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1. Prolegomena

1.1. The extended real line. The extended real line

R̃ = R ∪ {−∞,∞} = [−∞,∞]

is constantly used in this text. As an ordered set with −∞ < x < ∞ for every x ∈ R, the extended line
is order complete, meaning that every non–empty subset of R̃ has a supremum and an infimum in R̃. As
a topological space R̃ is a compactification of the usual line, a compact space containing R as a dense
subspace, and it is homeomorphic to a bounded closed interval of R; recall that a neighborhood of ∞
(resp −∞) in R̃ is any subset of R̃ containing a half–line ]a,∞] (resp. [−∞, a[) for some a ∈ R).

1.1.1. Operations on the extended real line. Addition R× R → R has a continuous extension

(#) + (#) : R̃× R̃ r {(∞,−∞), (−∞,∞)} → R̃

by ∞+ r = ∞+∞ = ∞ and −∞+ r = −∞+ (−∞) = −∞ for every r ∈ R; ∞−∞ and −∞+∞ are

not defined (no possible definition of ∞−∞ in R̃ can make addition continuous on the point (∞,−∞):
for every a ∈ R the real sequences n + a and −n tend to ∞, −∞ repectively, and (n + a) + (−n) = a

tends to a). Similarly, multiplication is extended by continuity to R̃ × R̃ r {(0,±∞), (±∞, 0)} in the
way dictated by the theorem on limits, and 0(±∞) and (±∞)0 cannot be defined. We have the easy but
useful result:

. Let A,B be non–empty subset of R̃; assume that a+ b is defined for every a ∈ A and every b ∈ B,
so that A+B := {a+ b : a ∈ A, b ∈ B} is also defined. Then:

inf(A+B) = inf A+ inf B; sup(A+B) = supA+ supB

provided that also the right–hand sides are defined (in particular, this always holds when A and B are
non–empty sets of real numbers).

Proof. Let’s prove it for suprema. If supA + supB = ∞, then either supA = ∞ or supB = ∞,
in any case either A or B has no upper bound in R, and this immediately implies that A + B has no
upper bound in R. If supA + supB = −∞, then either supA = −∞ and equivalently A = {−∞}, or
supB = −∞, and equivalently B = {−∞}, or both, but in any of these cases we get A + B = {−∞}
and the conclusion follows. If supA and supB are both finite we first get a + b ≤ supA + supB for
every a ∈ A and every b ∈ B just summing up the two inequalities a ≤ supA and b ≤ supB, so that
sup(A + B) ≤ supA + supB. And given ε > 0, pick a ∈ A and b ∈ B such that a > supA − ε/2 and
b > supB − ε/2; then a+ b > supA+ supB − ε. This proves that sup(A+B) ≥ sup(A) + supB. �

Remark. One can show that these formulae are in fact equivalent to the continuity of the extended
addition map: ] −∞,∞] and [−∞,∞[ are topological semigroups under addition. Notice that A + B is
defined if and only if A and B are both subsets of one of these two semigroups.

There is an entirely analogous multiplicative statement for subsets of [0,∞], with 0 playing the role
of −∞; we leave it to the reader.

1.1.2. Additivity of inf and sup. By induction and 1.1.1 it is clear that we also have

. If A1, . . . Am are non empty subsets of R̃ then we have

inf(A1 + · · ·+Am) = inf(A1) + · · ·+ inf(Am); sup(A1 + · · ·+Am) = sup(A1) + · · ·+ sup(Am),

provided that both sides of the equalities are meaningful.
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1.2. Lattice operations on real valued functions. Two binary operations, ∨ and ∧, are defined
on all the extended real line:

x ∨ y = max{x, y}; x ∧ y = min{x, y}.
It is easy to see that ∨ and ∧ are continuous as mappings of R̃× R̃ to R̃; as binary operations they are
commutative and associative (with ∓∞ as neutral elements for ∨ and ∧, respectively).

If X is a set ad f, g : X → R̃ are extended real valued functions we define f ∨ g, f ∧ g : X → R̃ as

f ∨ g(x) = f(x) ∨ g(x); f ∧ g(x) = f(x) ∧ g(x);
in particular the positive part f+ and negative part f− of a function f : X → R̃ are defined as f+ = f ∨ 0
and f− = (−f) ∨ 0 (notice that also the negative part is a positive function!), The function f may the
be written as as f = f+ − f− (notice that if f−(x) > 0 then f+(x) = 0, so that f+(x)− f−(x) is always
defined). The absolute value |f | is defined as |f | = f ∨ (−f); we also have |f | = f+ + f−.

1.2.1. Minimality of the positive and negative parts. For future use we note here the following fact:
the decomposition of f as f = f+ − f− is minimal in the following sense: if f = u− v, with u ≥ 0, v ≥ 0
positive functions, then f+ ≤ u and f− ≤ v. In fact

f+(x) = f(x) ∨ 0 = (u(x)− v(x)) ∨ 0 ≤ u(x) ∨ 0 = u(x),

and similarly for f−(x). In particular we have for real functions f and g that (f + g)+ ≤ f+ + g+ and
(f + g)− ≤ f− + g−. Notice also that f ≤ g is equivalent to f+ ≤ g+ and f− ≥ g−: in fact for every
x ∈ X we have f+(x) = f(x) ∨ 0 ≤ g(x) ∨ 0 = g+(x), and similarly for f−, g−: g−(x) = (−g(x)) ∨ 0 ≤
(−f(x)) ∨ 0 = f−(x).

1.2.2. Subsets and characteristic functions. A subset A of a given ambient set X is often identified
with its characteristic function, or indicator function, χA : X → R defined by χA(x) = 1 for x ∈ A, and
χA(x) = 0 for x ∈ X rA. Notice that if A,B ⊆ X then

χA∪B = χA ∨ χB; χA∩B = χA ∧ χB = χA χB; χA△B = |χA − χB| = χA + χB − 2χA χB.

1.2.3. The following fact is sometimes useful:

. If a, b, c, d are real numbers then

|a∧ b− c∧ d| ≤ |a− c| ∨ |b− d|(≤ |a− c|+ |b− d|); |a∨ b− c∨ d| ≤ |a− c| ∨ |b− d|(≤ |a− c|+ |b− d|).
Proof. First formula: the only case that is not immediate is when a ∧ b = a and c ∧ d = d; we may

assume d ≥ a by exchanging a∧ b with c∧d if needed. Then we have a ≤ d ≤ c, so that c−a ≥ d−a ≥ 0,
and |a− c| = c− a ≥ d− a = |d− a|, as required. The second formula has an analogous proof, or comes
from the first by changing signs. �

1.3. Some topological facts. Recall that a topological space is said to be separable if it has a
countable dense subset. A topological space is said to be second countable when it satisfies the second
axiom of countability, that is, it has a countable base for its open sets. Recall that if τ is a topology on
the set X , a base for τ is a subset E ⊆ τ such that every A ∈ τ is a union of members of E , that is,
A =

⋃{B ∈ E : B ⊆ A} for every A ∈ τ . The following statement is then trivial:

. If (X, τ) is a topological space, a subset E of τ is a base for τ if and only if given p ∈ X and A ∈ τ
with p ∈ A there is B ∈ E with p ∈ B and B ⊆ A.

Next we observe:

. Every second countable space is separable.

Proof. Given a countable base E , pick xB ∈ B for every non–empty B ∈ E ; the subset D of X so
obtained is countable and dense: given an open non–empty subset A of X , A contains some B ∈ E , hence
xB ∈ A, so that A ∩D is non–empty. �

1.3.1. Metrizable and separable spaces. Separability does not imply second countability: the Sorgen-
frey line S (see 3.0.15) is an example of a separable not second countable space. In metrizable spaces
this cannot happen:

Proposition. A metrizable space is second countable if and only if it is separable.
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Proof. Let D be a countable dense subset of the metrizable space X , and let d be a topology deter-
mining metric on X . Let E be the set of all open balls with center at points x ∈ D and rational strictly
positive radii,

E = {B(x, r[: x ∈ D, r ∈ Q>}.
Clearly E is countable, and we prove that it is a base for τ . If p ∈ X and A ∈ τ with p ∈ A, pick first
r > 0 such that B(p, r[⊆ A. Next, pick x ∈ D such that d(p, x) < r/3 (possible because D is dense in X)
and a rational ρ with r/3 < ρ < 2r/3. Then p ∈ B(x, ρ[, and B(x, ρ[⊆ B(p, r[⊆ A. In fact, if y ∈ B(x, ρ[
we have

d(y, p) ≤ d(y, x) + d(x, p) < ρ+
r

3
<

2r

3
+
r

3
= r.

�

Second countability is a hereditary property, which means that every subspace of a second countable
space is also second countable (trivial: if E is a base for τ and S ⊆ X then ES = {B ∩ S : B ∈ E} is a
base for the topology induced on S). Hence a second countable space is also hereditarily separable, that
is, every subspace of a second countable space is separable.

1.3.2. Disjoint families. A family (Eλ)λ∈Λ of subsets of a set is called disjoint if its members are
pairwise disjoint, that is, λ, µ ∈ Λ and λ 6= µ imply that Eλ ∩ Eµ = ∅. Then

. In a separable space a disjoint family (Uλ)λ∈Λ of non–empty open subsets is at most countable.

Proof. Let D be a countable dense subset of the space. Then Uλ ∩D is non–empty for every λ ∈ Λ;
picking a point x(λ) ∈ Uλ ∩D we get a one–to–one map λ 7→ x(λ) of Λ into D. Then Λ is countable. �

1.3.3. Separating closed sets by continuous functions. The following simple fact is often useful:

. If X is a metrizable space and A, B are disjoint closed subsets of X there exists a continuous
function u : X → [0, 1] such that u(x) = 1 for every x ∈ A and u(x) = 0 for every x ∈ B.

Proof. Let d be a topology determining metric on X ; recall that the function ρA(x) = dist(x,A)(:=
inf{d(x, y) : y ∈ A}) is continuous (it is even Lipschitz continuous) and ρA(x) = 0 iff x ∈ A; analogously
for ρB. Then

u(x) =
ρB(x)

ρA(x) + ρB(x)

is as required (notice that ρA(x) + ρB(x) > 0 for every x ∈ X , since ρA and ρB are non negative with no
common zero). �

Remark. If A and B are closed and disjoint in Rn it can be proved that u may also be taken smooth,
that is, there is u ∈ C∞(Rn,R) such that u(x) = 1 on A, u(x) = 0 on B, and 0 ≤ u(x) ≤ 1 for every
x ∈ Rn.

1.3.4. Left and right limits.

Proposition. Let I be an interval of R̃, let Y be a Hausdorff topological space, let f : I → Y be a
function and let ℓ ∈ Y . Then: if c is not the maximum (resp: not the minimum) of I the following are
equivalent:

(i) limx→c+ f(x) = ℓ (resp: limx→c− f(x) = ℓ).
(ii) For every sequence xj ∈ I with limj→∞ xj = c and xj > c for every j (resp: xj < c for every

j) we have limj→∞ f(xj) = ℓ.
(iii) For every strictly decreasing (resp: increasing) sequence xj ∈ I with limj→∞ xj = c we have

limj→∞ f(xj) = ℓ.

Proof. (i) implies (ii) implies (iii) are trivial. Let’s prove that (iii) implies (i). Arguing by contra-
diction, if (i) is false then there is a neighborhood V of ℓ in Y such that for no b ∈ I with b > c we
have f(]c, b[) ⊆ V . Define xj in the following way: x0 > c, x0 ∈ I is such that f(x0) /∈ V ; assuming
x0 > x1 > · · · > xj−1 have been defined, pick xj ∈]c, xj−1[∩]c, c+ 1/(j + 1)[ such that f(xj) /∈ V . Then
xj is strictly decreasing and converges to c, but f(xj) /∈ V for every j, so that f(xj) cannot converge to
ℓ. �
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1.3.5. Continuity of monotone functions. We recall some easy results on monotone functions, that
ought to be well–known.

Proposition. Let I be an interval of R̃, and let f : I → R̃ be increasing (resp: decreasing). Then

(i) If c ∈ I is not the maximum of I we have limx→c+ f(x) = inf f({x ∈ I : x > c}) (resp:
limx→c+ f(x) = sup f({x ∈ I : x > c}).

(ii) If c ∈ I is not the minimum of I we have limx→c+ f(x) = sup f({x ∈ I : x < c}) (resp:
limx→c+ f(x) = inf f({x ∈ I : x < c}).

(iii) The set of points of discontinuity of f is at most countable.
(iv) If I is a closed interval then f is continuous if and only if for every non–empty subset A

of I we have f(inf A) = inf f(A) and f(supA) = sup f(A) (resp: f(inf A) = sup f(A) and
f(inf A) = sup f(A)).

Proof. (i) Let ℓ = inf f({x ∈ I : x > c}) and let V be an open interval of R̃ containing ℓ, so that
β = supV > ℓ. We then have f(b) < β for some b ∈ I with b > c; by monotonicity of f we get
f(x) ≤ f(b) < β for every x such that c < x ≤ b. On the other hand ℓ ≤ f(x) for every x ∈]c, b], so
f(x) ∈ [ℓ, β[⊆ V for every x ∈]c, b], proving that limx→c+ f(x) = ℓ.

(ii) has a proof entirely analogous to (i).
(iii) Assuming f increasing, by what just proved f is discontinuous at c in the interior of I iff

f(c−) < f(c+). Now if c < d and c, d ∈ int(I) we have f(c+) ≤ f(d−), so that the intervals ]f(c−), f(c+)[
and ]f(d−), f(d+)[ are disjoint; by 1.3.2, these intervals form a countable set.

(iv) That the condition is sufficient for continuity is immediate, by (i) and (ii). The necessity is
a consequence of (i),(ii) and 1.3.4, recalling that if a set A has no minimum then there is a strictly
decreasing sequence in A converging to inf A, and analogously for maxA and supA. �

1.3.6. Increasing functions and left or right continuity.

Proposition. Let I be an open interval of R, and let f, g : I → R̃ be increasing functions; let C(f)
and C(g) be the sets of points of continuity of f and g, respectively. The following are equivalent:

(i) f(x) = g(x) for all x of a dense subset of I.
(ii) For every c ∈ I we have f(c−) = g(c−) and f(c+) = g(c+).
(iii) C(f) = C(g) and f(x) = g(x) for every x ∈ C(f) = C(g).

Proof. (i) implies (ii). Let D be the dense subset of I on which f and g agree. Then f(c−) =
limx∈D, x<c f(x) = limx∈D,x<c g(x) = g(c−) and similarly for c+.

(ii) implies (iii). We have c ∈ C(f) if and only if f(c−) = f(c+), and by (ii) this is equivalent to
g(c−) = g(c+), that is, to c ∈ C(g).

(iii) implies (i). Since I r C(f) is at most countable, C(f) is dense in I. �

Then, if we alter an increasing function f on its points of discontinuity (which may be an infinite
and even dense subset of I, see 2.2.2) in such a way that the function g so obtained is still increasing, the
functions f and g have still the same right and left limits. The right continuous modification of f is the
function f+ : I → R̃ defined by f+(x) = f(x+), while the left continuous modification is f−(x) = f(x−).
Sometimes (e.g. in Fourier analysis) it is useful to consider the emivalue modification f0, defined by

f0(x) =
f(x−) + f(x+)

2
,

whose value is the center of the interval [f(x−), f(x+)].

1.4. Boolean algebras of sets.

Definition. Given a set X , a non–empty subset A of P(X) is said to be a (boolean) algebra of
parts of X if given A,B ∈ A then A ∪B and X r A belong to A (briefly: an algebra of parts of X is a
non–empty subset of P(X) closed under union and complementation).

Since a complementation closed subset of P(X) is closed under union iff it is closed under intersection
(De Morgan’s formulae: A ∩B = X r ((X rA) ∪ (X rB)) and A ∪B = X r ((X rA) ∩ (X rB)), we
immediately get that an algebra is also closed under intersection, difference (ArB := A∩ (X rB)) and
symmetric difference (A △ B := (ArB) ∪ (B rA)).

Recall that (P(X),△,∩) is a commutative ring, with △ as addition, and ∩ as multiplication (neutral
elements are ∅, additive, and X , multiplicative). Algebras of parts of X are exactly the subrings of P(X)
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containing the multiplicative identity X . In fact, if A ⊆ P(X) contains X and is closed under symmetric
difference, then it is closed under complementation, since X r A = X △ A if A ⊆ X , and if A is also
closed under intersection then it is closed under union, as remarked above, so that it is an algebra. Since
the intersection of a set of subalgebras of P(X) is a subalgebra of P(X), given a subset E of P(X) we
can speak of the algebra generated by E in P(X), the intersection of all subalgebras of P(X) containing
E .

1.4.1. Finitely generated subalgebras of P(X). We want to describe the algebra A = A(E) generated
by a finite subset E of P(X); we shall see that in this case A is also finite, and is generated by a finite
partition of X . Let G = E ∪ {X r E : E ∈ E} (that is, G is obtained by adding to E the complement in
X of each of its elements). For every x ∈ X we set G(x) = {G ∈ G : x ∈ G} and let G(x) =

⋂

G∈G(x)G.

Clearly G(x) belongs to A (it is a finite intersection of elements of A); moreover x ∈ G(x), so that
G(x) is non–empty. And plainly G =

⋃

x∈GG(x), for every G ∈ G. We claim that if G(x) 6= G(y) then
G(x) ∩ G(y) = ∅, so that B = {G(x) : x ∈ X} is indeed a partition of X . In fact, G(x) 6= G(y) implies
G(x) 6= G(y) (otherwise G(x) = G(y), being intersections of the same set of subsets of X), and if a set E
belongs to one but not to the other, say x ∈ E but y /∈ E, then X r E ∈ G(y), so that G(x) ⊆ E but
G(y) ⊆ X r E, and G(x), G(y) are actually disjoint. Clearly B is finite, it has at most 22|E| elements.
We claim now that:

. Every element A ∈ A(E) can be written in a unique way as the union of a subset of B.
in fact, it is readily verified that the set of all these unions is an algebra, clearly contained in A(E);

and this algebra contains G ⊇ E , since, as above seen, G =
⋃

x∈GG(x) for every G ∈ G, so that it
coincides with A(E).

Thus every finite algebra A is generated by a finite partition B of X ; we call B the natural base of
A. We can describe B as the finest partition of X into elements of A; we have |A| = 2|B|.

1.4.2. Semialgebras. By a semialgebra of parts of a given set X we mean a subset E ⊆ P(X) which is
closed under intersection (A, B ∈ E implies A∩B ∈ E) and is such that for every A ∈ E the complement
X rA can be written as a finite disjoint union of elements of E ; we also assume that ∅ ∈ E . It is easy to
prove that

. If E is a semialgebra then the set A of all finite disjoint unions of elements of E is an algebra.

Proof. Clearly A is closed under intersection:

(E1 ∪ · · · ∪ Em) ∩ (F1 ∪ · · · ∪ Fn) =
⋃

{1≤j≤m, 1≤k≤n}

Ej ∩ Fk,

and hence it is closed also under complementation: for each j we have X r Ej ∈ A by hypothesis, and

X r (E1 ∪ · · · ∪ Em) =

m
⋂

j=1

(X r Ej).

�

One of the most important examples of a semialgebra is the semialgebra of all intervals of R. Remem-
ber that an interval of R is subset of R which is order–convex, that is, I ⊆ R is an interval iff x1, x2 ∈ I
and x1 < x < x2 imply x ∈ I. The associated algebra is that of plurintervals, finite disjoint unions
of intervals, the interval algebra for short. These intervals may be open, closed, half–open, reduced to
singletons, bounded or unbounded, etc..

Exercise 1.4.1. Prove that the set of left half–open intervals E = {]a, b] : a, b ∈ [−∞,+∞[} ∪
{]a,+∞[: a ∈ [−∞,+∞[} is a semialgebra of subsets of R. Same for the right half–open intervals.

Exercise 1.4.2. (Important) Let X, Y be sets, and let E and F be semialgebras of parts of X, Y
respectively. Then G = {E × F : E ∈ E , F ∈ F} is a semialgebra of parts of X × Y .

Solution. Since (E1×F1)∩(E2×F2) = (E1∩E2)×(F1∩F2) the set G is closed under intersection. And
if E×F ∈ G then X×Y r(E×F ) = ((XrE)×Y )∪(E×(Y rF )), disjoint union; if XrE = E1∪· · ·∪Em

and Y r F = F1 ∪ · · · ∪ Fn, both disjoint unions, then

X × Y r (E × F ) =









m
⋃

j=1

Ej



× (F ∪ F1 ∪ · · · ∪ Fn)



 ∪
(

n
⋃

k=1

E × Fk

)

=



1. PROLEGOMENA 7





m
⋃

j=1

Ej × F



 ∪





⋃

1≤j≤m,1≤k≤n

Ej × Fk



 ∪
(

n
⋃

k=1

E × Fk

)

,

a finite disjoint union of elements of G. �

By induction it is easy to generalize this fact to any finite family of factors: if (Xk)1≤k≤m is a finite
family of sets, and Ek is a semialgebra on Xk, for k ∈ {1, . . . ,m}, then G = {E1 × · · · × Em : Ek ∈ Ek}
is a semialgebra on

∏m
k=1Xk. If we call n−dimensional interval any subset of Rn which is of the form

I1 × · · · × In, where each Ik is an interval of R, then n−dimensional intervals in Rn are a semialgebra.

1.5. Ideals and filters. In a commutative ring (R,+, ·) an ideal is a subset I ofR which is additively
a subgroup and is such that a ∈ R and b ∈ I imply a b ∈ I. In an algebra A of parts of X an ideal is then
a subset I which is closed under symmetric difference and such that A ∈ A and B ∈ I imply A∩B ∈ I.
It is easy to see that I ⊆ A is an ideal if and only if it is closed under union and contains the subsets of
its elements which are elements of A. An ideal I of the algebra A is of course said to be proper if it is
properly contained in A, equivalently iff X /∈ I.

Exercise 1.5.1. Let X be a set. Prove that for a subset R of P(X) the following are equivalent:

(i) R is closed under symmetric difference and intersection.
(ii) R is closed under union and (set–theoretic) difference.

A non–empty subset R of P(X) closed under △ and ∩ is called a (boolean) ring of parts of X . Prove
that if R is a ring then

A = R∪ {X rA : A ∈ R}
is an algebra, and that R is an ideal of A.

Solution. (i) implies (ii) Given A, B ∈ R we have A ∪ B = (A △ B) △ (A ∩ B), and A r B = A △

(A ∩B).
(ii) implies (i) Given A, B ∈ R we have A △ B = (ArB) ∪ (B rA) and A ∩B = Ar (ArB).
Next we prove that A is an algebra. Clearly A is complementation closed. We prove that it is

closed under intersection. Given A,B ∈ R we know that A ∩ B ∈ R; if A ∈ R and X r B ∈ R then
A ∩B = Ar (X rB) ∈ R; finally, if X rA and X r B ∈ R then (X rA) ∩ (X r B) ∈ R, so that the
complement A ∩B of this set is in A. In the course of the proof we have also proved that R is an ideal
of A. �

1.5.1. Dual ideals, or filters. If I is a proper ideal of the algebra P(X) of all subsets of X , then the
set

FI = {X rA : A ∈ I}
consisting of all complements of elements of I is called filter on X . Directly stated:

Definition. If X is a set, a filter on X is subset F of P(X) such that:

(i) If U, V ∈ F then U ∩ V ∈ F ( a filter is closed under intersection).
(ii) If U ∈ F , V ∈ P(X) and V ⊇ U , then V ∈ F (a filter is closed under the formation of supersets).
(iii) The emptyset does not belong to F (equivalently under (ii): F is a proper subset of P(X)).

It is easy to see that F ⊆ P(X) is a filter if and only if I = {X r U : U ∈ F} is a proper ideal of
P(X).

A base of the filter F on X is a subset B of F such that for every F ∈ F there is B ∈ B contained
in F , F ⊇ B. Any subset B of P(X) which is the base of a filter is called filterbase. It is easy to see that

Proposition. Let X be a set, and let B be a subset of P(X), Then B is a filterbase if and only if
∅ /∈ B, and given U, V ∈ B there exists W ∈ B such that W ⊆ U ∩ V .

Of course a filterbase is base of a unique filter on X , which is

F(B) = {F ⊆ X : there is U ∈ B such that F ⊇ U}.
Given a filter F on X , consider the dual ideal I = {X r U : U ∈ F}. Then A = I ∪ F is an algebra
of parts of X , in which I is a proper ideal (the verification is immediate: clearly A is complementation
closed, and if A,B are both in I then A ∪ B = X r ((X rA) ∩ (X rB)) is also in I (since X rA and
XrB are in F their intersection is in F , hence the complement of this intersection is in I); and if either
A ∈ F or B ∈ F then A ∪B ∈ F as superset of a set in F , so that A is an algebra).
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1.5.2. Examples of filters. Given a topological space (X, τ) and a point p ∈ X , recall that a neighbor-
hood of p in X is any subset U of X containing an open set A which contains p as an element, p ∈ A ⊆ U .
It is plain that the set Ip of all neighborhoods of p in X is a filter; this filter has its open elements as a
base; in a metrizable space, also the balls centered at p with strictly positive radius are a base.

In a set X , call a subset U cofinite if its complement XrU is finite; it is clear that if X is infinite the
cofinite sets are a filter; so that the set A consisting of all finite and cofinite subsets of X is an algebra
(the cofinite algebra).

We call countable a set that is finite, or countably infinite (i.e. of the same cardinality as N), and we
call co–countable in X any subset of X whose complement in X is countable; in an uncountable set the
co–countable subsets are a filter, and countable and co–countable subsets of X together make an algebra
(the co–countable algebra).

1.6. Generalized sequences (nets). Sequences are very useful in analysis, and they suffice to
describe the topology of every metrizable space. But the need, or at least the convenience of use, for
a more general notion often arises, in various circumstances. Let’s give some definitions. Recall that a
preorder on a set is a binary relation � that is reflexive and transitive; a preordered set is a pair (D,�)
formed by a set D and a preorder � on D. A directed set is a preordered set such that for any pair
α, β ∈ D there is γ ∈ D such that α � γ and β � γ. Given a set X , and a directed set (D,�) a
generalized sequence, or net in X , indexed by D, is a function x : D → X , α 7→ xα = x(α).

1.6.1. Limit of a net in a topological space. If X has a topology, and ℓ ∈ X , we say that ℓ is a limit
of the net x : D → X if for every neighborhhood V of ℓ in X there is α(V ) ∈ D such that xα ∈ V for
every α � α(V ) (this fact is also expressed by saying that the net xα is eventually in V ). It is easy to see
that if X is an Hausdorff space then a net has at most one limit: if ℓ1, ℓ2 ∈ X , with ℓ1 6= ℓ2 then the net
x cannot converge to both ℓ1 and ℓ2: let V1, V2 be disjoint nbhds of ℓ1 and ℓ2 respectively; then there is
α1 such that xα ∈ V1 for α � α1 and there is α2 such that xα ∈ V2 for α ≥ α2; since D is directed there
is α � α1, α2, and for such an α we have xα ∈ V1 ∩ V2 = ∅, absurd.

A subset E of the directed set (D,�) is said to be cofinal in D if for every α ∈ D there is β ∈ D such
that β � α. Observe that a net x : D → X in the topological space X does not have the point p ∈ X as
limit if and only if there is a neighborhood V of p in X such that the set x←(XrV ) = {β ∈ D : x(β) /∈ V }
is cofinal in D.

1.6.2. The directed set associated to a filterbase. Every filterbase B, partially ordered by reverse
inclusion, is a directed set (given U, V ∈ B the set U ∩ V contains some W ∈ B). However the directed
set associated to B is not B itself, but the following

D = {(x, U) : U ∈ B, x ∈ U}; with the preorder (x, U) � (y, V )
def⇐⇒ U ⊇ V.

1.6.3. Nets and topology. The notion of limit of a net is not really new, it can be interpreted also
within the usual notion of limit in general topology. If (D,�) is a directed set, take an object ∞(D) /∈ D,
and consider E = D ∪ {∞(D)}; put on E the topology for which all subsets of D are open (equivalently,
all points of D are isolated in E), while a subset of E that contains ∞(D) is declared open iff it contains
a subset like Tα = {β ∈ D : β � α}, for some α ∈ D (the α−tail of D). It is easy to see that this is
a topology on E; directedness of the preorder is needed to ensure that a finite intersection of open sets
containing ∞(D) is still open. In this topology ∞(D) is the only non–isolated point of E; and a net
x : D → X , with X a topological space, has ℓ ∈ X as limit if and only if x : D → X has limit ℓ as α tends
to ∞(D) in the topological space E. In this way the notion of limit of net is reduced to the topological
notion.

Conversely, assume that T is a topological space and that c is a non–isolated point of T ; let S =
T r {c}. Then the set

Ic = {U = Z r {c} : Z a neighborhood of c in T}
is a filter of subsets of S. Take any base B for this filter and consider the directed set (D,�) associated
to B as above (1.6.2); if Y is another topological space and f : S → Y is a function we have that
limx→c f(x) = ℓ ∈ Y if and only if the net yf : D → Y defined by yf (x, U) = f(x) has limit ℓ; the proof
is immediate. In this way a topological limit may be interpreted as the limit of a net.

1.6.4. Limits of monotone nets. As with sequences, monotone nets with values in the extended real
line R̃ always have limits. Of course a net is called increasing if α � β implies x(α) ≤ x(β), and decreasing
if it implies x(α) ≥ x(β).
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Proposition. Let (D,�) be a directed set, and suppose that x : D 7→ R̃ is a monotone net. Then

limα∈D x(α) always exists in the extended real line R̃; it is supx(D) if x is increasing, and inf x(D) if x
is decreasing.

The proof is identical to the one for sequences, and is left to the reader.

1.7. Lower and upper semicontinuous functions.
1.7.1. Definition. The lower topology on R̃ = R ∪ {−∞,∞} is the topology whose open sets are,

besides ∅ and the whole space R̃, the open half–lines with a lower bound, Va = {t ∈ R̃ : t > a}, a ∈ R,
or a = −∞; it is a non–Hausdorff topology. If (X, τ) is a topological space, a function f : X → R̃ is said

to be lower semicontinuous, lsc for short, if it is continuous when the target space R̃ has this topology,
equivalently: for every a ∈ R the set {f > a} := {x ∈ X : f(x) > a} is open in X . Clearly continuous

functions, those that are continuous when R̃ has the usual topology, are also lsc functions.
1.7.2. Pointwise suprema of lsc functions are lsc.

. Let X be a topological space, and let fλ : X → R̃ be a family of lsc functions. Then the function
f : X → R̃ defined by f(x) = sup{fλ(x) : λ ∈ Λ} is also lsc.

Proof. For every a ∈ R we have

{f > a} =
⋃

λ∈Λ

{fλ > a}.

�

In particular, a supremum of a family of continuous functions is lower semicontinuous, although in
general not continuous if the family is infinite.

Exercise 1.7.1. Consider R̃ with the lower topology. Prove that a non–empty subset C ⊆ R̃ is
compact in the induced topology if and only if has a minimum. Deduce from it that if X is compact and
f : X → R̃ is l.s.c., then f has a minimum.

Solution. If C does not have a minimum in R̃, then {]a,∞] : a ∈ C} is a cover of C (because for
every x ∈ C there is a ∈ C with a < x) by sets open in the lower topology, which has no finite subcover
(for every finite subset {a1, . . . , am} of C we have

⋃m
k=1]ak,∞] =]a,∞] where a = min{a1, . . . , am} ∈ C,

so that a ∈ C r (
⋃m

k=1]ak,∞]), and {]ak,∞] : k = 1, . . . , m} is not a subcover). So if C 6= ∅, and minC
does not exist, then C is not compact. And if minC = a exists, this minimum is either −∞ or not; if it is
−∞ then the only open set containing it is the entire space; otherwise, given an open cover (]aλ,∞])λ∈Λ
of C we must have a ∈]aλ,∞] for some λ ∈ Λ, and then C ⊆]aλ,∞] for this λ.

Since the continuous image of a compact space is compact, f(X) must be compact in the lower
topology, hence min f(X) must exist. �

1.7.3. Upper topology. To complete the picture we have to define also the upper topology of R̃, the
topology whose non trivial open sets are the upper bounded half–lines {t < a}, with a ∈ R or a = ∞.

Given a topological space X , the upper semicontinuous functions, usc for short, are the f : X → R̃
continuous when the range space has this topology. Clearly, if X is a topological space and f : X → R̃
is a function then f is if and only if {f < a} is open in X , for every a ∈ R.

And a pointwise infimum of usc functions is still usc, etc. A function f is usc iff its opposite −f is
lsc.

1.7.4. The usual topology. The usual topology of R̃ has the open half–lines ]b,∞] and [−∞, a[, with
a, b ∈ R as a subbase for the open sets, in the sense that finite intersections of thes half–lines, the open
intervals ]a, b[ and the half–lines themselves are a base (see 1.3). It follows that a function f : X → R̃
from the topological space X the R̃ with the usual topology is continuous if and ony if it is both lower
semicontinuous and upper semicontinuous. Observe that the characteristic function of an open set is lsc,
the characteristic function of a closed set is usc.

1.8. Limsup and liminf. There are various situation in which the use of the notion of limit is
precluded from the fact that a limit does not always exist. For real valued sequences, or more generally
for real valued functions, the presence of a complete order on R̃ = R∪{−∞,+∞} allows us to define two
notions weaker than the limit notion, but always existent; these notions are fruitful in many situations,
and are used to formulate various important theorems of mathematical analysis.
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1.8.1. Definitions. Let (D,�) be a directed set, and let x : D → R̃ be a generalized sequence with

values in the extended real line R̃. For each α ∈ D we set

x∗(α) = inf{x(β); β � α}; x∗(α) = sup{x(β) : β � α}.
Observe that x∗ is an increasing net, while x∗ is decreasing: this is obvious, since if β � α the set
{xγ : γ � β} is a subset of the set {xγ : γ � α}, by transitivity of the preorder, so that it has a larger

infimum, and a smaller supremum. Then these nets have a limit in the space R̃ (see 1.6.4). We set

Definition.

lim inf
α∈D

x(α) = lim
α∈D

x∗(α)

(

= sup
α∈D

x∗(α) = sup
α∈D

{inf{x(β) : β � α}}
)

;

lim sup
α∈D

x(α) = lim
α∈D

x∗(α)

(

= inf
α∈D

x∗(α) = inf
α∈D

{sup{x(β); β � α}}
)

.

1.8.2. First properties; limits. Notice that if a ∈ R̃, and a > lim infα∈D x(α) then a cannot be the
limit of the net (not even in the lower topology): if a1 < a, but a1 > lim infα∈D x(α) then for every
α ∈ D there is β � α such that x(β) < a1, and for no α ∈ D the set {x(β) : β � α} is contained in the
neighborhood ]a1,+∞] of a. Similarly, if a < lim supα∈D x(α) then a is not a limit of the net x (not even
in the upper topology).

. If x : D → R̃ is a net then

(*) lim inf
α∈D

x(α) ≤ lim sup
α∈D

x(α).

Moreover the net has a limit in R̃ if and only if lim supα∈D x(α) ≤ lim infα∈D x(α); in this case we have
lim supα∈D x(α) = lim infα∈D x(α), and this common value is the limit of the net.

Proof. For every α ∈ D we have x∗(α) ≤ x(α) ≤ x∗(α); passing to the limit in the inequality x∗(α) ≤
x∗(α) we get lim infα∈D x(α) ≤ lim supα∈D x(α). Then lim supα∈D x(α) ≤ lim infα∈D x(α) is equivalent
to lim infα∈D x(α) = lim supα∈D x(α); if this happens then also limα∈D x(α) is this common value (simply
apply the three functions theorem (it. teorema dei carabinieri) to the inequality x∗(α) ≤ x(α) ≤ x∗(α)).
And if lim infα∈D x(α) < lim supα∈D x(α), then the limit of the net cannot exist, by what observed
just before the statement (a limit has to be not strictly larger than lim inf and not strictly smaller that
lim sup). �

1.8.3. Composition with monotone functions.

. Let (D,�) be a directed set, let x : D → I be a net, where I is a closed interval of R̃, and let

ϕ : I → R̃ be continuous and monotone. Then

lim inf
α∈D

ϕ ◦ x(α) = ϕ(lim inf
α∈D

x(α)); lim sup
α∈D

ϕ ◦ x(α) = ϕ(lim sup
α∈D

x(α)) if ϕ is increasing

lim inf
α∈D

ϕ ◦ x(α) = ϕ(lim sup
α∈D

x(α)); lim sup
α∈D

ϕ ◦ x(α) = ϕ(lim inf
α∈D

x(α)) if ϕ is decreasing.

Proof. The easy proof is left to the reader: it uses the fact that if ϕ is continuous and increasing then
ϕ(inf A) = inf ϕ(A) and supϕ(A) = ϕ(supA) for every A ⊆ I, while continuous decreasing functions
exchange inf and sup (see 1.3.5). Notice in particular that lim infα∈D(−x(α)) = − lim supα∈D x(α) and
lim supα∈D(−x(α)) = − lim infα∈D x(α). �

Example 1.8.1. For D = R , c = +∞ we have lim infx→+∞ sinx = −1, lim supx→+∞ sinx = 1

(trivially: for every punctured nbhd U of +∞ in R̃ we have inf sinU = −1, sup sinU = 1). And
lim infx→+∞ tanhx cos2 x = 0, lim supx→+∞ tanhx cos2 x = 1: also in this case, if f(x) = tanhx cos2 x

we have inf f(U) = 0 and sup f(U) = 1 for every punctured nbhd U of +∞ in R̃ (for a more detailed
analysis see at the end).

