
within an existential doctrine P :C op −→ InfSL with the same structure as in
6.7. Recall that (AUC) states that, in a cartesian closed regular category, a
total relation, which is also single-valued, contains the graph of a function, see
e.g. [29]. We shall adapt it to the more general frame of existential doctrines
as in 6.7. Let w:

[
BA

]
×A→ B be a weak evaluation from A to B in C . We
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say that (AUC) from A to B holds for w if, for every ρ in P (A×B),

A

A→1

E

A×B→A
(ρ)∧

∧

A

B×B→1

A

A×B×B→B×B
((P〈pr

1
,pr

2
〉(ρ) ∧ P〈pr

1
,pr

3
〉(ρ)) ⇒ P〈pr

2
,pr

3
〉(δB)) ≤

≤

E

[BA]→1

A

[BA]×A→[BA]
P〈pr′

2
,w〉(ρ)

where we dispensed with the labels on the various appropriate projection
arrows as these are easily reconstructed.

Using plain logical notation (as in the proof of 6.7),

∀x1∈A∃y2∈B x1 ρ y2∧
∧∀y2∈B∀y3∈B∀x1∈A((x1 ρ y2 ∧ x1 ρ y3) ⇒ y2 δB y3 ≤

≤ ∃h1∈[BA]∀x2∈A x2 ρ w(h1, x2).

We skip the easy proof that, if (AUC) from A to B holds for a weak
evaluation, then it holds for every weak evaluation. For that reason, from
now on we say that (AUC) from A to B holds.

Corollary 6.8. Suppose that P :C op −→ InfSL is an elementary existential,

implicational and universal doctrine with weak comprehensions. Suppose that

C is weakly cartesian closed and that A and B are objects in C . The following

are equivalent:

(i) in P (AUC) from A to B holds

(ii) in P (AUC) from (A, δA) to (B, δB) holds.

Proof. It follows directly from the preservation properties of the 1-arrow
(J, j):P → P by proposition 6.1 and 6.7. �

7. Examples from constructive foundations

The main applications of the elementary quotient completion appear in the
formalization of constructive mathematics in type theory. As we already ex-
plained, the ability of constructing quotients of equivalence relations is an es-
sential tool of standard mathematics; any formalization of constructive math-
ematics that intends to achieve foundational relevance must allow treatment
of such quotients in some way, in particular if it is inherently intensional. We
shall sketch two examples of elementary quotient completion in type theory:
one is given over intensional Martin-Löf’s type theory [25] and the other over
the intensional level of the minimalist foundation [21]. Both models are based
on total setoids à la Bishop [3], with proof-terms as morphisms.

7.1. The setoid model over Martin-Löf ’s Type Theory

The model of “setoids” over intensional Martin-Löf’s Type Theory, see [26, 9],
is an instance of the exact completion of a category with finite products
and weak equalizers. We already know that it is an elementary quotient
completion, so we simply review the elementary doctrine one can construct
in order to obtain it as such a completion.

The base category is a syntactic construction ML is defined as follows.
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The objects of ML are closed sets of MLTT.
An arrow

⌊
t ∈ B [x ∈ A]

⌉
:A→ B is an equivalence class of terms t ∈

B [x ∈ A]7 derivable in MLTT where two terms t ∈ B [x ∈ A] and
t′ ∈ B [x ∈ A] are equivalent if there is a proof-term in MLTT

p ∈ Id(B, t, t′) [x ∈ A]

The composition of
⌊
t ∈ B [x ∈ A]

⌉
:A → B and

⌊
s(x) ∈ C [x ∈ B]

⌉
is de-

fined as ⌊
s(t) ∈ C [x ∈ A]

⌉
:A→ C.

The identity morphism on A is
⌊
x ∈ A [x ∈ A]

⌉
:A→ A.

Lemma 7.1. The category ML has finite products and weak equalizers.

