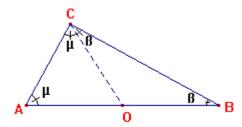
15^a GARA MATEMATICA "Città di Padova" 25 marzo 2000 SOLUZIONI

1.- La linea è divisa in 12 tratti dalle 11 fermate intermedie e misura dunque m 500 x 12 = m 6.000; perciò dopo aver percorso Km 12 la vettura ritorna al capolinea A.

46.7:12=3 col resto di 10.7, perciò dopo Km 46.7 la vettura deve percorrere ancora Km (12-10.7)= Km 1.3 per ritornare in A e quindi si trova a Km 1.3 da A, tra la seconda stazione (a 1 Km da A) e la terza.

Ogni 12 Km passa 1 volta per B e 2 volte per ogni stazione intermedia, perciò dopo 12 x 3 + 10,7 Km la vettura è passata 3+1=4 volte per il capolinea B, $3 \times 2 + 1 = 7$ volte per la n-sima stazione intermedia se n < 3, $3 \times 2 + 2 = 8$ volte per la n-sima stazione intermedia se n ≥ 3 .

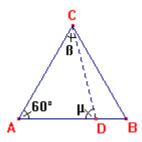
2.- A. Vero ; infatti, prendiamo un triangolo rettangolo ABC (vedi figura); si ha $\mu + \beta = 90^{\circ}$.



Divido allora l'angolo retto (in C) in due angoli di misure, rispettivamente, μ e β e vedo che ABC è biisoscele

.

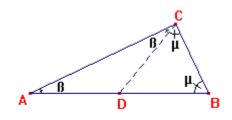
D. Falso ; infatti se spezzo un triangolo (vedi figura) equilatero in due triangoli mediante un segmento che abbia un estremo p.e. in C , vedo che nessuno dei due triangoli che ottengo è isoscele

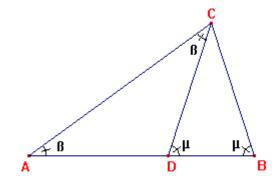


poiché essendo $\mu+\beta+60^\circ=180^\circ$ risulta $\mu+\beta=120^\circ$, ed essendo $\beta<60^\circ$, si ha $\mu>60^\circ$. Dunque i tre angoli di ADC sono a due a due diversi.

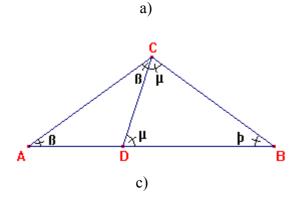
C. Falso (vedasi D).

Per rispondere ora all'ultima domanda, consideriamo dapprima gli schemi di suddivisione di un triangolo biisoscele :





b)



Non ce ne sono altri poiché dei due angoli in D uno è $\geq 90^\circ$ e quindi il relativo triangolo può essere isoscele solo se gli angoli uguali sono gli altri due. Nel caso a) $\beta + \mu + \beta + \mu = 180^\circ$, quindi $\beta + \mu = 90^\circ$: è il caso del triangolo rettangolo (vedi A) , questo è isoscele se $\beta = \mu = 45^\circ$. Nel caso b) $\mu = 2\beta$ e il triangolo è isoscele se e solo se l'angolo in C è $= \mu$, da cui $2\mu + \beta = 180^\circ$, $5\beta = 180^\circ$, $\beta = 36^\circ$, $\mu = 72^\circ$.

Nel caso c) $~\mu=2\beta~$ e l'angolo b = angolo in $~C=\mu+\beta~$, da cui $~2(~\mu+\beta~)+\beta~$ = 180° , 7 $\beta~$ = 180° ;

oppure $\beta = \beta$, e $\beta + \beta + \delta + \beta = 180^{\circ}$, $5\beta = 180^{\circ}$, $\beta = 36^{\circ}$. Abbiamo cosi' verificato anche che la B è falsa.

3.- Se il numero primo p ha due gemelli, questi sono p-2 e p+2. Consideriamo allora i 5 numeri successivi

p-2; p-1; p; p+1; p+2;

con p, p-2 e p+2 primi.