1.8.4. Limsup and liminf for sequences. Particularly important is the case of sequences (D = N,
c = ∞). Let us review the definition in this case, in detail. Given a sequence n 7→ xn of real numbers,
for every m ∈ N we set

x∗m = inf{xn : n ≥ m}; x∗m = sup{xn : n ≥ m},
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so that x∗m is an increasing sequence of extended real numbers, and x∗m a decreasing one; moreover

x∗m ≤ xn ≤ x∗m for every n,m ∈ N with n ≥ m. As monotone sequences in the order–complete set R̃
these sequences have a limit:

lim
m→∞

x∗m = sup{x∗m : m ∈ N} = lim inf
n→∞

xn;

lim
m→∞

x∗m = inf{x∗m : m ∈ N} = lim sup
n→∞

xn.

Exercise 1.8.2. For a sequence (xn)n∈N of real numbers the following are equivalent:

(i) The sequence has no lower bound (resp: no upper bound) in R.
(ii) For some m ∈ N we have x∗m = −∞ (resp: x∗m = +∞).
(iii) For every m ∈ N we have x∗m = −∞ (resp: x∗m = +∞).

Exercise 1.8.3. Let (sn)n≥1 be the sequence inductively defined by

s1 = 1;

s2n = s2n−1 − 1− (−1)n+1

n+ 1
(n ≥ 1);

s2n+1 = 1 + s2n (n ≥ 1) .

Find

lim sup
n→+∞

sn, lim inf
n→+∞

sn .

Exercise 1.8.4. If xn = (−1)n(n+ 1)/(n− 1/2), determine lim infn→∞ xn and lim supn→∞ xn.

Solution. Notice that x 7→ (x+ 1)/(x− 1/2) is strictly decreasing for x > 1/2 (derivative −3/(2(x−
1/2)2)), and limx→+∞(x+1)/(x− 1/2) = 1. Excluding n = 0, the subsequence of terms of even index is
decreasing to 1, while that of terms of odd index is increasing to −1. This clearly shows that

lim inf
n→∞

xn = −1; lim sup
n→∞

xn = 1.

For a more formal solution: given m ≥ 1 we have:

for m odd : x∗m = − m+ 1

m− 1/2
; x∗m =

(m+ 1) + 1

(m+ 1)− 1/2

for m even : x∗m = − (m+ 1) + 1

(m+ 1)− 1/2
; x∗m =

m+ 1

m− 1/2
.

�

Very often one writes maxlim or minlim in place of lim sup and lim inf. This may look surprising: in
elementary calculus one is always at pains to distinguish between the quite different notions of maximum
and supremum, or minimum and infimum! A justification is given by the following proposition. Given
a sequence (xn)n∈N (in a metrizable space X) all the points of the space X which are limits of some
subsequence (xµ(k))k∈N are called cluster points (ital: valori di aderenza), sometimes also limit points, of
the original sequence (xn)n∈N in X . Then:

Proposition. Let (xn)n∈N be a sequence of real numbers. The set of cluster points in R̃ of the
sequence has a minimum, which is lim infn→∞ xn, and a maximum, which is lim supn→∞ xn.

Proof. The proof is at the end of the section. �

1.8.5. Operations with limsup and liminf.

. Let (D,�) be a directed set, and let x, y : D → R̃ be generalized sequences.

(0) if x(α) ≤ y(α) for every α ∈ D , then

lim inf
α∈D

x(α) ≤ lim inf
α∈D

y(α); lim sup
α∈D

x(α) ≤ lim sup
α∈D

y(α)

Assume now that (x+ y)(α) = x(α) + y(α) is defined for every α ∈ D. Then
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(i) Liminf is superadditive and limsup is subadditive, that is

lim inf
α∈D

(x(α) + y(α)) ≥ lim inf
α∈D

x(α) + lim inf
α∈D

y(α);

lim sup
α∈D

(x(α) + y(α)) ≤ lim sup
α∈D

x(α) + lim sup
α∈D

y(α)

provided that the right-hand sides are meaningful, i.e no +∞−∞ or −∞+∞ is encountered.
(ii) If limα∈D y(α) exists in R̃, then additivity holds. That is, we have

lim inf
α∈D

(x(α) + y(α)) = lim inf
α∈D

x(α) + lim
α∈D

y(α)

lim sup
α∈D

(x(α) + y(α)) = lim sup
α∈D

x(α) + lim
α∈D

y(α)

again provided that the right-hand sides are meaningful.

Proof. (0) is trivial. (i) We prove only the assertion on lim sup. Given α ∈ D we have for every
β � α:

(x + y)(β) = x(β) + y(β) ≤ x∗(α) + y∗(α),

so that, taking suprema on the left–hand side for β � α we get

(x+ y)∗(α) = sup{x(β) + y(β) : β � α} ≤ x∗(α) + y∗(α);

taking limits as α varies in D we get the asserted inequality.

Remark. The inequality is in general strict. For instance if f(x) = sinx and g(x) = − sinx we have
lim supx→+∞ f(x) = lim supx→+∞ g(x) = 1, so that the sum of the limsups is 2, but f + g = 0 has limit
0.

We prove (ii) again for lim sup only. Writing a = lim supα∈D x(α) and b = limα∈D y(α) we need only
to prove that

lim sup
α∈D

(x+ y)(α) ≥ a+ b.

We can assume a+ b > −∞, since otherwise the above inequality is trivial. Then a > −∞ and b > −∞.
Given a real number c < a + b we can pick real numbers u < a and v < b such that u + v > c; there
is now ᾱ ∈ D such that y(α) > v for α � ᾱ; and since u < a ≤ x∗(α) we can pick β � α such that
x(β) > u. It follows that (x + y)(β) = x(β) + y(β) > u + v so that (x + y)∗(α) > u + v > c for every
α � ᾱ. This implies lim supα∈D(x+ y)(α) ≥ c, and since c is an arbitrary number smaller that a+ b, we
obtain lim supα∈D(x+ y)(α) ≥ a+ b, as required. �

Exercise 1.8.5. Let an and bn be real sequences, and let a, b ∈ R. Assume that

lim inf
n→∞

an ≥ a, lim inf
n→∞

bn ≥ b; lim sup
n→∞

(an + bn) ≤ a+ b.

Prove that then limn→∞ an = a and limn→∞ bn = b.

1.8.6. Multiplicative versions. For positive real valued functions there of course is a multiplicative
analogue of the previous result, whose proof is entirely left to the reader:

. Let (D,�) be a directed set, and let x, y : D → [0,∞] be generalized sequences. Assume that for
every α ∈ D the product x(α) y(α) is defined. Then:

(i) Liminf is supermultiplicative and limsup is submultiplicative, that is

lim inf
α∈D

(x(α) y(α)) ≥ (lim inf
α∈D

x(α)) (lim inf
α∈D

y(α));

lim sup
α∈D

(x(α) y(α)) ≤ (lim sup
α∈D

x(α)) (lim sup
α∈D

y(α))

provided that the right-hand sides are meaningful, i.e no 0 (±∞) or (±∞) 0 is encountered.
(ii) If limα∈D y(α) exists in [0,∞], then multiplicativity holds. That is, we have

lim inf
α∈D

(x(α) y(α)) = (lim inf
α∈D

x(α)) ( lim
α∈D

y(α))

lim sup
α∈D

(x(α) y(α)) = (lim sup
α∈D

x(α)) ( lim
α∈D

y(α))

again provided that the right-hand sides are meaningful.
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1.8.7. Some applications. As a first application we give the true statement of the root test for the
absolute convergence of a numerical series.

. Root test Let
∑∞

n=0 an be a series of complex numbers, and let α = lim supn→∞ |an|1/n. If α < 1
then the series is absolutely convergent, if α > 1 then the series does not converge.

Proof. To say that lim supn→∞ |an|1/n = α < 1 implies that if α < ρ < 1 there is m ∈ N such
that |an|1/n ≤ ρ for n ≥ m. Then |an| ≤ ρn for n ≥ m, and the series converges since its m−tail
is dominated by a geometric series of ratio ρ < 1. And if α > 1, given ρ with 1 < ρ < α we have
|an|1/n > ρ ⇐⇒ |an| > ρn for infinitely many n ∈ N, so that lim supn→∞ |an| = +∞, and the series
cannot converge, since its general term does not tend to 0.

�

We also immediately get

. Cauchy–Hadamard criterion for the radius of convergence Given a power series
∞
∑

n=0

an z
n

let R = 1/ lim supn→∞ |an|1/n (understanding that R = 0 if the denominator is ∞, R = ∞ if the
denominator is 0). Then the power series is absolutely convergent if |z| < R, and is not convergent for
|z| > R.

Proof. Set α = lim supn→∞ |an|1/n. Then, assuming z 6= 0 we have lim supn→∞ |an zn|1/n =
|z| lim supn→∞ |an|1/n = |z|α, so that by the root test the series converges if |z|α < 1, does not converge
if |z|α > 1 �

The quantity R so obtained is for obvious reasons called radius of convergence of the given power
series.

Given a power series
∑∞

n=0 an z
n, is derived series is the series

∑∞
n=1 nan z

n−1. An immediate
application of 1.8.6, (ii) is

. A power series and its derived series have the same radius of convergence.

Proof. Recall that limn→∞ n
1/n = 1 (n1/n = exp(log n/n) and limn→∞ logn/n = 0). Then

lim sup
n→∞

(n|an|)1/n = lim
n→∞

n1/n lim sup
n→∞

|an|1/n = lim sup
n→∞

|an|1/n.

�

1.8.8. Another application: a limit related to subadditive sequences. A sequence n 7→ x(n) of real
numbers is said to be subadditive if x(m + n) ≤ x(m) + x(n) for every m,n ∈ N. An interesting and
useful result on subadditive sequences is the:

. Fekete lemma. If (x(n))n∈N is a subadditive sequence of real numbers then

lim
n→∞

x(n)

n
= inf

{

x(n)

n
: n ≥ 1

}

(finite or −∞).

Proof. Plainly

lim inf
n→∞

x(n)

n
≥ inf

{

x(n)

n
: n ≥ 1

}

.

If we prove that for every m ≥ 1 we have lim supn→∞ x(n)/n ≤ x(m)/m we conclude that

lim sup
n→∞

x(n)

n
≤ inf

{

x(m)

m
: m ≥ 1

}

≤ lim inf
n→∞

x(n)

n
,

and our claim is proved. Observe first that by subadditivity we have x(mn) = x(n + · · · + n) ≤
x(n) + · · · + x(n) = mx(n) for every m, n ≥ 1. We can write n = q(n)m + r(n), with q(n) = [n/m]
(integer part of n/m) and r(n) ∈ {0, . . . ,m− 1}. By subadditivity we get

x(n) = x(q(n)m+ r(n)) ≤ x(q(n)m) + x(r(n)) ≤ q(n)x(m) + x(r(n)) =⇒ x(n)

n
≤ q(n)

n
x(m) +

x(r(n))

n
,
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which implies

x(n)

n
≤ 1

m+ r(n)/q(n)
x(m) +

x(r(n))

n
≤ 1

1 + r(n)/(n− r(n))

x(m)

m
+
µ(m)

n
,

where µ(m) = max{x(r) : r = 0, . . . ,m− 1}. As n tends to infinity, n− r(n) ≥ n−m+ 1 also tends to
infinity and the rightmost hand side tends to x(m)/m; taking lim sup of both sides then gives:

lim sup
n→∞

x(n)

n
≤ lim sup

n→∞

(

1

1 + (r(n)/(n − r(n))

x(m)

m
+
µ(m)

n

)

=
x(m)

m
.

�

Subadditivity is often checked with the following fact:

. Let q : [0,+∞[→ R be concave and such that q(0) = 0. Then

q(x+ y) ≤ q(x) + q(y) for every x, y ∈ [0,+∞[.

Proof. Assume that x, y > 0. Then the line connecting (0, q(0) = 0) with ((x + y), q(x + y)) has
equation Y = (q(x + y)/(x+ y))X ; by concavity we get

q(x) ≥ q(x+ y)

x+ y
x; q(y) ≥ q(x+ y)

x+ y
y =⇒ q(x) + q(y) ≥ q(x+ y).

�

But in this case the result of Fekete’s lemma is immediate: q(x)/x is decreasing, by concavity of q,
hence

lim
x→+∞

q(x)

x
= inf

{

q(t)

t
: t > 0

}

.

A function q : [0,+∞[→ R may however be subadditive and zero at 0 without being concave, e.g. the
function q(x) = | sinx|: we have

q(x+ y) =| sin(x + y)| = | sinx cos y + cosx sin y| ≤ | sinx cos y|+ | cosx sin y| =
| sinx| | cos y|+ | cosx| | sin y| ≤ | sinx|+ | sin y| = q(x) + q(y).

1.8.9. Some proofs and more observations.

Solution. Detailed solution of Exercise 1.8.1. Every nbhd of +∞ contains a half line as [a,+∞[, in
particular points as kπ and π/2 + kπ for k ∈ N large. Then 0 ≤ f(x) < 1 for x ∈ [a,+∞[ (if a > 0), in
particular 0 ≤ f∗([a,+∞[) ≤ f∗([a,+∞[) ≤ 1. But f(kπ) = tanh(kπ) and f(π/2 + kπ) = 0 so that

f∗([a,+∞[) = min f([a,+∞[) = 0; f∗([a,+∞[) = sup f([a,+∞[) ≥ sup{f(kπ) : k ≥ a} = 1.

�

Proof. (of 1.8.4). Recall that a subsequence of the sequence (xn)n∈N is a sequence yn = xν(n), where
µ : N → N is a strictly increasing function. Given m ∈ N we then have

y∗m = inf{yn : n ≥ m} = inf{xν(n) : n ≥ m} ≥ inf{xk : k ≥ ν(m)} = x∗ν(m);

the inequality is due to the fact that {xν(n) : n ≥ m} ⊆ {xk : k ≥ ν(m)}. Passing to the limit in the
inequality y∗m ≥ x∗ν(m) we get

lim inf
n→∞

yn = lim
m→∞

y∗m ≥ lim
m→∞

x∗ν(m) = lim
m→∞

x∗m = lim inf
n→∞

xn.

We have proved that every cluster point of a sequence is not smaller that the limit inferior of the sequence.
It remains to prove that the limit inferior α is a cluster point, that is, the limit of a subsequence. We
consider this obvious if α = −∞; we assume then α ∈ R or α = +∞; we may skip the second case, since
then the sequence has +∞ as a limit, and hence as only cluster point. For m ∈ N let

A(m) = {n ∈ N : xn < α+ 1/(m+ 1)};
clearly these sets are all infinite sets. Define now inductively ν : N → N as ν(0) = minA(0) and
ν(m) = min{n ∈ A(m), n > ν(m−1)}; then µ is strictly increasing and x∗ν(m) ≤ xν(m) < α+1/(m+1)}.
Similarly for limsup. �
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Solution. (of 1.8.3) We get s2 = −1/2; s3 = 1 + (−1/2) = 1/2; observe that

s2n+2 = s2(n+1) = s2n+1 − 1− (−1)n+2

n+ 2
= s2n +

(−1)n+1

n+ 2

so that

s2n+2 = −1

2
+

1

3
− 1

4
+ · · ·+ (−1)n+1

n+ 2
,

and

s2n+3 = 1− 1

2
+

1

3
− 1

4
+ · · ·+ (−1)n+1

n+ 2
.

Recalling that log 2 = limm→∞
∑m

n=1(−1)n+1/n we get

lim inf
n→∞

sn = log 2− 1; lim sup
n→∞

sn = log 2 . �

�

Solution. (of exercise 1.8.5) Write an = (an + bn)− bn. Then

lim sup
n→∞

an = lim sup
n→∞

((an + bn)− bn) ≤ lim sup
n→∞

(an + bn) + lim sup
n→∞

(−bn) ≤ a+ b− lim inf
n→∞

bn ≤

≤ a+ b− b = a.

Then lim supn→∞ an ≤ a ≤ lim infn→∞ an, equivalently limn→∞ an = a. In the same way one sees that
limn→∞ bn = b. �

1.9. Limsup and liminf of sequences of real valued functions. Sequences of real valued
functions, or even of extended real valued functions have naturally pointwise suprema and infima, and
hence also pointwise limsup and liminf: the notion presents no difficulty. Given a sequence (fn)n∈N of

functions fn : X → R̃ = R ∪ {−∞,∞}, where X is any set, we consider for every m ∈ N:

f∗m =
∧

n≥m

fn : X → R̃ defined by f∗m(x) := inf{fn(x) : n ≥ m},

and

f∗m =
∨

n≥m

fn : X → R̃ defined by f∗m(x) := sup{fn(x) : n ≥ m},

the sequence (f∗m is increasing and f∗m is decreasing; the limits f∗ and f∗ of these sequences are, by
definition, the functions lim infn→∞ fn and lim supn→∞ fn, so that we have, for every x ∈ X :

(lim inf
n→∞

fn)(x) = lim inf
n→∞

fn(x); (lim sup
n→∞

fn)(x) = lim sup
n→∞

fn(x).

Exercise 1.9.1. Let fn : R → R be given by fn(x) = (−1)n |x|1/n. Find lim infn→∞ fn and
lim supn→∞ fn.

(We get lim infn→∞ fn(x) = −1 and lim supn→∞ fn(x) = 1 if x ∈ R r {0}; and lim infn→∞ fn(0) =
lim supn→∞ fn(0) = 0).

1.9.1. Limsup and liminf of sequences of sets. Very important in measure theory is the case of liminf
and limsup of sequences of subsets (An)n∈N of a given set X : subsets of X are identified with their charac-
teristic functions, and obviously both limsups and liminfs of characteristic functions are still caracteristic
functions, in fact we have that

∧

n≥m χAn
is the characteristic function of the intersection

⋂

n≥mAn,

while
∨

n≥m χAn
is the characteristic function of the union

⋃

n≥mAn, so that

lim inf
n→∞

An =
∞
⋃

m=0





⋂

n≥m

An



 ; lim sup
n→∞

An =
∞
⋂

m=0





⋃

n≥m

An



 .

Notice that lim infn→∞An may be characterized as the set of all x ∈ X which are eventually (it: defini-
tivamente) in the sequence, while lim supn→∞ An is the set of all x ∈ X which are frequently, or infinitely
often, in the sequence, that is, belong to An for infinitely many indices n ∈ N.

Exercise 1.9.2. In X = R2 for every n ∈ N let An = Epi(pn) be the epigraphic of the power function
pn(x) = xn, that is An = {(x, y) : x ∈ R, y ≥ xn}. Describe lim infn→∞An and lim supn→∞An.
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(Results:
lim inf
n→∞

An = (]− 1, 1[×]0,∞[) ∪ ({−1, 1} × [1,∞[) ∪ {(0, 0)}
and

lim sup
n→∞

An =

(]−∞,−1[×R) ∪ ({−1} × [−1,∞[) ∪ (]− 1, 0]× [0,∞[) ∪ (]0, 1[×]0,∞[) ∪ ({1} × [1,∞[).)

Exercise 1.9.3. We say that a sequence (An)n of subsets of a set X has a limit if lim infnAn =
lim supAn (this common value is the limit of the sequence). Prove that the sequence has a limit if and
only if for each x ∈ X there is n(x) ∈ N such that we either have x ∈ An for every n ≥ n(x), or x /∈ An

for every n ≥ n(x).

Exercise 1.9.4. For the sequence xn = n2 sin(nπ/2)/(1 + n2) compute lim inf and lim sup.

Exercise 1.9.5. State the theorem on the behavior of lim inf ϕ ◦ f and lim supϕ ◦ f when f is
post–composed with a monotone function ϕ.

For the sequence xn = exp(3n/(n + 1) + cos(nπ)) compute lim inf and lim sup. Compute also
lim supx→+∞ exp(3x/(x+ 1) + cos(πx)).

Exercise 1.9.6. (i) Prove the

. Ratio test for the convergence of a series. Let (cn)n∈N be a sequence of non–
zero complex numbers. If lim supn→∞(|cn+1|/|cn|) < 1 then the series

∑∞
n=0 cn is absolutely

convergent. If lim infn→∞(|cn+1|/|cn|) > 1 then the series does not converge.

(ii) Find a sequence an > 0 of strictly positive real numbers such that the series
∑∞

n=0 an is con-
vergent, but lim supn→∞(an+1/an) = +∞.

From now on a = (an)n∈N is a sequence of strictly positive real numbers, an > 0; we consider the
power series

∑∞
n=0 an z

n; let R = Ra be its radius of convergence.

(iii) Prove that R = lim infn→∞ a
−1/n
n .

(iv) (Requires some labor) Prove that

lim inf
n→∞

an+1

an
≤ lim inf

n→∞
a1/nn ≤ lim sup

n→∞
a1/nn ≤ lim sup

n→∞

an+1

an
,

and deduce from this that if limn→∞ an+1/an exists in R̃, then also limn→∞ a
1/n
n exists and

coincides with the previous limit.
(v) Compute limn→∞(n!)1/n/n.

Solution. (of Ex1.9.4) The function x 7→ x2/(1+x2) is increasing on [0,+∞[(it has derivative 2x/(1+
x2)2) and has limit 1 as x → +∞; notice that |xn| < 1 for every n. We have sin(nπ/2) = 0 if n ∈ 2N is
even, sin(nπ/2) = 1 if n = 4k + 1, sin(nπ/2) = −1 if n = 4k + 3. For every m ∈ N there are numbers
of the form 4k + 1 and of the form 4k + 3 larger than m, then the sequence has terms of the form
xn = n2/(1 + n2) and of the form xn = −n2/(n2 + 1) for infinitely many n > m; and no term is in
absolute value larger than 1. It follows that for every m ∈ N

inf{xn : n ≥ m} = −1; sup{xn : n ≥ m} = 1;

hence lim infn→−∞ xn = −1 and lim supn→∞ xn = 1.
Alternatively: every subsequence of the given sequence must have a subsequence in common with

either the subsequence x2k or with the subsequence x4k+1 or x4k+3, since N = {2k : k ∈ N} ∪ {4k + 1 :
k ∈ N} ∪ {4k + 3 : k ∈ N}. These subsequences converge to 0, 1 and −1 respectively. Then the cluster
points of the sequence are {−1, 0, 1} and the minimum is −1, the maximum is 1.

�

Solution. (of Ex 1.9.5) For the statement see 1.8.5. Since exp is continuous and strictly increasing
we have

lim inf
n→∞

exp(3n/(n+ 1) + cos(nπ)) = exp(lim inf
n→∞

(3n/(n+ 1) + cos(nπ)));

lim sup
n→∞

exp(3n/(n+ 1) + cos(nπ)) = exp(lim sup
n→∞

(3n/(n+ 1) + cos(nπ)));

since cos(nπ) = (−1)n we have lim infn→∞ cos(nπ) = −1 and lim supn→∞ cos(nπ) = 1; and

lim
n→∞

(3n/(n+ 1) = 3,
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so that:

lim inf
n→∞

(

3n

n+ 1
+ cos(nπ)

)

= 3− 1 = 2; lim sup
n→∞

(

3n

n+ 1
+ cos(nπ)

)

= 3 + 1 = 4;

and finally

lim inf
n→∞

xn = e2; lim sup
n→∞

xn = e4.

A discussion identical to the preceding one proves that also:

lim sup
x→+∞

exp

(

3x

x+ 1
+ cos(πx)

)

= e4.

�

Solution. (of Ex 1.9.6). (i) Given ρ with lim supn→∞(|cn+1|/|cn|) < ρ < 1 we have that there is
m ∈ N such that sup{|cn+1|/|cn| : n ≥ m} < ρ, equivalently |cn+1|/|cn| < ρ for n ≥ m. Then we
get |cm+1| < ρ |cm|, |cm+2| < ρ |cm+1| < ρ2 |cm|, and by induction we easily see that |cn| < ρn−m |cm|
for every n ≥ m. Then the series

∑∞
n=m |cn| is dominated by the series

∑∞
n=m ρn (|cm|/ρm), which

converges since 0 < ρ < 1, and the series
∑∞

n=0 cn is then absolutely convergent. In the same way,
if lim infn→∞ |cn+1|/|cn| > 1, given ρ with 1 < ρ < lim infn→∞ |cn+1|/|cn| we have that there exists
m ∈ N such that |cn+1|/|cn| > ρ for n ≥ m, and this implies, in analogy to what above proved, that
|cn| > ρn−m |cm| for n ≥ m; this implies clearly limn→∞ |cn| = +∞, forbidding the convergence of the
series

∑∞
n=0 cn.

(ii) Simply take an = 1/4n for n even, and an = 1/2n for n odd. The series converges (we can also
easily compute the sum) but a2n+1/a2n = (1/22n+1)/(1/42n) = 24n/22n+1 = 22n−1 tends to +∞.

Remark. The root test proves convergence of this series, in fact we have lim supn→∞ a
1/n
n = 1/2 < 1.

This shows that the root test is more sensitive than the ratio test in determining the convergence of a
series.

(iii) From the Cauchy–Hadamard criterion we know that R = 1/ lim supn→∞ a
1/n
n ; by the theorem

on composition with decreasing maps, applied to the map ϕ(x) = 1/x, decreasing homeomorphism of

[0,+∞] onto itself, we get that R = ϕ(lim supn→∞ a
1/n
n ) = lim infn→∞ ϕ(a

1/n
n ) = lim infn→∞ a

−1/n
n .

(iv) Let us first prove the leftmost inequality. If lim infn→∞ an+1/an = 0, there is nothing to prove.
If not, we have that ρm = inf{an+1/an : n ≥ m} > 0 for m large enough. As seen above in the proof of

(i), second statement, this implies an ≥ ρn−mm am, for every n ≥ m. Then a
1/n
n ≥ ρm(am/ρ

m
m)1/n; taking

lim inf of both sides we get lim infn→∞ a
1/n
n ≥ ρm, for every m ∈ N (we have limn→∞(am/ρ

m
m)1/n = 1).

Since lim infn→∞ an+1/an = sup{ρm : m ∈ N} we conclude that lim infn→∞ a
1/n
n ≥ lim infn→∞ an+1/an,

as desired.
It remains to prove the rightmost inequality. This can be done with an argument as above, or as

follows: let β = lim supn→∞ an+1/an. For every z ∈ C we have

lim sup
n→∞

|an+1 z
n+1|/|an zn| = |z| lim sup

n→∞
an+1/an = |z|β;

then, if |z|β < 1, equivalently if |z| < 1/β, the series converges, by the ratio test, so that |z| < 1/β

implies |z| ≤ R. This of course implies 1/β ≤ R = 1/ lim supn→∞ a
1/n
n , so that β ≥ lim supn→∞ a

1/n
n .

(v) Setting an = n!/nn we get

an+1

an
=

(n+ 1)!

(n+ 1)n+1

nn

n!
=

nn

(n+ 1)n
=

1

(1 + 1/n)n
,

so that limn→∞ an+1/an = 1/e. It follows that limn→∞(n!)1/n/n = 1/e.

Remark. We have obtained that the sequence (n!)1/n is asymptotic, as n → ∞, to the sequence
n/e, a fact often useful in estimating limits of sequences.

�
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1.9.2. de l’Hôpital’s rule. As a further important application of the notions of lim inf and lim sup we
present the following result, which gives an immediate proof of the de l’Hôpital’s rule:

. Let I be an interval of R, and let c ∈ R̃ be an accumulation point of I; assume that f, g : I r {c} →
R are differentiable functions, with g′(x) 6= 0 for every x ∈ I r {c}, and that either limx→c f(x) =
limx→c g(x) = 0, or limx→c |g(x)| = ∞. Then

lim inf
x→c

f ′(x)

g′(x)
≤ lim inf

x→c

f(x)

g(x)
≤ lim sup

x→c

f(x)

g(x)
≤ lim sup

x→c

f ′(x)

g′(x)
.

Proof. We assume that c = sup I so that all the limits are really for x→ c−; an analogous proof will
evidently work for x → c+. Also, we prove only the third inequality, the first is entirely analogous (or
can be obtained from the third by considering (−f)/g instead of f/g). If lim supx→c f

′(x)/g′(x) = +∞,
there is nothing to prove. Otherwise, given a real number β > lim supx→c f

′(x)/g′(x) we prove that

lim supx→c

f(x)

g(x)
≤ β, which clearly implies the desired inequality. We have a left punctured nbhd [γ, c[

of c in I such that f ′(x)/g′(x) ≤ β for every x ∈ [γ, c[. Given two points x, u ∈ [γ, c[, with x 6= u, the
Cauchy theorem of ”finite increments” says that

f(x)− f(u)

g(x)− g(u)
=
f ′(ξ)

g′(ξ)
for some ξ in the open interval with extremes x, u;

since clearly ξ ∈ [γ, c[ we have proved that

(*)
f(x)− f(u)

g(x)− g(u)
≤ β for every x, u ∈ [γ, c[, x 6= u.

Now, if limu→c f(u) = limu→c g(u) = 0 we keep x ∈ [γ, c[ fixed and take the limit in (*) for u → c,
obtaining f(x)/g(x) ≤ β for every x ∈ [γ, c[, so that lim supx→c f(x)/g(x) ≤ β, as desired. In the other
case, of a diverging g, we write

f(x)− f(u)

g(x)− g(u)
=

f(x)

g(x)− g(u)
− f(u)

g(x)− g(u)
=
f(x)

g(x)

1

1− g(u)/g(x)
− f(u)

g(x)− g(u)
,

so that from(*) we get

f(x)

g(x)

1

1− g(u)/g(x)
≤ β +

f(u)

g(x)− g(u)
x, u ∈ [γ, c[, x 6= u.

We now keep u ∈ [γ, c[ fixed; since limx→c(1− g(u)/g(x)) = 1, for x close enough to c, say x ∈ [γ′, c[ with
γ′ ≥ γ we have (1 − g(u)/g(x)) > 0 so that we can multiply both sides of the preceding inequality by it
obtaining

f(x)

g(x)
≤
(

β +
f(u)

g(x)− g(u)

) (

1− g(u)

g(x)

)

, for every x ∈ [γ′, c[;

taking lim sup in both sides:

lim sup
x→c

f(x)

g(x)
≤ lim sup

x→c

(

β +
f(u)

g(x)− g(u)

) (

1− g(u)

g(x)

)

= lim
x→c

(

β +
f(u)

g(x)− g(u)

) (

1− g(u)

g(x)

)

= β,

as desired. �

Exercise 1.9.7. Using the above result prove that if f :]0,∞[→ R is bounded and everywhere
differentiable then

lim inf
x→∞

f ′(x) ≤ 0 ≤ lim sup
x→∞

f ′(x).

Deduce from it what in Italy is called teorema dell’asintoto: if f is bounded and limx→∞ f
′(x) exists in

R̃, then this limit is zero (consider f(x)/x . . . ). Give an example of an f with limx→∞ f(x) = 0, but

lim inf
x→∞

f ′(x) < 0 < lim sup
x→∞

f ′(x),

and an example of an f with limx→∞ f(x) = ∞, but limx→∞ f
′(x) = 0

Exercise 1.9.8. Compute lim supx→∞(cosx+ sinx), and observe that

lim sup
x→∞

(cosx+ sinx) < lim sup
x→∞

cosx+ lim sup
x→∞

sinx.
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Exercise 1.9.9. Lower and upper topology on R̃ have been defined in 1.7.1. These topologies are
both non–Hausdorff, so that uniqueness of limits for R̃−valued nets in these topologies may fail, as in
fact it does. Let (D,�) be a directed set and let x : D → R̃ be a generalized sequence.

(a) Prove that if ℓ ∈ R̃ is a limit of the net x, with respect to the upper (resp: lower) topology on

the range space R̃ then every a > ℓ (resp.: a < ℓ) is also a limit.
(b) Prove that the set of limits of x in the upper topology is the closed interval [lim supα∈D x(α),∞],

while the set of limits in the lower topology is [−∞, lim infα∈D x(α)].

1.9.3. Upper and lower semicontinuous approximations or real valued functions. The following result
has some intrinsic interest and will be used when comparing Riemann and Lebesgue integration (4.6.2).

Proposition. Let X be a topological space, and let f : X → R be a bounded function. Then
there exist functions f∗, f

∗ : X → R such that f∗ is lower semicontinuous, f∗ is upper semicontinuous,
f∗ ≤ f ≤ f∗ and moreover:

(i) If u : X → R is lower semicontinuous and u ≤ f , then u ≤ f∗;
(ii) If v : X → R is upper semicontinuous and v ≥ f , then v ≥ f∗.

(In other words, f∗ is the largest lsc function smaller that f , and f∗ is the smallest usc function larger
that f)

(iii) f is continuous at x if and only if f∗(x) = f∗(x).

.

Proof. We will see that

f∗(x) = sup{inf f(U) : U a neighborhood of x in X};
f∗(x) = inf{sup f(U) : U a neighborhood of x in X}.

We now prove (ii). That f∗, as defined, is usc, is immediate: if a > f∗(x) there is a nbhd U of x, which
we may assume open, such that sup f(U) < a; it follows that f∗(ξ) < a for every ξ ∈ U . And clearly if
v ≥ f and v is usc, then v(x) ≥ f∗(x) for every x ∈ X : if for some c ∈ X we have v(c) < f∗(c), given
a ∈ R with v(c) < a < f∗(c) there is an open nbhd U of c such that v(x) < a for every x ∈ U ; since
f(x) ≤ v(x) for every x ∈ X this implies sup f(U) ≤ a < f∗(c); hence f∗(c) ≤ a < f∗(c), a contradiction.
In the same way (i) can be proved; (iii) is trivial. �

Remark. When x is non isolated in X we have

f∗(x) = f(x) ∧ lim inf
t→x

f(t); f∗(x) = f(x) ∨ lim sup
t→x

f(t),

as is easy to see. The function f∗ − f∗ is the oscillation function of f .

Exercise 1.9.10. Let X be a topological space, and let A be a subset of X . If f = χA then
f∗ = χint(A), and f

∗ = χcl(A) (easy).

1.10. Infinite sums of positive functions. Let X be a set, and let w : X → [0,∞] be a positive
extended real-valued function. For every finite subset F of X the sum of w over F is defined:

∑

∅ w = 0
by definition,

∑

F w =
∑

x∈F w(x) for F finite non–empty. The sum is defined over arbitrary subsets A
of X by the formula:

∑

A

w =
∑

x∈A

w(x) := sup

{

∑

F

w : F ⊆ A, F finite

}

.

Notice that this immediately implies that if A ⊆ B ⊆ X then:
∑

A

w ≤
∑

B

w,

with equality iff w(x) = 0 for every x ∈ B rA.

Remark. For every set X, the set Φ(X) of all finite subsets of X, partially ordered by inclusion, is a
directed set (the union of two finite subsets is still finite), and given w : X → [0,∞] we can define a net
sw : Φ(X) → [0,∞] by sw(F ) =

∑

F w, for every F ∈ Φ(X). Since w(x) ≥ 0 for every x ∈ X, this net is

increasing and sup{sw(F ) : F ∈ Φ(X)} is exactly its limit in R̃. So we have defined
∑

X w as the limit of this
net, the limit of the sums of w on finite subsets, as the set gets larger and larger . . . .
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1.10.1. Associativity. Associativity of the sum in the commutative semigroup ([0,∞],+) may be
expressed by saying that if A1, . . . , Am is a finite disjoint family of finite subsets of X , and A =

⋃m
k=1Ak

is its union, then

∑

A

w =

m
∑

k=1

(

∑

Ak

w

)

.

This holds also for infinite sums:

. Unrestricted associativity for sums of positive functions. If w : X → [0,∞] is a posi-
tive function, (Aλ)λ∈Λ is a disjoint family of subsets of X and A =

⋃

λ∈ΛAλ then:

∑

x∈A

w(x) =
∑

λ∈Λ

(

∑

x∈Aλ

w(x)

)

.

Proof. If F ⊆ A is finite, then F =
⋃

λ∈Λ(F ∩ Aλ), disjoint union, where each F ∩ Aλ is finite; and
F ∩Aλ is non–empty only for a finite subsetM of Λ, so that actually F =

⋃

λ∈M (F ∩Aλ) a finite disjoint
union of finite sets. By usual (finite) associativity we have

∑

F

w =
∑

λ∈M

(

∑

x∈F∩Aλ

w(x)

)

;

since
∑

F∩Aλ
w ≤∑Aλ

w for every λ we have

∑

F

w =
∑

λ∈M

(

∑

F∩Aλ

w

)

≤
∑

λ∈M

(

∑

Aλ

w

)

≤
∑

λ∈Λ

(

∑

Aλ

w

)

;

we have proved that for every finite subset F of A we have

∑

F

w ≤
∑

λ∈Λ

(

∑

Aλ

w

)

equivalently

∑

A

w ≤
∑

λ∈Λ

(

∑

Aλ

w

)

.

Conversely, take a finite subsetM of Λ and for each λ ∈M a finite subset Fλ ⊆ Aλ; by finite associativity
we have, setting F =

⋃

λ∈M Fλ:

∑

λ∈M

(

∑

Fλ

w

)

=
∑

F

w ≤
∑

A

w,

so that

∑

λ∈M

(

∑

Fλ

w

)

≤
∑

A

w;

Taking suprema as Fλ varies among the finite subsets of Aλ, and using 1.1.2, we get

∑

λ∈M

(

∑

Aλ

w

)

≤
∑

A

w

for every finite subset M of Λ; equivalently

∑

λ∈Λ

(

∑

Aλ

w

)

≤
∑

A

w.

