Analisi 2

Roberto Monti

Appunti del Corso - Versione del 14 Aprile 2011

Indice

Capitolo 1.	Teoria dell'integrale di Riemann. Integrali generalizzati	5
1. Integra	li impropri su intervallo illimitato	5
2. Conver	genza assoluta	7
3. Integra	li oscillatori	8
4. Integra	di impropri di funzioni non limitate	9
5. Eserciz	i -	10

CAPITOLO 1

Teoria dell'integrale di Riemann. Integrali generalizzati

1. Integrali impropri su intervallo illimitato

DEFINIZIONE 1.1. Siano $a \in \mathbb{R}$ ed $f: [a, \infty) \to \mathbb{R}$ una funzione tale che la restrizione $f: [a, M] \to \mathbb{R}$ sia (limitata e) Riemann-integrabile per ogni $a \leq M < \infty$. Diciamo che f è integrabile in senso improprio su $[a, \infty)$ se esiste finito il limite

(1.1)
$$I = \lim_{M \to \infty} \int_{a}^{M} f(x)dx.$$

In questo caso, chiamiamo il numero reale

$$\int_{a}^{\infty} f(x)dx = I$$

integrale improprio di f su $[a, \infty)$ ovvero diciamo che l'integrale improprio converge. Se il limite non esiste oppure esiste ma infinito diremo che l'integrale improprio di f diverge.

L'integrale improprio eredità dall'integrale di Riemann le proprietà di linearità, di monotonia e di decomposizione del dominio.

Esempio 1.2. Studiamo la convergenza del seguente integrale improprio al variare del parametro reale $\alpha>0$

$$\int_{1}^{\infty} \frac{1}{x^{\alpha}} dx.$$

Nel caso $\alpha \neq 1$ si ha

$$\int_{1}^{M} \frac{1}{x^{\alpha}} dx = \left[\frac{x^{-\alpha+1}}{-\alpha+1} \right]_{x=1}^{x=M} = \frac{M^{1-\alpha}-1}{1-\alpha}$$

e quindi:

a) Se $\alpha > 1$ l'integrale converge

$$\int_{1}^{\infty} \frac{1}{x^{\alpha}} dx = \lim_{M \to \infty} \frac{M^{1-\alpha} - 1}{1 - \alpha} = \frac{1}{\alpha - 1};$$

b) Se $0 < \alpha < 1$ l'integrale diverge

$$\int_1^\infty \frac{1}{x^\alpha} dx = \lim_{M \to \infty} \frac{M^{1-\alpha} - 1}{1 - \alpha} = \infty.$$

Nel caso $\alpha = 1$ si ha per ogni M > 1

$$\int_{1}^{M} \frac{1}{x} dx = \log M,$$

e quindi l'integrale diverge

$$\int_1^\infty \frac{1}{x} dx = \lim_{M \to \infty} \log M = \infty.$$

Osserviamo che se $f \geq 0$ è una funzione non negativa su $[0, \infty)$, allora il limite in (1.1) esiste finito oppure infinito. Infatti, la funzione

$$I(M) = \int_{a}^{M} f(x)dx$$

è monotona per $M \geq a$ e dunque ha limite per $M \to \infty$.

TEOREMA 1.3 (Criterio del confronto). Siano $f,g:[a,\infty)\to\mathbb{R},\ a\in\mathbb{R}$, due funzioni Riemann-integrabili su ogni intervallo $[a,M]\subset\mathbb{R}$ con $a\leq M<\infty$. Supponiamo che esista $\bar{x}\geq a$ tale che $0\leq f(x)\leq g(x)$ per ogni $x\geq \bar{x}$. Allora:

a)
$$\int_{a}^{\infty} g(x)dx < \infty \quad \Rightarrow \quad \int_{a}^{\infty} f(x)dx < \infty;$$

b) $\int_{a}^{\infty} f(x)dx = \infty \quad \Rightarrow \quad \int_{a}^{\infty} g(x)dx = \infty.$

Dim. Senza perdere di generalità si può supporre $\bar{x}=a$. Per la monotonia dell'integrale di Riemann, si ha per ogni $M\geq a$:

$$\int_{a}^{M} f(x)dx \le \int_{a}^{M} g(x)dx.$$

Le affermazioni a) e b) seguono passando al limite per $M \to \infty$.