Proof. A terminal object is the singleton N1. A product of closed sets A,B
is
∑

x∈AB with its first and second projections since

idpeel(z, (x, y).id(〈x, y〉)) ∈ Id(
∑

x∈AB, 〈π1(z), π2(z)〉, z)

thanks to the β-rules.
A weak equalizer of

⌊
t ∈ B [x ∈ A]

⌉
,
⌊
t′ ∈ B [x ∈ A]

⌉
:A→ B is

⌊
π1(z) ∈ A [z ∈

∑
x∈AId(B, t, t

′)]
⌉
:
∑

x∈AId(B, t, t
′) → A �

The functor FML:ML op −→ InfSL is defined on a closed set A as the
partial order consisting of

equivalence classes
⌊
φ prop [x ∈ A]

⌉
of predicates in MLTT depending on

A with respect to equiprovability, i.e. φ prop [x ∈ A] ∼ φ′ prop [x ∈ A]
if there is a proof of φ↔ φ′ prop [x ∈ A] in MLTT,⌊

φ prop [x ∈ A]
⌉
≤

⌊
ψ prop [x ∈ A]

⌉
if there is a proof-term r ∈ ψ [x ∈

A,w ∈ φ] in MLTT.

The action of the functor on arrows in ML is given by substitution.

Proposition 7.2. The doctrine FML:ML op −→ InfSL is existential elemen-

tary, with full weak comprehensions and comprehensive weak equalizers.

Proof. Products of propositions and the singleton set provide finite meets
thanks to the identification of propositions with sets typical of MLTT. The
left adjoint to substitution with

⌊
t(x) ∈ B [x ∈ A]

⌉
:A→ B is computed, for

φ(x) prop [x ∈ A], as the equivalence class represented by the proposition
∑

x∈A(Id(B, t(x), y) ∧ φ(x)) prop [y ∈ B].

A weak comprehension {|φ|} of φ prop [x ∈ A] is given by
⌊
π1(w) ∈ A [w ∈

∑
x∈Aφ]

⌉
:
∑

x∈Aφ→ A.

Note that weak comprehensions are full: it is enough to show a proof of
φ ≤ ∃{|φ|}⊤W (with W codomain of {|φ|}) given by

〈〈y, p〉, 〈id(y), ∗〉〉 ∈
∑

w∈W (Id(A, π1(w), y) ∧N1) [y ∈ A, p ∈ φ].

7To represent a term depending on a variable x, we shall indifferently use the metavariable
t or t(x). We use the latter when we need to refer to a substitution of a variable x that
may appear in t.
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with ∗ the canonical element of the singleton set N1. It follows by an imme-
diate, direct calculation that weak equalizers are comprehensions. �

The doctrine FML:ML op −→ InfSL enjoys more properties.

Proposition 7.3. The category ML is weakly cartesian closed. For every

arrow f in C , the functor FML
f has also a right adjoint (which necessarily

satisfies Beck-Chevalley condition).

Proof. The category ML is weakly cartesian closed because given sets A
and B, a weak evaluation is defined via the dependent product as

⌊
π1(z)(π2(z)) ∈ B

[
z ∈

(∏
x∈A

B
)
×A

]⌉
:
(∏

x∈A
B
)
×A→ B.

It is only a weak evalutation because inhabitation of Id(B(x), f(x), g(x)) [x ∈
A] cannot ensure inhabitation of Id(

∏
x∈A

B(x), λx.f(x), λx.g(x)), see [12]. A

right adjoint to substitution is given by the dependent product set. �

In fact, the doctrine FML is isomorphic to the doctrine ΨML :ML op −→
InfSL, constructed as in 2.9 from the category ML . The isomorphism

(IdML , h):F
ML → ΨML

has the identity functor in the first component and, for A a closed set, the
functor h(A):FML(A) → ΨML (A) maps

⌊
φ(x) prop [x ∈ A]

⌉
to the equiva-

lence class represented by the arrow

⌊
π1(w) ∈ A [w ∈

∑
x∈Aφ(x)]

⌉
:
∑

x∈Aφ(x) → A (4)

which has codomain A. Note that a proof-term t(y) ∈ ψ [x ∈ A, y ∈ φ]
produces a map and a commutative triangle

∑
x∈Aφ

⌊

〈π1(w),t(π2(w))〉∈
∑

x∈Aψ [w∈
∑

x∈A∈φ]
⌉

//

⌊

π1(w)∈A [w∈
∑

x∈Aφ]
⌉

))❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘

∑
x∈Aψ

⌊

π1(w)∈A [w∈
∑

x∈Aψ]
⌉

uu❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧❧❧
❧

A

which shows that the assignment for h(A) given in (4) does not depend on the
choice of representatives and it extends to a functor. Moreover, one can easily
check that the functor k(A): ΨML (A) → FML(A) mapping f(y) ∈ A [y ∈ B]
to

∑
y∈BId(A, f(y), x) for x ∈ A provides an inverse to h(A).