�
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1.10.2. Isotony of infinite sums of positive numbers.

. If X ia a set, v, w : X → [0,∞] are positive functions, and v(x) ≤ w(x) for every x ∈ X, then
∑

A

v ≤
∑

A

w for every A ⊆ X.

Proof. For every finite subset F of A we have
∑

F

v ≤
∑

F

w,

then
∑

F

v ≤
∑

F

w ≤
∑

A

w,

and the inequality
∑

F v ≤∑A w for every finite subset F of A is equivalent to
∑

A v ≤∑A w. �

1.10.3. Finiteness of the sum. The following elementary fact is frequently encountered:

Proposition. Let w : X → [0,∞[ be a finite valued positive function. If
∑

X w < ∞, then w is
different from 0 on a set which is at most countable (i.e. {w 6= 0} := {x ∈ X : w(x) > 0} has cardinality
not larger than ℵ0 = |N|).

Proof. Let s =
∑

X w; then s is a positive real number. Given α > 0, let

E(α) = {w ≥ α} := {x ∈ X : w(x) ≥ α}.
We claim that E(α) is finite and that |E(α)| ≤ s/α. In fact, if F ⊆ E(α) is finite we have

∑

F w ≤ s,
and also

∑

x∈F w(x) ≥
∑

x∈F α = α |F |, so that |F | ≤ s/α for every finite subset F contained in E(α).
But then E(α) itself is finite and |E(α)| ≤ s/α. Since we have

{w > 0} =

∞
⋃

n=1

{w ≥ 1/n},

the set {w > 0} is countable, as a countable union of finite sets. �
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2. Measures and measurable spaces

2.1. Additive set functions. Areas, volumes, masses, electric charges are concepts which lead to
the definition of additive set functions (a set function is a function whose domain has sets as elements).
Given a set X and a subset A ⊆ P(X), a function φ : A → R is said to be additive if given A,B ∈ A,
with A∪B ∈ A and A, B disjoint we have φ(A∪B) = φ(A)+φ(B). We shall start the study of additive
set functions with positive values (allowing also ∞ as a value); additive set functions of an arbitrary sign,
and even complex or vector–valued, are also important, but shall be studied later.

2.1.1. Positive set functions finitely and countably additive.

Definition. Let A be a subset of P(X), with ∅ ∈ A, and let φ : A → [0,+∞] be a positive function.
We say that φ is finitely additive if φ(∅) = 0, and for every finite family (A1, . . . , Am) of pairwise disjoint
sets in A whose union

⋃m
n=1An belongs to A we have

φ

(

m
⋃

n=1

An

)

=

m
∑

n=1

φ(An);

and φ is said to be countably additive, or also σ−additive, if for every sequence (An)n∈N of pairwise
disjoint elements of A whose union belongs to A we have

φ

(

∞
⋃

n=0

An

)

=

∞
∑

n=0

φ(An).

Countable additivity implies finite additivity (since ∅ ∈ A the finite sequence (A1, . . . , Am) can be
extended to (A1, . . . , Am, ∅, ∅, . . . ))

2.1.2. Algebras and σ−algebras of sets. To be able to work comfortably with additivity, it is indis-
pensable that the class A ⊆ P(X) of subsets of X on which the additive function under examination is
defined be closed under all elementary set theoretic operations: that is, if A, B ∈ A then A ∪B, A ∩B,
the complement X r A, etc. must all belong to A: in other words A must be an algebra of subsets of
X (see 1.4). And countable additivity can be exploited successfully if we have closure under countable
union as well.

Definition. A σ−algebra, or tribe, of parts of X is an algebra which is also closed under countable
union, that is, if (An)n∈N is a sequence of elements of A, then also

⋃

n∈NAn ∈ A.

And a complementation closed subset of P(X) is a σ−algebra iff it is closed under countable inter-
section, always by De Morgan’s formulae.

Example 2.1.1. For any set X there is a largest algebra of parts of X , namely P(X) itself, and a
smallest algebra, namely {∅, X}; these are also σ−algebras.

Example 2.1.2. Given any set X , the subset A of P(X) consisting of all finite and cofinite subsets of
X is an algebra, which is not a tribe unless X is finite. And the subset B of all countable or co–countable
parts of X is a tribe, which coincides with P(X) iff X itself is countable.

Example 2.1.3. An algebra A of parts of X is finite when it has a finite set of elements. Of course
a finite algebra is also a σ−algebra. In 1.4.1 we proved that

. Finite boolean algebras Let A be a finite subalgebra of P(X). Then there is a finite partition
{A1, . . . Am} of X, with Ak ∈ A for every k = 1, . . . ,m, such that every A ∈ A is representable, in a
unique way, as

A =
⋃

k∈S

Ak with S a subset of {1, . . . ,m}.

This partition is the natural basis of the algebra A.

2.1.3. Finitely additive measures, premeasures, measures.

Definition. Let A be an algebra of parts of X , and let µ : A → [0,+∞] be a positive extended real
valued function. We say that µ is a finitely additive measure if µ is finitely additive. We say that µ is a
premeasure if it is also countably additive. A measure is a premeasure whose domain A is a σ−algebra.

Recall that by definition of additivity µ(∅) = 0. We observed in 2.1.1 that countable additivity is
stronger than finite additivity: that is, every premeasure is also finitely additive; we note here that it
is strictly stronger: on an infinite set X let A be the algebra of finite or cofinite parts of X (see 2.1.2);
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define µ : A → [0,+∞[ by µ(A) = 0 if A is finite, and µ(A) = 1 if A is cofinite. It is easy to check
that µ is finitely additive (two cofinite subsets of N are never disjoint), but if X is countable then µ is
not countably additive: µ(X) = 1 6= ∑x∈X µ({x}) = ∑x∈X 0 = 0, so that µ is not countably additive.
However if X is uncountable then µ is a premeasure, i.e. countably additive, as it follows from the next
exercise.

Exercise 2.1.4. Let X be an uncountable set, and let A be the σ−algebra of countable or co–
countable subsets of X (2.1.2). Define µ : A → [0,+∞[ by µ(A) = 0 if A is countable, µ(A) = 1 if A is
co–countable. Prove that µ is a measure (called the co–countable measure).

Solution. Let (A0, A1, . . . ) be a disjoint sequence of elements of A. Let A =
⋃∞

n=0 An; if A is countable,
then all An are countable, and µ(A) = µ(An) = 0 for every n. If A is cocountable then one of the An’s must
be cocountable, since a countable union of countable sets is countable, and in an uncountable set no countable
subset is also cocountable. Say that A0 is cocountable: then An is countable for every n 6= 0, being contained in
X r A0. Then 1 = µ(A) = µ(A0) + 0 + 0 + 0 + . . . holds true. �

The simplest example of a non entirely trivial measure is the following: given a set X and a positive
function w : X → [0,+∞] we define µ = µw : P(X) → [0,+∞] by setting

µ(A) =
∑

A

w

(

:= sup

{

∑

x∈F

w(x) : F ⊆ A, F finite

})

(finite or +∞).

Countable additivity has been proved in 1.10.1, in a stronger form, for any family of disjoint sets, of
arbitrary cardinality. We can think of X as the universe, and at every point of X there is a mass w(x);
when w(x) > 0 we can think that {x} is an atom; µ(A) is the sum of the masses of all atoms contained
in A. When w(x) = 1 for every x ∈ X we get the counting measure on X : the measure of a subset is its
cardinality when the subset is finite, and is otherwise +∞. When w is the characteristic function of a
singleton {c} ⊆ X we get the so called Dirac measure at c, or unit mass at c, often denoted δc: we have
only one atom, {c}, so δc(A) = 1 if c ∈ A, δc(A) = 0 otherwise. Construction of non-atomic measures,
like Lebesgue measure, is a non trivial matter that requires some effort.

2.1.4. First properties of measures.

. Let A be an algebra of subsets of X, and let µ : A → [0,+∞] be a finitely additive positive measure.
Then

(i) µ is monotone, that is, if A ⊆ B and A,B ∈ A, then µ(A) ≤ µ(B).
(ii) µ is finitely subtractive, that is, if A ⊆ B, A,B ∈ A, and µ(A) < ∞, then µ(B r A) =

µ(B)− µ(A).

Proof. (i) We have B = A ∪ (B r A), disjoint union, so that µ(B) = µ(A) + µ(B r A) by finite
additivity; since µ(B rA) ≥ 0, we have µ(B) ≥ µ(A).

(ii) Since µ(A) is finite, we can add −µ(A) to both sides of the equality µ(B) = µ(A) + µ(B r A)
obtaining µ(B) − µ(A) = µ(B r A); if µ(B) is finite this is an equality in R, otherwise both sides are
∞. �

When A ⊆ B and µ(A) = ∞, then of course by monotonicity also µ(B) = ∞, and µ(B r A) can be
anything, finite or infinite: e.g take the counting measure on N, B = N and A = {n ∈ N : n ≥ m}; we
have BrA = {0, . . . ,m− 1} so that µ(BrA) = m; or take B = N and A = 2N, subset of even numbers:
then µ(B rA) = ∞.

2.1.5. Countable subadditivity. Given a positive set function µ : A → [0,+∞], where A is an algebra
of subsets of X , we say that µ is countably subadditive if whenever (An)n∈N is a sequence of elements of
A whose union

⋃

n∈NAn belongs to A we have

µ

(

⋃

n∈N

An

)

≤
∞
∑

n=0

µ(An).

We have the following:

Proposition. Let µ : A → [0,+∞] be a positive finitely additive measure, where A is an algebra of
subsets of X. Then µ is countably additive if and only if it is countably subadditive.
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Proof. There is a standard trick, worth remembering, to write a countable union of elements of an
algebra as a disjoint countable union of elements of the same algebra. Given the sequence A0, A1, . . . of
elements of A we set

B0 = A0; B1 = A1 rA0, . . . , in general Bn = An r

(

n−1
⋃

k=0

Ak

)

;

it is immediate to prove that the Bn’s are pairwise disjoint and that, for every m ∈ N:
m
⋃

n=0

An =

m
⋃

n=0

Bn so that also

∞
⋃

n=0

An =

∞
⋃

n=0

Bn,

moreover Bn ⊆ An for every n ∈ N. This immediately shows how countable subadditivity follows from
countable additivity, for positive measures:

µ

(

⋃

n∈N

An

)

= µ

(

⋃

n∈N

Bn

)

=

∞
∑

n=0

µ(Bn);

and since Bn ⊆ An for every n, we have µ(Bn) ≤ µ(An) for every n, so that the last sum is dominated
by
∑∞

n=0 µ(An).
And it is easy to show that finite additivity and countable subadditivity together imply countable

additivity; if A =
⋃

n∈NAn, disjoint union, then for every m we get

m
∑

n=0

µ(An) = µ

(

m
⋃

n=0

An

)

≤ µ(A),

the last inequality due to monotonicity. Then, letting m tend to infinity we get

∞
∑

n=0

µ(An) ≤ µ(A),

and the reverse inequality is provided by countable subadditivity. �

Exercise 2.1.5. Define finite subadditivity and prove that a positive finitely additive measure is
finitely subadditive.

Exercise 2.1.6. Let A be an algebra of parts of X and let µ : A → [0,∞] be a premeasure. We
say that two sets A,B ∈ A are almost disjoint if µ(A ∩ B) = 0. Prove that if (Ak)k∈N is a sequence of
pairwise almost disjoint sets in A, with union A =

⋃

k∈N Ak ∈ A then

µ(A) =
∞
∑

k=0

µ(Ak).

Solution. Let’s apply the usual trick for making a disjoint union, Bk = Ak r
(

⋃k−1
j=0 Aj

)

. We

have Bk ⊆ Ak, and if the Ak’s are pairwise almost disjoint then µ(Bk) = µ(Ak): in fact Ak r Bk =

Ak ∩
(

⋃k−1
j=0 Aj

)

=
⋃k−1

j=0 Ak ∩ Aj is a finite union of sets of measure zero, and has then measure zero.

Then, since A =
⋃

k∈N Ak =
⋃

k∈NBk we have

µ(A) =

∞
∑

k=0

µ(Bk) =

∞
∑

k=0

µ(Ak)

(the first equality due to the fact that the Bk’s are pairwise disjoint), as desired. �

2.1.6. Continuity for increasing sequences.

. Continuity from below Let µ : A → [0,+∞] be a positive finitely additive measure, where A
is an algebra of subsets of X. Then µ is countably additive if and only if for every increasing sequence
A0 ⊆ A1 ⊆ . . . of sets in A whose union A =

⋃

n∈NAn belongs to A we have µ(A) = limn→∞ µ(An)(=
sup{µ(An) : n ∈ N}).
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Proof. Assume µ countably additive and let An be as in the statement. If Bn = AnrAn−1 for n ≥ 1,
and B0 = A0 we have that A is the disjoint union of the Bn’s, so that

µ(A) =

∞
∑

n=0

µ(Bn) = lim
m→∞

(

m
∑

n=0

µ(Bn)

)

= lim
m→∞

µ

(

m
⋃

n=0

Bn

)

= lim
m→∞

µ(Am).

We have proved that countable additivity implies continuity for increasing sequences. We leave to the
reader the easy converse, that finite additivity and continuity for increasing sequences together imply
countable additivity. �

2.1.7. Decreasing sequences. What about decreasing sequences? In general the analogous statement
is false: given N with the counting measure, and An = {k ∈ N : k ≥ n} we have that A0 ⊇ A1 ⊇ . . . , and
µ(An) = ∞ for each n ∈ N, so that limn→∞ µ(An) = ∞, but

⋂∞
n=0An = ∅, and µ(∅) = 0 6= ∞. However:

. Continuity from above on sets of finite measure Let µ : A → [0,+∞] be a positive count-
ably additive premeasure, where A is an algebra of subsets of X. Then for every decreasing sequence
A0 ⊇ A1 ⊇ . . . of elements of A whose intersection A =

⋂

n∈NAn belongs to A, and is such that
µ(Am) <∞ for some m ∈ N, we have µ(A) = limn→∞ µ(An)(= inf{µ(An) : n ∈ N}).

Proof. By discarding the first terms and reindexing the sequence if necessary we may assume that
µ(A0) is finite, so that all µ(An) and µ(A) are finite; and we have that A0 rAn is an increasing sequence
in A whose union is A0 r A ∈ A; by 2.1.6 we have µ(A0 r A) = limn→∞ µ(A0 r An); but by finite
subtractivity:

µ(A0)− µ(A) = µ(A0 rA) = lim
n→∞

(µ(A0 rAn)) = lim
n→∞

(µ(A0)− µ(An)) = µ(A0)− lim
n→∞

µ(An),

which clearly implies µ(A) = limn→∞ µ(An). �

Exercise 2.1.7. Let µ : A → [0,+∞] be a positive finitely additive measure.

(i) Assume that for every decreasing sequence A0 ⊇ A1 ⊇ . . . of elements of A with empty inter-
section we have limn→∞ µ(An) = 0. Then µ is countably additive.

(ii) Assume that µ verifies the thesis of the above proposition, that is: for every decreasing sequence
A0 ⊇ A1 ⊇ . . . whose intersection A =

⋂

n∈NAn belongs to A, and is such that µ(Am) < ∞
for some m ∈ N, we have µ(A) = limn→∞ µ(An)(= inf{µ(An) : n ∈ N}). Prove that µ|F(µ) is
countably additive; here F(µ) = {A ∈ A : µ(A) <∞} is the ideal of sets of finite measure.

The next problem requires the notions of lim inf and lim sup for a a sequence (An)n∈N of subsets of
a set X given in 1.9; recall that from the definitions we have

lim inf
n→∞

An =

∞
⋃

m=0

(

∞
⋂

n=m

An

)

; lim sup
n→∞

An =

∞
⋂

m=0

(

∞
⋃

n=m

An

)

.

Exercise 2.1.8. Let µ : A → [0,+∞] be a measure (that is, µ(∅) = 0, µ is countably additive, and
A is a σ−algebra) and let (An)n∈N be a sequence of sets in A.

(i) Prove that µ(lim infn→∞ An) ≤ lim infn→∞ µ(An).
(ii) Assume that for some m ∈ N we have µ (

⋃∞
n=mAn) <∞. Then

lim sup
n→∞

µ(An) ≤ µ(lim sup
n→∞

An).

(iii) Prove that if
∑∞

n=0 µ(An) <∞, then µ(lim supn→∞An) = 0.

Solution. (i) For simplicity let Bm =
⋂∞

n=mAn; for every m, and every n ≥ m we have Bm ⊆ An so
that, by monotonicity, µ(Bm) ≤ µ(An) for every n ≥ m and hence

(*) µ(Bm) ≤ inf{µ(An) : n ≥ m};
now Bm is an increasing sequence of sets of A whose union is lim infn→∞ An; and am = inf{µ(An) :

n ≥ m} is an increasing sequence in R̃ which by definition has lim infn→∞ µ(An) as limit; so we get the
required inequality simply by passing to the limit in (*).

(ii) Repeat, mutatis mutandis, the proof of (i), this time using continuity from above instead of
continuity from below.

(iii) By countable subadditivity we get µ (
⋃∞

n=mAn) ≤
∑∞

n=m µ(An); and if the series converges then
limm→∞ (

∑∞
n=m µ(An)) = 0. �

Exercise 2.1.9. Let A be an algebra of subsets of X . Then A is also a σ−algebra if and only if
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(i) A is closed under countable disjoint union, that is, for every disjoint sequence (An)n∈N of
elements of A the union

⋃∞
n=0An belongs to A.

(ii) A is closed under countable increasing union, that is, for every increasing sequence A0 ⊆ A1 ⊆
. . . of elements of A the union

⋃∞
n=0An belongs to A.

(iii) A is closed under countable decreasing intersection, that is, for every decreasing sequence A0 ⊇
A1 ⊇ . . . of elements of A the intersection

⋂∞
n=0An belongs to A.

2.1.8. Operations and order on premeasures. If µ, ν : A → [0,+∞] are premeasures on the same
algebra of parts of subsets of X , then µ+ ν : A → [0,+∞] defined by (µ+ ν)(A) = µ(A) + ν(A) is also
a premeasure; and if α > 0 then αµ : A → [0,+∞] defined by (αµ)(A) = αµ(A) is a premeasure. Also,
if (µλ)λ∈Λ is any family of premeasures, then µ =

∑

λ∈Λ µλ, the function µ : A → [0,∞] defined by:

µ(A) :=
∑

λ∈Λ

µλ(A)

(

:= sup

{

∑

λ∈F

µλ(A); F ⊆ Λ, F finite

})

,

is a premeasure on A (countable additivity is a consequence of unrestricted associativity of sums of
positive numbers). Given a function w : X → [0,∞] the measure µw defined in 2.1.3 is often denoted
∑

x∈X w(x) δx, an infinite positive combination of Dirac measures. There is also a natural partial order
on premeasures: µ ≤ ν means that µ(A) ≤ ν(A) for every A ∈ A.

Exercise 2.1.10. Assume that µ0 ≤ µ1 ≤ . . . is an increasing sequence of premeasures on an algebra
A. Prove that then µ(A) = limn→∞ µn(A) (= sup{µn(A); n ∈ N}) defines a premeasure µ on A.

2.2. Radon–Stjelties premeasures on R and Rn. There is a quite natural correspondence be-
tween positive premeasures on the algebra A of plurintervals of R which are finite on compact intervals
(called here Radon–Stieltjes premeasures; clearly they are finite also on bounded intervals) and increasing
functions f : R → R; this correspondence is also a bijection if we conventionally restrict the admissible
class of increasing functions. We now describe this correspondence. For basic facts concerning increasing
functions see 1.3.5.

2.2.1. Premeasures to functions. Let µ : A → [0,+∞] be a Radon–Stieltjes premeasure on the
interval algebra A of R. Define f = fµ : R → R by setting

f(x) = µ(]0, x]) for x ≥ 0; f(x) = −µ(]x, 0]) for x < 0.

It is immediate to check that f is increasing, and f(0) = 0. Moreover, f is right–continuous: if x ≥ 0,
and xj ↓ x, then ]0, x] =

⋂∞
j=0]0, xj ] and all ]0, xj ] have finite measure, so that µ(]0, x]) = limj→∞ µ(]0, xj ])

by continuity from above of premeasures; and if x < 0 and xj ↓ x, then ]x, 0] =
⋃∞

j=0]xj , 0] and

µ(]x, 0]) = limj→∞ µ(]xj , 0]) by continuity from below of premeasures. We leave it to the reader to check
that for a, b ∈ R

µ(]a, b[) = f(b−)− f(a+); µ([a, b]) = f(b+)− f(a−); µ([a, b[) = f(b−)− f(a−), . . .

etc; in particular for every c ∈ R we have, since {c} = [c, c]:

µ({c}) = f(c+)− f(c−) = σf (c) the jump of f at c,

so that f is continuous at a point c if and only if the singleton {c} has measure 0.
The function f is the distribution function (it. funzione di ripartizione) of the premeasure µ, with

origin 0.

Remark. When the premeasure µ is finite, e.g. in probability theory, another distribution function
is preferred, the one with origin −∞:

F (x) = Fµ(x) = µ(]−∞, x]), for every x ∈ R.

Clearly F differs from f by an additive constant: we have f(x) = F (x) − F (0) = F (x) − µ(] − ∞, 0])
(prove it), so that F has the same properties as f , in particular it is right continuous, but now F (0) is
not necessarily 0, and F (−∞) := limx→−∞ F (x) = 0 (why?).

Exercise 2.2.1. Consider the premeasure µ = (1/2)δ−1 + (1/3)δ0 + (1/π)δ1/2 + δ1; plot the graphs
of Fµ and fµ.

Exercise 2.2.2. Prove that there is an increasing right continuous function F : R → R such that
F (−∞) = 0, F (∞) = 1, and the set of discontinuities of F is exactly the set Q of all rationals. Prove
that every such function is necessarily strictly increasing.
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Solution. We prove the last assertion first. Given x < y, there is a rational r ∈]x, y[, hence
F (x) ≤ F (r−) < F (r+) = F (r) ≤ F (y), so that F (x) < F (y).

Choose a bijective indexing n 7→ rn of the rationals. Define w : R → [0,+∞[ by w(x) = 0 if x ∈
R r Q, and w(x) = 1/2n+1 if x = rn ∈ Q; w gives a measure µ = µw on P(R) by the formula
µ(E) =

∑

x∈E w(x); clearly this measure is finite (µ(R) = 1), in particular it is a Radon measure.
Define F : R → R by F (x) = µ(] − ∞, x]) =

∑

t≤x w(t) (as in the Remark above). Then F is right-

continuous and F (x−) = µ(] − ∞, x[) = µ(] − ∞, x] − {x}) = F (x) − µ({x}) = F (x) − w(x), so that
F is discontinuous at x iff w(x) > 0, i.e. iff x ∈ Q; the jump at x is exactly w(x) = µ({x}). And
F (∞) =

∑

t∈R w(t) =
∑∞

n=0 1/2
n+1 = 1. �

2.2.2. Functions to premeasures. Assume now that we have an increasing function f : R → R.
Inspired by the above construction we define a set function λ = λf : I → [0,+∞] on the semialgebra I
of all intervals of R by setting

λ(]a, b[) = f(b−)− f(a+); λ([a, b]) = f(b+)− f(a−); λ([a, b[) = f(b−)− f(a−), . . .

etc. (by definition f(+∞) = sup f(R) and f(−∞) = inf f(R)). It can be proved that this set function
is finitely additive on I (try to prove it; the proof is in 2.2.4), so that we can extend λ to a finitely
additive measure on the interval algebra A. We prove that λ is also countably additive by proving that
it is countably subadditive (recall 2.1.5 ).

We need first the following fact, whose proof is easy (a trivial application of left and right limits for
f) and left as an exercise:

. For every interval I of R we have

λ(I) = sup{λ(K) : K ⊆ I, K a compact interval}
λ(I) = inf{λ(J) : I ⊆ J, J an open interval}.

Finally we prove

Proposition. With the above notations and terminology, if I and In are intervals, and I ⊆ ⋃∞n=1 In,
then λ(I) ≤∑∞n=1 λ(In).

Proof. If
∑∞

n=1 λ(In) = ∞ there is nothing to prove. If not, then λ(In) < ∞ for every n ≥ 1; given
ε > 0 pick an open interval Jn containing In such that λ(Jn) ≤ λ(In) + ε/2n. If K is a compact interval
contained in I, then K ⊆ I ⊆ ⋃∞n=1 In ⊆ ⋃∞n=1 Jn. Then {Jn : n ≥ 1} is an open cover of the compact
interval K, which must have a finite subcover. In other words there is m ≥ 1 such that K ⊆ ⋃m

n=1 Jn, so
that

λ(K) ≤ λ

(

m
⋃

n=1

Jn

)

By finite subadditivity we get

λ

(

m
⋃

n=1

Jn

)

≤
m
∑

n=1

λ(Jn) ≤
m
∑

n=1

(λ(In) + ε/2n) ≤
∞
∑

n=1

λ(In) + ε,

so that, for every compact interval K contained in I and every ε > 0:

λ(K) ≤
∞
∑

n=1

λ(In) + ε;

since ε > 0 is arbitrary we get

λ(K) ≤
∞
∑

n=1

λ(In),

and taking suprema asK varies in the compact subintervals of I we get λ(I) ≤∑∞n=1 λ(In), as desired. �

The premeasure λ1 associated to the identity function f(x) = x of R is the length, or Lebesgue
premeasure, of the intervals.
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2.2.3. Conclusion. We have seen how to associate to every Radon–Stieltjes premeasure µ on the
algebra of intervals a right–continuous increasing function fµ, its distribution function, which is 0 at 0,
and conversely to every increasing f : R → R a Radon–Stieltjes premeasure λf on intervals. Of course
the same measure λf is obtained if we consider f + k, with k a real constant, in place of f ; and if f, g
are increasing functions that coincide where they are continuous, then again the measures λf and λg
coincide. We standardize a choice by taking right continuous increasing functions which are 0 at 0; in
this way we have a bijective correspondence between premeasures and functions.

Remark. For finite premeasures µ one often standardizes by taking distribution functions Fµ still
right continuous, but with Fµ(−∞) = 0, so that fµ = Fµ − Fµ(0), as seen above.

Every increasing function f : R → R, even not normalized, defines anyway a Radon–Stieltjes pre-
measure on intervals, often written df ; this notation is due to the fact that if f ∈ C1(R), or even if f is
continuous and only piecewise C1, we have for every interval [a, b] (or ]a, b] or [a, b[, or ]a, b[, with a < b
and a, b ∈ R):

f(b)− f(a) = λf ([a, b]) :=

ˆ b

a

df(t) and f(b)− f(a) =

ˆ b

a

f ′(t) dt,

the last equality being the fundamental theorem of calculus. The premeasure is in some sense the
derivative of its distribution function.

Finally, we have considered only measures and functions on the entire real line R, but it is quite
clear that the same constructions, with obvious modifications, can be repeated for increasing functions
and measures on any interval I of R: boundedness will now have to be replaced with ”having a compact
closure in I”. For instance, the function log defines a measure on ]0,∞[, finite on compact subintervals,
but infinite on the bounded subinterval ]0, 1], whose compact closure is not contained in ]0,∞[.

2.2.4. Proof of finite additivity. We have to prove that if I =
⋃m

n=1 In, where I is an interval and
In are pairwise disjoint intervals, then λf (I) =

∑m
n=1 λf (In) (see 2.2.2). Observe that if Ij and Ik are

disjoint intervals, then either Ij < Ik (in the sense that x < y if x ∈ Ij and y ∈ Ik) or Ik < Ij , so
that we may assume that I1 < I2 < · · · < Im. Since then I1 ∪ · · · ∪ Im−1 is also an interval, we are
reduced to proving the case m = 2; this is boring (various cases have to be considered, e.g. I = [a, b] and
[a, b] = [a, c]∪]c, b] or [a, b] = [a, c[∪[c, b] etc.) but easy.

2.2.5. Radon premeasures on intervals of Rn. A Radon premeasure on Rn is a premeasure defined
on the algebra An of n−dimensional intervals of Rn, µ : An → [0,∞], that is finite on all compact
intervals (hence also on all bounded intervals). A standard way of obtaining Radon premeasures on Rn

is the following: if µk : A1 → [0,∞], k = 1, . . . , n is an n−tuple of Radon premeasures on R1 we define
µ : An → [0,∞] by µ(I1 × · · · × In) =

∏n
k=1 µk(Ik) (making use of ∞· 0 = 0 ·∞ = 0); this is the (tensor)

product premeasure of the premeasures µk. One can verify that µ is indeed a premeasure on An (it is not a
completely straightforward proof, even finite additivity is not at all immediate). The most important case
is that of the n−dimensional Lebesgue premeasure λn = λ⊗n1 , product of n one dimensional measures.

Exercise 2.2.3. (Important)

(i) Given a, b ∈ R with a < b write an explicit decreasing sequence Jk of open intervals with
intersection I =]a, b] and an explicit increasing sequence Kj of compact intervals with I as
union.

One can then prove easily (accept this fact) that every interval I of R is the intersection of a decreasing
sequence of open intervals, and the union of an increasing sequence of compact intervals; moreover, if the
interval is bounded the open intervals may also be taken bounded.

(ii) Prove that the same is true for n−dimensional intervals.
(iii) Assume that µ : An → [0,+∞] is premeasure finite on bounded intervals. Then we have, for

every interval I:

µ(I) = sup{µ(K) : K ⊆ I, K a compact interval},
and if I is bounded then also

(*) µ(I) = inf{µ(J) : J ⊇ I, J a bounded open interval};
(iv) Let µ : An → [0,+∞] be a finitely additive measure on the n−dimensional interval algebra An,

that is finite on bounded intervals. Assume that for every interval I we have:

µ(I) = sup{µ(K) : K ⊆ I, K a compact interval},
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and that for every bounded interval I:

µ(I) = inf{µ(J) : J ⊇ I, J a bounded open interval};
then µ is a premeasure (i.e it is countably additive).

Solution. (i) Take Jk =]a, b+ 1/k[ and Kj = [a+ (b− a)/j, b], with k, j ≥ 1.
(ii) consider the interval I =

∏n
k=1 Ik. For every k ∈ {1, . . . , n} let Kk

r , r = 1, 2, . . . be an increasing

sequence of compact intervals with union Ik, and J
k
r , r = 1, 2, . . . , a decreasing sequence of open intervals

with intersection Ik. Then Lr =
∏n

k=1K
k
r , r ≥ 1 is an increasing sequence of compact n−dimensional

intervals with union I, and Ur =
∏n

k=1 J
k
r , r ≥ 1 is a decreasing sequence of open n−dimensional intervals

with intersection I. Since a product of bounded one–dimensional intervals is bounded, the open intervals
Ur are bounded if I is bounded.

(iii) The fact that µ(I) is the supremum of the measures of compact intervals contained in (i) is
an immediate consequence of (ii) and continuity from below of premeasures. For µ(I) the infimum of
measures of open intervals containing it, we can again use (ii) and continuity from above for decreasing
sequences of sets of finite measure: a bounded interval is the intersection of a decreasing sequence of
bounded open intervals.

(iv) We need to prove countable subadditivity, that if an interval I is the union of a sequence Ik of
intervals then µ(I) ≤∑∞k=1 µ(Ik). If the intervals Ik are bounded we can repeat verbatim the argument
given in the proposition 2.2.2 to prove the assertion. If some Ik is unbounded, take a compact interval
K ⊆ I; we then have, by the bounded case:

µ(K) ≤
∞
∑

k=1

µ(Ik ∩K);

since µ(Ik ∩K) ≤ µ(Ik) we get

µ(K) ≤
∞
∑

k=1

µ(Ik),

for every compact subinterval K of I; taking suprema as K varies among compact subintervals of I we
conclude. �

Remark. Unlike the one–dimensional case, it is in general not true that the measure of an unbounded
n−interval is the infimum of the measures of the open intervals containing it, if n ≥ 2. For instance,
the y−axis {0} × R has 2−dimensional Lebesgue measure 0, but every open interval containing it has
measure ∞.

2.3. Borel sets and σ−algebras generated by a class of sets. Given a set X , we may consider
the set of all σ−subalgebras of P(X), called σ−algebras on X ; this set is partially ordered by inclusion,
and it is clear that the intersection of a set of σ−subalgebras of P(X) is a σ−subalgebra of P(X). Given
an arbitrary subset E of P(X), we may consider the set of all the σ−algebras on X containing E (there is
always one, at least all of P(X)); the intersection of this set is the smallest σ−algebra on X containing
E , is denoted by M(E), and called the σ−algebra generated by E . Unless E is finite (a very peculiar case,
discussed in 1.4.1) there is no simple way of describing all the elements of M(E). Of course, if E and
F are classes of subsets of X , and E ⊆ F then we have M(E) ⊆ M(F): every σ−algebra containing F
contains also E , so that M(F) is the intersection of a smaller set of σ−algebras than M(E), and hence
is a larger σ−algebra.

Definition. If (X, τ) is a topological space, the Borel σ−algebra on X is the σ−subalgebra B(X)
of P(X) generated by the topology τ .

The elements of B(X) are called Borel sets of X (it. boreliani). Trivially the closed sets generate also
B(X). We focus now on B(R). It is generated by various interesting classes of subsets of R: all intervals;
the open intervals; the closed intervals; the open (closed) left rays ]−∞, a[ (a ∈ R) or the open (closed)
right rays ]a,+∞[ with a ∈ R; and we can even let a vary on a dense subset C of R, instead of all of R.
We give only one of these proofs; from this all the others should be clear:

. Let C be a dense subset of R. Then the family EC = {]a,+∞[: a ∈ C} generates B(R) as a
σ−algebra.
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Proof. Since EC is contained in the topology of R, the generated σ−algebra is smaller than B(R). Let’s
prove that all open sets are contained in M(EC). First observe that all open right rays are contained in
M(EC): given a ∈ R, pick a sequence an ∈ C such that an → a and an > a; then ]a,+∞[=

⋃

n∈N]an,+∞[.
By complementation, M(EC) contains every closed left ray, ]−∞, b], and by intersection every left half–
open interval ]a, b]. But since every open interval is a countable union of half open intervals, in fact
]a, b[=

⋃∞
n=1]a, b − (b − a)/2n], M(EC) contains all open intervals, hence all open sets, because every

open set A is a countable union of open intervals (e.g, those contained in A with both extremes in Q). �

Similarly, B(Rn) is generated by all intervals, or all open intervals; this is easy, since every open subset of Rn

is a countable union of cubes of rational side–length, and center in Qn.
2.3.1. The tribe induced on a subset. If M is a σ−algebra of parts of the set X , and S is a subset of

X , then

MS = {A ∩ S : A ∈ M}
is a σ−algebra of parts of S, as is easy to see; it is the σ−algebra induced, or traced, by M on S. We
have

Proposition. Let X be a set, S subset of X, E a subset of P(X), M = M(E) the σ−subalgebra of
P(X) generated by E. If MS = {A ∩ S : A ∈ M} is the σ−subalgebra of P(S) traced by M on S, then
MS is the σ−subalgebra of P(S) generated by {E ∩ S : S ∈ E}.

Proof. Let N be the σ− subalgebra of P(S) generated by {E ∩ S : S ∈ E}. Clearly MS ⊇ {E ∩ S :
S ∈ E}, so that MS ⊇ N . On the other hand the set {A ⊆ X : A∩ S ∈ N} is a σ−subalgebra of P(X);
this σ−algebra contains E , hence also M = M(E), in other words, A ∩ S ∈ N for every A ∈ M, that is,
MS ⊆ N . �

Corollary. If (X, τ) is a topological space, and S ⊆ X has the induced topology, then B(S) is the
σ−algebra induced on S by the Borel σ−algebra B(X).

Exercise 2.3.1. Let M be an infinite σ−algebra of parts of X . Prove that there is a countably
infinite partition (An)n∈N of X consisting of elements of M. Deduce that every infinite σ−algebra has
cardinality not less than the continuum c = |P(N)|.

Solution. We prove that if M is an infinite algebra of parts of X then X admits a countably infinite partition
(An)n∈N consisting of elements of M; when this is done, if the algebra is a σ−algebra then we have an injective
mapping of P(N) into M defined by S 7→ ⋃

n∈S An.
The proof is by induction, based on the following trivial observation: if {X1, . . . , Xm} is a finite partition of

X by elements of M then at least one of the Xk may be split as Xk = A ∪ B, disjoint union of two non empty
sets A,B ∈ M: if not, M has only 2m elements (those obtained from unions of the Xk’s, see 2.1.3).

Starting with the trivial partition X0,1 = X, we split X as the disjoint union of X1,1, X1,2 ∈ M, both
non–empty; and one of these sets may be further split giving the partition {X2,1, X2,2, X2,3} which refines the
preceding one; by what above observed the process never stops, and yields the required countable partition.

Remark. In fact we have proved that M contains a copy of the σ−algebra P(N) of all subsets of N.

�

2.4. Measurable spaces; measure spaces; complete measure spaces.

Definition. We call measurable space an ordered pair (X,M) consisting of a set X and a σ−algebra
M of parts of X . We call measure space a triple (X,M, µ), where (X,M) is a measurable space, and
µ : M → [0,+∞] is a measure on M.

In a measurable space (X,M) the elements of M are often called measurable sets. The σ−algebra
of a measure space has two noteworthy ideals (see 1.5): the ideal F(µ) = {A ∈ M : µ(A) < ∞} of sets
of finite measure, and the σ−ideal (see the remark below) N (µ) = {A ∈ M : µ(A) = 0} of sets of 0
measure: notice in fact that, by countable subadditivity, every countable union of sets of zero measure is
still a set of measure zero.