TEOREMA 1.4 (Criterio del confronto asintotico). Siano $f, g : [a, \infty) \to \mathbb{R}, a \in \mathbb{R}$, due funzioni Riemann-integrabili su ogni intervallo $[a, M], M \geq a$. Supponiamo che risulti g(x) > 0 per ogni $x \geq a$ e che esista finito e diverso da zero il limite

$$L = \lim_{x \to \infty} \frac{f(x)}{g(x)} \neq 0.$$

Allora:

$$\int_a^\infty f(x)dx \quad \text{converge} \quad \text{se e solo se} \quad \int_a^\infty g(x)dx \quad \text{converge}.$$

Dim. Supponiamo ad esempio $0 < L < \infty$. Allora, per il Teorema della permanenza del segno esiste $\bar{x} \geq a$ tale che per ogni $x \geq \bar{x}$ si ha

$$\frac{L}{2} \le \frac{f(x)}{g(x)} \ge 2L.$$

Siccome g > 0, si può riordinare la disuguaglianza ottenendo $\frac{L}{2} \le f(x) \le 2Lg(x)$ per ogni $x \ge \bar{x}$. La tesi segue dal Teorema del confronto.

Esempio 1.5. Studiamo la convergenza dell'integrale improprio

$$I_{\alpha} = \int_{1}^{\infty} \frac{x^{\alpha+1}}{x+1} \log\left(1 + \frac{1}{x}\right) dx$$

al variare del parametro reale $\alpha \in \mathbb{R}$. Ricordiamo lo sviluppo infinitesimale del logaritmo

$$\log\left(1 + \frac{1}{x}\right) = \frac{1}{x} + o\left(\frac{1}{x}\right)$$

per $x \to \infty$, dove o(1/x) è un errore che converge a zero più velocemente di 1/x quando $x \to \infty$. Allora la funzione integranda è

$$f(x) = \frac{x^{\alpha}}{1 + 1/x} \log\left(1 + \frac{1}{x}\right) = \frac{1}{x^{1-\alpha}} (1 + o(1)).$$

Scelta la funzione di confronto $g(x) = \frac{1}{x^{1-\alpha}}$, risulta g(x) > 0 per x > 0 e inoltre

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1 \neq 0.$$

Siccome l'integrale

$$\int_{1}^{\infty} \frac{1}{x^{1-\alpha}} dx$$

converge se e solo se $\alpha<0$, l'integrale in esame pure converge se e solo se $\alpha<0$. Ad esempio, nel caso $\alpha=-2$ con un conto lasciato come esercizio si può calcolare esplicitamente

$$\int_{1}^{\infty} \frac{1}{x^2 + x} \log\left(1 + \frac{1}{x}\right) dx = \log 2.$$

2. Convergenza assoluta

DEFINIZIONE 2.1. Siano $a \in \mathbb{R}$ ed $f: [a, \infty) \to \mathbb{R}$ una funzione tale che la restrizione $f: [a, M] \to \mathbb{R}$ sia (limitata e) Riemann-integrabile per ogni $a \leq M < \infty$. Diciamo che f è assolutamente integrabile su $[a, \infty)$ se converge l'integrale improprio

$$\int_{-\infty}^{\infty} |f(x)| dx < \infty.$$

In questo caso, diciamo che l'integrale improprio $\int_a^\infty f(x)dx$ converge assolutamente.

TEOREMA 2.2. Sia $f:[a,\infty)\to\mathbb{R}$ una funzione (limitata e) Riemann–integrabile su ogni intervallo della forma $[a,M],\ M\geq a$. Se f è assolutamente integrabile su $[a,\infty)$ allora è integrabile in senso improprio su $[a,\infty)$ e inoltre

(2.2)
$$\left| \int_{a}^{\infty} f(x) dx \right| \le \int_{a}^{\infty} |f(x)| dx.$$

Dim. Definiamo le funzioni $f^+,f^-:[a,\infty)\to\mathbb{R}$

$$f^+(x) = \max\{f(x), 0\}$$
 e $f^-(x) = \min\{f(x), 0\}, x \ge a.$

Chiaramente $f(x) = f^+(x) + f^-(x)$ e $|f(x)| = f^+(x) - f^-(x)$ per ogni $x \ge a$. È noto, inoltre, che le funzioni f^+, f^- sono Riemann–integrabili su ogni intervallo [a, M]. Per il Teorema del confronto gli integrali impropri

$$\int_{a}^{\infty} f^{+}(x)dx \quad e \quad \int_{a}^{\infty} f^{-}(x)dx$$

convergono. Passando al limite per $M \to \infty$ nell'identità

$$\int_{a}^{M} f(x)dx = \int_{a}^{M} \left(f^{+}(x) + f^{-}(x) \right) dx = \int_{a}^{M} f^{+}(x)dx + \int_{a}^{M} f^{-}(x)dx$$

si ottiene la convergenza dell'integrale improprio di f su $[0, \infty)$. Passando al limite nella disuguaglianza

$$\left| \int_{a}^{M} f(x)dx \right| = \left| \int_{a}^{M} f^{+}(x)dx + \int_{a}^{M} f^{-}(x)dx \right|$$

$$\leq \int_{a}^{M} |f^{+}(x)|dx + \int_{a}^{M} |f^{-}(x)|dx = \int_{a}^{M} |f(x)|dx$$

si ottiene la (2.2).