Remark 7.4. The base category QFML of the elementary quotient completion

FML of FML:ML op −→ InfSL is essentially equivalent to the model of total
setoids over Martin-Löf type theory as given in [26].
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7.2. The quotient completion in the two-level minimalist foundation

One of the motivations for developing the notion of elementary quotient com-
pletion is to describe abstractly the “quotient model” given in [21]. That
model is built over a dependent type theory acting as the intensional level of
the two-level minimalist foundation for constructive mathematics in [21]. It
is used to give an interpretation of the extensional level of the foundation—
denoted emtt for extensional minimal type theory—in the intensional level—
denoted mtt for minimal type theory. Quite similar to that built over Martin-
Löf’s type theory, also this model is based on the idea of total setoids à la
Bishop, but it appears to have different properties from that. For instance,
the setoid model built over a set-theoretic fragment of mtt is not exact as
we note in the following—hence it cannot be an exact completion.

Recall from [21] that mtt is a predicative version of Coquand’s Calculus
of Constructions CoC, see [8]. Indeed, as CoC, it resembles a many sorted

logic with propositions given primitively and depending on sorts. Propositions
are equipped with proof-terms and sorts include dependent sets as in Martin-
Löf’s type theory. But, contrary to CoC, in mtt there are two types of sorts
on which propositions depend: these are sets and collections, where the first
are included in the latter; this distinction resembles the usual distinction
between sets and classes in NBG and is instrumental to represent the power
collection of a set which, from a predicative point of view, need not be a
set. However the whole mtt can be interpreted in CoC if one interprets both
sets and collections in mtt as sets in CoC. Indeed, if in mtt collections were
identified with sets then one would just get CoC. Therefore, many properties
of the quotient model overmtt can be extended to the corresponding quotient
model over CoC.

Corresponding to sets and collections in mtt we consider two doctrines:
one is a sub-doctrine of the other. The larger has the base category formed by
collections with their typed terms, the other has the base category restricted
to the full subcategory on sets.

The “syntactic category of collections in mtt” CM is constructed like
the previous example. It has closed collections of mtt as objects. An arrow⌊
t ∈ B [x ∈ A]

⌉
:A→ B from the closed collection A to the closed collection

B is an equivalence class of proof-terms in mtt where t ∈ A [x ∈ B] is
equivalent to t′ ∈ A [x ∈ B] if there is a proof-term

p ∈ Id(A, t, t′) [x ∈ B]

in mtt. The composition of the two arrows
⌊
t ∈ B [x ∈ A]

⌉
:A → B and⌊

s(y) ∈ C [y ∈ B]
⌉
:B → C is given as the equivalence class

⌊
s(t) ∈ C [x ∈ A]

⌉
:A→ C

with identity arrows given by
⌊
x ∈ A [x ∈ A]

⌉
:A→ A.

The “syntactic category of sets in mtt” SM is the full subcategory of
CM on the closed sets.

Like in the previous example, the two categories just introduced have
weak limits.
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Lemma 7.5. The categories CM and SM are cartesian and with weak equal-

izers.

Proof. The proof is analogous to that of 7.1. �

We now define a doctrine on each syntactic category defined on mtt in
a similar way to that for Martin-Löf’s type theory.

The functor

Gmtt: CMop −→ InfSl

is defined on a closed collection A as the partial order consisting of

equivalence classes
⌊
φ prop [x ∈ A]

⌉
of predicates in mtt depending on A

with respect to equiprovability, i.e. φ prop [x ∈ A] ∼ φ′ prop [x ∈ A] if
there is a proof of φ↔ φ′ prop [x ∈ A] in mtt,⌊

φ prop [x ∈ A]
⌉
≤

⌊
ψ prop [x ∈ A]

⌉
if there is a proof-term r ∈ ψ [x ∈

A,w ∈ φ] in mtt.

The action of the functor on arrows in CM is given by substitution.
The doctrine

Fmtt:SMop −→ InfSl

is defined on a closed set A as the partial order consisting of

equivalence classes
⌊
φ props [x ∈ A]

⌉
of small propositions φ(x) props [x ∈

A] depending on A, i.e. propositions closed only under quantification
on sets, with respect to equiprovability in mtt,⌊

φ props [x ∈ A]
⌉
≤

⌊
φ′ props [x ∈ A]

⌉
if there is a proof-term of r ∈ φ′ [x ∈

A,w ∈ φ] in mtt.