Remark. In a σ−algebra the σ−ideals are ideals closed under countable union: in a measure space the sets
of zero measure, and the sets of σ−finite measure (see next section) are both σ−ideals. The notion of ideal is
however not terribly important in measure theory, and we use only, from time to time, the name.
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2.4.1. Complete measure spaces and completions. A measure space (X,M, µ) is called complete if
every subset of a set of µ−measure zero is still measurable, i.e. N ⊆ M and µ(M) = 0 imply N ∈ M
(and µ(N) = 0 too, of course). We can always enlarge the σ−algebra of all measurable subsets of a
measure space (X,M, µ) to get a complete measure space (X,M, µ̄): define M as the set of all E ⊆ X
such that there are A,B ∈ M with A ⊆ E ⊆ B and µ(BrA) = 0 (observe that it is equivalent to define
M as the set of all S ∈ P(X) of the form A∪N , where N is subset of a set M ∈ M with µ(M) = 0). It
is easy to see that M is a σ−algebra containing M, and that the formula µ̄(E) = µ(A)(= µ(B)) defines
a measure µ̄ : M → [0,∞] which makes (X,M, µ̄) a complete space (see below).

Proof. M is a σ−algebra: if A ⊆ E ⊆ B and µ(B r A) = 0 we have X r B ⊆ X r E ⊆ X r A and

(X rA)r (X rB) = B rA, so that M is complementation closed. If (En)n∈N is a disjoint sequence in M, and
An ⊆ En ⊆ Bn, then

⋃

nAn ⊆ ⋃

n En ⊆ ⋃

nBn and
⋃

nBn r
⋃

nAn ⊆ ⋃

n(Bn r An), with
⋃

n(Bn r An) of

measure zero, so that
⋃

nEn ∈ M. And if the En’s are pairwise disjoint, then so are the An’s, so that

µ̄

(

⋃

n

En

)

:= µ

(

⋃

n

An

)

=
∑

n

µ(An) =
∑

n

µ̄(En).

�

2.4.2. Subspaces of a measure space. If (X,M, µ) is a measure space and S ∈ M, we have the
trace σ− algebra MS = {A ∩ S : A ∈ M}; since MS ⊆ M, the measure µ restricts to a measure
µ | S : MS → [0,∞]; the triple (S,MS , µ | S) is the measure space induced on S by the original one.

Remark. Unlike the notion of measurable subspace, where measurability of S was not assumed, we
suppose here that S ∈ M. It is possible to give a notion of induced measure on the subspace (X,MS)
even with S /∈ M (and thus MS * M), but the generality thus gained seems to be not worth the trouble.

2.4.3. Finite, σ−finite and semifinite measure spaces.

Definition. A measure space (X,M, µ) is said to be:

(i) Finite if µ(X) <∞, in particular a probability space if µ(X) = 1;
(ii) σ−finite if X can be covered by countably many sets in M of finite measure;
(iii) semifinite if for every E ∈ M with µ(E) > 0 there is F ⊆ E, F ∈ M, with 0 < µ(F ) <∞.

We have that finite implies σ−finite, and σ−finite implies semifinite. The first implication is trivial;
for the second, if A0 ⊆ A1 ⊆ A2 ⊆ . . . is a sequence in M such that An ↑ X , with each An of finite
measure, for every E ∈ M we have that E ∩ An ↑ E, and each E ∩ An is of finite measure, so that
µ(E) = limn µ(E ∩ An) = sup{µ(E ∩ An) : n ∈ N}, clearly proving semifiniteness of the measure. Most
spaces of interest in analysis are σ−finite. Non semifinite spaces are rather pathological: by definition
they contain measurable sets on which the induced measure has the values 0, ∞ and no other value
(atoms of infinite measure, see below, 2.4.4). Often what is needed in a proof is only the fact that every
set of nonzero measure contains a subset of finite nonzero measure, that is semifiniteness, much less than
σ−finiteness. But σ−finite measure spaces are the only ones well–behaved under products.

Example 2.4.1. Let (X,P(X), µ) with µ the counting measure; µ is σ−finite iff X is countable, and
is always semifinite. For a non semifinite measure consider a non–empty set X , with the trivial σ−algebra
{∅, X} and the measure which is zero on the emptyset and ∞ on X .

2.4.4. Atoms; purely atomic and atomless measure spaces.

Definitions. An atom in a measure space (X,M, µ) is a set A ∈ M such that 0 < µ(A), and for
every measurable E ⊆ A we have either µ(E) = 0 or µ(Ar E) = 0.

A measure space is said to be atomless if it has no atoms. It is called purely atomic if every A ∈ M
of strictly positive measure contains an atom.

A tipical example of a purely atomic measure space is the space (X,P(X), µw) where w : X → [0,∞]
is any function (see 2.1.3). All purely atomic measure spaces are essentially of this sort. An atomless
measure space will be the real line with Lebesgue measure.

Of course, measure subspaces of atomless measure spaces are also atomless, and measure subspaces
of purely atomic measure spaces are purely atomic.
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2.4.5. Direct sums of measure spaces. Let X, Y be disjoint sets and let A and B be σ−algebras over X and
Y respectively. The direct sum, or coproduct, of the two σ−algebras A and B is the σ−algebra A⊕B over X ∪Y
defined by {A ∪ B : A ∈ A, B ∈ B} (verify that it is a s−algebra). If µ : A → [0,∞] and ν : B → [0,∞] are
measures, then µ ⊕ ν : A ⊕ B → [0,+∞] defined by µ ⊕ ν(A ∪ B) = µ(A) + ν(B) is a measure on A ⊕ B, as it
is immediately checked. The measure space (X ∪ Y,A ⊕ B, µ ⊕ ν) is the coproduct of the two measure spaces
(X,A, µ) and (Y,B, ν), and of course has these both as measure subspaces. The construction may be extended
to an arbitrary family (Xλ,Aλ, µλ)λ∈Λ of measure spaces: assuming the Xλ pairwise disjoint we consider their
union X, and on it the σ−algebra A =

⊕

λ∈Λ Aλ consisting of all subsets A of X such that A ∩ Xλ ∈ Aλ for
every λ ∈ Λ; the measure is

µ(A) :=
∑

λ∈Λ

µλ(A ∩Aλ).

2.4.6. Exercises.

Exercise 2.4.2. Let (X,M, µ) be a measure space. Assume that E ∈ M has σ−finite measure, and
that (Aλ)λ∈Λ is an almost disjoint family of measurable subsets of E of strictly positive measure. Prove
that then Λ is countable (hint: prove it first with µ(E) < ∞). Deduce from it that in a purely atomic
space every set E ∈ M of σ−finite measure is a countable disjoint union of atoms of finite measure.

Solution. Assume first that 0 < µ(E) <∞. For every finite subset F of Λ we have

∑

λ∈F

µ(Aλ) = µ

(

⋃

λ∈F

Aλ

)

≤ µ(E),

(the equality because the Aλ are almost disjoint, the inequality by isotony of µ), so that, denoting by
Φ(Λ) the set of all finite subsets of Λ:

∑

λ∈Λ

µ(Aλ)

(

:= sup

{

∑

λ∈F

µ(Aλ) : F ∈ Φ(Λ)

})

≤ µ(E) <∞;

by 1.10.3 the set Λ is countable. If E has σ−finite measure we can write E =
⋃

k∈NE(k), where each
E(k) has finite measure. Let Λ(k) = {λ ∈ Λ : µ(Aλ ∩E(k)) > 0}. Then each Λ(k) is countable, by what
just proved; and Λ =

⋃

k∈N Λ(k) (if α ∈ Λ belongs to no Λ(k), we have µ(Aα∩E(k)) = 0 for every k ∈ N,
but then Aα =

⋃

k∈NAα ∩ E(k) has measure zero, being a countable union of sets of measure zero).
Then, if E has σ−finite measure it contains only a countable set of pairwise almost disjoint atoms

(all of finite measure, of course: an atom of infinite measure is almost disjoint from every set of σ−finite
measure). If F is the union of this set, then ErF contains no atom; and if the measure is purely atomic,
this means that µ(E r F ) = 0. �

Exercise 2.4.3. Let (X,M, µ) be a measure space. Prove that the following are equivalent:

(i) inf{µ(E) : E ∈ M, µ(E) > 0} = α > 0.
(ii) Every E ∈ M of finite nonzero measure is a finite disjoint union of atoms.

And if (i) holds then the space is purely atomic.

Solution. We prove the last assertion first, that if µ(E) > 0 then some atom A is contained in E.
If µ(E) = ∞, and E contains no measurable set of finite nonzero measure, then E itself is an atom of
infinite measure. If not, E contains some measurable subset E0 with 0 < µ(E0) < ∞. If E0 is not an
atom, then it contains a measurable subset E1 with 0 < µ(E1) < µ(E0); inductively, unless we find an
atom, we get a sequence E0 ⊇ E2 ⊇ . . . of measurable sets with strictly decreasing measures, µ(E0) >
µ(E1) > . . . ; this clearly contradicts the hypothesis, since then

∑∞
n=0 µ(En r En+1) ≤ µ(E0) < ∞, and

hence limn→∞ µ(EnrEn+1) = 0, but µ(EnrEn+1) > 0 for every n. We are then bound to find an atom
contained in E.

(i) implies (ii): if 0 < µ(E) <∞, since the space is purely atomic E is a countable disjoint union of
atoms (see 2.4.2), necessarily of finite measure; and since these atoms have measures bounded away from
zero this union must actually be finite.

(ii) implies (i): if (i) is false there is a sequence E(n) ∈ M such that 0 < µ(E(n)) < ∞ and
limn→∞ µ(E(n)) = 0; taking a subsequence if necessary we can assume µ(E(n)) ≤ 1/2n. Then the set
E =

⋃∞
n=0E(n) has finite nonzero measure, and contains all atoms contained in any E(n), which cannot

be a finite set, since their measures have 0 as infimum not a minimum. �
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2.5. Outer measures and extension of premeasures. To be able to construct a significant
theory we need to have measures defined on σ−algebras of subsets of a set. Given a premeasure µ defined
on an algebra A we prove that µ can always be extended to a measure on the σ−algebra M(A) generated
by A. There are various ways of doing that. We describe the one that seems to be the most commonly
used nowadays, through outer measures.

2.5.1. Outer measures: definition.

Definition. An outer measure on a set X is a function φ : P(X) → [0,+∞] such that

(i) φ(∅) = 0;
(ii) φ is monotone, that is A ⊆ B implies φ(A) ≤ φ(B);
(iii) φ is countably subadditive, that is, for every sequence (An)n∈N of subsets of X we have

φ

(

⋃

n∈N

An

)

≤
∞
∑

n=0

φ(An).

2.5.2. Constructing outer measures. A standard way of constructing outer measures is as follows: we
are given a set E ⊆ P(X) and a function ρ : E → [0,+∞]. We define φ = φρ : P(X) → [0,+∞] by
φ(∅) = 0 and for every A ⊆ X :

φ(A) = inf

{ ∞
∑

n=0

ρ(En) : A ⊆
⋃

n∈N

En, En ∈ E
}

(the infimum is taken on the set of sums obtained as (En)n∈N varies on all countable covers of A by
elements of E ; if no such cover exists, then φ(A) = +∞). Trivially φ is monotone. To check countable
subadditivity assume that A =

⋃

n∈NAn; we prove that

φ(A) ≤
∞
∑

n=0

φ(An).

If the right hand side is +∞ there is nothing to prove. If it is finite, given ε > 0 pick for every n a
countable cover (E(n, k) : k ∈ N} of An by elements of E such that

∞
∑

k=0

ρ(E(n, k)) ≤ φ(An) +
ε

2n+1
;

Then {E(n, k) : (n, k) ∈ N× N} is a countable cover of A =
⋃

n∈NAn, so that

φ(A) ≤
∑

(nk)∈N×N

ρ(E(n, k)) =

∞
∑

n=0

(

∞
∑

k=0

ρ(E(n, k))

)

≤
∞
∑

n=0

(

φ(An) +
ε

2n+1

)

=

∞
∑

n=0

φ(An) + ε;

since ε > 0 is arbitrary we conclude.

Remark. Notice that φ = φρ is unchanged if we remove from E the sets with ρ(E) = ∞ (if all
countable covers of A ⊆ X by elements of E must contain elements E ∈ E with ρ(E) = ∞, then
φρ(A) = ∞, anyway).

2.5.3. The outer measure associated to a premeasure. If A is an algebra of parts of X and µ : A →
[0,∞] is a premeasure, the outer measure defined on P(X) as in 2.5.2 is denoted by µ∗ and it is the outer
measure naturally associated to the premeasure µ.

. For every E ⊆ X we have

µ∗(E) = inf

{

∞
∑

n=0

µ(An) : An ∈ A a disjoint sequence, µ(An) <∞, A ⊆
∞
⋃

n=0

An

}

.

(with the usual proviso that if no such cover exists, then µ∗(E) = ∞).

The proof is left as an exercise, using 2.1.5. Notice that if A is a σ−algebra, i.e. µ is a measure, then
we have, for every E ⊆ X :

µ∗(E) = inf{µ(A) : E ⊆ A, A ∈ A}.
Notice also that, as observed above, µ∗ depends only on the ideal R of A consisting of the sets of finite
measure; R is a ring of sets, closed under union and difference.
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2.5.4. Measurability with respect to an outer measure. If an outer measure φ on X is not countably
additive, then it cannot be finitely additive (2.1.5). This means that there are pairsE,F of disjoint subsets
of X such that φ(E ∪F ) < φ(E) + φ(F ) (subadditivity of course implies that φ(E ∪F ) ≤ φ(E) + φ(F )).
This is a partial motivation for the following:

Definition. If φ : P(X) → [0,+∞] is an outer measure, a subset A of X is said to be measurable
(with respect to φ) if for every E in P(X) we have

φ(E) = φ(E ∩ A) + φ(E rA)(= (φ(E ∩ A) + φ(E ∩ (X rA))).

Briefly: a set is measurable if it splits additively every other set. To check measurability we need
only to prove that φ(E) ≥ φ(E ∩ A) + φ(E r A), since subadditivity gives the other inequality; hence
we can also assume φ(E) <∞. Notice that all sets of outer measure 0 are measurable: if φ(A) = 0 then
φ(E ∩ A) ≤ φ(A) = 0 for every E, so that φ(E ∩ A) + φ(E r A) = φ(E r A) ≤ φ(E) by monotonicity.
One of the most important results of measure theory is

. The Carathèodory theorem Let φ : P(X) → [0,+∞] be an outer measure. Then the set M
of all measurable subsets of X is a σ−algebra on X, and the restriction of φ to M is a complete measure
on M.

We divide the proof in some steps.

. Step 1 M is an algebra.

Proof. First notice that M is closed under complementation, since the definition of measurability of
A is symmetric in A and X rA. To prove that it is an algebra we prove that it is closed under union.

Let A, B ∈ M. We have to prove that φ(E) coincides with:

(*) φ(E ∩ (A ∪B)) + φ(E r (A ∪B))

for every E ⊆ X . By measurability of A we have:

φ(E ∩ (A ∪B)) = φ(E ∩ (A ∪B) ∩ A) + φ(E ∩ (A ∪B)rA);

now E ∩ (A ∪ B) ∩ A = E ∩ A, and E ∩ (A ∪ B) r A = (E r A) ∩ B (just use distributivity of ∩ with
respect to ∪), so that (*) becomes (noticing also that E r (A ∪B) = (E rA)rB):

(**) φ(E ∩ A) + φ((E rA) ∩B) + φ((E rA)rB);

by measurability of B we have φ((E rA)∩B)+φ((E rA)rB) = φ(E rA), so that (**) coincides with

(***) φ(E ∩A) + φ(E rA),

which is φ(E), by measurability of A. �

We have proved that M is an algebra. It remains to prove that it is a σ−algebra, and that φ is
countably additive on it. Let us prove

. Step 2 If A1, . . . , Am are measurable and pairwise disjoint, then for every E ⊆ X we have

φ(E ∩ (A1 ∪ · · · ∪ Am)) =
m
∑

k=1

φ(E ∩ Ak).

Proof. This is easy by induction, we need to prove it for m = 2. In fact, if A is measurable, and E,B
are subsets of X , with B disjoint from A, we have, by measurability of A:

φ(E ∩ (A ∪B)) = φ(E ∩ (A ∪B) ∩ A)) + φ(E ∩ (A ∪B) ∩ (X rA)) = φ(E ∩ A) + φ(E ∩B).

�

. Step 3 M is a tribe, and φ induces a measure on M.

Proof. Since we know that M is an algebra, we need only to prove that M is closed under countable
disjoint union. Let (An)n≥1 be a disjoint sequence of measurable sets. Let E be a subset of X . For every
m ≥ 1 measurability of

⋃m
n=1An implies

φ(E) = φ(E ∩ (A1 ∪ · · · ∪ Am)) + φ(E ∩ (X r (A1 ∪ · · · ∪ Am)),

and by Step 2 we get

φ(E ∩ (A1 ∪ · · · ∪ Am)) =

m
∑

k=1

φ(E ∩ Ak).



2. MEASURES AND MEASURABLE SPACES 35

If A =
⋃∞

n=1An we have X rA ⊆ X r (A1 ∪ · · · ∪ Am), so that, by monotonicity

φ(E ∩ (X r (A1 ∪ · · · ∪ Am))) ≥ φ(E ∩ (X rA)) = φ(E rA);

hence

φ(E) ≥
m
∑

k=1

φ(E ∩ Ak) + φ(E rA).

Taking the limit on the right–hand side as m tends to infinity we get

(*) φ(E) ≥
∞
∑

k=1

φ(E ∩Ak) + φ(E r A) ≥ φ(E ∩ A) + φ(E rA),

the last inequality being due to countable subadditivity of φ. Then A is measurable. From (*) we also
get, for every E ⊆ X :

φ(E) =
∞
∑

k=1

φ(E ∩ Ak) + φ(E rA),

and putting in this equality E = A we get countable additivity of φ on M. �

Exercise 2.5.1. Let X be a non–empty set, and define φ : P(X) → [0,∞] by φ(∅) = 0, φ(X) = 1,
and φ(E) = 1/2 for ∅ $ E $ X . Prove that φ is an outer measure. Assuming |X | ≥ 3, prove that the
only φ−measurable sets are ∅ and X . What can be said for |X | ≤ 2?

Solution. (of Exercise 2.5.1) Monotonicity and countable subadditivity are immediate. Assume that
a proper non–empty subset A of X is φ−measurable (the existence of such a set implies that |X | > 1).
Pick E such that E ∩ A and E r A are both non–empty, say both consisting of one point. Then
φ(E) = φ(E ∩ A) + φ(E r A) = 1/2 + 1/2 = 1, which is possible iff E = X , and implies that X has
exactly two elements. In this case clearly φ is a measure on P(X). �

2.5.5. Extension of a premeasure. Assume now that we have a premeasure µ : A → [0,+∞] on an
algebra A of parts of X . In 2.5.3 we have defined the outer measure µ∗ associated to µ. Then:

Lemma. With µ, µ∗ and A as above, if A ∈ A then: (i) µ∗(A) = µ(A); (ii) A is µ∗−measurable.

Proof. (i) Clearly µ∗(A) ≤ µ(A) (consider the cover (A, ∅, ∅, . . . )). And if (An)n∈N is a countable
cover of A by elements of A we have A =

⋃∞
n=0(A ∩An), so that, by countable subadditivity of µ on A,

we have µ(A) ≤∑∞n=0 µ(A ∩ An); since µ(A ∩ An) ≤ µ(An) for every n ∈ N we get

µ(A) ≤
∞
∑

n=0

µ(A ∩ An) ≤
∞
∑

n=0

µ(An),

for every countable cover (An)n∈N of A by elements of A, proving that µ(A) ≤ µ∗(A).
(ii) Given A in A an E ∈ P(X) of finite µ∗ measure we have to prove that

µ∗(E) ≥ µ∗(E ∩ A) + µ∗(E rA).

Given ε > 0 take a countable cover (An)n∈N of E by elements of A such that
∑∞

n=0 µ(An) ≤ µ∗(E) + ε.
Since µ(An) = µ(An ∩ A) + µ(An rA) we have

µ∗(E) + ε ≥
∞
∑

n=0

µ(An) =

∞
∑

n=0

µ(An ∩ A) +
∞
∑

n=0

µ(An rA);

since (An ∩A)n∈N and (An rA)n∈N are countable covers of E ∩ A and E rA, respectively, we get

∞
∑

n=0

µ(An ∩ A) ≥ µ∗(E ∩ A);
∞
∑

n=0

µ(An rA) ≥ µ∗(E rA),

so that

µ∗(E) + ε ≥ µ∗(E ∩ A) + µ∗(E rA);

since ε > 0 is arbitrary this implies

µ∗(E) ≥ µ∗(E ∩ A) + µ∗(E rA),

thus proving µ∗−measurability of A. �
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Remark. The preceding lemma remains valid if we assume only that A is a ring of parts of X , with
µ : A → [0,∞] countably additive and zero on the emptyset: we do not need X ∈ A, we only need to
know that A is closed under union and difference, as is apparent from the proof. This fact is often useful.
Countable additivity of µ on A of course cannot be dispensed with.

2.5.6. Uniqueness of the extension. Let A be an algebra of parts of a set X , and let µ : A → [0,+∞]
be a premeasure on A, and let µ∗ be the outer measure induced from µ. Carathèodory’s theorem shows
that µ may be extended to a complete measure µ̄ on the σ−algebra Mµ of µ∗−measurable sets, a
σ−algebra of parts of X that contains A, and hence contains also the σ−algebra M(A) generated by A.
This is the Carathèodory’s extension of the measure, µ̄ : Mµ → [0,+∞]. It is a maximal extension in
this sense: if ν : S → [0,∞] is another measure on a σ − algebra S containing A, and ν coincides with
µ on A, then ν(E) ≤ µ̄(E) for every E ∈ Mµ ∩ S. In fact, if E ∈ Mµ ∩ S is covered by the sequence
(An)n∈N of A we have by subadditivity and monotonicity of ν:

ν(E) ≤
∞
∑

n=0

ν(An) =

∞
∑

n=0

µ(An) =⇒ ν(E) ≤ µ∗(E) = µ̄(E).

And we have equality for all sets of σ−finite µ̄ measure:
If µ̄(E) < ∞, given ε > 0 we pick a sequence (An)n∈N of A which covers E and is such that

∑∞
n=0 µ(An) ≤

µ̄(E) + ε; if A =
⋃∞

n=0An we have

µ̄(A) = lim
m→∞

µ̄

(

m
⋃

n=0

An

)

= lim
m→∞

ν

(

m
⋃

n=0

An

)

= ν(A);

and we have

µ̄(E) ≤ µ̄(A) = ν(A) = ν(E) + ν(Ar E) ≤ ν(E) + µ̄(ArE) ≤ ν(E) + ε,

so that µ̄(E) ≤ ν(E) + ε for every ε > 0, and hence µ̄(E) ≤ ν(E); notice that µ̄(A) ≤∑∞n=0 µ(An) ≤ µ̄(E) + ε.

Since every set of σ−finite µ̄−measure is a countable disjoint union of sets of finite measure, the proof is achieved.

The following proposition contains the relevant part of the preceding discussion.

Proposition. Let A be an algebra of parts of a set X, and let µ : A → [0,+∞] be a premeasure on
A. The Carathèodory’s extension extends µ to a complete measure µ̄ on the σ−algebra Mµ, a σ−algebra
containing M(A); if ν : S → [0,∞] is another measure on a σ−algebra S containing A, which coincides
with µ on A, then we have ν(E) ≤ µ̄(E) for every E ∈ Mµ ∩ S, with equality for all sets E of σ−finite
µ̄−measure.

Proof. See above. �

2.5.7. Approximation of sets of finite measure. The following simple fact will be very important in
integration theory:

. If µ : A → [0,+∞] is a premeasure and µ̄ : Mµ → [0,+∞] its Carathèodory extension, for every
E ∈ Mµ of finite µ̄−measure and every ε > 0 there exists A ∈ A such that µ̄(E △ A) < ε.

Proof. Find a countable cover (An)n∈N of E by elements of A such that
∑∞

n=0 µ(An) ≤ µ̄(E) + ε;
if B =

⋃∞
n=0Anwe then have B ∈ Mµ and µ̄(B) ≤ µ̄(E) + ε, equivalently µ̄(B r E) ≤ ε (because

µ̄(E) < ∞). Pick m ∈ N such that
∑

n=m+1 µ(An) < ε, and set A =
⋃m

n=0An. Then, noticing that

E rA ⊆ ⋃∞n=m+1An:

µ̄(E △ A) = µ̄(E rA) + µ̄(Ar E) ≤ µ̄

(

∞
⋃

n=m+1

An

)

+ µ̄(B r E) ≤
∞
∑

n=m+1

µ(An) + ε < 2ε.

�

2.5.8. An example.

Exercise 2.5.2. We have seen (2.1.3) that if X is a set and w : X → [0,∞] is a positive function
then the formula µw(A) =

∑

x∈Aw(x) for A ⊆ X defines a measure µw : P(X) → [0,∞]. We assume
that X is an infinite set, that w is finite–valued, and that µw(X) = ∞. Let A be the subalgebra of
P(X) consisting of finite and cofinite subsets; define the set function µ : A → [0,∞] by the formula
µ(A) = µw(A) if A is finite, and µ(A) = ∞ if A is cofinite.

(i) Prove that µ(A) = µw(A) for every A ∈ A and that µ is a premeasure

Let now µ∗ : P(X) → [0,∞] be the outer measure associated to µ by the usual procedure.
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(ii) Prove that µw(E) ≤ µ∗(E) for every E ⊆ X , with equality for every countable set.
(iii) Prove that µ∗(E) = ∞ for every uncountable subset of X .
(iv) Prove that every E ∈ P(X) is µ∗−measurable.

We now specialize by taking X = R and w : R → [0,∞[ defined by w(x) = 0 if x ∈ R r Z, and
w(x) = 2−x ∧ 1 for x ∈ N.

(v) Observe that on every uncountable subset E of R r Z we have 0 = µw(E) < µ∗(E) = ∞.

Solution. (i) Notice that since w is finite–valued we have µw(E) <∞ for every finite subset E of X .
For every A ⊆ X we have µw(X) = µw(A)+µw(XrA); if A is cofinite then µw(XrA) <∞, and by the
hypothesis µw(X) = ∞ we get µw(A) = ∞, so that µw(A) = µ(A) for cofinite sets. Countable additivity
of µ on A is now obvious, since µ(A) = µw(A) for every A ∈ A and µw is countably additive on P(X).
Then µ is a premeasure.

(ii) Given E ⊆ X , assume that (An)n∈N is a countable cover of E by elements of A. Then, first by
monotonicity and then by countable subadditivity of µw:

µw(E) ≤ µw

(

⋃

n∈N

An

)

≤
∑

n∈N

µw(An) =
∑

n∈N

µ(An),

the last equality due to the fact that µw(An) = µ(An) for every n ∈ N since An ∈ A. We have proved
that

µw(E) ≤
∑

n∈N

µ(An) for every countable cover of E by elements of A,

which implies µw(E) ≤ µ∗(E). If E is countable then {{x} : x ∈ E} is a countable cover of E by elements
of A and µw(E) =

∑

x∈E w(x) =
∑

x∈E µ({x}), so that µ∗(E) ≤ µw(E), and equality µ∗(E) = µw(E)
then holds.

(iii) If E is uncountable then every countable cover (An)n∈N by elements of A must contain a cofinite
set, since a countable union of finite sets is at most countable and cannot contain the uncountable set
E. Then

∑

n∈N µ(An) = ∞, because one element of the sum is infinite. We have seen that for every
countable cover (An)n∈N of E by elements of A we have

∑

n∈N µ(An) = ∞: this is equivalent to say that
µ∗(E) = ∞.

(iv) We know that a set A ⊆ X is µ∗−measurable if and only if µ∗(E) = µ∗(A ∩ E) + µ∗(E r A)
for every E ⊆ X with µ∗(E) < ∞. This means that E is countable; then also E ∩ A and E r A are
countable, being subsets of E. But then µw(E) = µw(E ∩ A) + µw(E r A) by additivity of µw, and on
each of these sets µw and µ∗ coincide, as seen in (ii); in other words the preceding equality is exactly
µ∗(E) = µ∗(E ∩A) + µ∗(E rA).

(v) Trivial. �

This example shows that the Carathèodory extension may in fact be not unique on the generated
σ−algebra: µw and µ∗ are both defined on the same tribe P(R), they coincide on A, but differ on
co–countable sets, which are in the σ−algebra generated by A, and shows also that the σ−algebra of
µ∗−measurable sets, in this case P(R), may be much larger than the σ−algebra generated by A.

2.6. Uniqueness of measures. Assume that µ, ν : M → [0,∞] are measures on the same measur-
able space (X,M). The coincidence set C = {E ∈ M : µ(E) = ν(E)} contains of course the emptyset,
and is closed under countable disjoint union and countable increasing union. But this set is in general
not an algebra, even assuming finite measures and µ(X) = ν(X):

Example 2.6.1. Let X = {1, 2, 3, 4}, M = P(X); define measures µ, ν : M → [0, 1] by µ({a}) = 1/4
for every a ∈ X , and ν({2}) = ν({4}) = 1/2, ν({1}) = ν({3}) = 0. Then:

C := {E ∈ M : µ(E) = ν(E)} = {∅, {1, 2, 3, 4}, {1, 2}, {2, 3}, {3, 4}, {4, 1}},
as is easy to check, and µ(X) = ν(X) = 1; C is not an algebra, the algebra generated by C is M = P(X)
(every singleton is an intersection of two of the pairs in C). So two finite measures can coincide on a set
of generators of the σ−algebra of measurable sets, and still be different.

2.6.1. Dynkin classes.

Definition. A Dynkin class of parts of X is a subset D of P(X) which contains the emptyset (as
an element), is complementation closed, and closed under countable disjoint union.
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Every σ−algebra is clearly a Dynkin class; and {∅, {1, 2, 3, 4}, {1, 2}, {2, 3}, {3, 4}, {4, 1}} is a Dynkin
class that is not a σ−algebra. Every intersection of a family of Dynkin classes is of course a Dynkin class,
so that we may speak of the Dynkin class D(E) generated by the subset E ⊆ P(X): it is the intersection
of all Dynkin subclasses of P(X) containing E ; among these are all σ−subalgebras of P(X) containing
E , so that

D(E) ⊆ M(E).
Recall that an algebra of parts of X is a σ−algebra iff it is closed under countable disjoint union (see

2.1.8) so that a Dynkin class is a σ−algebra iff it is an algebra; and since it is complementation closed,
this happens iff the Dynkin class is closed under intersection (a π−system, as some authors say).

Lemma. Let D be a Dynkin class. Given A ∈ D let DA = {E ∈ D : A ∩ E ∈ D}. Then DA is a
Dynkin class containing A.

Proof. Plainly X ∈ DA and DA is closed under countable disjoint union (if En is a disjoint sequence
in DA with union E ∈ D then E ∩A is the disjoint union of the sequence En ∩A ∈ D, hence E ∩A ∈ D).
It remains to prove that E ∈ DA implies X rE ∈ DA, i.e. (X rE)∩A ∈ D; equivalently, we prove that
X r ((X r E) ∩ A) ∈ D, true because this set is the disjoint union of E ∩ A ∈ D and X rA ∈ D. �

Let’s now prove the

. Dynkin’s theorem If E is a subset of P(X) closed under intersection, then the Dynkin class
generated by E coincides with the σ−algebra generated by E:

D(E) = M(E).
Proof. We know that D(E) ⊆ M(E); to prove the reverse inclusion we prove that D(E) is a σ−algebra,

proving that it is closed under intersection. Given E ∈ E we consider, as in the lemma, the set DE =
{D ∈ D(E) : D ∩E ∈ D(E)}; this set contains E , because E ∩D ∈ E ⊆ D(E) by the hypothesis that E is
closed under intersection, and is a Dynkin class by the lemma; then D(E) ⊆ DE , and hence D(E) = DE .
We have proved: for every A ∈ D(E) and every E ∈ E we have that A∩E ∈ D(E). Now, given A ∈ D(E)
consider DA = {E ∈ D(E) : A ∩ E ∈ D(E)}. By the lemma this is a Dynkin class, and by what just
proved E ⊆ DA, so that D(E) ⊆ DA, hence actually D(E) = DA. We have proved: for every A ∈ D(E)
and every B ∈ D(E) we have A ∩B ∈ D(E). Then D(E) is a σ−algebra. �

2.6.2. Uniqueness of finite measures.

Proposition. Let µ, ν be finite measures on the same measurable space (X,M); assume µ(X) =
ν(X), and that the set E ⊆ C = {E ∈ M : µ(E) = ν(E)} is closed under intersection. Then C contains
the σ− algebra M(E) generated by E.

Proof. It is easily checked that in the stated hypotheses C = {E ∈ M : µ(E) = ν(E)} is a Dynkin
class; then C ⊇ D(E), and D(E) = M(E) by Dynkin’s theorem. �

In particular, two probability measures that coincide on a family of sets closed under intersection
coincide on the σ−algebra generated by this family.

2.6.3. Coincidence sets of arbitrary positive measures.

Proposition. Let µ, ν be measures on the same measurable space (X,M). Assume that the two
measures coincide and are finite valued on a set E ⊆ M closed under intersection. Then the two measures
coincide on all the sets of the σ−algebra M(E) generated by E which can be covered by countably many
sets of E. In particular, if X has a countable cover by sets in E, then the two measures coincide on all
M(E).

Proof. For every E ∈ E we set EE = {F ∩ E : F ∈ E} and ME = {A ∩ E : A ∈ M(E)}. Then ME

is a σ−algebra of parts of E, and we know that ME is exactly the σ−algebra of parts of E generated
by EE (see 2.3.1). By 2.6.2 we have µ(G) = ν(G) for every G ∈ ME . That is, we have µ(G) = ν(G)
for every G ∈ M(E) that is contained in some member of E . If A ∈ M(E) and A =

⋃

k∈NAk, with
Ak ⊆ Ek ∈ E , then with the usual technique A can be written as a disjoint union of sets Fk ⊆ Ek, with

Fk = Ak r
(

⋃k−1
j=0 Aj

)

∈ M(E), so that µ(Fk) = ν(Fk) and hence also µ(A) = ν(A). �

The following corollary is then immediate:

Corollary. Let Ω be an open subset of Rn. Two measures on B(Ω) that coincide and are finite on
compact intervals contained in Ω coincide on all Borel subsets of Ω.
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Of course we could get the corollary also from the uniqueness part of the Carathèodory extension;
but the above proof is much neater and more direct.

2.7. Lebesgue measure and the topology of Rn. There is an intimate connection between
Lebesgue measure on Rn and the topology of Rn. This is true not only for Lebesgue measure, but more
generally for Radon measures (see also 2.2.5). We call Radon measure on Rn any measure defined on Borel
subsets of Rn that is finite on compact subsets of Rn. Since Rn is a countable union of compact intervals
(e.g Rn =

⋃∞
m=1[−m,m]n) any Radon measure is the (restriction to Borel sets of the) Carathèodory

extension of a Radon premeasure on intervals (see 2.5.5). We call µ−measurable any set measurable in
the Carathèodory extension of µ, and we still denote µ this extension. Remember that all sets of outer
measure 0 are measurable. And remember that the Lebesgue measure on Rn is the measure obtained
by Carathèodory extension of the premeasure on intervals defined by λn(I1 × · · · × In) =

∏n
k=1 λ1(Ik);

the σ−algebra Ln of Lebesgue measurable subsets is then the set of all A ⊆ Rn which split additively
every other set. All singletons and all countable subsets of Rn have Lebesgue measure 0. In Rn every
coordinate hyperplane has Lebesgue measure 0 (the set {x ∈ Rn : xk = c} is a degenerate interval,
product of copies of R on every place, with the degenerate interval {c} in the kth place).

Exercise 2.7.1. Compute the measure λn(A) of the set

A = {x ∈ Rn : at least one coordinate of x is a rational number}.
Solution. The set A1 = Q × Rn−1 has measure 0, being a countable union of the sets {q} × Rn−1,

q ∈ Q. So the set A1 of all points in Rn whose first coordinate is rational has measure 0. Similarly, if Ak

is the set of all points whose k−th coordinate is rational we have λn(Ak) = 0. Since A =
⋃n

k=1 Ak is a
finite union of sets of measure 0, we also have λn(A) = 0. �

2.7.1. Outer regularity.

. If µ is Radon measure on Rn, then for every measurable set A we have

µ(A) = inf{µ(U) : U ⊇ A, U open in Rn}.
Proof. Clearly only the case µ(A) < ∞ needs proof. Given ε > 0 we can find a countable cover

(Ik)k∈N of A by intervals such that
∑∞

k=0 µ(Ik) ≤ µ(A) + ε/2; we can assume these intervals to be
bounded (every interval is a countable disjoint union of bounded intervals); then for every k we can find
a bounded open interval Jk containing Ik such that µ(Jk) ≤ µ(Ik) + ε/2k+2 (2.2.5). If U =

⋃∞
k=0 Jk we

have that U is open and

µ(U) ≤
∞
∑

k=0

µ(Jk) ≤
∞
∑

k=0

(µ(Ik) + ε/2k+2) =

∞
∑

k=0

µ(Ik) +
ε

2
≤ µ(A) + ε.