Ora, di tre numeri interi successivi uno è divisibile per 3. Allora uno dei tre numeri p-2, p-1, p è divisibile per 3:

- (i) se p-2 è divisibile per 3, risulta = 3 poiché è primo; in questo caso p = 5, p+2 = 7 che sono primi; siamo nel caso del 5 con i due gemelli 3 e 7;
- (ii) se p-1 fosse divisibile per 3 , lo sarebbe anche p-1+3 = p+2 , e si avrebbe p+2 = 3 e p-2 = -1 che non è un numero naturale , e ciò non è possibile
- (iii) se p fosse divisibile per 3 , e quindi = 3 perché primo, si avrebbe
 p-2 = 1 , ma il numero 1 (come si sa) non è un numero primo ; anche questo caso non è possibile
 L'unico caso possibile è perciò quello della terna 3 , 5 , 7 .
- **4.-** Siccome ognuno dei quattro lati del rettangolo contiene uno dei vertici del triangolo, ci sarà uno dei vertici che appartiene a due lati del rettangolo ; sia esso A. Disegnato il triangolo, per costruire uno dei rettangoli circoscritti si consideri un angolo retto ab di vertice A che contiene il triangolo e si traccino le due rette a', b' parallele a b ed a per B e C, rispettivamente (vedi figura 1).

Si intuisce che, per ragioni di simmetria, il rettangolo ABDE è di area minima , tra quelli circoscritti, e il quadrato AFBE (vedi la figura successiva) e' di area massima.

Infatti confrontando ABDE con un altro rettangolo circoscritto, p.e. AB'D'E' si ha : il triangolo CD'B ha area maggiore di quella di CDB in quanto D' è più vicino che D al punto medio del semicircolo CDD'B, inoltre AB'B > AEG (i due triangoli sono simili e l'ipotenusa del primo AB = AC > AE' > AE = ipotenusa del secondo), inoltre ACE' \supset ACG , dunque AB'B+AE'C>AGE+AGC = AEC, risulta quindi AB'D'E'>ABDE.

Confrontiamo ora il quadrato AFBE con un altro rettangolo circoscritto, p.e. AB'D'E'; si ha: CDB > CD'B (il primo ha altezza = 1/2, che è maggiore di quella del secondo), inoltre i quattro triangoli rettangoli AFH, AGE', CEG, BB'H sono simili, e risulta AFH > AGE' poiché FA=AE>AG>AE', CEG > BB'H poiché CE=FB>HB>BB'.

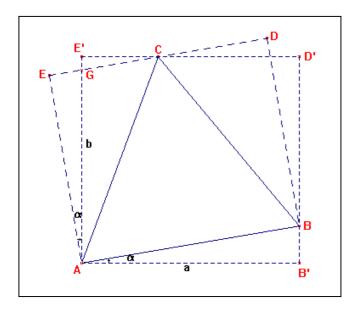
Si ha pertanto AFH + CEG > AGE'+ BB'H e quindi il quadrato ha area maggiore del rettangolo.

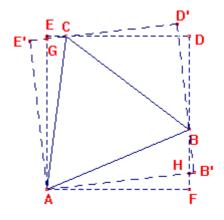
C'è anche un modo più sbrigativo per rispondere a questo quesito, usando però un po' di trigonometria.

Con riferimento alla figura 1, si ha $a = 1 \cos b$; $b = 1 \cos(30 - b)$, e dunque l'area del rettangolo circoscritto AB'D'E' = $1 \cos b \cos(30 - b)$ =

(siccome
$$cos(\alpha + \beta) + cos(\alpha - \beta) = 2 cos \alpha cos \beta$$
)
= 1/2 1 (cos 30 + cos(2 b -30)).

L'area sarà massima o minima quando lo sarà $\cos(2 \beta - 30)$, tenuto conto che l'angolo β varia tra 0 e 30. Ora il massimo di $\cos(2 \beta - 30)$ è 1 e corrisponde a $2 \beta - 30 = 0$, cioè $\beta = 15$, e il minimo, visto che $2 \beta - 30$ varia tra -30 e 30, si ottiene per $2 \beta - 30 = -30$, cioè per $\beta = 0$.