ESEMPIO 2.3. L'integrale improprio $\int_0^\infty \frac{\sin x}{x} dx$ non converge assolutamente, ovvero

$$\int_0^\infty \left| \frac{\sin x}{x} \right| dx = \infty.$$

Infatti, sul generico intervallo $[k\pi + \pi/4, k\pi + 3\pi/4], k = 0, 1, 2, ...,$ risulta

$$|\sin x| \ge \frac{\sqrt{2}}{2}$$
 e $\frac{1}{x} \ge \frac{1}{k\pi + 3\pi/4}$,

e dunque

$$\int_{k\pi}^{(k+1)\pi} \left| \frac{\sin x}{x} \right| dx \ge \frac{\sqrt{2}\pi}{8(k\pi + 3\pi/4)}.$$

Si deduce che

$$\int_0^\infty \left| \frac{\sin x}{x} \right| dx \ge \frac{\sqrt{2\pi}}{8} \sum_{k=0}^\infty \frac{1}{k\pi + 3\pi/4} = \infty.$$

3. Integrali oscillatori

Tipici esempi di integrali oscillatori sono

$$\int_0^\infty f(x)\sin x dx, \quad \int_0^\infty f(x)\cos x dx,$$

ovvero l'integrale a valori complessi

$$\int_0^\infty f(x)e^{ix}dx = \int_0^\infty f(x)\cos x dx + i \int_0^\infty f(x)\sin x dx,$$

dove $f:[0,\infty)\to\mathbb{R}$ è una funzione non negativa, $f\geq 0$.

Il seguente teorema fornisce condizioni sufficiente per la convergenza di integrali di questo tipo.

TEOREMA 3.1 (Criterio per integrali oscillatori). Siano $f \in C([a, \infty))$ e $g \in C^1([a, \infty))$, $a \in \mathbb{R}$, due funzioni con le seguenti proprietà:

- i) f = F' con primitiva $F \in C^1([a, \infty))$ limitata;
- ii) $g' \le 0 \ e \lim_{x \to \infty} g(x) = 0.$

Allora l'integrale improprio

$$\int_{a}^{\infty} f(x)g(x)dx$$

converge.

Dim. Per ogni M > a si ottiene con un'integrazione per parti:

$$\int_{a}^{M} f(x)g(x)dx = \left[F(x)g(x)\right]_{x=a}^{x=M} - \int_{a}^{M} F(x)g'(x)dx$$
$$= F(M)g(M) - F(a)g(a) - \int_{a}^{M} F(x)g'(x)dx.$$

Siccome F è limitata e g è infinitesima per $M \to \infty$, si ha

$$\lim_{M \to \infty} F(M)g(M) = 0.$$

D'altra parte, siccome $g' \leq 0$ si trova

$$\int_{a}^{M} |F(x)g'(x)| dx \le \sup_{x \in [a,\infty)} |F(x)| \int_{a}^{M} |g'(x)| dx = -\sup_{x \in [a,\infty)} |F(x)| \int_{a}^{M} g'(x) dx$$
$$= (g(a) - g(M)) \sup_{x \in [a,\infty)} |F(x)|,$$

e dunque, usando nuovamente il fatto che g è infinitesima

$$\int_{a}^{\infty} |F(x)g'(x)| dx \le g(a) \sup_{x \in [a,\infty)} |F(x)| < \infty.$$

Dal momento che la funzione Fg' è assolutamente integrabile su $[a, \infty)$, per il Criterio della convergenza assoluta esiste finito anche il limite

$$\lim_{M \to \infty} \int_{a}^{M} F(x)g'(x)dx.$$

Questo termina la prova del teorema.

ESEMPIO 3.2. Usando il Teorema 3.1 sugli integrali oscillatori, si vede che per ogni scelta del parametro $\alpha>0$ l'integrale improprio

$$\int_{1}^{\infty} \frac{\sin x}{x^{\alpha}} dx$$

converge. Infatti, la funzione $f(x) = \sin x$ ha primitiva limitata $F(x) = -\cos x$ e la funzione $g(x) = 1/x^{\alpha}$ ha derivata negativa per x > 0 ed è infinitesima per $x \to \infty$.