Remark. We have really proved that µ∗(A) = inf{µ∗(U) : U ⊇ A, U open in Rn} for every subset
A of Rn, if µ∗ : P(Rn) → [0,∞] is the outer measure associated to µ.

�

2.7.2. Regularity. Notice that since A ⊆ U , when µ(A) < ∞ we have proved that given ε > 0 we
have an open set U containing A such that µ(U rA) ≤ ε. Since the measure µ is σ−finite this limitation
can be removed, that is: given any measurable A ⊆ Rn and ε > 0 there is an open set U ⊇ A such that
µ(U r A) ≤ ε: simply write A as a disjoint union

⋃∞
k=0 Ak of measurable sets of finite measure, and for

each k pick an open Uk ⊇ Ak such that µ(Uk r Ak) ≤ ε/2k+1. Then U =
⋃∞

k=0 Uk is open, U ⊇ A and

U rA ⊆ ⋃∞k=0(Uk rAk) so that µ(U rA) ≤∑∞k=0 µ(Uk rAk) ≤
∑∞

k=0 ε/2
k+1 = ε.

From the inside we can use closed sets:

Lemma. If µ is Radon measure on Rn, then for every measurable set A and ε > 0 there exist an
open set U containing A and a closed set F contained in A such that µ(U r F ) ≤ ε.

Proof. Pick first an open set U containing A with µ(U r A) ≤ ε/2; next an open V containing
B = Rn rA and µ(V r B) ≤ ε/2. Then F = Rn r V ⊆ A and U r F ⊆ (U rA) ∪ (V r B) so that by
subadditivity we have µ(U r F ) ≤ µ(U rA) + µ(V rB) ≤ ε. �

In a topological space a subset G is said to be a Gδ−set if it is a countable intersection of open sets,
a subset E is an Fσ−set if it is a countable union of closed sets, equivalently its complement is a Gδ−set.
Clearly Gδ and Fσ sets are all Borel sets.
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Theorem. Let µ be a Radon measure on Rn. For every µ−measurable set A there are a Gδ−set G
containing A and an Fσ−set E contained in A such that µ(Gr E) = 0.

Proof. For each k we pick open sets Uk and closed sets Fk such that Fk ⊆ A ⊆ Uk and µ(Uk rFk) ≤
1/(k + 1). If U =

⋂∞
k=0 Uk and E =

⋃∞
k=0 Fk we have E ⊆ A ⊆ G and G r E ⊆ Uk r Fk for every k so

that µ(Gr E) ≤ µ(Uk r Fk) ≤ 1/(k + 1) for every k, and hence µ(Gr E) = 0. �

The preceding proposition implies the important fact that µ−measurable sets are all of the form
E ∪ N , where E is a Borel set, and N has (outer) µ−measure zero, in particular Lebesgue measurable
sets are of this form. And it is important to notice explicitly that

. A subset N of Rn has Lebesgue measure zero if and only if for every ε > 0 there exists a countable
cover (Ik)k of N by intervals (N ⊆ ⋃∞k=0 Ik) such that

∑∞
k=0 λn(Ik) ≤ ε.

These intervals may also be assumed open and bounded.
2.7.3. Inner regularity.

. Every Radon measure µ on Rn is inner regular. That is, for every µ−measurable set A we have

µ(A) = sup{µ(K) : K ⊆ A, K compact}.
Proof. From the preceding theorem we clearly have µ(A) = sup{µ(F ) : F ⊆ A, F closed in Rn}.

And for every closed set F we have µ(F ) = sup{µ(F ∩ [−k, k]n) : k = 1, 2, 3, . . .}; the sets F ∩ [−k, k]n
are clearly compact. �

2.7.4. A compact set of positive Lebesgue measure with empty interior. We have seen that measurable
sets can be approximated from the outside with open sets, from the inside with closed or even compact
sets. The opposite is not in general possible : there are sets of positive Lebesgue measure which have
empty interior, as we now see. Order the rationals of [0, 1] in a sequence (xk)k. Fix ε > 0; for each k
consider the open interval Ik =]xk − ε/2k+2, xk + ε/2k+2[, and set

K = [0, 1]r
∞
⋃

k=0

Ik ∩ [0, 1].

Then K is compact (it is closed and contained in [0, 1]). And

λ1(K) = 1− λ1

(

∞
⋃

k=0

Ik ∩ [0, 1]

)

≥ 1−
∞
∑

k=0

λ1(Ik) ≥ 1−
∞
∑

k=0

ε

2k+1
= 1− ε

Thus with ε small we can make the measure of K very close to 1. It is clear that the interior of K is
empty, since K contains no rational number, and rationals are dense in R.

Of course analogous constructions can be carried out in Rn. And one cannot approximate from the
outside with closed sets: e.g. the rationals have measure 0 but are dense, so the only closed set containing
them is R.

2.7.5. Elementary measure and Lebesgue measure. For definiteness we discuss area, two–dimensional
measure in R2; it will be clear that analogous things can be said for n−dimensional measure. Our
definition of area is intuitively much less appealing than the one given by, say, Archimedes, and preserved
more or less unchanged until the beginning of 1900, when Lebesgue and others created the modern theory
of measure.

We consider a bounded subset E of R2; consider the class A∗(E) of all elements of A ∈ A2 (two–
dimensional plurintervals) contained in E, and the class A∗(E) of all B ∈ A2 containing E. Clearly we
have λ2(A) ≤ λ2(B) for every A ∈ A∗(E) and every B ∈ A∗(E); we say that E is elementarily measurable
(or measurable according to Peano–Jordan) if

sup{λ2(A) : A ∈ A∗(E)} = inf{λ2(B) : B ∈ A∗(E)},
and of course this common value is, by definition, the area of E. It is not difficult to prove that if E
is elementarily measurable then it is Lebesgue measurable and its area is λ2(E) (we can find sequences
Aj ∈ A∗(E) and Bj ∈ A∗(E) such that Aj is increasing, Bj is decreasing and λ2(Bj r Aj) ≤ 1/2j;
then if A =

⋃

j Aj , B =
⋂

j Bj we have A ⊆ E ⊆ B and λn(B r A) = 0, with A and B both Borel

sets). But every set with empty interior will have sup{λ2(A) : A ∈ A∗(E)} = 0 (a rectangle with empty
interior has area zero), and we know that there are compact sets with empty interior and strictly positive
measure (see 2.7.4), so that there are Lebesgue measurable sets not elementarily measurable. If we want
to measure all open and all closed subsets, which seems to be highly desirable, we are forced to abandon
approximation from the inside by rectangles (we still have approximation from inside by compact sets).
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2.7.6. Vitali’s example of a non–measurable subset of R. From a practical point of view all subsets
of Rn are Lebesgue measurable: all ordinary constructions for building new sets out of old ones do
not make us leave the class of measurable sets. But in the most common version of set theory used
in Mathematics today nonmeasurable sets do exist. Using the axiom of choice in an essential way, the
italian mathematician Vitali was the first to give an example of a non measurable subset of R (example
easily adapted to Rn). The example is also based on the important fact that Lebesgue measure on Rn

is translation invariant: that is, for every a ∈ Rn the translation x 7→ a + x transforms measurable sets
into measurable sets of the same measure (this is immediate, from the fact that the statement is true for
intervals).

Consider in R the congruence modulo the additive subgroup Q of the rational numbers; its classes
are x+Q, translates of Q, and so they are all dense in R, so that they have non–empty intersection with
every nondegenerate interval of R. We may then find a set E, subset of [0, 1[, such that E ∩ (x + Q)
consists of exactly one element, for every class x+Q: the existence of such a set is ensured by the axiom
of choice. Observe now that if r, s ∈ Q are distinct, then r+E and s+E are disjoint (r+x = s+ y ⇐⇒
x − y = s − r ∈ Q, which is possible iff x = y, but then r = s). If we consider the set A of all rational
numbers contained in ]− 1, 1[ we have

[0, 1[⊆
⋃

r∈A

(r + E) ⊆]− 1, 2[

The second inclusion is immediate (if −1 < r < 1 and 0 ≤ x < 1 then −1 < r + x < 2); for the first,
given a ∈ [0, 1[, we know that there is exactly one x ∈ E such that r = a− x ∈ Q; since 0 ≤ a < 1 and
0 ≤ x < 1 we get −1 < a − x < 1. Then E cannot have measure 0: by monotonicity 1 = λ1([0, 1[) ≤
λ1
(
⋃

r∈A(r + E)
)

and by countable additivity λ1
(
⋃

r∈A(r + E)
)

=
∑

r∈A λ1(r +E) =
∑

r∈A λ1(E), the

last by translation invariance. Then λ1(E) > 0, which implies λ1
(
⋃

r∈A(r + E)
)

= ∞. On the other

hand λ1
(
⋃

r∈A(r + E)
)

≤ λ1(] − 1, 2[) = 3, so that
⋃

r∈A(r + E) has finite measure. The contradiction
proves non–measurability of E.

Exercise 2.7.2. With E as above, prove that all Lebesgue measurable subsets of E have measure
zero.

Exercise 2.7.3. Prove the:

. Difference theorem If A ⊆ Rn is Lebesgue measurable and λn(A) > 0, then

A−A := {x− y : x ∈ A, y ∈ A}
contains a neighborhood of 0 in Rn.

Proof. Follow these hints:

(i) Prove that there is a compact K ⊆ A such that λn(K) > 0 (we shall prove that K−K contains
a nbhd of 0).

(ii) Prove that there is an open subset U of Rn such that K ⊆ U and λn(U) < 2λn(K).
(iii) It is well–known that the function x 7→ dist(x,RnrU) is continuous; let δ = min{dist(x,RnrU) :

x ∈ K}; then δ > 0, and if |x| < δ then x+K ⊆ U .
(iv) Observe that K −K = {x ∈ Rn : (x+K) ∩K 6= ∅} and conclude.

�

Solution. (i) Trivial, by inner regularity. (ii) Since 0 < λn(K) < ∞ we have λn(K) < 2λn(K); then
U exists by outer regularity of K.

(iii) That δ > 0 is clear: the minimum of the distance function on K exists because this function
is continuous and K is compact; and the minimum cannot be 0, because the zero–set of the function is
exactly RnrU , disjoint fromK. Then x+K ⊆ U if |x| < δ: if y = x+a with a ∈ K, then |y−a| = |x| < δ,
so that y /∈ Rn r U .

(iv) We have: (x+K)∩K 6= ∅ ⇐⇒ (there exist a, b ∈ K such that x+a = b ⇐⇒ x = b−a), exactly
the definition of K −K. And if for some x we have (x +K) ∩K = ∅ then we have λn((x +K) ∪K) =
λn(x+K)+λn(K) = λn(K)+λn(K) = 2λn(K) > λn(U). Then it is not possible that (x+K)∪K ⊆ U ;
since K ⊆ U we have that x+K ⊆ U implies (x+K) ∩K 6= ∅; since in (iii) we proved that x+K ⊆ U
if |x| < δ we get that the open ball of center the origin and radius δ is contained in K −K. �

Exercise 2.7.4. We want to prove (generalizing Vitali’s example) that in Rn there is a subset A
such that every Lebesgue measurable subset of A has measure 0, and every measurable subset of the
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complement B = Rn r A has also measure 0 (prove that necessarily such a set cannot be measurable,
and that the outer measures of A and B are both strictly positive). Let a ∈ Rn be a vector with at least
one irrational coordinate. Set G = Qn + Z a, G0 = Qn + 2Z a, G1 = G0 + a.

(i) G and G0 are additive subgroups of Rn, G = G0 ∪G1 (disjoint union), and G1 is dense in Rn.

Let E ⊆ Rn be a set of representatives of Rn/G ((that is, E ∩ (x +G) contains exactly one element out
of each coset x+G of Rn/G); set A = E +G0.

(ii) Prove that B = Rn rA = E +G1.
(iii) Prove that A−A := {x− y : x, y ∈ A} and B − B = {x− y : x, y ∈ B} do not intersect G1.
(iv) Using the difference theorem (2.7.3) prove that neither A nor B contain measurable sets of

nonzero measure.
(v) Prove that every E ⊆ Rn of strictly positive outer measure contains a non–measurable subset.
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3. Measurable functions

Recall that a measurable space is a pair (X,M) formed by a set X and σ−algebra of parts of X .
The relevant maps between such spaces are the measurable maps, which we now define.

Definition. Let (X,M) and (Y,N ) be measurable spaces. A function f : X → Y is said to be
measurable if f←(V ) ∈ M for every V ∈ N (that is, the inverse image of every measurable set in the
range is measurable in the domain).

The theory of measurable functions has several analogies (and differences . . . ) with the theory of
continuous functions; recall that a map f : X → Y of topological spaces (X, τX) and (Y, τY ) is continuous
iff f←(V ) ∈ τX for every V ∈ τY .

3.0.7. First results. Some easy remarks:

. Constant maps are measurable. Compositions of measurable maps are measurable. Restrictions of
measurable maps are measurable.

Proof. Assume that (X,M) and (Y,N ) are measurable spaces, and f : X → Y is a function. If f is
constant the inverse image of a subset of Y is either empty or X . And if (Z,P) is a third measure space
and f : X → Y and g : Y → Z are measurable then (g ◦ f)←(W ) = f←(g←(W )) ∈ M for every W ∈ P
since g←(W ) ∈ N , by measurability of g. And if S ⊆ X , then f|S : S → Y is measurable with respect to
the induced σ−algebra MS = {B ∩ S : B ∈ M}. �

Exercise 3.0.5. Let (X,M) and (Y,N ) be measurable spaces, f : X → Y a function. Let (Xk)k∈N
be a countable cover of X by measurable sets (i.e. Xk ∈ M for every k ∈ N and X =

⋃

k∈NXk). Then f
is measurable if and only if f|Xk

is measurable, for every k ∈ N.

3.0.8. Changing σ−algebras. As with continuity in topological spaces, measurability of f : X → Y ,
with (X,M) and (Y,N ) measurable spaces is the more significant the largest is the σ−algebra on the range
space, and the smaller is the σ−algebra on the domain space. In other words, if f : X → Y is measurable,
it remains measurable when the σ−algebra M on the domain is enlarged to a bigger σ−algebra, and also
if N on the target space is replaced by a smaller σ−algebra; at the extreme, if M = P(X) then every f
with domain X is measurable, whatever the range space (Y,N ); and symmetrically, if N = {∅, Y } is the
trivial σ−algebra, then every f : X → Y is measurable, whatever the domain (X,M). This elementary
observation motivates some of the subsequent definitions.

3.0.9. Final σ−algebra. Assume that (X,M) is a measurable space, Y is a set, and f : X → Y a
function. It is immediate to see that

Qf = Q = {V ⊆ Y : f←(V ) ∈ M},
is a σ−algebra of parts of Y . It is the largest possible σ−algebra on Y which makes f measurable, and
is called the final, or quotient σ−algebra of M via f . It has the following property:

. With notations and terminology as above, let g : Y → Z be a function, where (Z,P) is a measurable
space. If g ◦ f : X → Z is measurable, then g is (Y,Qf )−measurable.

Proof. For every W ∈ P we have by measurability of g ◦ f that (g ◦ f)←(W ) = f←(g←(W )) ∈ M,
and this is equivalent to say that g←(W ) ∈ Qf . �

3.0.10. A sufficient condition for measurability. Notice that f : (X,M) → (Y,N ) is measurable if
and only if Qf ⊇ N . Then

Proposition. Assume that f : (X,M) → (Y,N ) is a map, and that E is a set of generators for N .
Then f is measurable if and only if f←(E) ∈ M for every E ∈ E.

Proof. The condition says that E ⊆ Qf , whereQf is the final σ−algebra of f . ThenN = M(E) ⊆ Qf ,
which implies measurability of the original f . �

The preceding proposition is constantly used. A very important class of measurable functions will be
that of real valued functions from a measurable space (X,M) into R, where, unless otherwise specified,
it is understood that the σ−algebra is that B(R) of Borel subsets of R. To check that f : X → R is
measurable, it is enough to check that strict upper Lebesgue sets as {f > α} := {x ∈ X : f(x) > α}
belong to M, for every α ∈ R (or even only for every α ∈ Q); analogously for strict lower Lebesgue sets

{f < α}, etc. (2.3). Same for extended real valued functions f : X → R̃ = R∪ {−∞,∞}: recall that the
Borel sets of R̃ are those of R, united with a subset of {−∞,∞}. A very important corollary is:
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Corollary. Let (X, τX) and (Y, τY ) be topological spaces, and let f : X → Y be continuous. Then
f : (X,B(X)) → (Y,B(Y )) is measurable.

Proof. For every V ∈ τY we have that f←(V ) ∈ τX ⊆ B(X), and τY generates B(Y ). �

Of course there are many more Borel measurable functions than continuous functions: observe that
a subset A of a measurable space X is measurable if and only if its characteristic function χA : X → R
is measurable, but in a topological space a characteristic function is continuous iff it is the characteristic
function of an open–and–closed set. As an important example we single out the following one:

Exercise 3.0.6. The sign function sgn : C → C is defined by sgn(0) = 0, and sgn z = z/|z| for z 6= 0.
Prove that sgn is measurable (no specification of σ−algebras means that Borel σ−algebras are used, both
in domain and in range).

Solution. Let V be an open subset of C. If 0 /∈ V then sgn←(V ) = (sgn|C∗)
←(V ) is an open subset

of C∗ = C r {0}, the punctured plane, since sgn|C∗ is a continuous self–map of C∗. And if 0 ∈ V , then

sgn←(V ) = {0} ∪ sgn←(V r {0}) is Borel subset of C (clearly sgn is not continuous at 0: the inverse
image of the open unit disk ∆ = {w ∈ C : |w| < 1} is {0}, not a neighborhood of 0!) �

3.0.11. Initial σ−algebras. Assume now that X is a set, that (Yλ,Nλ)λ∈Λ is a family of measurable
spaces, and that for each λ ∈ Λ we have a function fλ : X → Yλ. There is a smallest σ−algebra M on X
among those that make all functions fλ measurable. This σ−algebra may be described in the following
way: for each λ ∈ Λ consider a set Bλ of generators for Nλ (which might be of course all of Nλ). Then
M is the σ−algebra on X generated by all sets of the form f←λ (Vλ), with Vλ ∈ Bλ and λ ∈ Λ. The
most important application will be to the case of product spaces. But even the case of a single map
f : X → Y has interest. For instance we can have X = S ⊆ Y and f = jS : S → Y the canonical
injection. In this case we have of course j←S (V ) = V ∩ S, and the initial σ−algebra is the σ−algebra
NS = {V ∩ S : V ∈ N}, already discussed in 3.0.7.

3.0.12. Product of a finite family of measurable spaces. Given two measurable spaces (X,M) and
(Y,N ) we consider the product set X×Y , and we put on X×Y the initial σ−algebra determined by the
canonical projections pX : X×Y → X given by pX(x, y) = x and pY : X×Y → Y given by pY (x, y) = y.
This σ−algebra is denoted by M⊗N (read em tensor en), and is generated by all measurable cylinders
A × Y = p←X (A) and X × B = p←Y (B), with A ∈ M and B ∈ N (or A varying in system of generators
E for M, same for B, F and N . Of course finite intersections of such sets are also a generating system;
and if A ⊆ X and B ⊆ Y we have

A×B = (A× Y ) ∩ (X ×B) = p←X (A) ∩ p←Y (B).

If E and F are semialgebras which generate M and N respectively we have seen that the set of all
products G = {A × B : A ∈ E , B ∈ F} is a semialgebra of parts of X × Y (see 1.4.2); this semialgebra
generates M ⊗ N . All this can be repeated with obvious changes for a product of a finite family
((Xk,Mk))k∈{1,...,m} of measurable spaces: the product X =

∏m
k=1Xk, set of all m−tuples (x1, . . . , xm)

with xk ∈ Xk is equipped with the σ−algebra generated by the sets A1 × · · ·×Am =
⋂m

k=1 p
←
k (Ak), with

Ak varying in a system of generators for Mk

To specify a function f : T → X =
∏m

k=1Xk arriving to a product, we can specify its component
functions fk = pk ◦ f . Products are characterized by the following property: a function which arrives to
a product is measurable if and only if its component functions are measurable:

. Let (T, T ) be a measurable space, let ((Xk,Mk))k∈{1,...,m} be a family of measurable spaces, and

let f : T → X =
∏m

k=1Xk be a function. Then f is measurable if and only if all its component functions
fk = pk ◦ f , k = 1, . . . ,m are measurable.

Proof. Necessity is obvious, since compositions of measurable maps are measurable. And sets like
p←k (Ak) are a system of generators for

⊗m
k=1 Mk; since for every such set f←(p←k (Ak)) = (pk ◦ f)←(Ak)

is T −measurable, by 3.0.10 f is measurable. �

3.0.13. Sections. To simplify notations we limit ourselves to the product of two measurable spaces
(X,M) and (Y,N ). Having a third space (Z,P) and a function f : X × Y → Z we have the sections
of f , functions obtained by keeping one variable fixed and letting the other change. Given y ∈ Y , the
y−section of f is the function f(#, y) : X → Z given by x 7→ f(x, y); similarly, given x ∈ X , the
x−section f(x,#) : Y → Z is defined by y 7→ f(x, y). The next result is very important for the theory
of multiple integration.
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Proposition. Let (X,M),(Y,N ) and (Z,P) be measurable spaces, and assume that

f : (X × Y,M⊗N ) → (Z,P) is measurable.

Then all sections f(x,#) and f(#, y) of f are measurable.

Proof. Given x ∈ X we have the injection jx : Y → X × Y given by jx(y) = (x, y). This map
is (N ,M ⊗ N ) measurable (its components are the maps constantly x and the identity of Y , both
measurable). Then the composition f ◦ jx : Y → Z is measurable; this composition is exactly the
x−section f(x,#). Similarly for the y−section. �

Given a ∈ X , by a−section of a subset S ⊆ X × Y we mean the set S(a) = {y ∈ Y : (a, y) ∈ S}, of
which the function y 7→ χS(a, y) is the characteristic function; similarly for b ∈ Y .

Exercise 3.0.7. Let (X × Y,M⊗N ) be the product of the measurable spaces (X,M) and (Y,N ).
Let A, B be subsets of X and Y respectively, both non empty. Prove that A×B is M⊗N−measurable
if and only if A ∈ M and B ∈ N . Prove that M and N are the final σ−algebras of pX and pY .

Solution. If A×B ∈ M⊗N then for every a ∈ A the a−section of A×B, namely B, belongs to N ;
similarly for b ∈ B the b−section A of A×B belongs to M. Then, if p←X (A) = A× Y ∈ M⊗N we have
A ∈ M, proving that M is the final σ−algebra of M⊗N by pX ; similarly for pY . �

3.0.14. Borel sets in a product of topological spaces. Recall that if (X, τX) is a topological space a
base for the open sets of X is subset E of open sets such that every open set of the space is a union of
elements of E . Since E ⊆ τX we have M(E) ⊆ B(X) = M(τX). If E is a countable set then of course we
have τX ⊆ M(E) and hence M(E) = B(X); but in general the inclusion is proper. If (X, τX) and (Y, τY )
are topological spaces, then the product topology on X×Y has the open rectangles U×V as a base for the
open sets. It follows that B(X)⊗B(Y ) ⊆ B(X × Y ), and the inclusion might be proper (examples exist,
see 3.0.15). If however τX and τY have countable bases, say EX and EY , then {U ×V : U ∈ EX , V ∈ EY }
is a base for the product topology of X × Y , and a generating system for the σ−algebra B(X)⊗ B(Y )
as well, so that B(X)⊗ B(Y ) = B(X × Y ). A topological space is said to be second countable if it has a
countable base for the open sets; metrizable and separable spaces are second countable (a countable base
for the open sets are the open balls of rational radii centered at the points of a countable dense set, see
1.3). In particular B(R2) = B(R)⊗ B(R), etc.

Proposition. If (X, τX), (Y, τY ) are second countable topological spaces and (Z, τZ) is a topological
space, then every continuous function f : X × Y → Z is (B(X)⊗ B(Y ),B(Z))−measurable.

Proof. Because B(X)⊗ B(Y ) = B(X × Y ). �

Example 3.0.8. The functions (x, y) 7→ x ∨ y = max{x, y} and (x, y) 7→ x ∧ y = min{x, y} are

continuous from R̃× R̃ → R̃, hence measurable. Similarly the addition from R×R to R, or C×C to C, or
[0,∞]× [0,∞] → [0,∞], or even R̃× R̃r {(∞,−∞), (−∞,∞)} to R̃ is continuous and hence measurable.

Multiplication R̃× R̃ → R̃, extended by declaring that 0(±∞) = (±∞)0 = 0, is not continuous, but it is
Borel measurable.

3.0.15. The Sorgenfrey plane. The Sorgenfrey line S defined in Analisi Due, 2.4.15, is a space which is not

second countable: if S is a base for the open sets of S, for every real number a there exists U(a) ∈ S such that

a ∈ U(a) ⊆ [a, a + 1[, in particular minU(a) = a. If we consider the subset U of S consisting of all U ∈ S that

have a minimum, we get a map U 7→ minU from U to R, which is onto R. Then |R| ≤ |U| ≤ |S|, proving that

any base for the topology of S has at least cardinality c, the continuum. But one can prove that B(S) = B(R):
with a little effort one can in fact prove that every S−open set is a countable union of right half–open intervals.

Then B(S) ⊗ B(S) = B(R2). But the Borel tribe of the Sorgenfrey plane S × S is much larger than B(R2): the

topology induced by S×S on the second diagonal D = {(x,−x) : x ∈ S} is the discrete topology, so every subset

of D is in B(S × S), whereas B(R2) traces on D the Borel tribe (observe that x 7→ (x,−x) is a homeomorphism

from R onto D, when D has the topology induced on it by R2 (usual).

3.1. Measurable real functions. We now consider the particularly important special case of ex-
tended real valued functions from a measurable space (X,M) to the extended real line R̃ = R∪{−∞,∞},
equipped with the Borel σ−algebra. As observed in 3.0.10, such a function f : X → R̃ is measurable iff
{f > α} (or {f < α}, or {f ≥ α} or {f ≤ α}) is measurable for each α ∈ R (or even only every α ∈ Q).
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3.1.1. Basic properties.

. Let (X,M) be a measurable space.

(i) if (fn)n∈N is a sequence of extended real valued measurable functions, then the functions
∨

n∈N fn
and

∧

n∈N fn, defined by
(

∨

n∈N

fn

)

(x) := sup{fn(x) : n ∈ N},
(

∧

n∈N

fn

)

(x) = inf{fn(x) : n ∈ N},

are measurable; and the functions f∗, f∗, defined by

f∗(x) = lim sup
n→∞

fn(x) that is f∗ =
∧

m∈N





∨

n≥m

fn





f∗(x) = lim inf
n→∞

fn(x) that is f∗ =
∨

m∈N





∧

n≥m

fn





are measurable; in particular, the limit of a pointwise convergent sequence of measurable func-
tions is measurable.

(ii) If f, g : X → R̃ are measurable, then f ∨ g, f ∧ g, f+, f−, |f | are measurable.
(iii) If f, g : X → R are measurable, then f + g and f g are measurable.
(iv) f : X → C is measurable iff Re f and Im f are measurable; and |f | , sgn f are measurable.

Proof. (i) Writing for simplicity f in place of
∨

n fn we have, for every α ∈ R:

{f > α} =
⋃

n∈N

{fn > α}

(the supremum of a set of extended real numbers is strictly larger than some real number α if and only
if some member of the set is strictly larger than α). Similarly

{

∧

n

fn < α

}

=
⋃

n∈N

{fn < α}.

Measurability of liminf and limsup follows easily iterating this fact; and from measurability of these
follows measurability of the limit, when the limit exists.

(ii) is a particular case of the first statement, for a two element set {f, g} in place of a sequence.
Notice that |f | = f ∨ (−f).

(iii) Consider the function f▽g : x 7→ (f(x), g(x)) from X → R2; its component are measurable so
that f▽g is B(R)⊗B(R) measurable; addition and multiplication, being continuous, are (B(R×R),B(R))
measurable; but since R is second countable we have B(R)⊗ B(R) = B(R× R). Then f + g and f g are
measurable, as compositions of measurable functions.

(iv) In the usual identification of C with R2 we have B(C) = B(R2) = B(R) ⊗ B(R), Re and Im
are the projections, so that the statement is just the proposition in 3.0.12. And if φ : C → C is Borel
measurable, then φ ◦ f is measurable: the sign function is Borel measurable (see 3.0.6), and the absolute
value function is continuous.

�

3.1.2. Linear spaces of measurable functions. Given a measurable space (X,M) we denote by L+
M(X)

or simply L+(X) or even only L+ the set of all extended real valued positive measurable functions. We
denote LM(X,K) (or simply L(X,K) or even only L(X) when the tribe M is understood) the set of all
K−valued measurable functions defined on X ; this set is a vector space and an algebra of functions, and
L(X,R) is also a lattice. We have seen that L(X) is closed under post-composition with Borel measurable
functions, and under pointwise convergence of sequences,

Exercise 3.1.1. If f : X → R̃ is measurable, and φ : R̃ → R̃ is Borel measurable (in particular continuous)
then φ ◦ f is measurable. Prove that if φ is a homeomorphism then measurability of φ ◦ f implies measurability
of f .

Remark. If φ is not a homeomorphism of R̃ then φ ◦ f can be measurable without f being measurable. For
instance it can happen that |f | is measurable and f is not measurable: e.g. take a non measurable set A ⊆ X
and define f(x) = 1 for x ∈ A, f(x) = −1 for x ∈ X rA. Then f is non measurable but |f | is the constant 1 and
is then measurable.
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Exercise 3.1.2. Let (X,M) be a measurable space, and let f, g : X → R̃ be measurable functions. Prove
that the set {g > f} := {x ∈ X : g(x) > f(x)} is measurable.

Given a sequence fn : X → R̃ of measurable functions, prove that the set

{x ∈ X : lim
n→∞

fn(x) exists in R̃}

is measurable.

Solution. If the functions were real valued, then we would have {g > f} = {g − f > 0}, with the latter set

measurable since g − f is measurable. In the general case we can consider T = {(u, v) ∈ R̃2 : u < v}; this is a

Borel set, in fact an open subset of R̃2; the map f▽g : X → R̃2 that has f and g as components is measurable
and hence (f▽g)←(T ) = {g > f} is measurable.

For the second question simply note that if f∗ = lim infn fn and f∗ = lim supn fn, then the set where the
limit exists is X r {f∗ < f∗} = {f∗ ≤ f∗}, hence is measurable.

Of course the limit function is measurable on the measurable set where it exists (by (i) of 3.1.1). �

Exercise 3.1.3. Let f : R → K be a function. Given a ∈ R, the translate of f by a is the function
tra f : R → R defined by tra f(x) = f(x − a); prove that if f is Borel measurable then its translates are Borel
measurable.

Assuming f everywhere differentiable, prove that the derivative f ′ is measurable.

3.1.3. Some exercises and some solutions.

Solution. (of exercise 3.0.5) Since restrictions of measurable functions are measurable, necessity is trivial.
And if fk = f|Xk

is measurable for every k ∈ N and V ∈ N we have

f←(V ) =
⋃

k∈N

Xk ∩ f←(V ) =
⋃

k∈N

f←k (V );

by the measurabilty of fk each f←k (V ) belongs to the σ−algebra induced by M on Xk. in particular belongs to
M; then f←(V ) is a countable union of elements of M. �

Exercise 3.1.4. Let X,Y be Hausdorff topological spaces, and let A ⊆ X be a finite or countably infinite
subset. Let f : X → Y be continuous on X r A. Prove that f : X → Y is (B(X),B(Y ))−measurable.

Addition from (#)+(#) : R×R → R and multiplication (#)(#) : R×R → R may be extended by continuity
to

(#) + (#) : R̃× R̃ r {(∞,−∞), (−∞,∞)} → R̃; (#)(#) : R̃× R̃ r {(0,±∞), (±∞, 0)} → R̃

prove that any further extension to all of R̃× R̃ of the these maps is measurable (e.g one can define ∞+(−∞) =
(−∞) + ∞ = 0, or any other arbitrary value, and similarly for multiplication one can e.g. define 0 · (±∞) =
(±∞) · 0 = 0 and addition and multiplication remain measurable).

Solution. SinceX is Hausdorff, singletons ofX are closed sets, in particular Borel sets, and hence all countable
subsets of X are Borel sets, in particular the σ−algebra induced on A by B(X) is P(A), and X r A is a Borel
set. If f : X → Y is continuous on X rA, then for every open set V of Y the inverse image f←(V ) is of the form
(U ∩ (X rA)) ∪ f←|A (V ), with U open in X, since f|XrA is continuous; the second set is a countable set, hence a

Borel set, and U ∩ (X r A) is also Borel, intersection of the open U with X rA, co–countable, hence Borel.
All the rest of the exercise is a trivial application of this result. �

3.1.4. Almost everywhere, almost every. Given a measure space (X,M, µ), a subset N ⊆ X is said
to be negligible (it: trascurabile), µ−negligible if the measure has to be specified, if it is contained in a
set M ∈ M of measure µ(M) = 0; being a null set is synonymous to having zero measure: when the
space is complete negligible and null sets coincide. A property P (x) applicable to points x ∈ X of a
measure space is said to be true almost everywhere, abbreviated a.e. (it: quasi ovunque, abbr. q.o.) if
the set {x ∈ X : P (x) is false} is negligible; equivalently, the property P (x) is true, except at most on a

null set (which contains the set where P (x) fails to be true). A function f : X → R̃, or f : X → C whose
cozero–set is negligible will be called negligible; a null function is a measurable negligible function. But
we shall more frequently speak of a function which is a.e zero. These distinctions disappear on complete
measure spaces. The set of all equivalence classes of measurable functions modulo null functions will be
denoted Lµ(X,K) or simply L(µ): its elements are the cosets f + N (µ), if N (µ) denotes the set of all
null functions.
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3.1.5. Measurable functions defined only almost everywhere. Very often it is the case that on a given
measure space (X,M, µ) a numerical valued function f is defined not on the whole space X , but only
on a subset D of X whose complement X r D is negligible, i.e. contained in a null set M ∈ M. If f
is measurable (with respect to the induced σ−algebra MD = {A ∩D : A ∈ M}) then there is one and
only one class of L(µ) associated to f , in the following sense:

. In the above hypotheses there exists a measurable g : X → K such that the set {x ∈ D : f(x) 6= g(x)}
is negligible; and if h : X → K is another such function, then g = h a.e. on X.

Proof. Let M be a null set containing X r D. Define g(x) = f(x) for x ∈ X rM , and g(x) = 0
for x ∈ M ; then g is measurable and {x ∈ D; f(x) 6= g(x)} is contained in M . Clearly if h : X → K
is measurable and {x ∈ D : h(x) 6= f(x)} is negligible, say contained in the null set N , then {x ∈ X :
g(x) 6= h(x)} ⊆M ∪N . �

3.1.6. A. e. equal with respect to Lebesgue measure. The following exercise highlights a very impor-
tant aspect of Lebesgue measure.

Exercise 3.1.5. We consider Rn with Lebesgue measure.

(i) Prove that every non–empty open subset U ⊆ Rn has strictly positive measure, λn(U) > 0.
(ii) Let D ⊆ Rn be open, let f, g : D → K be functions, and let c be a point of the closure of

D in Rn. Assume that f and g are a.e. equal in D and that limx→c,x∈D f(x) = a ∈ K and
limx→c,x∈D g(x) = b ∈ K exist in K. Prove that then a = b. In particular, if f and g are both
continuous at some point c ∈ D, and are a.e. equal, then f(c) = g(c), so that:

two continuous a.e. equal functions f, g : D → K are equal everywhere on D

(instead of K we might have any Hausdorff topological space as target space).
(iii) If I is an open interval of R and f, g : I → R are monotone and a.e. equal, then they coincide

on the complement of a countable set, and have the same left and right limits, differing at most
at jump points (see also 1.3.6).

Solution. (i) Immediate: given c ∈ U , for δ > 0 small enough the open cube Q centered at c of
half–side δ, namely Q = {x ∈ Rn : ‖x− c‖∞ < δ} is contained in U , so that λn(U) ≥ λn(Q) = 2nδn > 0.

(ii) If a 6= b we may take disjoint nbhds V1 and V2 of a and b respectively. There is then an open
nbhd W of c ∈ Rn such that if x ∈ W ∩ D r {c} we have f(x) ∈ V1 and g(x) ∈ V2; in particular then
f(x) 6= g(x) for every x ∈ W ∩Dr {c}, so that W ∩Dr {c} ⊆ {f 6= g}; but W ∩Dr {c} is a non–empty
open subset of Rn, so that λn(W ∩D r {c}) > 0, contradicting the hypothesis f = g a.e.

All remaining questions now follow easily.

Remark. Notice the important corollary: If in the class [g] of functions f ∈ KD, with D open in Rn,
that are a.e. equal to a given function g ∈ KD, there is a continuous representative h, then this is the
only continuous representative in the class. This will naturally (in general) be the chosen representative
of the class.

�

3.2. Measurable simple functions. Given an algebra A of parts of a set X , a function f : X → K
is calledA−simple, just simple whenA is understood, if it has the following form: there is a finite partition
{E(1), . . . , E(n)} of X into elements E(k) ∈ A such that f is constant on each E(k). Such a partition is
said to be admissible for f , or associated to f ; if f(E(k)) = {αk}, with αk ∈ K, then we have

f =

n
∑

k=1

αk χE(k).