The action of the functor on arrows in SM is given by substitution.

Proposition 7.6. The doctrines Gmtt: CMop −→ InfSl and Fmtt:SMop −→
InfSl are existential elementary, implicational and universal, with full weak

comprehensions and comprehensive weak equalizers. Moreover, the doctrine

Fmtt is weakly cartesian closed.

Proof. The proof for each is analogous to that for Martin-Löf’s type theory
in propositions 7.2 and 7.3. �

Remark 7.7. Similarly to 7.4, there is an essential equivalence between the
completion Gmtt of the doctrine Gmtt and the model of extensional col-
lections in [21], and there is another between the completion Fmtt of the
doctrine Fmtt and the model of extensional sets in [21].

Then, if one recalls that emtt is the extensional version of mtt with
the addition of effective quotients, proof-irrelevance of propositions and ex-
tensional equality of functions, it is easy to see that there is an obvious
interpretation of emtt in the doctrine Gmtt provided that a choice of the
structure is given.

Actually, by means of logical constructors of emtt, following the para-
digm proposed in [16, 14], we can describe the logical theories modelled by
most of the doctrines considered in this paper.
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For example, the notion of elementary existential doctrine with full com-
prehensions and comprehensive equalizers is the necessary structure to inter-
pret the set-theoretic fragment of emtt where sets just include the single-
ton set, binary products and indexed sums of a set with a proposition, and
whose propositions are just closed under conjunctions, extensional equality,
existential quantifiers and the truth constant. Then the extension with emtt-
quotients captures the logical theory behind existential doctrines in QD.

Remark 7.8. The quotient model QFmtt of Fmtt for the fragment of mtt in
[22] provides a genuine example that the elementary quotient completion is
not an exact completion.

Indeed, consider that in an exact, locally cartesian closed category,
(AUC) always holds, as shown in [20]. Now, if QFmtt were exact, then in
the original doctrine Fmtt (AUC) from any object to any other would hold
by 6.8. But [22] shows that (AUC) from the natural numbers to the natural
numbers does not hold.

Knowing that in CoC (AUC) from an object to another does not hold
in general, see [29], with the same argument as above we get another example
of elementary quotient completion that is not exact: take QFCoC with FCoC

defined as Fmtt but within CoC.

8. Conclusions and future work

The notion of elementary quotient completion developed in the previous sec-
tions was inspired by the need to give an abstract presentation of the quotient
model used in [21]. This notion is more general than that of exact completion.
As remarked in 5.10, an exact completion of a cartesian category with weak
pullbacks is an instance of the elementary quotient completion construction.
On the other hand, as remarked in 7.8, there are elementary quotient com-
pletions which are not exact.

Relevant instances of elementary quotient completion are used to for-
malize mathematics within an intensional type theory. They are applied to
turn a theory with intensional and weak structures into one with extensional

and strong ones. For example, the category QFmtt of extensional sets over
the intensional theory mtt, as well as the category QFML of setoids over
Martin-Löf’s type theory, are cartesian closed, while the corresponding cate-
gories of sets of mtt and of Martin-Löf’s type theory are not. Moreover the
doctrines FML, Fmtt and Gmtt associated to mtt and to Martin-Löf’s type
theory satisfy only weak comprehension, because their propositions may be
equipped with more than one proof.

But it is worth mentioning that to view an elementary quotient comple-
tion, as that over mtt in [21], as a model of an extensional theory as emtt

in [21], one needs to solve a coherence problem. Indeed, the base category of
an elementary quotient completion, as well as of an exact completion in [5],
does not provide an explicit construction for the categorical structure used
to interpret logical sorts.
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In [21] we solved the problem by using an ad hoc coherence theorem to
select the model structure necessary to interpret the syntax of emtt in the
elementary quotient completion over mtt. Since that theorem heavily relies
on the fact that the syntax of mtt is defined inductively, a possible direction
of further investigation is to explore how to interpret a logical theory corre-
sponding to doctrines in QD in (the doctrine P of) an elementary quotient
completion of a doctrine P in EqD.

In future work we shall investigate the case of completing an existential
elementary doctrine with respect to quotients with a more relaxed notion of
arrow and compare it with the elementary quotient completion introduced
here.
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