4. Integrali impropri di funzioni non limitate

DEFINIZIONE 4.1. Sia $f:(a,b] \to \mathbb{R}$, $-\infty < a < b < \infty$, una funzione (limitata e) Riemann–integrabile su ogni intervallo della forma $[a+\varepsilon,b]$ con $0 < \varepsilon < b-a$. Diciamo che f è integrabile in senso improprio su (a,b] se esiste finito il limite

$$I = \lim_{\varepsilon \to 0^+} \int_{a+\varepsilon}^b f(x) dx.$$

In questo caso, diciamo che l'integrale improprio di f su (a,b] converge e poniamo

$$\int_{a}^{b} f(x)dx = I.$$

Lo studio degli integrali impropri di funzioni come nella definizione precedente si può ricondurre allo studio di integrali impropri su intervallo illimitato tramite il cambiamento di variabile $y = \frac{b-a}{r-a}$ che porta alla trasformazione formale di integrali

$$\int_{a}^{b} f(x)dx = (b-a) \int_{1}^{\infty} f\left(a + \frac{b-a}{y}\right) \frac{dy}{y^{2}}.$$

ESEMPIO 4.2. Con una discussione analoga a quella svolta nell'Esempio 1.2 si deduce che, al variare del parametro reale $\alpha > 0$, l'integrale improprio

$$\int_0^1 \frac{1}{x^\alpha} dx$$

converge se e solo se $\alpha < 1$.

Enunciamo, senza dimostrazione, un Teorema del confronto asintotico per integrali di funzioni non limitate.

TEOREMA 4.3 (Criterio del confronto asintotico). Siano $f, g:(a, b] \to \mathbb{R}, -\infty < a < b < \infty$, due funzioni (limitate e) Riemann-integrabili su ogni intervallo della forma $[a + \varepsilon, b], 0 < \varepsilon < b - a$. Supponiamo che:

- i) $\lim_{x \to a^+} g(x) = \infty;$
- ii) il seguente limite esiste finito e diverso da zero

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} \neq 0.$$

Allora:

$$\int_{a}^{b} f(x)dx \quad \text{converge} \quad \Leftrightarrow \quad \int_{a}^{b} g(x)dx \quad \text{converge}.$$

5. Esercizi

ESERCIZIO 1. Al variare del parametro $\alpha \geq 0$, studiare la convergenza e la convergenza assoluta dell'integrale improprio

$$\int_{1}^{\infty} \frac{\sin x \log x}{x^{\alpha}} dx.$$

Questo esercizio è stato risolto in classe. La risposta è la seguente: per $\alpha > 1$ si ha convergenza assoluta (e quindi anche semplice); per $0 < \alpha \le 1$ non si ha convergenza assoluta ma c'è convergenza semplice; per $\alpha = 0$ non c'è convergenza semplice.

Esercizio 2. Calcolare i seguenti integrali impropri

1)
$$\int_0^\infty \frac{\log x}{(x+1)^2} dx$$
; 2) $\int_0^\infty x^{-2} e^{-\frac{1}{x}} dx$; 3) $\int_0^\infty e^{-\beta x} \cos(\alpha x) dx$, $\beta > 0$, $\alpha \in \mathbb{R}$.

5. ESERCIZI

11

Esercizio 3. Stabilire se convergono i seguenti integrali impropri

1)
$$\int_0^\infty \sin^2 x \, dx$$
; 2) $\int_0^\pi \frac{1}{\sqrt{1 - \sin(x)}} \, dx$; 3) $\int_0^1 \frac{\sqrt[3]{1 - x}}{\sqrt{1 - x^2}} \, dx$.

Esercizio 4. Stabilire se convergono assolutamente i seguenti integrali impropri

1)
$$\int_0^\infty \frac{\sin x}{1+x^2} dx$$
; 2) $\int_0^\infty x^2 e^{-\sqrt{x}} \cos x \, dx$; 3) $\int_1^\infty \left(\frac{1}{x} - \tan \frac{1}{x}\right) \sin x \, dx$.

Esercizio 5. Calcolare tutti gli $\alpha > 0$ tali che converga ciascuno dei seguenti integrali impropri

1)
$$\int_0^1 \frac{(1-\cos x)^{\alpha}}{\tan x - x} dx$$
; 2) $\int_0^1 \frac{\sin(x^{\alpha})}{\log(1+x)} dx$;

3)
$$\int_0^\infty \frac{\arctan\sqrt{x} - \pi/2}{x^\alpha} dx; \quad 4) \int_2^\infty \frac{\sin\frac{1}{x}}{\log^\alpha x} dx.$$

Esercizio 6. Studiare la convergenza dei seguenti integrali oscillatori

1)
$$\int_2^\infty \frac{\sin x}{\log x} dx$$
; 2) $\int_1^\infty \sin x \arcsin \frac{1}{x} dx$; 3) $\int_0^\infty x \sin(x^4) dx$.

Esercizio 7. i) Determinare tutti i parametri $\alpha, \beta \in \mathbb{R}$ tali che il seguente integrale improprio converga

$$\int_0^\infty \frac{1+x^\beta}{x^\alpha(1+x^2)} dx.$$

ii) Rappresentare i parametri ammissibili nel piano cartesiano $\alpha\beta$.