The range of a simple function is of course finite, f(X) = {α1, . . . , αn}; if {y1, . . . , ym} is a bijective
indexing of the range (i.e. no yj is repeated) then the set f←(yj) =

⋃{E(k) : αk = yj} belongs to A,
and we have the standard representation of f , f =

∑m
j=1 yj χf←(yj), the one with the coarsest partition.

Given two A−simple functions, there is a partition associated to both: if {A(1), . . . , A(m)} is associated
to f and {B(1), . . . , B(n)} to g, then {A(j) ∩ B(k)}(j,k) (discarding the emptyset if encountered) is
admissible for both; then f + g and f g have this as associated partition, as well as f ∨ g and f ∧ g when
K = R. So the A−simple K−valued functions are a K−algebra of functions, and the real valued simple
functions are also a lattice.
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Example 3.2.1. If X = Rn, and An is the interval algebra, the An−simple functions are called step
functions. If A is the algebra of finite or cofinite subsets of X then A−simple functions are all functions
which are constant outside some finite subset of X .

Exercise 3.2.2. If A is an algebra of parts of X , the K−valued A−simple functions are the functions
of the vector subspace of KX generated by the characteristic functions of sets A ∈ A.

Observe that if (X,M) is a measurable space, then the M−simple functions are exactly the mea-
surable functions with finite range. Remember that simple functions are always finite valued: we do not
allow ∞ as a value for a simple function.

3.2.1. Approximation by simple functions. The next result is of fundamental importance. Assume
that (X,M) is a measurable space, and that f : X → [0,∞] is a measurable extended real valued positive
function. A subdivision of the positive half–line [0,∞[ is a finite set α = {a0, . . . , am} of positive real
numbers, with a0 = 0 < a1 < · · · < am; the mesh of α is max{aj − aj−1 : j = 1, . . . ,m} . If α, β are
subdivisions of [0,∞[ we say that β is finer than α if it has more points, i.e. β ⊇ α. To each subdivision
α of [0,∞[ and each measurable f : X → [0,∞] we associate a measurable positive simple function
fα : X → [0,∞[ such that fα ≤ f in the following way:

fα =

m
∑

j=1

aj−1 χf←(]aj−1,aj]) + am χf←(]am,∞]).

Notice that fα(x) = 0 if f(x) = 0, fα(x) = am if f(x) = ∞, and fα(x) = aj−1 if aj−1 < f(x) ≤ aj for a
(necessarily unique) j ∈ {1, . . . ,m}. If β is another subdivision finer than α then we have fα ≤ fβ , as is
easy to see.

Proposition. Let α(k) be a sequence of subdivisions of [0,∞[ such that:

(i) α(k) ⊆ α(k + 1).
(ii) limk→∞maxα(k) = ∞
(iii) limk→∞meshα(k) = 0.

Then the sequence fk = fα(k) is increasing and converges pointwise to f ; and the convergence is uniform
on every set on which f is bounded.

Proof. Condition (i) implies that the sequence is increasing. Put a(k) = maxα(k) and δ(k) =
meshα(k). Given x ∈ X we have to prove that limk→∞ fk(x) = f(x). If f(x) = 0, then fk(x) = 0 for
every k; if f(x) = ∞, then fk(x) = a(k) for every k, and by (ii) we have limk→∞ a(k) = ∞. Finally, if
0 < f(x) ≤ a <∞, and a(k) ≥ a we have:

0 < f(x)− fk(x) ≤ δ(k),

and since by (iii) we have limk→∞ δ(k) = 0 the conclusion is reached. �

A sequence α(k) verifying (i), (ii) and (iii) is for instance

α(k) =

{

0,
1

2k
, . . . ,

j

2k
, . . . , k

}

= {j/2k : j = 0, . . . , k 2k},

with maxα(k) = k and meshα(k) = 1/2k.
3.2.2. We immediately get:

Corollary. Let (X,M) be a measurable space, and let f : X → C be measurable. Then there is a
sequence of measurable simple functions ϕn which converges pointwise to f and such that |ϕn| ↑ |f |; the
convergence is uniform on sets on which f is bounded.

Proof. Let u = Re f and v = Im f ; choose sequences u±n e v±n of positive functions converging upwards
to u± e v±. Then ϕn = (u+n −u−n )+ i (v+n − v−n ) is as required (details of the proof are left as an exercise,
see below). �

Details of the proof Let’s prove first the real valued case, v = 0. We have to prove that u+
n +u−n is increasing.

Given x ∈ X, if u(x) = 0 then u+(x) = u−(x) = 0 and also u+
n (x) = u−n (x) = 0 for every n; if u+(x) > 0

then u−(x) = 0 and u−n (x) = 0 for every n, etc. Next, if |un| ≤ |un+1| and |vn| ≤ |vn+1| we have, trivially,

|un + i vn| ≤ |un+1 + i vn+1|, since
√
u2 + v2 increases if |u| and |v| both increase.
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3.2.3. Measurable functions on completions. When completing a measure space, the set of (equiv-
alence classes of) measurable functions modulo null functions does not change (in other words L(µ) =
L(µ̄)):

Proposition. Let (X,M, µ) be a measure space, and let (X,M, µ̄) be its completion. For every
M−measurable function f : X → K there is a M−measurable function g : X → K such that the set
{f 6= g} is contained in a set M ∈ M with µ(M) = 0.

Proof. For the characteristic function of a set in M this is true (2.4.1). Then it is true for simple
functions; and since every measurable function is a limit of a sequence of simple functions, it is true for
every measurable function as well. �
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4. Integration

We begin now the theory of abstract integration. Integrals will be first defined for measurable positive
simple functions, then for arbitrary measurable positive functions, then for some measurable functions;
these will have an integral only if they are not too large.

4.1. Integrals of measurable functions.
4.1.1. Integrals of positive simple functions. We start by defining the integral of a positive A−simple

function, with respect to a positive finitely additive measure µ : A → [0,∞], A an algebra of parts of X .
Assume that f =

∑m
j=1 yj χf←(yj) is the standard representation of f (i.e. f(X) = {y1, . . . , ym}, with

yj 6= yk if j 6= k); then, by definition
ˆ

X

f dµ =

ˆ

X

f =

ˆ

f :=

m
∑

j=1

yj µ(f
←(yj))

(as usual in measure theory, 0∞ = 0 is used); this integral is a non negative real number, or ∞ (this last
if and only if yj > 0 and µ(f←(yj)) = ∞ for at least one j ∈ {1, . . . ,m}). We can immediately prove
that if {E(1), . . . , E(n)} is an admissible partition for f =

∑n
k=1 αk χE(k) then

ˆ

X

f =

n
∑

k=1

αk µ(E(k));

in fact, collecting all the E(k) such that αk = yj :

n
∑

k=1

αk µ(E(k)) =
m
∑

j=1

yj

(

∑

{µ(E(k)) : αk = yj}
)

=
m
∑

j=1

yj µ(f
←(yj))

by finite additivity of µ. We then get additivity of the integral: if f and g are positive and A−simple
there is a partition admissible for both f and g, so that f =

∑n
k=1 αk χE(k) and g =

∑n
k=1 βk χE(k) and

f + g =
∑n

k=1(αk + βk)χE(k), whence

ˆ

X

(f + g) =

n
∑

k=1

(αk + βk)µ(E(k)) =

n
∑

k=1

αk µ(E(k)) +

n
∑

k=1

βk µ(E(k)) =

ˆ

X

f +

ˆ

X

g.

That
´

X
(λ f) = λ

´

X
f for each λ > 0 and each positive simple f is trivial. This implies that if a function

is represented as a positive linear combination of characteristic functions of sets in A, f =
∑p

k=1 αkχE(k),
with αk ≥ 0, we have

ˆ

X

f =

p
∑

k=1

αk µ(E(k))

even if the E(k)’s are not pairwise disjoint. Notice that the integral is zero if and only if αk > 0 implies
µ(E(k)) = 0, and that the integral is finite if and only if µ(E(k)) = ∞ implies αk = 0. Note that the
constant 1 has a finite integral if and only if µ(X) <∞: by definition

´

X
1 dµ = µ(X). Remember that

. A simple function f has finite integral if and only if its cozero set Coz(f) = {f 6= 0} has finite
measure.

Finally, the integral is isotone: if f ≤ g with f, g positive simple then also g = f + h with h positive
and simple so that

´

X
g =

´

X
f +

´

X
h ≥

´

X
f .

4.1.2. Integral of a positive measurable function. Let (X,M, µ) be a measure space. For f ∈ L+, i.e.
f positive measurable, we define its integral as:

ˆ

X

f dµ =

ˆ

X

f =

ˆ

f := sup

{
ˆ

X

ϕdµ : 0 ≤ ϕ ≤ f, ϕ simple measurable

}

.

It is non negative real number, or ∞; clearly for positive simple functions this integral coincides with the
one already defined. Trivially this integral is isotone:

f, g ∈ L+, f ≤ g =⇒
ˆ

X

f ≤
ˆ

X

g,

and positively homogeneous: f ∈ L+ and λ ≥ 0 imply
´

X
λ f = λ

´

X
f . We also define the integral of f

extended to A as
´

A f :=
´

X f χA for f ∈ L+ and A ∈ M.
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4.1.3. Positive functions with zero integral. Let us prove that a positive measurable function has
integral zero if and only if it is zero almost everywhere, that is, its cozero–set Coz(f) = {f 6= 0} has
measure zero

. If f ∈ L+ then
ˆ

X

f dµ = 0 ⇐⇒ µ({f > 0}) = 0.

Proof. We have

{f > 0} =
∞
⋃

n=1

{f ≥ 1/n},

and clearly ϕn = (1/n)χ{f≥1/n} is a simple function dominated by f , with integral (1/n)µ({f ≥ 1/n}).
Now,

´

X
f = 0 means that

´

X
ϕ = 0 for every positive simple function under f , in particular

ˆ

X

ϕn =
1

n
µ({f ≥ 1/n}) = 0,

equivalently µ({f ≥ 1/n}) = 0, for every n ≥ 1. Then {f > 0}, a countable union of sets of measure zero,
has also measure 0. Conversely, if µ({f > 0}) = 0 and ϕ =

∑m
k=1 αk χE(k) is a positive simple function

with αj > 0 for every j ∈ {1, . . . ,m}, we have ϕ(x) ≥ αk > 0 for every x ∈ E(k), so that E(k) ⊆ {f > 0},
and µ(E(k)) ≤ µ({f > 0}) = 0 for every k ∈ {1, . . . ,m}. Then

ˆ

X

ϕ =
m
∑

k=1

αk µ(E(k)) = 0;

this is equivalent to say that the integral of f is zero. �

4.1.4. Monotone convergence. The most important theorem of abstract integration is the:

. Monotone convergence theorem. Let (X,M, µ) be a measure space, and let f0 ≤ f1 ≤ f2 ≤
. . . be an increasing sequence of functions in L+(X), such that fn ↑ f pointwise. Then

ˆ

X

f = lim
n→∞

ˆ

X

fn

(

= sup

{
ˆ

X

fn : n ∈ N
})

.

Proof. By isotony we have
´

X
fn ≤

´

X
f for every n; we need to prove that

´

X
f ≤ sup

{´

X
fn : n ∈ N

}

.

Equivalently, given a simple measurable ϕ, with 0 ≤ ϕ ≤ f , we have to prove that
´

X
ϕ ≤ limn→∞

´

X
fn.

We shall prove that for every λ with 0 < λ < 1 we have

lim
n→∞

ˆ

X

fn ≥ λ

ˆ

X

ϕ,

and we get the conclusion taking the limit in this formula as λ → 1−. Set E(n) = {fn ≥ λϕ}, i.e.
E(n) = {x ∈ X : fn(x) ≥ λϕ(x)}; then E(n) ⊆ E(n + 1) (because fn ≤ fn+1) and

⋃∞
n=0E(n) = X (if

ϕ(x) = 0 then x ∈ E(n) for every n; and if ϕ(x) > 0 then λϕ(x) < ϕ(x) ≤ f(x) = limn→∞ fn(x), so that
eventually fn(x) > λϕ(x)). Then

(*)

ˆ

X

fn ≥
ˆ

E(n)

fn ≥
ˆ

E(n)

λϕ = λ

ˆ

X

ϕχE(n).

If ϕ =
∑m

k=1 αk χA(k), with αk > 0 and A(k) ∈ M for k = 1, . . . ,m we have ϕχE(n) =
∑m

k=1 αk χA(k)∩E(n),
so that

ˆ

X

ϕχE(n) =

m
∑

k=1

αk µ(Ak ∩E(n)),

and from (*) we get

(**)

ˆ

X

fn ≥ λ

m
∑

k=1

αk µ(Ak ∩ E(n)),

Since E(n) ↑ X we have A(k) ∩ E(n) ↑n A(k); by continuity from below of measures we have µ(A(k)) =
limn→∞ µ(A(k)∩E(n)), for every k ∈ {1, . . . ,m}. Then, passing to the limit in (**) as n tends to ∞ we
get

lim
n→∞

ˆ

X

fn ≥ λ
m
∑

k=1

αk µ(A(k)) = λ

ˆ

X

ϕ,

as desired. �
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4.1.5. Additivity of the integral.

. Let (X,M, µ) be a measure space. If f, g ∈ L+(X) then

ˆ

X

(f + g) =

ˆ

X

f +

ˆ

X

g.

Termwise integration of series of positive functions (or countable additivity of the integral of
positive functions). If

∑∞
n=0 fn is a series of functions in L+(X), with pointwise sum f , then

ˆ

X

f =
∞
∑

n=0

ˆ

X

fn.

Proof. Take sequences un and vn of simple functions in L+(X) such that un ↑ f and vn ↑ g; un and
vn exist by 3.2.2. Then un + vn ↑ f + g, so that by the monotone convergence theorem we have
ˆ

X

(f+g) = lim
n→∞

ˆ

X

(un+vn); but

ˆ

X

(un+vn) =

ˆ

X

un+

ˆ

X

vn, lim
n→∞

ˆ

X

un =

ˆ

X

f, lim
n→∞

ˆ

X

vn =

ˆ

X

g,

so that
ˆ

X

(f + g) =

ˆ

X

f +

ˆ

X

g.

For the series theorem: if gm =
∑m

n=0 fn, then gm ↑ f and by monotone convergence the integrals of
gm converge to the integral of f as m→ ∞, but by finite additivity we have:

ˆ

X

gm =

ˆ

X

(

m
∑

n=0

fn

)

=
m
∑

n=0

ˆ

X

fn; passing to the limit with m ↑ ∞:

ˆ

X

(

∞
∑

n=0

fn

)

=
∞
∑

n=0

ˆ

X

fn.

�

4.1.6. Čebičeff inequality. The following inequality is almost trivial but quite useful (some people
call it Markov inequality):

. Given a measure space (X,M, µ) and f ∈ L+(X) for every α > 0 we have

µ({f ≥ α}) ≤ 1

α

ˆ

X

f dµ.

Proof. We have

ˆ

X

f dµ ≥
ˆ

{f≥α}

f dµ ≥
ˆ

{f≥α}

αdµ = αµ({f ≥ α}) which implies µ({f ≥ α}) ≤ 1

α

ˆ

X

f dµ.

�

Remember that the cozero–set of a real or complex valued function f : X → K is the set Coz(f) =
{x ∈ X : f(x) 6= 0}.

Corollary. If f ∈ L+ and
´

X f dµ < ∞ then {f = ∞} has measure zero and Coz(f) = {f > 0}
has σ−finite measure.

Proof. We have µ({f ≥ 1/n} ≤ n
´

X f dµ, so that {f ≥ 1/n} has finite measure and Coz(f) =
⋃∞

n=1{f ≥ 1/n} has σ−finite measure. And {f = ∞} ⊆ {f ≥ n} for every n so that µ({f = ∞}) ≤
µ({f ≥ n}) ≤ (1/n)

´

X f for every n implies µ({f = ∞}) = 0. �

Thus a positive function with finite integral can assume the value ∞, but only on a null set, it is a.e.
finite–valued .

Notice also that for every f ∈ L+ and every M ∈ M with µ(M) = 0 we have
´

M
f = 0, since f χM

can be nonzero only on M .



54

4.1.7. A.e. equal functions have the same integral. We have seen in 4.1.3 that a function f ∈ L+ has
zero integral iff it is a null function. Let us see that

. If f, g ∈ L+ are equal a.e., then
´

X f =
´

X g.

Proof. Let M be a null set containing the set {f 6= g}, and let A = X rM . Then f χA = g χA, so
that

´

A f =
´

A g; and
´

M f =
´

M g = 0. Then
ˆ

X

f =

ˆ

M

f +

ˆ

A

f =

ˆ

A

f =

ˆ

A

g =

ˆ

A

g +

ˆ

M

g =

ˆ

X

g.

�

Exercise 4.1.1. (solution in 4.1.11) Prove that for every f ∈ L+:
ˆ

X

f = lim
n→∞

ˆ

{f>1/n}

f.

Prove that if
´

X
f <∞, then for every ε > 0 there is E ∈ M with µ(E) <∞ such that

´

E
f >

´

X
f − ε.

4.1.8. Decreasing sequences. Given the monotone convergence theorem, one might wonder if there an
analogous theorem for decreasing sequences: there is, but with an added hypothesis on the finiteness of
integrals. The situation exactly parallels that of measures, which are continuous from below; continuity
from above requires a finiteness assumption. These situations will be handled in the sequel by the more
general dominated convergence theorem, 4.2.5; see also 4.4.2.

4.1.9. Indefinite integral and density. (Important) Let (X,M, µ) be a measure space. Let ρ : X →
[0,+∞] be measurable. The indefinite integral of ρ is the set function ν = νρ : M → [0,+∞] defined for
A ∈ M by

ν(A) =

ˆ

A

ρ dµ.

Proposition. The set function ν is a measure, and for every f ∈ L+ we have
ˆ

X

f dν =

ˆ

X

f ρ dµ.

Proof. For every E ∈ M such that µ(E) = 0 we have that
´

E
ρ =

´

X
ρχE = 0 because Coz(ρχE) ⊆ E

has measure 0; in particular this holds for E = ∅. And if (A(n))n∈N is a disjoint sequence in M with
union A, we have

f χA =

∞
∑

n=0

f χA(n) =⇒
ˆ

X

f χA =

∞
∑

n=0

ˆ

X

f χA(n) ⇐⇒ ν(A) =

∞
∑

n=0

ν(An),

by the theorem on termwise integration of series of positive functions. Next, if f =
∑m

k=1 αkχE(k) is
measurable we have by linearity of the integral:

ˆ

X

f dν =

m
∑

k=1

αk

ˆ

X

χE(k) dν =

m
∑

k=1

αk ν(E(k)) =

m
∑

k=1

αk

ˆ

E(k)

ρ dµ =

m
∑

k=1

αk

ˆ

X

χE(k) ρ dµ =

ˆ

X

(

m
∑

k=1

αk χE(k)

)

ρ dµ =

ˆ

X

f ρ dµ.

Given f ∈ L+ we then pick an increasing sequence fn of positive measurable simple functions converging
to f ; then fn ρ is an increasing sequence in L+ converging to f ρ, and for every n we have, by what just
proved:

ˆ

X

fn dν =

ˆ

X

fn ρ dµ;

passing to the limit in this formula as n→ ∞ the monotone convergence theorem implies that
ˆ

X

f dν =

ˆ

X

f ρ dµ.

�
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Remark. Observe that µ(E) = 0 implies ν(E) = 0. One writes dν = ρ dµ; ρ is the density function
of the measure ν with respect to the measure µ; one also writes

dν

dµ
= ρ

and thinks of ρ as the derivative of the measure ν with respect to the measure µ; we shall study this
situation in the sequel (Radon–Nikodym theorem, 7.1.7).

4.1.10. Fatou’s lemma. One of the basic tenets of integration theory, Fatou’s lemma deals with
arbitrary sequences of positive functions.

. Let (X,M, µ) be a measure space, and let fn be a sequence of positive measurable extended real
valued functions on X (fn ∈ L+(X)). Then

ˆ

X

lim inf
n→∞

fn dµ ≤ lim inf
n→∞

ˆ

X

fn dµ.

Proof. For every m ∈ N set f∗m(x) = inf{fn(x) : n ≥ m}. Then f∗m ≤ fn for every n ≥ m, hence
´

X f∗m ≤
´

X fn for every n ≥ m so that
ˆ

X

f∗m ≤ inf

{
ˆ

X

fn : n ≥ m

}

;

taking limits in this inequality as m ↑ ∞ we get
´

X
lim infn→∞ fn on the left–hand side, by monotone

convergence, and lim infn→∞
´

X fn, by definition of lim inf, on the right–hand side. �

Remark. One might say that Fatou’s lemma expresses the sequential lower semicontinuity of the
integral on the set of positive measurable functions.

4.1.11. Solutions of the previous exercises.

Solution. (of exercise 4.1.1). If E(n) = {f > 1/n} and fn = f χE(n) we have fn ↑ f (easy: E(n) ⊆
E(n+1) so that f χE(n) ≤ f χE(n+1); and if x ∈ X and f(x) > 0 then fn(x) = f(x) as soon as 1/n < f(x),
while if f(x) = 0 then fn(x) = f(x) for every n ∈ N). By monotone convergence we then have

ˆ

E(n)

f dµ =

ˆ

X

fn ↑
ˆ

X

f.

If
´

X
f < ∞, then for every ε > 0 we have

´

X
f − ε <

´

X
f , so that there is m ∈ N such that

´

E(n)
f >

´

X
f − ε for n ≥ m; by Čebičeff inequality we have that µ(E(m)) ≤ m

´

X
f is finite. �

4.1.12. Image measure. If (X,M, µ) is a measure space, (Y,N ) is a measurable space and φ : X → Y
is a measurable map there is a natural way of transporting the measure µ on Y to make (Y,N ) into a
measure space.

. The set function φ#µ = µφ← : N → [0,∞] defined for every B ∈ N by µφ←(B) = µ(φ←(B)) is a
measure on N . For every f ∈ L+

N (Y ) we have
ˆ

Y

f(y) dµφ←(y) =

ˆ

X

f ◦ φ(x) dµ(x).

The measure φ#µ is the image measure of µ by means of φ; notice that µφ← is naturally defined also
on the final σ−algebra Qφ ⊇ N of φ.

Proof. Clearly µφ←(∅) = 0. And if (An)n∈N is a disjoint sequence of elements of N , or of Qϕ, with
union A, then (φ←(An))n∈N is a disjoint sequence of elements of M, with union B = φ←(A). Then

µφ←(A) := µ(B) =

∞
∑

n=0

µ(φ←(An)) =

∞
∑

n=0

µφ←(An),

proving countable additivity of µφ←. Notice now that if A ⊆ Y then χA ◦ φ = χφ←(A), so that if

u =
∑m

j=1 αj χA(j) is an N−simple function then u ◦φ =
∑m

j=1 αj χφ←(A(j)) is M−simple and for u ≥ 0:

ˆ

Y

u dµφ← =

m
∑

j=1

αj µφ
←(A(j)) =

m
∑

j=1

αj µ(φ
←(A(j)) =

ˆ

X

u ◦ φdµ.
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For f ∈ L+(Y ) pick a sequence un ↑ f of positive simple functions and pass to the limit in the formula
´

X
un dµφ

← =
´

X
un ◦ φdµ, using the monotone convergence theorem (if un is increasing then clearly

also un ◦ φ is increasing). �

The Lebesgue measure on the unit circle U = {z ∈ C : |z| = 1} is the image measure µ, by the
canonical winding map t 7→ eit, of the measure induced by Lebesgue measure on the interval ]− π, π] (or
on any interval of length 2π): it is of course the ordinary arclength measure. This measure is invariant
by rotation, that is µ(aE) = µ(E) for every measurable E and every a ∈ U; this rotational invariance of
the arclength measure on the circle is a consequence of translational invariance of Lebesgue measure on
the line, as we now see. If φ(t) = eit, and a = eiα with α ∈]− π, π] then φ←(aE) is the translate by α of
φ←(E), that is T = α+φ←(E), provided that the piece of T which might fall out of ]−π, π] is translated
back to this interval by a translation of 2π if α < 0, of −2π if α > 0. So the Lebesgue measure of this
set is λ1(φ

←(E)) = λ1(T ).
4.1.13. Preimage measure and variable change. We now address the following question: having a set

X , a measure space (Y,N , ν) and a function φ : X → Y , is there a measure λ on the initial σ−algebra
M = {φ←(V ) : N ∈ N}, such that ν is the image measure of λ by φ, ν = φ#λ = λφ←? There is only
one way to define λ, and this is λ(φ←(V )) = ν(V ); this set function must be well–defined on M, and be
a measure.

Leaving the general case to exercise 4.1.2 we confine ourselves to the easier and important case in
which φ is a bijection; in this case of course the measure λ is the image measure by φ−1 of the measure
ν, that is λ = φ−1# ν: for every E ∈ φ←(N ) we set (notice that E = φ←(φ(E)))

λ(E) = ν(φ(E)).

It follows that f ∈ L+
N (Y ) iff f ◦ φ ∈ L+

φ←(N )(X) and
ˆ

Y

f(y) dν(y) =

ˆ

X

f ◦ φ(x) dλ(x).

The measure λ is the preimage measure of ν by φ. Most interesting is the case in which X has already a
measure µ defined on a σ−algebra M containing φ←(N ) and λ has a density with respect to µ, that is
there is ρ ∈ L+

φ←(N )(X) such that

λ(E) =

ˆ

E

ρ(x) dµ(x) for every E ∈ φ←(N );

then, for every f ∈ L+
N (Y ) we have
ˆ

Y

f(y) dν(y) =

ˆ

X

f ◦ φ(x) dλ(x) =
ˆ

X

f ◦ φ(x) ρ(x) dµ(x);

In Calculus the following fact is used: we have open sets U, V ⊆ Rn and φ : U → V a C1 diffeo-
morphism. We consider the Borel σ−algebras B(U) and B(V ) on U and V , so that φ and φ−1 are both
measurable, and as measures µ and ν on B(U) and B(V ) respectively we take the (induced) Lebesgue
n−dimensional measure m. Now the preimage measure of m by φ has density | detφ′(x)|, that is for
every Borel measurable E ⊆ U we have

m(φ(E)) =

ˆ

E

| detφ′(x)| dm(x).

It is clearly enough to prove it for compact intervals (remember: if the measures λ = φ−1m and | detφ′| dm
coincide on compact subintervals of U they coincide on B(U) (2.6.3)); the proof for general n will be given
in 8.8; we give here the proof for the case n = 1. Let Q = [a, b] (a < b) be a compact interval contained
in U ; since φ is a homeomorphism, it is strictly monotone on each connected component of the open
set U ⊆ R1, so that φ([a, b]) is the interval [φ(a), φ(b)] if φ is increasing on [a, b], and is the interval
[φ(b), φ(a)] if φ is decreasing on [a, b]. In the first case φ′(x) > 0 and

m(φ([a, b])) = φ(b)− φ(a) =

ˆ b

a

φ′(x) dx =

ˆ

[a,b]

|φ′(x)| dx;

in the second case φ′(x) < 0 for every x ∈ [a, b] and

m(φ([a, b])) = φ(a) − φ(b) =

ˆ a

b

φ′(x) dx =

ˆ

[a,b]

(−φ′(x)) dx =

ˆ

[a,b]

|φ′(x)| dx,
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and the theorem is proved for n = 1. Notice that then for every positive measurable f on V we have
ˆ

V

f(y) dy =

ˆ

U

f(φ(x)) |φ′(x)| dx.

Exercise 4.1.2. In the situation described above (X a set (Y,N , ν) a measure space, φ : X → Y a
function), prove that the formula:

λ(φ←(V )) = ν(V ) (V ∈ N )

is a good definition of a set function λ on the initial σ−algebra φ←(N ) = {φ←(V )) : V ∈ N} if and only
if φ(X) has non–empty intersection with every set B ∈ N with ν(B) > 0, and that if this holds, then λ
is a measure on φ←(N ) such that φ#λ = ν.

Solution. Observe that φ←(V ) = φ←(W ) if and only if V ∩ φ(X) = W ∩ φ(X), equivalently if
V △ W ⊆ Y r φ(X), so that ν(V △ W ) = 0, and this clearly implies ν(V ) = ν(W ). Then the condition
on φ(X) implies that λ is well defined. Moreover if φ←(V ) = ∅ then ν(V ) = 0. so that λ(∅) = 0.
And φ←(Vn) pairwise disjoint is equivalent to assert that the sets Vn are pairwise almost disjoint; if
V =

⋃

n∈N Vn is the union of the Vn’s this implies ν(V ) =
∑

n∈N ν(Vn) (see exercise 2.1.6), hence also
λ(φ←(V )) =

∑

n∈N λ(φ
←(Vn)), so that λ is a measure

�

4.1.14. Decreasing distribution function. In the following exercise we present an alternative approach
to the definition of integral of measurable positive function.

Exercise 4.1.3. Let (X,M, µ) be a measure space, and let f : X → R̃ be measurable. We define

the decreasing distribution function of f as the function ρf : R̃ → R̃ given by ρf (t) = µ({f > t}).
(i) Prove that ρf is decreasing and right–continuous.

(ii) Prove that f ≤ g implies ρf (t) ≤ ρg(t), for every t ∈ R̃.
(iii) Let fn be an increasing sequence of measurable functions, converging pointwise to f . Prove

that then ρfn(t) ↑ ρf (t), for every t ∈ R̃.
From now on we consider only functions f : X → [0,∞], so that ρf is relevant only for t ≥ 0.

(iv) Let ϕ =
∑m

j=0 aj χA(j) be a positive simple function, where we assume 0 = a0 < a1 · · · < am.

Plot the graph of ρϕ, assuming that all A(j) have finite measure if j > 0, and are pairwise
disjoint; in particular, note that ρϕ is a step function with compact support in [0,∞[, and prove
that

ˆ

X

ϕdµ =

ˆ ∞

0

ρϕ(t) dt.

(v) Prove that for every f ∈ L+ we have
ˆ

X

f dµ =

ˆ ∞

0

ρf (t) dt

(the latter integral may be intended as a Lebesgue integral, or a generalized Riemann integral
of the monotone function ρf ; supposing this known, we could use it to define the integral of f ;
monotone convergence would in this way be very easy to prove).

Solution. (i) Is s < t then clearly {f > s} ⊇ {f > t} so that µ({f > s}) ≥ µ({f > t}). And if tn ↓ t
in R̃, then {f > tn} ↑ {f > t} so that µ({f > tn}) ↑ µ({f > t} by continuity from below of the measure
µ.

(ii) If f ≤ g and f(x) > t then also g(x) ≥ f(x) > t, so that {f > t} ⊆ {g > t}, and monotonicity of
the measure implies µ({f > t}) ≤ µ({g > t}).

(iii) We have {f > t} ⊇ {fn+1 > t} ⊇ {fn > t} for every n, as observed in (ii); and if f(x) > t then
since f(x) = supn{fn(x)} we have x ∈ {fn > t} for n large; in other words, {fn > t} ↑ {f > t}, so that
ρfn(t) ↑ ρf (t).

(iv) We have ρϕ(t) = µ(X) if t < 0, For t ∈ [0 = a0, a1[ we have ρϕ(t) =
∑m

k=1 µ(A(k)). For
t ∈ [a1, a2[ we have ρϕ(t) =

∑m
k=2 µ(A(k)). In general for t ∈ [aj−1, aj [, j ∈ {1, . . . ,m} we have

ρϕ(t) =
∑m

k=j µ(A(k)), and if t ∈ [am,∞] then ρϕ(t) = 0. Thus

ρϕ =
m
∑

j=1





m
∑

k=j

µ(A(k))



 χ[aj−1,aj[.



58

a0 = 0 a1 a2 a3 a4

ρf

Figure 1. A decreasing distribution function and the step function of an approximating
simple function.

Then, assuming first that all measures µ(A(j)) are finite for j = 1, . . . ,m:

ˆ ∞

0

ρϕ(t) dt =

m
∑

j=1





p
∑

k=j

µ(A(k))



 (aj − aj−1) =

m
∑

j=1





m
∑

k=j

µ(A(k))



 aj −
m
∑

j=1





m
∑

k=j

µ(A(k))



 aj−1;

in the second sum we set j − 1 = l so that this sum becomes, recalling that a0 = 0

m−1
∑

l=0

(

m
∑

k=l+1

µ(A(k))

)

al =
m−1
∑

l=1

(

m
∑

k=l+1

µ(A(k))

)

al;

putting again j in place of l in this sum we get:

=

m
∑

j=1





m
∑

k=j

µ(A(k))



 aj −
m−1
∑

j=1





m
∑

k=j+1

µ(A(k))



 aj = µ(A(m)) am +

m−1
∑

j=1

µ(A(j)) aj

which is of course
´

X ϕdµ. If for some j > 0 we have µ(A(j)) = ∞ then
´

X ϕ = ∞, and trivially also
´∞

0
ρϕ(t) dt = ∞.

Remark. Notice that if f : X → ∞] is positive measurable and α = {a0 = 0 < a1 < · · · < am} is a
subdivision of [0,∞[ (see 3.2.2), letting A(j) = f←(]aj , aj+1]) for j < m, and A(m)) = f←(]am,∞]) the
function fα =

∑m
j=0 aj χA(j) is exactly the one considared in 3.2.2, and the integral of fα coincides with

the integral of the step function ρα = ρfα : [0,∞[→ [0,∞]:

ρα(t) =
m
∑

j=1

ρf (aj)χ[aj−1,aj [,

approximating ρf from below.

(v) is now immediate: if un is an increasing sequence of positive simple functions that increases to
f , by (iii) ρun

is a sequence of positive step functions which increases to ρf ; we apply the monotone
convergence theorem. �

Exercise 4.1.4. Let (X,M, µ) be a measure space. Prove, using the previous exercise, that for every
f ∈ L+

ˆ

X

f = lim
m→∞

1

2m

m2m
∑

j=1

µ({x ∈ X : f(x) > j/2m}).

Exercise 4.1.5. (Assumes that 4.1.14 is known) Let (X,M, µ) be a measure space, and let f : X →
]0,∞[ be measurable and strictly positive. Assume that the decreasing distribution function ρf of f is

finite valued for t > 0. The function −ρf : [0,+∞[→ R̃ is increasing and hence it has an associated
Radon–Stieltjes measure −dρf , finite on compact subintervals of ]0,∞[. Prove that this measure is the
image measure µf←, and deduce that

ˆ

X

f dµ =

ˆ

[0,∞[

t (−dρf ).

Exercise 4.1.6. Let (X,M, µ) be a measure space, and let f ∈ L+(X).
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(i) Prove that if
∑∞

n=1 nµ(f
←(]n− 1, n])) <∞, then

´

X f <∞.

(ii) Find f ∈ L+(R) such that
´

R
f <∞, but

∑∞
n=1 nµ(f

←(]n−1, n])) = ∞, with µ = λ1, Lebesgue
measure.

(iii) Find f ∈ L+(R) with
´

R
f = ∞ but

∞
∑

n=1

(n− 1)µ(f←(]n− 1, n])) <∞ (as above, µ =Lebesgue measure).

(iv) Assuming µ(X) <∞, prove that
´

X f <∞ if and only if
∑∞

n=1(n− 1)µ(f←(]n− 1, n])) <∞.

(v) Always assuming µ(X) < ∞ prove that if f : X → R is measurable then f± have both finite
integrals if and only if

∑

n∈Z

|n− 1|µ(f←(]n− 1, n])) <∞.

Exercise 4.1.7. Compute ρf (see 4.1.14) for the measure space (R,L1, λ) and

f(x) = sinx; f(x) = ex; f(x) = e−|x|; f(x) = |x|−1/2 χ]0,∞[; f(x) =
1

1 + x2
;

plot ρf whenever possible, and compute
´∞

0
ρf (t) dt. Now consider the subspace of Rn given by B =

{x ∈ Rn : ‖x‖∞ = max{|xk| : k = 1, . . . , n} ≤ 1}, with measure induced by the n−dimensional Lebesgue
measure, and let f(x) = fα(x) = 1/‖x‖α∞, where α > 0. Find ρf , plot it, and use it to compute

´

B
f .

Exercise 4.1.8. (A look into countable subadditivity) Let (X,M, µ) be a measure space. Let
(An)n∈N be a sequence of sets in M; for every n ∈ N let χn = χAn

be the characteristic function of An;
for every x ∈ X let ν(x) =

∑∞
n=0 χn(x). Notice that ν(x) is the cardinality of the set {n ∈ N : x ∈ An}

when this set is finite, and is ∞ otherwise; in particular, lim supn→∞An = {ν = ∞}. Let A =
⋃∞

n=0An.
Prove that for every f ∈ L+ we have

ˆ

A

f ≤
ˆ

A

ν f =

∞
∑

n=0

ˆ

An

f,

and prove that if ν is bounded, ν(x) ≤ m ∈ N> for every x ∈ X , then

∞
∑

n=0

ˆ

An

f ≤ m

ˆ

A

f in particular, with f = 1 we get
∞
∑

n=0

µ(An) ≤ mµ

(

∞
⋃

n=0

An

)

;

(if every x in the union belongs to at most m sets of the sequence then the sum of the measures of all
the sets is at most m times the measure of the union).

4.2. The space L1(µ) of summable functions. We now extend the integral to some not neces-
sarily positive measurable functions.

Definition. Given a measure space (X,M, µ) we define L1
µ(X,K) as the set of all measurable

functions f : X → K such that ‖f‖1 :=
´

X
|f | <∞.