5.- Se inizialmente il cavallo si trova nella casella d'angolo contrassegnata con lo 0, con

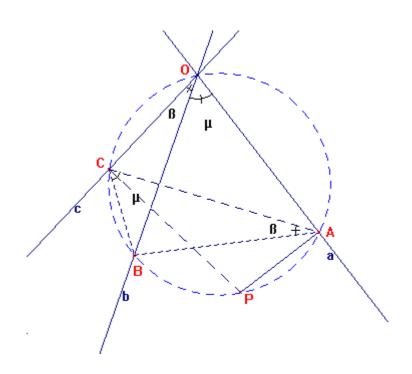
una sola mossa può arrivare soltanto in una delle due caselle contrassegnate con

						*
2		2				
	2		2			
2	1			2		
		1	2			
0		2		2		

numero 1 ; con due mosse in una delle caselle dove c'è il 2 , ecc. Completando lo schema si vede che per arrivare alla casella con la stella occorrono 6 mosse, mentre in tutte le altre ci si può arrivare con meno di 6 mosse : la risposta è 6.

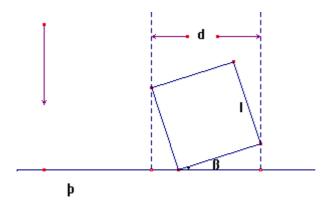
6.- Consideriamo il circolo di diametro OP. Siccome OAP = OBP = OCP = 90° i punti A, B, C appartengono a tale circolo, sicché (vedi la figura) α = COB = CAB (angoli alla circonferenza che insistono sul medesimo arco CB) e analogamente γ = BOA = BCA.

Ma lo stesso si può dire se invece che dal punto P si parte da un altro punto Q: α = C'A'B', γ = B'C'A'. I due triangoli, avendo due coppie di angoli uguali CAB = C'A'B', BCA = B'C'A' sono dunque simili.

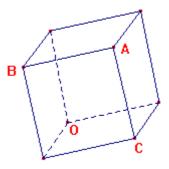


7.- Per fissare le idee pensiamo di appoggiare il cubo sul piano b ortogonale ai raggi del Sole, traslandolo nella direzione dei raggi, sicché l'ombra non cambia.

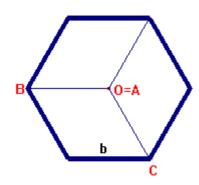
Se il cubo ha tutta una faccia $\,F\,$ sul piano $\,\pi\,$, il Sole vede solo la faccia opposta del cubo e l'ombra è un quadrato di lato $\,1\,$.



Se invece il cubo si appoggia al piano π solo lungo uno spigolo s, allora il Sole vede due facce del cubo, e l'ombra risulta un rettangolo di cui un lato misura 1 e l'altro d, con $1 < d \le 1\sqrt{2}$ (vedi figura), in particolare $d = 1\sqrt{2}$ quando $\alpha = 45$.



Se infine il cubo si appoggia al piano su di un solo punto O (un suo vertice), allora il Sole vede tre facce del cubo e l'ombra è un esagono (nella figura il piano π è quello del foglio). Nel caso particolare in cui la diagonale OA del cubo sia parallela ai raggi solari l'ombra di A coincide con O e l'esagono risulta regolare. In questo caso il segmento BC è parallelo a π ed ha quindi lunghezza uguale alla sua ombra su π . Ora $BC = 1\sqrt{2} = b\sqrt{3}$, per cui il lato b dell'esagono è uguale a $1\sqrt{2}/\sqrt{3}$.



8.- Se risulta $x^2 + ax + b = (ex + f)(gx + h)$, con e, f, g, h reali, il numero reale -f/e è soluzione dell'equazione $x^2 + ax + b = 0$; e viceversa se un numero reale q è soluzione dell'equazione $x^2 + ax + b = 0$, il polinomio x - q è un fattore del primo membro, e risulta, per il teorema di Ruffini,

$$x^2 + ax + b = (x-q)(x+a+q)$$
.

Quindi dire che il polinomio a coefficienti reali $x^2 + ax + b$ è irriducibile è come dire che non ha radici (reali), è come dire che la parabola di equazione $y = x^2 + ax + b$ non interseca l'asse x, è come dire che la funzione $f(x) = x^2 + ax + b$ è sempre positiva. Ma allora la risposta è sì poiché la somma di due funzioni positive è positiva.