Functions in L1
µ(X,K) are called integrable, or summable. We have ‖f‖1 = 0 if and only if Coz(|f |) =

Coz(f) has measure zero, that is, f is a null function (4.1.3). And for every f ∈ L1(µ) the cozero–set
Coz(f) has σ−finite measure. Notice also that, by definition, functions in L1

µ are finite valued; then a

function in L+ with finite integral is not necessarily in L1(µ); but it is always a.e. equal to a function in
L1(µ), since it assumes the value ∞ only on a set of measure zero (4.1.6).

Remember: nonzero constant functions belong to L1
µ(X,K) if and only if µ(X) is finite.

4.2.1. Integral of functions in L1(µ). It is immediate to see that L1
µ(X,K) is a K−vector subspace of

KX : if f, g are measurable then f +g is measurable and |f +g| ≤ |f |+ |g| so that ‖f +g‖1 ≤ ‖f‖1+‖g‖1
is also finite; and if α ∈ K we have that αf is measurable and |α f | = |α| |f | so that ‖αf‖1 = |α| ‖f‖1.
There is a unique way of extending to L1 the integral already defined on L+ if we want it to be K−linear:
for a real valued f we set:

ˆ

X

f :=

ˆ

X

f+ −
ˆ

X

f−;

this is a real number: by hypothesis, |f | = f+ + f− has a finite integral, and since f± ≤ |f | the integrals
´

X f± are both finite. Homogeneity is trivial,
´

X(α f) = α
´

X f for real α and f ∈ L1
µ(X,R). Additivity:
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if h = f + g then we have h+ − h− = f+ − f− + g+ − g− ⇐⇒ h+ + f− + g− = f+ + g+ + h−, whence
ˆ

X

h++

ˆ

X

f−+

ˆ

X

g− =

ˆ

X

f++

ˆ

X

g++

ˆ

X

h− ⇐⇒
ˆ

X

h+−
ˆ

X

h− =

ˆ

X

f+−
ˆ

X

f−+

ˆ

X

g+−
ˆ

X

g−.

We have seen that the integral on L1
µ(X,R) is a linear form. It is also isotone:

. Assume that f, g ∈ L1
µ(X,R) and that f ≤ g. Then

´

X
f ≤

´

X
g, and equality

´

X
f =

´

X
g holds if

and only if {f < g} is a null set.

Proof.
´

X g −
´

X f =
´

X(g − f) and g − f ∈ L+(X), with Coz(g − f) = {f < g}; apply 4.1.3. �

4.2.2. Integral of complex functions. For a complex valued f : X → C we have

|Re f | ∨ | Im f | ≤ |f | ≤ |Re f |+ | Im f |,
so that f ∈ L1

µ(X,C) if and only if Re f and Im f are both in L1
µ(X,R). We define, for f ∈ L1

µ(X,C):
ˆ

X

f :=

ˆ

X

Re f + i

ˆ

X

Im f ;

straightforward calculations prove C−linearity of this integral. We now prove:

. Fundamental inequality For every f ∈ L1
µ(X,K) we have

∣

∣

∣

∣

ˆ

X

f

∣

∣

∣

∣

≤
ˆ

X

|f |(= ‖f‖1).

Proof. For f real we have −|f | ≤ f ≤ |f | so that by isotony

−
ˆ

X

|f | ≤
ˆ

X

f ≤
ˆ

X

|f | ⇐⇒ max

{
ˆ

X

f, −
ˆ

X

f

}

≤
ˆ

X

|f |.

For f complex–valued, notice first that the inequality is trivial if the integral of f is zero. Assume then
´

X
f = a 6= 0 and let α = sgn(a). Then |a| = αa so that:

∣

∣

∣

∣

ˆ

X

f

∣

∣

∣

∣

= α

ˆ

X

f =

ˆ

X

(α f) =

ˆ

X

Re(α f),

the last equality because the integral of αf is real, so that
´

X Im(α f) = 0; then, by the fundamental
inequality for real functions

ˆ

X

Re(α f) ≤
∣

∣

∣

∣

ˆ

X

Re(α f)

∣

∣

∣

∣

≤
ˆ

X

|Re(αf)| ≤
ˆ

X

|αf | =
ˆ

X

|f |,

recalling that |α| = 1. �

Exercise 4.2.1. Prove that the fundamental inequality is an equality if and only if f has sign almost
everywhere constant on X .

Solution. (synthetic) In the real case the fundamental inequality is an equality iff either
´

X f− = 0

or
´

X
f+ = 0, that is iff either {f < 0} or {f > 0} have measure 0; in the complex case the chain of

inequalities used in the proof has to be a chain of equalities; we must have
´

X
(|Re(α f)| −Re(αf)) = 0,

and
´

X(|αf | − |Re(αf)|) = 0, which is true iff |α f | = |Re(αf)| = Re(α f) a.e. on X . In other words

αf(x) ≥ 0 for almost every x ∈ X , that is f(x) ∈ R+ sgn(a) for a.e. x ∈ X , with a =
´

X f .
�

4.2.3. The following will be used in 7.1.7

Proposition. Let (X,M, µ) be a measure space, and let f, g ∈ L1
µ(X,C). Then f = g a.e. if and

only if
´

E f =
´

E g for every E ∈ M.

Proof. Clearly f = g a.e. implies f χE = g χE a.e. for every E ∈ M and so also
ˆ

E

f =

ˆ

X

f χE =

ˆ

X

g χE =

ˆ

E

g, for every E ∈ M.

Conversely, assume
´

E f =
´

E g for every E ∈ M; then
´

E Re f =
´

E Re g and
´

E Im f =
´

E Im g for

every E ∈ M and we are reduced to the case of real f, g. Setting E = {f > g} we have
´

E
(f − g) ≥ 0,

and since f(x) > g(x) for every x ∈ E we can have
´

E
f =

´

E
g only if µ(E) = 0 (4.2.1). Similarly, if

F = {f < g} we get µ(F ) = 0. Then {f 6= g} = {f > g} ∪ {f < g} = E ∪ F has measure 0. �
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Remark. The statement:

. If f, g ∈ L+(X) are such that
´

E
f =

´

E
g for every E ∈ M, then f = g a.e.

is FALSE unless some additional hypothesis is made on µ: take an uncountable set X with the σ−algebra of
countable or co–countable subsets, and the measure µ that is ∞ for co–countable, and 0 for countable sets: the
constants 1 and 2 have integral 0 on countable and ∞ on co–countable sets, but are never equal. We can prove
(but the proof is much more complicated than (ii) above, owing to possibly infinite integrals):

. If µ is semifinite, and f, g ∈ L+(X) are such that
´

E
f =

´

E
g for every E ∈ M, then f = g a.e.

Proof. Let A = {f < g}; it is enough to prove that µ(A) = 0 (an analogous proof will work for B = {g < f}).
Given n ∈ N, let E(n) = {g ≤ n} ∩A. Then µ(E(n)) = 0; in fact, if not, by semifiniteness we get E ⊆ E(n) with
0 < µ(E) < ∞. Then

´

E
f =

´

E
g ≤

´

E
n = nµ(E) < ∞; it follows that

´

E
(g − f) = 0, but g(x) − f(x) > 0

for every x ∈ E, impossible if µ(E) > 0. Then µ(E(n)) = 0 for every n, so that µ({g < ∞} ∩ A) = 0 (since
{g < ∞} =

⋃∞
n=1{g ≤ n}). If µ({g = ∞} ∩ A) > 0 we still get a contradiction: notice that since f(x) < ∞ for

every x ∈ A we still have {g = ∞} ∩ A =
⋃∞

n=1{g = ∞} ∩ A ∩ {f ≤ n}; unless these sets have all measure zero
we can get E ⊆ {g = ∞} ∩ A ∩ {f ≤ n} with 0 < µ(E) < ∞; then

´

E
f ≤ nµ(E) < ∞, but

´

E
g = ∞. Then

µ(A) = µ(A ∩ {g <∞}) + µ(A ∩ {g = ∞}) = 0. �

4.2.4. The normed space L1(µ). We have seen that on the vector space L1
µ(X,K) the function f 7→

‖f‖1 has all the properties of a norm, except that ‖f‖1 = 0 is equivalent to f being a null function, that
is, f = 0 a.e. and not to f identically zero (it is only a seminorm, not a norm). The set Nµ(X,K) of
null functions is clearly a vector subspace of L1

µ(X,K); the quotient space L1
µ(X,K)/Nµ(X,K) is denoted

by L1
µ(X,K) or simply by L1(µ) when the scalar field has been specified somehow. Its elements are the

cosets f + Nµ(X,K) of the subspace Nµ(X,K): for a given f the coset f + Nµ(X,K) is the set of all
measurable functions a.e. equal to f . Clearly ‖f‖1 = ‖g‖1 for every pair of functions f and g equal a.e.;
on the quotient space the function f + Nµ(X,K) → ‖f‖1 is well defined, and is a norm. But we often
deliberately confuse L1(µ) and L1

µ, and we speak of a function f ∈ L1(µ): it is a convenient abuse of
language of which it is indispensable to be aware, and it is in general harmless. Sometimes we speak of
the integral of a function f only defined a.e.: by 3.1.5, if a measurable g : X → K that coincides with f
a.e on the domain of f is in L1(µ), then all such functions h are a.e. equal to each other, hence with the
same integral. Convergence in L1(µ) of a sequence fn ∈ L1(µ) to f ∈ L1(µ) means of course convergence
in this normed space, that is limn ‖f − fn‖1 = 0.

Remark. If fn ∈ L1(µ) converges to f ∈ L1(µ) in the L1−norm, then clearly we also have

lim
n→∞

ˆ

X

fn =

ˆ

X

lim
n→∞

fn, in fact:

∣

∣

∣

∣

ˆ

X

f −
ˆ

X

fn

∣

∣

∣

∣

=

∣

∣

∣

∣

ˆ

X

(f − fn)

∣

∣

∣

∣

≤
ˆ

X

|f − fn| = ‖f − fn‖1,

In other words, the integral is a continuous linear form on L1(µ), i.e. convergence in L1 implies that the
limit may be carried under the integral sign, the integral of the L1−limit is the limit of the integrals.
But the fact that limn→∞

´

X
fn =

´

X
f , even if coupled with pointwise convergence of fn to f , does not

ensure convergence of fn to f in the L1−norm. An example is the following: X = [0, 1], m = Lebesgue
measure, fn = n(χ]0,1/(2n)] − χ]1/(2n),1/n]); we have that fn(x) → 0 for every x ∈ [0, 1] (prove it), so that
f = 0; and clearly we have

ˆ

[0,1]

fn = 0 but

ˆ

[0,1]

|fn| =
ˆ 1

0

nχ]0,1/n] = 1, for every n ≥ 1,

so that the integral of the limit is the limit of the integrals, but fn does not converge to 0 in L1, since
‖fn‖1 = 1 for every n ≥ 1. But there is a particular case in which this is true, which is of interest in
probability theory:

. Scheffé’s theorem Let (X,M, µ) be a measure space; assume that fn is sequence of positive
functions in L1(µ) converging pointwise a.e to f , and assume that

lim
n→∞

ˆ

X

fn =

ˆ

X

f <∞.

Then fn converges to f in L1(µ).

For the proof see exercise 4.2.5.

Exercise 4.2.2. Let (X,M, µ) be a measure space, and let f ∈ L1
µ(X,K). Prove that if g : K → K

is Lipschitz continuous, and g(0) = 0, then g ◦ f ∈ L1
µ(X,K). Find a function f ∈ L1

m([0, 1],R) such that

f2 /∈ L1; in particular, L1(µ) in general is not closed under multiplication (m Lebesgue measure).
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Solution. If L > 0 is a Lipschitz constant for g we have |g(y)| = |g(y) − g(0)| ≤ L |y − 0| = L |y|
for every y ∈ R, so that |g(f(x))| ≤ L |f(x)| for every x ∈ X ; g ◦ f is measurable since so is f and g is
continuous, and L |f | ∈ L1(µ) since f ∈ L1(µ). An example is f(x) = 1/

√
x for x ∈]0, 1], and f(0) = 0;

clearly f ∈ L1
m([0, 1]), but (f(x))2 = 1/x /∈ L1

m([0, 1]).
�

4.2.5. The dominated convergence theorem. Monotone sequences are handled very well by the integral
we are discussing. The Lebesgue dominated convergence theorem deals with not necessarily monotone
sequences; we deduce it from Fatou’s lemma.

Theorem. Let (X,M, µ) be a measure space, and let (fn)n∈N be a sequence of functions in L1(µ)
which converges a.e. to the function f ; assume that there is g ∈ L1(µ) such that |fn| ≤ g, a.e. in X, for
every n ∈ N. Then f ∈ L1(µ) and fn converges to f in L1(µ), so that we also have

lim
n

ˆ

X

fn =

ˆ

X

f.

Proof. We can redefine f , g and all the fn’s if necessary on a null set so that convergence is everywhere
and |fn(x)| ≤ g(x) holds everywhere (reset all these functions to zero on the union of all the countably
many null sets on which these requirements are violated). Then |f | ≤ g and f measurable imply f ∈
L1(µ).

Notice that |f − fn| ≤ |f | + |fn| ≤ g + g, so that hn = 2g − |f − fn| ≥ 0, and the sequence hn
converges pointwise to 2g. We apply Fatou’s lemma to hn, obtaining

ˆ

X

2g ≤ lim inf
n→∞

ˆ

X

hn = lim inf
n→∞

(
ˆ

X

2g −
ˆ

X

|f − fn|
)

=

ˆ

X

2g + lim inf
n→∞

(

−
ˆ

X

|f − fn|
)

=

=

ˆ

X

2g − lim sup
n→∞

ˆ

X

|f − fn|,

which immediately implies

lim sup
n→∞

ˆ

X

|f − fn| ≤ 0, equivalently lim
n→∞

ˆ

X

|f − fn| = 0,

which is the desired conclusion. �

4.2.6. Normally convergent series in L1(µ). In a normed space (E, ‖#‖) one can consider series
of vectors,

∑∞
n=0 un, with un ∈ E; as usual, we say that the series converges to s ∈ E if the sequence

(sm)m∈N of partial sums converges to s; by definition sm :=
∑m

n=0 un. In the normed space E we say that
the series

∑∞
n=0 un is normally convergent if the series of the norms is convergent, i.e.

∑∞
n=0 ‖un‖ <∞:

this name is perhaps badly chosen, since not necessarily a normally convergent series is convergent, see
4.2.10; but in L1(µ) we have

. Theorem on normally convergent series in L1(µ). Let
∑∞

n=0 fn be a series in L1(µ) that
is normally convergent, i.e.

∑∞
n=0 ‖fn‖1 <∞. Then

∑∞
n=0 fn converges a.e. and in L1(µ) to a function

f ∈ L1(µ); and
´

X
f =

∑∞
n=0

´

X
fn.

Proof. For every n we have |fn| ∈ L+; if for every x ∈ X we set g(x) =
∑∞

n=0 |fn(x)|, by the
countable additivity of integrals of positive functions 4.1.5 we have

´

X
g =

∑∞
n=0

´

X
|fn| < ∞. Then

µ({g = ∞}) = 0 (4.1.6); we have that the series
∑∞

n=0 |fn(x)| is convergent for every x ∈ X r {g = ∞};
since absolute convergence implies convergence the series

∑∞
n=0 fn(x) is convergent on Xr{g = ∞}; and

∣

∣

∣

∣

∣

m
∑

n=0

fn(x)

∣

∣

∣

∣

∣

≤
m
∑

n=0

|fn(x)| ≤ g(x) for every x ∈ X r {g = ∞},

so that dominated convergence theorem allows us to conclude. �

4.2.7. Convergence in L1(µ) and convergence almost everywhere. Convergence in L1(µ) does not in
general imply a.e. convergence. The following is an example of a sequence converging to 0 in L1([0, 1])
with Lebesgue measure, which converges at no point of [0, 1]. Start with g0 = 1, the constant 1. Next
let g1,1 be the characteristic function of [0, 1/2], g1,2 the characteristic function of ]1/2, 1]; in general gn,1
is the characteristic function of [0, 1/2n], while gn,k, with k = 2, . . . , 2n is the characteristic function of
](k− 1)/2n, k/2n]. Order all the gn,k in a sequence (fm)m∈N; it is clear that fm(x) does not converge for
any x ∈ [0, 1] (we have fm(x) = 0 and fn(x) = 1 for infinitely many m,n ∈ N), but since

´

[0,1]
gn,k = 1/2n

clearly ‖fm‖1 → 0 as m→ ∞. However we have the following very important:
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Proposition. If (fn)n∈N converges to f in L1(µ) then some subsequence (fν(k))k∈N of (fn)n∈N
converges pointwise a.e. to f .

Proof. Simply recall that in a metric space every Cauchy sequence contains a subsequence of bounded
variation, i.e. a subsequence (fν(k))k∈N whose total variation

∞
∑

k=1

‖fν(k) − fν(k−1)‖1 <∞

is finite (see e.g. Analisi Due, 2.11.7). Then the series

fν(0) +

∞
∑

k=1

(fν(k) − fν(k−1))

is normally convergent in L1(µ), so that its sequence of partial sums, which is fν(k), converges a.e. to its
sum f (4.2.6). �

Exercise 4.2.3. The space L1(κ) of the discrete measure space (X,P(X),κ), where κ is the count-
ing measure, is generally denoted ℓ1(X) = ℓ1 (see 4.3) Prove that convergence in ℓ1 implies uniform
convergence (in particular then also pointwise convergence).

4.2.8. On dominated convergence. If a sequence in L1(µ) converges pointwise to a function and is
dominated by a given function in L1(µ) then it also converges in L1(µ), as proved by Lebesgue’s theo-
rem. One might wonder if convergence in L1(µ) coupled with pointwise convergence implies dominated
convergence, that is: if a sequence fn ∈ L1(µ) converges to f , both in L1(µ) and a.e., does there exist a
function g ∈ L1(µ) such that |fn| ≤ g for every n ∈ N? The answer is negative:

Example 4.2.4. In the measure space [0, 1] with Lebesgue measure, for n ≥ 1 and k = 1, . . . , n let
fn,k = nχ](k−1)/n2,k/n2]. Then ‖fn,k‖1 = 1/n, so that arranging all fnk in a sequence fm this converges

to 0 both a.e. and in L1. But g =
∨

n,k fn,k /∈ L1: in fact g(x) =
∑∞

n=1 nχ]1/(n+1),1/n] so that

ˆ

[0,1]

g =

∞
∑

n=1

n

(

1

n
− 1

n+ 1

)

=

∞
∑

n=1

1

n+ 1
= ∞.

Of course, as seen above, a sequence of bounded variation in L1(µ) of functions in L1(µ) is dominated
by a function of L1(µ).

Exercise 4.2.5. Prove Scheffé’s theorem (4.2.4) in the following way: prove first that (f −fn)+ ≤ f ;
apply dominated convergence to prove that limn→∞

´

X(f − fn)
+ = 0; the rest is easy ...

Solution. Since fn(x) ≥ 0 we have f(x) − fn(x) ≤ f(x); since the positive part t 7→ t+ = max{t, 0}
is an increasing function we have (f(x)− fn(x))

+ ≤ (f(x))+ = f(x), so that (f − fn)
+ ≤ f for every n.

Clearly f ∈ L1(µ) (it is a positive function with a finite integral); by continuity of the positive part, we
have limn→∞(f − fn)

+ = 0 a.e., so that by dominated convergence limn→∞

´

X(f − fn)
+ = 0. Now we

have |f − fn| = (f − fn)
+ + (f − fn)

− and f − fn = (f − fn)
+ − (f − fn)

−, so that

|f − fn| = 2(f − fn)
+ − (f − fn) =⇒

ˆ

X

|f − fn| = 2

ˆ

X

(f − fn)
+ −

ˆ

X

(f − fn),

and taking limits as n→ ∞ we get zero on the right–hand side. �

A simpler proof may be obtained using the generalized dominated convergence theorem 4.4.7
4.2.9. Approximation of L1 functions. We denote by S(µ) the subspace of L1(µ) consisting of simple

functions, so that S(µ) is the space of integrable simple functions: it consists of all measurable simple
functions which are 0 outside a set of finite measure. It is clear that

Lemma. S(µ) is dense in L1(µ)

Proof. If (ϕn)n∈N is a sequence of measurable simple functions which converges pointwise to f ∈ L1(µ)
and such that |ϕn| ↑ |f | (3.2.2) we have ϕn ∈ S(µ) (since |ϕn| ≤ |f | ∈ L1(µ)) and by dominated
convergence limn ‖f − ϕn‖1 = 0. �

But measurable sets are often quite complicated, so simple functions are not really simple. We are
interested in approximating functions in L1(µ) with functions we know better about.
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Proposition. Let (X,M, µ) be the Carathèodory extension of a premeasure on an algebra of parts
of X. Then the space of A−simple integrable functions is dense in L1(µ). If X = Rn and µ is a Radon
measure, then the integrable step functions are dense in L1(µ); and continuous functions with compact
support are also dense in L1(µ).

Proof. We need to prove that every function ϕ ∈ S(µ) is approximable with A−simple functions in
the L1(µ) norm. Let ϕ =

∑m
j=1 aj χE(j), with aj 6= 0 and 0 < µ(E(j)) < ∞ for every j = 1, . . . ,m; set

a =
∑m

j=1 |aj |. Given ε > 0, by 2.5.7 there is A(j) ∈ A such that µ(E(j) △ A(j)) ≤ ε/a, for j = 1, . . . ,m.

Then the function ψ =
∑m

j=1 aj χA(j) is A−simple, and:

‖ϕ− ψ‖1 =

ˆ

X

∣

∣

∣

∣

∣

∣

m
∑

j=1

aj(χE(j) − χA(j))

∣

∣

∣

∣

∣

∣

≤
ˆ

X

m
∑

j=1

|aj | |χE(j) − χA(j)| =
m
∑

j=1

|aj |
ˆ

X

|χE(j) − χA(j)| =

m
∑

j=1

|aj |µ((E(j) △ A(j))) ≤ ε.

If the algebra A is the interval algebra then every A(j) is a finite disjoint union of bounded intervals.
To conclude that continuous functions with compact support are dense in L1

µ(R
n) it is clearly enough to

prove that for every bounded interval I and every ε > 0 there is a continuous function u with compact
support such that ‖χI − u‖1 ≤ ε. Remember that we can find a compact interval K ⊆ I and a bounded
open interval V ⊇ I such that µ(V r K) ≤ ε (see 2.2.5). By 1.3.3 there exists a continuous function
u : Rn → [0, 1] such that u(x) = 0 for x /∈ V (so that Supp(u) ⊆ V̄ is compact) and u(x) = 1 for x ∈ K;
accepting this result we have

|χI − u| ≤ χV rK so that ‖χI − u‖1 ≤
ˆ

Rn

χV rK dµ = µ(V rK) ≤ ε.

Remark. Using the remark in 1.3.3 we see that u may even be supposed C∞.

�

4.2.10. Completeness of L1(µ). The space L1(µ) is a Banach space, i.e. it is a complete normed space,
as we now see. Remember that a normed space (E, ‖#‖) is called complete when every Cauchy sequence of
E has a limit in E; and in a normed space this is equivalent to assert that every normally convergent series
of E is convergent in E (see e.g. Analisi Due, 2.12.4; let’s quickly review the argument: a Cauchy sequence
with a converging subsequence is convergent; every Cauchy sequence has a subsequence of bounded
variation, and convergence of sequences of bounded variation is trivially equivalent to convergence of
normally convergent series). Thus the theorem on normally convergent series expresses completeness of
L1(µ).

Completeness is perhaps the main profit obtained from this more general theory of integration.

4.3. The space ℓ1(X). We now take a look at the discrete measure space (X,P(X),κ), where κ is
the counting measure. All functions are of course measurable. The only set of measure 0 is the empty set,
and the sets of finite measure are exactly the finite subsets, so that simple functions with finite integral
are exactly the functions which are finite–valued and nonzero only on a finite set. It is quite obvious that
for every positive function f : X → [0,∞] we have:

ˆ

X

f(x) dκ(x) = sup

{

∑

x∈F

f(x) : F ⊆ X , F finite

}

(by definition, the integral is the supremum of the integrals of positive simple functions dominated by
f ; every simple function dominated by f with finite integral is then of the form

∑

x∈F ϕ(x)χ{x}, with
F a finite subset of X , and 0 ≤ ϕ(x) ≤ f(x), ϕ(x) < ∞, for every x ∈ F etc, . . . ). In other words,
the integral in the counting measure is exactly the infinite sum

∑

X f described in 1.10. Notice that the
necessary condition for finiteness of the sum given in 1.10.3, that {f 6= 0} be countable, is exactly the
σ−finiteness of the measure of Coz(f), if f has a finite integral. We have then that f ∈ L1(κ) if and only
if f is finite valued and representable as f = (u+ − u−) + i (v+ − v−), with all the four positive functions
u±, v± summable; of course Coz(f) is at most countable, for every f with finite sum, positive or not.

It is customary to write ℓ1(X) instead of L1(κ); the integral of f over A ⊆ X will be denoted
∑

A f .
Instead of saying that f ∈ ℓ1(X) we also say that f is summable over X .
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4.3.1. Unrestricted additivity. Unrestricted associativity holds also for sums of functions in ℓ1(X),
and it may also be thought of as unrestricted additivity of infinite sums; this is trivial, since it is true for
positive functions

. Unrestricted additivity for summable functions. Let X be a set, and let f : X → K be a
function; let (A(λ))λ∈Λ be a partition of X. Then

(i) If f ∈ ℓ1(X) then the function s : Λ → K defined by s(λ) =
∑

A(λ) f is in ℓ1(Λ) and

(*)
∑

X

f =
∑

Λ

s



=
∑

λ∈Λ





∑

x∈A(λ)

f(x)







 .

(ii) If f ∈ ℓ1(A(λ)) for every λ ∈ Λ, and

(**)
∑

λ∈Λ





∑

A(λ)

|f |



 <∞,

then f ∈ ℓ1(X) (consequently, (i) holds and the sum on X of f may be obtained as in (*), by
removing the absolute values).

Proof. (i) has been observed above: it is a consequence of 1.10.1 and of the linearity of sums.
(ii) 1.10.1 says that the sum in (**) is exactly ‖f‖1 =

∑

X |f |. �

We present some important applications of this fact.
4.3.2. Fubini–Tonelli, the discrete case.

Proposition. Let X,Y be sets, and let f : X × Y → K be a function.

(i) (Fubini) Assume that f ∈ ℓ1(X × Y,K). Then for every x ∈ X the function y 7→ f(x, y) is in
ℓ1(Y ), the function x 7→∑

y∈Y f(x, y) is in ℓ1(X) (the same is true exchanging X and Y ) and

∑

(x,y)∈X×Y

f(x, y) =
∑

x∈X





∑

y∈Y

f(x, y)



 =
∑

y∈Y

(

∑

x∈X

f(x, y)

)

.

(ii) (Tonelli) If

∑

x∈X





∑

y∈Y

|f(x, y)|



 <∞, or if
∑

y∈Y

(

∑

x∈X

|f(x, y)|
)

<∞,

then f ∈ ℓ1(X × Y,K) (so that the sum of f on X × Y may be computed as in (i)).

Proof. (i) is simply unrestricted additivity 4.3.1 with the partitions ({x} × Y )x∈X or (X × {y})y∈Y ;
(ii) is the second part of 4.3.1 �

As an important consequence of the above proposition we prove the homomorphism property of
the complex exponential. Recall that by definition exp z =

∑∞
n=0 z

n/n!, where the series is absolutely
convergent for every z ∈ C. We have

exp(w + z) =

∞
∑

n=0

(w + z)n

n!
=

∞
∑

n=0

(

n
∑

k=0

(

n

k

)

wn−k zk

n!

)

=

∞
∑

n=0

(

n
∑

k=0

wn−k zk

(n− k)! k!

)

.

On N× N consider the function (j, k) 7→ wj zk/(j! k!); the preceding sum is the sum of this function on
the partition given by M(n) = {(j, k) ∈ N × N : j + k = n}; moreover we certainly have summability,
since by absolute convergence w and z may be replaced by their absolute values, leaving the sum finite
with value exp(|w| + |z|); thus (Fubini):

exp(w + z) =
∞
∑

n=0

(

n
∑

k=0

wn−k zk

(n− k)! k!

)

=
∑

(j,k)∈N×N

wj zk

j! k!
=
∑

j∈N

(

∑

k∈N

wj zk

j! k!

)

=

∑

j∈N

wj

j!

(

∑

k∈N

zk

k!

)

=
∑

j∈N

wj

j!
exp z = expw exp z.
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Exercise 4.3.1. If f, g ∈ KZ their convolution is, by definition, the function f ∗ g : Z → K defined
by

f ∗ g(x) =
∑

y∈Z

f(x− y) g(y)

whenever this formula is meaningful, that is, the right hand side is defined somehow.

(i) Prove that if f, g ∈ ℓ1(Z) then f ∗ g is defined on Z, that f ∗ g ∈ ℓ1(Z) and that

‖f ∗ g‖1 ≤ ‖|f | ∗ |g|‖1 = ‖f‖1 ‖g‖1;
∑

Z

f ∗ g =
∑

Z

f
∑

Z

g.

If a : n 7→ an and b : n 7→ bn are two sequences (n ∈ N) they may be considered as two–sided
sequences a, b ∈ KZ by assuming an = bn = 0 for n < 0; their convolution a ∗ b is then always defined,
and

(a ∗ b)n =

n
∑

k=0

an−k bk for n ≥ 0, while (a ∗ b)n = 0 for n < 0.

Given the two series
∑∞

n=0 an and
∑∞

n=0 bn, their Cauchy product is, by definition, the series

∞
∑

n=0

(a ∗ b)n =

∞
∑

n=0

(

n
∑

k=0

an−k bk

)

.

(ii) Prove that if a and b are absolutely convergent then their Cauchy product is also absolutely
convergent and its sum is the product of the sums (

∑

N
a)(
∑

N
b) (this is of course a particular

case of (i), and includes the preceding result on the homomorphism formula of exp as a particular
case).

Exercise 4.3.2. If f ∈ KX and g ∈ KY , their tensor product f ⊗ g : X × Y → K is defined by
f ⊗ g(x, y) = f(x) g(y). Prove that if f ∈ ℓ1(X,K) and g ∈ ℓ1(Y,K) then f ⊗ g ∈ ℓ1(X × Y,K) and
‖f ⊗ g‖1 = ‖f‖1 ‖g‖1.

4.3.3. Euler’s product formula for the ζ function. As a final result we present the famous Euler’s product
formula for the zeta function: for s > 1 we set

ζ(s) =

∞
∑

n=1

1

ns
;

(we know that n 7→ 1/ns is summable over N> if s > 1). Given a prime p, every n ∈ N> may be written uniquely

as n = pν(n)m(n), where m(n) is prime to p, and ν(n) ≥ 0; we partition N> in sets M(m) = {pν m : ν ∈ N},
where m ranges in the set N(p) of all integers in N> prime to p; then

ζ(s) =
∑

m∈N(p)

(

∞
∑

ν=0

1

(pν m)s

)

=
∑

m∈N(p)

1

ms

(

∞
∑

ν=0

1

(ps)ν

)

=
1

1− p−s

∑

m∈N(p)

1

ms
.

Given another prime q, the argument may be repeated to show that
∑

m∈N(p)

1

ms
=

1

1− q−s

∑

m∈N(p,q)

1

ms
,

where now N(p, q) is the set of all strictly positive integers prime to both p and q. If p1, . . . , pj , . . . is a bijective
elencation of all primes (in any order) we then have, for every integer r:

(*) ζ(s) =
r
∏

j=1

1

1− p−s
j

∑

m∈N(Pr)

1

ms
,

where N(Pr) is the set of all strictly positive integers whose factorization does not contain any of the primes
p1, . . . , pr. Notice that N(P1) ⊇ N(P2) ⊇ N(P3) ⊇ . . . , and moreover

⋂∞
r=1N(Pr) = {1}: every integer strictly

larger than 1 has a prime divisor. From this one easily sees that

lim
r→∞





∑

m∈N(Pr)

1

ms



 = 1,

so that, passing to the limit in (*) as r → ∞ we get

ζ(s) =
∞
∏

j=1

1

1− p−s
j

(

:= lim
r→∞

r
∏

j=1

1

1− p−s
j

)

one of the most beautiful results of Euler.
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Exercise 4.3.3. Prove that the sum, where p ∈ R:

∑

(m,n)∈N×Nr{(0,0)}

1

(m+ n)p

is finite if and only if p > 2, and in this case its value is ζ(p − 1) + ζ(p). (hint: sum on the blocks M(k) =
{(m,n) ∈ N× N : m+ n = k}, with k = 1, 2, 3, . . . ).

4.4. Uniform convergence almost everywhere and L∞(µ). Let (X,M, µ) be a measure space,
and let g ∈ L(X,R) be measurable. In exercise 4.1.14 we defined the decreasing distribution function ρg
of g as ρg(t) = µ({g > t}); this function is positive, decreasing and right–continuous, so that if ρg(t) = 0
for some t > 0 we have ρg(s) = 0 for all s > t; the set {t ∈ R+ : ρg(t) = 0}, if non–empty, is then a closed
half–line [a,+∞[ (closed because of right continuity). This number a is called the essential supremum of
g; in other words

essup(g) = inf{t ∈ R : µ({g > t}) = 0}
(when no such t exists, then the essential supremum of g is ∞; when the set is non–empty, the infimum
is actually a minimum, as seen above). For every measurable f ∈ L(X,K) we define

‖f‖∞ = essup(|f |) = inf{t ∈ R : µ({|f | > t}) = 0};
notice that ‖f‖∞ = sup{|f(x)| : x ∈ X r {|f | > ‖f‖∞}. The essentially bounded functions are those for
which this quantity is finite, they form a linear subspace L∞µ (X,K) ⊆ L(X,K); then ‖#‖∞ is a norm on
L∞(µ) = L∞µ (X,K) = L∞µ (X,K)/Nµ(X,K), the essential supremum norm. Of course if the measure is
such that the only null set is the empty set (e.g. the counting measure, where L∞ is denoted ℓ∞), then
the essential supremum norm is exactly the sup–norm. We leave to the reader the proof of the following
fact:

. A sequence fn ∈ L∞(µ) converges to f ∈ L∞(µ) in the essential supremum norm if and only if
there is a null set N ⊆ X such that on X r N the sequence fn converges uniformly to f . The space
(L∞(µ), ‖#‖∞) is a Banach space; it is also closed under (pointwise) multiplication, in fact

‖f g‖∞ ≤ ‖f‖∞ ‖g‖∞,
so L∞(µ) is also a Banach algebra.

Exercise 4.4.1. (Easy but important) Let (X,M, µ) be a measure space. Prove that L∞(µ) ⊆ L1(µ)
if and only if µ(X) < ∞ (bounded measurable functions are summable on finite measure spaces) and
in this case ‖f‖1 ≤ µ(X) ‖f‖∞. Deduce that on a finite measure space convergence in L∞ implies
convergence in L1. The sequence fn = χ[0,n]/n in L1

λ(R) proves that this is not true in absence of
finiteness of the measure space.

Exercise 4.4.2. We have seen that in general L1(µ) is not closed under multiplication (4.2.2).
However: if f ∈ L1(µ) and g ∈ L∞(µ) then g f ∈ L1(µ), and ‖g f‖1 ≤ ‖g‖∞ ‖f‖1 (easy). If µ is
semifinite, then we have also:

. Let g ∈ L(X) be such that g f ∈ L1(µ) for every f ∈ L1(µ). Then g ∈ L∞(µ).

(requires some ingenuity . . . ).

Exercise 4.4.3. Let X be an uncountable set, M the σ−algebra of countable or co–countable
subsets.

(i) Prove that f : X → K is measurable iff it is constant on some co–countable subset of X (hint:
find the simple functions first and recall that every measurable function is the pointwise limit
of a sequence of simple functions).

(ii) Let µ : M → [0,∞] be the measure which is zero on countable sets, ∞ on the others. Prove
that L1(µ) = {0}.

(iii) With µ as in (ii) describe L∞µ (X,K) and prove that L∞(µ) is isomorphic to K (as a vector space
and as a K−algebra).

Exercise 4.4.4. Let X be a set. Prove that if f ∈ ℓ1(X) then there is c ∈ X such that |f(c)| =
max |f |(X); deduce that ℓ1 ⊆ ℓ∞ and that ‖f‖∞ ≤ ‖f‖1, for every f ∈ ℓ1; equality ‖f‖∞ = ‖f‖1 holds
only for functions whose support is a singleton, or empty.
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Solution. Assume that f ∈ ℓ1 is not identically zero; then there is a ∈ X such that |f(a)| > 0;
the set E = {|f | ≥ |f(a)|} is then finite (by 1.10.3) and non–empty because a ∈ E; then there is
c ∈ E such that |f(c)| = max{|f(x)| : x ∈ E}; we also have |f(c)| = ‖f‖∞, because if x /∈ E we have
|f(x)| < |f(a)| ≤ |f(c)|. Clearly ‖f‖1 =

∑

x∈X |f(x)| ≥ |f(c)|, and if there is a ∈ X r {c} such that
f(a) 6= 0 we have

‖f‖∞ = |f(c)| < |f(c)|+ |f(a)| ≤ ‖f‖1.
�

Exercise 4.4.5. Let (X,M, µ) be a measure space and let F ⊆ K be closed in K. Denote by
L1
µ(X,F ) the set of all f ∈ L1(µ) such that f(x) ∈ F for a.e. x ∈ X . Prove that L1

µ(X,F ) is a closed

subset of L1(µ). Identifying two measurable sets A,B ∈ M such that µ(A △ B) = 0, prove that the ideal
F(µ) = {A ∈ M : µ(A) < ∞} is a complete metric space in the metric ρ(A,B) = µ(A △ B) (consider
L1
µ(X, {0, 1}) . . . ).

Exercise 4.4.6. (One–sided convergence) Let (X,M, µ) be a measure space. Let (fn)n be a sequence
in L1

µ(X,R).

(i) Assume that 0 ≤ fn ≤ f for every n, and that fn → f a.e. Then
´

X
fn →

´

X
f (this last may

be finite or +∞).
(ii) The conclusion of (i) remains true assuming g ≤ fn ≤ f in place of 0 ≤ fn ≤ f , provided that

g ∈ L1
µ(X,R).

Solution. (i) Fatou’s lemma says that
´

X f ≤ lim infn
´

X fn; and since
´

X fn ≤
´

X f for every n we

get lim supn

´

X fn ≤
´

X f and we conclude; (ii) simply take fn − g, f − g . . . . �

Exercise 4.4.7. A generalized dominated convergence theorem

. Let (X,M, µ) be a measure space. Assume that we have two sequences fn, gn ∈ L1(µ), a.e. con-
verging to f and g respectively, that |fn| ≤ gn a.e. for every n ∈ N, and limn

´

X gn =
´

X g < ∞. Then

f ∈ L1(µ), we have

lim
n

ˆ

X

fn =

ˆ

X

f,

and fn converges to f in L1(µ).

Corollary. If fn is a sequence in L1(µ) converging a.e. to f and limn ‖fn‖1 = ‖f‖1 <∞, then fn
converges to f in L1(µ).

Solution. We have |f − fn| ≤ |f | + |fn| ≤ g + gn, and limn→∞(g + gn) = 2g a.e. on X . We apply
Fatou’s lemma to the sequence (g + gn)− |f − fn| ≥ 0, obtaining

ˆ

X

2g ≤ lim inf
n→∞

(
ˆ

X

g +

ˆ

X

gn −
ˆ

X

|f − fn|
)

=

ˆ

X

2g − lim sup
n→∞

ˆ

X

|f − fn|,

and cancelling
´

X
2g we get

lim sup
n→∞

ˆ

X

|f − fn| ≤ 0.

For the corollary, apply the above with gn = |fn|. �

Remark. Notice that Scheffé’s theorem (4.2.4) is a particular case of the corollary, with fn = |fn|.
Exercise 4.4.8. Compute the limits:

lim
n

ˆ 1

0

1− sin(x/n)
√

x2 + 1/n
dx; lim

n

ˆ 2011

1

1− sin(x/n)
√

x2 + 1/n
dx;

lim
n

ˆ n

1

1− sin4(x/n)

x+ 1/n
dx; lim

n

ˆ ∞

0

(

sin(x/n)

x

)3

dx.

(you may use the convergence theorems, but for some of the above also trivial estimates work; for the

last limit use
´∞

0 =
´ 1

0 +
´∞

1 ). Same questions for:

lim
n

ˆ 2011

0

n cos(x/n)

nx+ 1
dx; lim

n

ˆ n

1

cos2(x/n)

x
dx; lim

n

ˆ ∞

0

sin2(x/n)

x5/2
dx.
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Exercise 4.4.9. Let (X,M, µ) be a measure space, and let f ∈ L+, with 0 <
´

X f <∞. Prove that

for every α > 0 and n ∈ N> the function g(x) = gn,α(x) = n sin(f(x)/nα) is in L1(µ), and compute,
expressing the answer in terms of

´

X f :

A(α) = lim
n→∞

ˆ

X

gn,α(x) dµ(x)

(hint: get to a situation in which you can use dominated convergence; recall that | sin t/t| ≤ 1. . . ).

Exercise 4.4.10. (assumes 4.1.14 and 4.1.5) Let (X,M, µ) be a finite measure space, 0 < µ(X) <∞,
and let f : X → R be measurable. The (increasing) distribution function of f is the function Ff : R → R
defined by F (t) = Ff (t) = µ({f ≤ t}) = µ(f←(]−∞, t])).

(i) Prove that Ff is increasing and right continuous, and express it by means of the decreasing
distribution function ρf (t) = µ({f > t}).

(ii) Prove that:
For t < 0: Ff (t) = ρf−((−t)−) (left limit of ρf− in −t > 0).
For t ≥ 0: Ff (t) = µ(X)− ρf+(t).

and deduce from that and what proved in Exercise 4.1.14 that f ∈ L1(µ) if and only if
ˆ 0

−∞

Ff (t) dt and

ˆ ∞

0

(µ(X)− Ff (t)) dt

are both finite, and in that case:
ˆ

X

f =

ˆ ∞

0

(µ(X)− Ff (t)) dt−
ˆ 0

−∞

Ff (t) dt.

A

B

Ff

µ(X)

Figure 2. If Ff is as plotted, we have f ∈ L1(µ) iff the two regions A and B have finite
area, and in that case

´

X f = area(B)− area(A).

(iv) Prove that the image measure µF← (see 4.1.5) is the Radon–Stieltjes measure dFf , and deduce
from it that if f ∈ L1(µ) then

ˆ

X

f dµ =

ˆ

R

t dFf (t).

Exercise 4.4.11. Let (X,M, µ) be a measure space. If E ∈ M is such that 0 < µ(E) < ∞, and
f : X → K is such that f|E ∈ L1

µ(E), we define the average of f over E as
 

E

f :=
1

µ(E)

ˆ

E

f

(

=

ˆ

E

f
dµ

µ(E)

)

(it may be interpreted as the integral on E with respect to the ”rescaled” measure µ/µ(E)). Assume
now that C ⊆ K is a closed subset of K such that

ffl

E f ∈ C for every E of finite nonzero measure, and
that the measure is semifinite. Prove that then f(x) ∈ C for a.e. x ∈ X (hint: prove that for every open
disk B(c, r[⊆ KrC we have µ(f←(B(c, r[)) = 0; given a countable base for the open sets of K consisting
of open disks . . . ).

Exercise 4.4.12. Using the power series expansion of sinx/x prove that if a > 1:
ˆ ∞

0

e−ax
sinx

x
dx = arctan

(

1

a

)

.
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Solution. We have for every x ∈ R:

sinx

x
=
∞
∑

n=0

(−1)n
x2n

(2n+ 1)!
, so that

ˆ ∞

0

e−ax
sinx

x
dx =

ˆ ∞

0

e−ax

(

∞
∑

n=0

(−1)n
x2n

(2n+ 1)!

)

dx;

we want to prove that if a > 1 then
ˆ ∞

0

e−ax

(

∞
∑

n=0

(−1)n
x2n

(2n+ 1)!

)

dx =
∞
∑

n=0

(−1)n
ˆ ∞

0

e−ax
x2n

(2n+ 1)!
dx.

A sufficient condition for this is the convergence of the series of the L1norms on [1,∞[ (theorem on normal
convergence of a series in L1), that is the series

∞
∑

n=0

ˆ ∞

0

e−ax
x2n

(2n+ 1)!
dx

(this says that the sum of the series of absolute values of the functions is in L1([0,∞[), and this sum
dominates the partial sums of the original series). The integrals are easily computed:

ˆ ∞

0

e−ax
x2n

(2n+ 1)!
dx =

1

(2n+ 1)!

ˆ ∞

0

e−t
t2n

a2n
dt

a
=

1

a2n+1(2n+ 1)!

ˆ ∞

0

t(2n+1)−1 e−t dt =

Γ(2n+ 1)

a2n+1(2n+ 1)!
=

1

a2n+1(2n+ 1)
,

and clearly the series
∑∞

n=0 1/(a
2n+1(2n + 1)) converges iff a > 1. Then, if a > 1 we also have, by the

theorem on normal convergence
ˆ ∞

0

e−ax
sinx

x
dx =

∞
∑

n=0

(−1)n
ˆ ∞

0

e−ax
x2n

(2n+ 1)!
dx =

∞
∑

n=0

(−1)n

2n+ 1

1

a2n+1
= arctan

(

1

a

)

,

recalling the ciclometric series arctanx =
∑∞

n=0(−1)nx2n+1/(2n+ 1), for |x| ≤ 1.

Remark. For 0 < a < 1 the series of integrals does not converge. However we have

ϕ(a) =

ˆ ∞

0

e−ax(sinx/x) dx = arctan(1/a) for every a > 0.

In fact, the integral converges for a > 0, and the theorem on differentiation of parameter depending
integrals says that

ϕ′(a) = −
ˆ ∞

0

e−ax sinx dx = −
[

e−ax

1 + a2
(−a sinx− cosx)

]x=∞

x=0

=
−1

1 + a2
;

and since the derivative of arctan(1/a) is −1/(1 + a2) for every a 6= 0, and

lim
a→∞

ϕ(a) = lim
a→∞

arctan(1/a) = 0,

we conclude.

�

4.4.1. Infinite integrals. If (X,M, µ) is a measure space and f : X → R̃ is measurable, the formula
ˆ

X

f =

ˆ

X

f+ −
ˆ

X

f−

is meaningless only when
´

X
f+ =

´

X
f− = ∞. If at least one of the integrals

´

X
f+ and

´

X
f− is

finite, we say that f is integrable in the extended sense, and we define its integral, which may then be
∞ or −∞, by this formula. If f is integrable in the extended sense, then so is f χE for every E ∈ M,
and the indefinite integral ν = νf : M → [−∞,∞] defined by ν(E) =

´

E
f
(

:=
´

X
f χE

)

is a countably
additive function: the easy proof is left to the reader (notice that actually ν(E) = νf+(E) − νf−(E) is
the difference of two positive measures, of which one at most can be infinite valued).

We note the following facts:

. Let (X,M, µ) be a measure space, and let f, g : X → R be real valued measurable functions. Then:

(i) If f ≤ g and f and g are integrable in the extended sense, then
´

X f ≤
´

X g.
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(ii) If f ≤ g, f is integrable in the extended sense, and
´

X f > −∞, then g is integrable in the

extended sense (similarly, if g is integrable in the extended sense and
´

X
g < ∞, then f is

integrable in the extended sense).
(iii) If f and g are integrable in the extended sense, and

´

X
f+

´

X
g is defined, then f+g is integrable

in the extended sense, and
´

X(f + g) =
´

X f +
´

X g.

Proof. Exercise. �

Solution. (of the previous exercise) (i) As seen in 1.2.1, f ≤ g is equivalent to f+ ≤ g+ and f− ≥ g− ⇐⇒
−f− ≤ −g−; summing the inequalities obtained by integrating we have

ˆ

X

f =

ˆ

X

f+ −
ˆ

X

f− ≤
ˆ

X

g+ −
ˆ

X

g− =

ˆ

X

g.

(ii) As above we get f+ ≤ g+ and f− ≥ g−; if
´

X
f exists and is not −∞, we have that

´

X
f− is finite, and

then also
´

X
g− is finite.

(iii) If both integrals are finite the proof is that given for L1
µ(X,R). We can then reduce to the case in which

one, or both, integrals are infinite; exchanging f and g we may assume that
´

X
f is infinite; by changing signs we

may also assume
´

X
f = ∞. Then

´

X
f− is finite, and

´

X
g cannot be −∞, so that

´

X
g− is also finite. Recall

that, by 1.2.1, (f + g)+ ≤ f+ + g+ and (f + g)− ≤ f− + g−. In our case we then get
´

X
(f + g)− < ∞, so that

´

X
(f + g) is defined and is not −∞. Moreover

´

X
(f + g) = ∞, since otherwise f+ + g+ = (f + g) + (f− + g−)

has also a finite integral, but
´

X
f+ = ∞ by assumption. Then

´

X
(f + g) = ∞. �

Sometimes we say integrable without adding ”in the extended sense” unless for some reason this has
to be emphasized. Of course, a function integrable in the extended sense with a finite integral differs
from a function in L1

µ(X,R) only on a null set, and may be considered belonging to L1(µ).

Exercise 4.4.13. Let X be a set, and let f : X → R be a real valued function. The set Φ(X) of all
finite subsets of X , ordered by inclusion, is a directed set and we can define a net

∑

f : Φ(X) → R by

the formula A 7→∑

A f
(

:=
∑

x∈A f(x)
)

. Prove that this net has a limit in R̃ if and only if f is integrable
in the extended sense with respect to the counting measure κ on X , and that

lim
A∈Φ(X)

∑

A

f =
∑

X

f

(

:=

ˆ

X

f dκ
)

.

Solution. For positive functions the assertion is trivial: the net A 7→∑

A f is increasing, it always has
its supremum sup {∑A f : A ∈ Φ(X)}, clearly coinciding with

´

X f dκ, as limit. Writing f = f+−f− we

have
∑

A f =
∑

A f
+ −∑A f

− and continuity of addition in ]−∞,∞] or in [−∞,∞[ ensures that if f is
integrable then the net has the integral as its limit. It only remains to prove that if

∑

X f+ =
∑

X f− = ∞
then the net has no limit in R̃. Let P = {f > 0} and Q = {f < 0}. Given any A ∈ Φ(X), since
∑

PrA f = ∞ we can add to A a finite set B ⊆ P rA such that
∑

A∪B f is large as we please, and since
∑

QrA f = −∞ we can also add to A a finite subset C of Q to make
∑

A∪C f smaller than any negative
number we want. �

4.4.2. Monotone convergence theorem, extended version.

. Let (X,M, µ) be a measure space, and let fn be a monotone sequence of measurable extended real
valued functions, with pointwise limit f ; assume that f0 is integrable (in the extended sense). If the
sequence is increasing (resp: decreasing) and

´

X f0 > −∞ (resp:
´

X f0 < ∞) then f and all fn are
integrable and

lim
n→∞

ˆ

X

fn =

ˆ

X

f.

Proof. Assume that fn is increasing. By (ii) of 4.4.1 we have that all fn are integrable and the

integrals are an increasing sequence in R̃; moreover f+
n is increasing and f−n is a decreasing sequence of

positive functions with a finite integral. By the monotone convergence theorem we have

lim
n→∞

ˆ

X

f+
n =

ˆ

X

f+,

and by dominated convergence we have also

lim
n→∞

ˆ

X

f−n =

ˆ

X

f−(<∞);

the conclusion is now immediate. For the decreasing case, just change signs. �
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We also easily get as a corollary

. Fatou’s lemma, extended version Let (fn)n∈N be a sequence of extended real valued measurable
functions on the measure space (X,M, µ).

(i) Assume that there is a function u : X → R̃ integrable, with
´

X u > −∞, such that u ≤ fn a.e.,
for every n ∈ N. Then every fn is integrable and

ˆ

X

lim inf
n→∞

fn ≤ lim inf
n→∞

ˆ

X

fn.

(ii) Assume that there is a function v : X → R̃ integrable, with
´

X v < ∞, such that v ≥ fn a.e.,
for every n ∈ N. Then every fn is integrable and

lim sup
n→∞

ˆ

X

fn ≤
ˆ

X

lim sup
n→∞

fn.

Proof. In both cases integrability of the fn’s follows from (ii) of 4.4.1. The proof of (i) is then identical
to the proof of the original Fatou’s lemma, by using the above extended version of monotone convergence,
and is left to the reader. Proof of (ii) may follow similar lines, or is simply deduced from (i) by changing
the sign. �

4.4.3. Some solutions.

Solution. (of Exercise 4.1.5) For simplicity, put α(t) = −ρf (t) = −µ{(f > t}). If s < t we have
]s, t] =]s,∞[−]t,∞[ so that

µ(f←(]s, t]) = µ(f←(]s,∞[rf←(]t,∞[)) = µ(f←(]s,∞[))− µ(f←(]t,∞[) = ρf (s)− ρf(t) = α(t)− α(s)

(finiteness of ρf has been used in an essential way for subtractivity). The image measure µf← and the
Radon–Stieltjes measure λα of α then coincide and are finite on the right half–open intervals of ]0,∞[
with lower bound strictly positive; then they coincide on the Borel subsets of ]0,∞[, by σ−finiteness and
2.5.5. For every positive measurable g :]0,∞[→ [0,∞] we have (see 4.1.12)

ˆ

[0,∞[

g(t) dµf←(t) =

ˆ

X

g(f(x)) dµ(x),

and we get the result with g(t) = t. �

Solution. (of Exercise 4.1.6) (i) We clearly have f ≤ g if g :=
∑∞

n=1 nχf←(]n−1,n]): given x ∈ X ,

if f(x) > 0 then x ∈ f←(]n − 1, n]) for a unique n ∈ N>, so that f(x) ≤ n = g(x). Since
´

X
g =

∑∞
n=1 nµ(f

←(]n− 1, n])) <∞, we also have
´

X f <∞.

(ii) If f(x) = 1/(1 + x2) it is well–known that
´

R
f <∞; but g = χR has infinite integral.

(iii) Consider f(x) = 1/(1 + |x|); then
´

X f = ∞, but h :=
∑∞

n=1(n− 1)χf←(]n−1,n]) = 0.
(iv) We have, with h as in (iii) and g as in (i) and (ii):

g =

∞
∑

n=1

nχf←(]n−1,n]) =

∞
∑

n=1

((n− 1) + 1)χf←(]n−1,n]) =

∞
∑

n=1

(n− 1)χf←(]n−1,n]) +

∞
∑

n=1

χf←(]n−1,n]) = h+ χ{f>0};

since X has finite measure we have that χ{f>0} has finite integral (µ(χ{f>0})), hence
´

X
g is finite iff

´

X h is finite; and f is sandwiched between h and g, h ≤ f ≤ g.
(v) Put ϕ =

∑

n∈Z |n − 1|χ]n−1,n]. If x ∈ f←(]n − 1, n]) we have n − 1 < f(x) ≤ n, and if n ≤ 0

then |f(x)| < |n − 1| and f(x) ≤ 0, i.e. f(x) = f−(x), while if n > 0 then |f(x)| ≤ ϕ(x) + 1, and
f(x) ≥ 0 so that f(x) = f+(x). We then have |f(x)| ≤ ϕ(x) + χ{f>0}(x), so that if ϕ is summable f is
also summable. And we also have 0 ≤ ϕ − χ{f<0} ≤ |f |, so that summability of f implies summability
of ϕ, always taking account of the fact that χ{f>0} and χ{f<0} are summable because µ(X) <∞. �

Solution. (of exercise 4.1.7). Clearly ρsin(t) = ∞ for t < 1, ρsin(t) = 0 for t ≥ 1. Clearly ρf (t) = ∞
for every t ∈ R if f(x) = ex. If f(x) = e−|x| we have clearly ρf (t) = ∞ if t ≤ 0; if t ≥ 1 then ρf (t) = 0
(1 is the absolute maximum of f), and if 0 < t < 1 then

{x ∈ R : e−|x| > t} = {x ∈ R : −|x| > log t} = {x ∈ R : |x| ≤ log(1/t)}, so that ρf (t) = 2 log(1/t);
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hence ρf (t) = 2(log(1/t))+ for t > 0. The integral is easily computed:
ˆ ∞

0

ρf (t) dt =

ˆ 1

0

2 log(1/t) dt = [−2t log t]
1
0 +

ˆ 1

0

2 dt = 2.

Now f(x) = |x|−1/2 χ]0,∞[; clearly ρf (t) = ∞ it t ≤ 0. If t > 0 then

{x ∈ R : f(x) > t} = {x > 0 : x−1/2 > t} = {x < 1/t2} =]0, 1/t2[.

Then ρf (t) = 1/t2 for t > 0, and hence
´∞

0 ρf(t) dt = ∞.

f(x) = 1/(1 + x2); ρf = ∞ for t ≤ 0, and if t > 0 we have {f > t} = {x ∈ R : 1 + x2 > 1/t}; this set
is empty for t ≥ 1 (clear: 1 is the absolute maximum of f), and is ] −

√

1/t− 1,
√

1/t− 1[ if 0 < t < 1.

Then ρf (t) = 2
√

1/t− 1 if t ∈]0, 1[ and ρf (t) = 0 if t ≥ 1. Integral:

ˆ ∞

0

ρf (t) dt =

ˆ 1

0

2

√

1

t
− 1 dt = 4

ˆ 1

0

√
1− t

dt

2
√
t
= 4

ˆ 1

0

√

1− θ2 dθ = π.

For the last: ρf (t) = λn(B) = 2n if t ≤ 1. It t > 1 then

{x ∈ B : ‖x‖−α∞ > t} = {x ∈ B : ‖x‖∞ < t−1/α} so that ρf (t) = 2n t−n/α (t > 1).

We then get
ˆ ∞

0

ρf (t) dt =

ˆ 1

0

2n dt+ 2n
ˆ ∞

1

t−n/α dt;

we know that
´∞

1
dt/tβ = ∞ if β ≤ 1 and 1/(β − 1) if β > 1; then:

ˆ

B

fα dλn =

ˆ ∞

0

ρfα(t) dt =







∞ if α ≥ n

2n
(

1 +
α

n− α

)

if α < n
.

�

Solution. (of Exercise 4.4.2) Clearly g f is measurable and |g f | = |g| |f | ≤ ‖g‖∞ |f |, and moreover
‖g‖∞ |f | ∈ L1(µ) since f ∈ L1(µ); thus g f ∈ L1(µ).

Assume now that g is measurable but not in L∞(µ). Then infinitely many of the sets {n < |g| ≤ n+1}
have nonzero measure; there is then an increasing sequence nk → ∞ of integers such that µ({nk < |g| ≤
nk + 1}) > 0, and we may also assume that nk ≥ 2k (taking a subsequence). By semifiniteness we have
a measurable E(k) ⊆ {nk < |g| ≤ nk + 1} such that 0 < µ(E(k)) <∞. Then:

f =

∞
∑

k=0

1

nk µ(E(k))
χE(k) ∈ L1(µ), in fact

ˆ

X

f =

∞
∑

k=0

µ(E(k))

nk µ(E(k))
=

∞
∑

k=0

1

nk
≤
∞
∑

k=0

1

2k
<∞.

But g f /∈ L1(µ), in fact:

ˆ

X

|g f | =
∞
∑

k=0

1

nkµ(E(k)

ˆ

E(k)

|g| ≥
∞
∑

k=0

1

nkµ(E(k)

ˆ

E(k)

nk =
∞
∑

k=0

1 = ∞.

�

Solution. (of Exercise 4.4.3) (i) If f : X → K is a simple function with range f(X) = {y1, . . . , yp}
then Aj = f←(yj) is a partition of X into measurable sets; exactly one of these sets is co–countable, the
others all countable; so the simple functions are those that are constant on a co-countable set. Then the
same is true for measurable functions: if fn is a sequence of simple functions converging pointwise to f ,
and each fn is constantly an on the co–countable set An, then f is constantly a = limn→∞ an on the set
A =

⋂∞
n=0An, a co–countable set. Then every measurable function is constant outside some countable

subset of X ; and it is clear that every such function is measurable.
(ii) Notice that the null functions are exactly those that are zero outside a countable subset of X .

Every positive measurable function has integral 0 (when it is zero outside a countable set, hence a.e. 0)
or +∞ (when it is constantly a > 0 outside a countable set).

(iii) Modulo null functions all measurable functions are constant; so L∞µ coincides with the set of all
measurable functions, and L∞(µ) = L∞µ /Nµ can be identified with the space of constant functions. �
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Solution. (of exercise 4.4.5) Given a sequence fn ∈ L1
µ(X,F ) converging to f ∈ L1(µ) we prove that

f(x) ∈ F for a.e. x ∈ X . In fact we have a subsequence fν(k) of fn that converges to f also a.e.; the set
N(k) = {x ∈ X : fν(k(x) /∈ F} has measure 0, hence also N =

⋃

k∈NN(k) has measure 0. For x ∈ XrN
we have fν(k)(x) ∈ F for every k, so that f(x) = limk→∞ fν(k)(x) ∈ F , since F is closed.

Then L1
µ(X,F ) is a complete metric subspace of L1(µ), for every closed F ⊆ K, in particular

L1
µ(X, {0, 1}) is complete. And clearly this metric space is isometric to (F(µ), ρ) the isometry being

A 7→ χA; in fact, for A,B ∈ F(µ):

ρ(A,B) = µ(A △ B) =

ˆ

A△B

dµ =

ˆ

X

χA△B =

ˆ

X

|χA − χB| = ‖χA − χB‖1,

recalling that |χA − χB| = χA△B. �

Solution. (of Exercise 4.4.9) Since |gn,α(x)| ≤ n1−α |f(x)| and f ∈ L1(µ) we have gn,α ∈ L1(µ). We restrict
the integral to the set C = {f > 0}, and we write

ˆ

X

gn,α = n1−α

ˆ

C

sin(f(x)/nα)

f(x)/nα
f(x) dµ(x).

Now we have:
∣

∣

∣

∣

sin(f(x)/nα)

f(x)/nα
f(x)

∣

∣

∣

∣

≤ f(x),

so that dominated convergence says that

lim
n→∞

ˆ

C

sin(f(x)/nα)

f(x)/nα
f(x) dµ(x) =

ˆ

C

f,

so that, if α < 1

lim
n→∞

ˆ

X

gn,α = lim
n→∞

n1−α

ˆ

C

sin(f(x)/nα)

f(x)/nα
f(x) dµ(x) = ∞.

while for α = 1 this limit is
´

X
f , and for α > 1 the limit is 0. �

Solution. (of Exercise 4.4.10) (i) If s < t then ]−∞, s] ⊆]−∞, t], then f←(]−∞, s] ⊆ f←(]−∞, t]),
and by monotonicity of the measure we have Ff (s) = µ(f←(]−∞, s]) ≤ µ(f←(]−∞, t])) = Ff (t). Right–
continuity is continuity from above of measures on set of finite measure: if tn ↓ t then ]−∞, tn] ↓]−∞, t]
so that Ff (tn) = µ(f←(] − ∞, tn])) ↓ µ(f←(] − ∞, t])) = Ff (t). Since f←(] − ∞, t]) = X r f←(]t,∞[)
and the measure is finite, by subtractivity we get

µ(f←(]−∞, t])) = µ(X r f←(]t,∞[)) = µ(X)− µ(f←(]t,∞[)) = µ(X)− ρf (t).

(ii) If t < 0 then {x ∈ X : f(x) ≤ t} = {x ∈ X : −f−(x) ≤ t} = {x ∈ X : f−(x) ≥ −t} (if
f(x) ≤ t < 0 then f(x) = −f−(x)). Now, if a > 0 and g : X → [0,∞[ is positive measurable, then
µ({g ≥ a}) = lims→a− ρg(s)(:= ρg(a

−), as is easy to see, if the measures are finite (if sn ↑ a, then
{g > sn} ↓ {g ≥ a}). Then, if t < 0, from (i) we have Ff (t) = ρf−(−t−).

If t ≥ 0 then easily {f > t} = {f+ > t} so that as seen in (i) we get Ff (t) = µ(X)− ρf+(t).

(iii) We have that f ∈ L1(µ) if and only if f± ∈ L1(µ); by 4.1.14 this happens if
´∞

0 ρf±(t) dt <∞;
and

ˆ ∞

0

ρf+(t) dt =

ˆ ∞

0

(µ(X)− Ff (t)) dt <∞,

ˆ ∞

0

ρf−(s) ds =

ˆ ∞

0

ρf−(s
−) ds =

ˆ 0

−∞

ρf−(−t−) dt =
ˆ 0

−∞

Ff (t) dt

(If ρ : [0,∞] → [0,∞] is decreasing, then
´∞

0 ρ(t−) dt =
´∞

0 ρ(t+) dt: left and right–continuous modifica-
tions of ρ differ on an at most countable set, which has Lebesgue measure zero).

(it is clear that
´∞

0 (µ(X)− Ff (t)) dt is area A, while
´ 0

−∞ Ff (t) dt is area B).

(iv) Is easy, using what done in 4.1.5. �

Solution. (of Exercise 4.4.11) Recall that semifinite measure means that every set of nonzero measure contains
a set of finite nonzero measure. If for some disk as in the hint we have µ(f←(B(c, r[)) > 0 then we can find a
measurable E ⊆ f←(B(c, r[) with 0 < µ(E) <∞. Then, since |f(x)− c| < r for every x ∈ E we have

∣

∣

∣

∣

 

E

f − c

∣

∣

∣

∣

=

∣

∣

∣

∣

 

E

f −
 

E

c

∣

∣

∣

∣

=

∣

∣

∣

∣

 

E

(f − c)

∣

∣

∣

∣

≤
 

E

|f − c| <
 

E

r = r,

so that
ffl

E
f /∈ C, contrary to the assumption.

Then f←(B(c, r[) has measure zero for every disk disjoint from C; and since K r C is a countable union of
such disks we have that µ(f←(Kr C)) = 0. �
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4.5. Continuity and differentiability of parameter depending integrals.

Theorem. Let D be a metrizable space; let (T,M, µ) be a measure space, and let f : D × T → K
be a function. Assume that for every x ∈ D the function T 7→ f(x, t) is in L1

µ(T,K), so that the formula:

F (x) =

ˆ

T

f(x, t) dµ(t)

defines a function F : D → K. Let x ∈ D be given.

(i) Assume that there are a nbhd. U of x in D, and a function γx ∈ L1
µ(T ) such that for every

y ∈ U the inequality |f(y, t)| ≤ γx(t) holds for µ−a.e. t ∈ T . Assume also that for µ−a.e. t ∈ T
the function y 7→ f(y, t) is continuous at x. Then F is continuous at x.

(ii) Assume now that D is an open subset of the normed K−space Y , that u is a vector of Y , that
for every y ∈ D the derivative ∂uf(y, t) exists for almost every t ∈ T , and that moreover there
are a nbhd. U of x in D, and a function γx ∈ L1

µ(T ) such that for every y ∈ U the inequality
|∂uf(y, t)| ≤ γx(t) holds for a.e. t ∈ T . Then ∂uF (x) exists and

∂uF (x) =

ˆ

T

∂uf(x, t) dµ(t).

The proof is a simple application of dominated convergence:

Proof. (i) Given x ∈ D let (xn)n be a sequence in D converging to x in D. We have to prove that
limn→∞ F (xn) = F (x), that is, defining fn, g : T → K by fn(t) = f(xn, t), and g(t) = f(x, t) we claim
that

(*) lim
n→∞

ˆ

T

fn(t) dµ(t) =

ˆ

T

g(t) dµ(t).

In fact, by the hypotheses fn(t) → g(t) for µ−a.e. t ∈ T (continuity of f at x in the first variable); and
given a nbhd U of x and γx ∈ L1

µ(T ) as in the hypotheses, we have xn ∈ U eventually, say for n ≥ N , so
that |fn(t)| ≤ γx for µ−a.e. t ∈ T , as n ≥ N ; by dominated convergence (*) holds.

(ii) Given x ∈ D, there is δ > 0 such that x+λu ∈ D for every λ ∈ K with λ ∈ δ B = {ξ ∈ K : |ξ| ≤ δ};
apply (i) to the function g : δ B × T → K given by:

g(0, t) = ∂uf(x, t); g(λ, t) =
f(x+ λu, t)− f(x, t)

λ
λ ∈ δ B r {0}, t ∈ T ;

for |λ| small enough (such that x+ λu ∈ U) we have, by the mean value theorem:

|g(λ, t)| =
∣

∣

∣

∣

f(x+ λu, t)− f(x, t)

λ

∣

∣

∣

∣

≤ sup{|∂uf(x+ ξ u, t)| : |ξ| ≤ |λ|} ≤ γx(t).

�

Exercise 4.5.1. (see also 4.4.12) Prove that the formula:

(*) ϕ(x) =

ˆ ∞

0

e−xt
sin t

t
dt

defines a function ϕ ∈ C1(]0,∞[,R). Give an esplicit formula for ϕ′(x), not containing integrals, and
deduce from it an analogous expression for ϕ(x).

Solution. The derivative with respect to x of the integrand is −e−xt sin t. Given x > 0, let a = x/2
(or simply pick any a with 0 < a < x), and let U = [a,∞[. For y ∈ U we have

| − e−yt sin t| = e−yt | sin t| ≤ e−yt ≤ e−at;

of course t 7→ e−at belongs to L1([0,∞[), since a > 0. Then ϕ ∈ C1(]0,∞[, and (see formula for the
primitive of e−xt sin t):

ϕ′(x) =

ˆ ∞

0

(−e−xt sin t) dt =
[

e−xt

1 + x2
(sin t+ cos t)

]t=∞

t=0

=
−1

1 + x2
.

Then we get
ϕ(x) = arccotanx+ k (x > 0);

but one easily sees that limx→∞ ϕ(x) = 0 (e.g., by dominated convergence; or simply because |ϕ(x)| ≤
´∞

0 e−xt dt = 1/x), so that
ϕ(x) = arccotanx (x > 0).
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�

4.5.1. Continuity and differentiability of sums of power series. The following is well known; but we
want to get it as a corollary of the previous theorem. If a = (an)n∈N is a sequence of complex numbers,
and c is a complex numbers, we have the power series with coefficient sequence a = (an)n∈N and initial
point c,

∞
∑

n=0

an (z − c)n.

It is clear that, by a simple translation, we may confine ourselves to the case c = 0. We know (see e.g.
1.8.7) that if R = Ra = 1/ lim supn→∞ |an|1/n is the radius of convergence of the series

∑∞
n=0 an z

n, then
the convergence set Ca of the series is sandwiched like that:

{z ∈ C : 0 ≤ |z| < R} ⊆ Ca ⊆ {z ∈ C : 0 ≤ |z| ≤ R}.
If R > 0 then Ca has a non–empty interior, the open disc of convergence, all of C when R = ∞, otherwise
the interior of Ca is RB = {0 < |z| < R}. Recall that the derived power series

∑∞
n=1 n an z

n−1 has the
same radius of convergence Ra. On Ca we may define the function fa(z) =

∑∞
n=0 an z

n, so that on the
open disc of convergence the sum ga(z) =

∑∞
n=1 n an z

n−1 is also defined.
Let us prove

. Continuity and complex differentiability of power series sums In the interior of Ca

the function fa is continuous, and differentiable in the complex sense, with derivative f ′a(z) = ga(z).

Proof. The space (T,M, µ) is (N,P(N),κ) with κ the counting measure. That(x =)z ∈ int(Ca)
means |z| < R; pick r with |z| < r < R; the nbhd U of z is r B = {w ∈ C : |w| < r}. The function
(y, t) 7→ f(y, t) is here (w, n) 7→ an w

n; the function γx = γz : N → [0,∞[ is n 7→ |an| rn; we have
γz ∈ L1(T ) = ℓ1(N) because every power series is absolutely convergent at every point in the interior of
Ca, in particular at w = r, that is

∑∞
n=0 |an rn| <∞). This proves continuity of fa. For differentiability

we only have to change γz, that is now γz(n) = n |an| rn−1.
Remark. We can apply the differentiation theorem as stated also to complex derivatives essentially

because a mean value theorem holds for complex derivatives: if D ⊆ C is an open set containing the
segment [a, b] = {a+t(b−a) : t ∈ [0, 1]}, and f : D → C has a complex derivative f ′(z) at every z ∈ [a, b],
then |f(b)− f(a)| ≤ ‖f ′‖[a,b] |b− a|, where ‖f ′‖[a,b] = sup{|f ′(z)| : z ∈ [a, b]}.

�

4.6. Riemann integral and Lebesgue integral. The Riemann integral is defined with a par-
ticular kind of simple functions, the step functions with compact support (recall that the support
Supp(f) of a function f : X → K, where X is a topological space, is the closure of the cozero–set
of f , Supp(f) = clX{f 6= 0}). These are the vector subspace Sc = Sc(Rn) of the space of all functions
from Rn to K generated by the characteristic functions of bounded intervals of Rn. Every nonzero ϕ ∈ Sc

is representable as ϕ =
∑m

k=1 αk χE(k), where αk ∈ K, and {E(1), . . . , E(m)} is a finite set of pairwise
disjoint bounded intervals; the integral of ϕ is, by definition,

ˆ

Rn

ϕ :=

m
∑

k=1

αk λ
n(E(k)).

Clearly Sc(Rn) is contained in L1(λn). We confine our attention to real valued functions.

Definition. A function f : Rn → R is said to be Riemann integrable (R–integrable for short) if for
every ε > 0 there are u, v ∈ Sc such that u ≤ f ≤ v, and

´

Rn(v − u) ≤ ε.

This condition is clearly equivalent to the assertion:

sup

{
ˆ

Rn

u : u ≤ f, u ∈ Sc

}

= inf

{
ˆ

Rn

v : v ∈ Sc, v ≥ f

}

;

by definition, this separator is the Riemann integral of f . From the definition it immediately follows that
an R–integrable function is bounded and has compact support (since there exist u, v ∈ Sc with u ≤ f ≤ v
we have that Supp(f) ⊆ Supp(u)∪ Supp(v), and min u ≤ f ≤ max v). And it is also immediate to verify
that

Proposition. Let f : Rn → R be a function. The following are equivalent:
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(i) f is R–integrable.
(ii) For every sequence εk > 0 with limk→∞ εk = 0 there are sequences uk, vk ∈ Sc such that:

(1) uk ≤ f ≤ vk for every k ∈ N;
(2) uk is increasing and vk is decreasing;
(3)

´

Rn(vk − uk) ≤ εk, for every k ∈ N.

Proof. (i) implies (ii) By the definition, we find u0, v0 ∈ Sc such that u0 ≤ f ≤ v0 and
´

Rn(v0−u0) ≤
ε0. By induction, assuming that

u0 ≤ u1 ≤ · · · ≤ uk−1 ≤ f ≤ vk−1 ≤ · · · ≤ v1 ≤ v0

have been defined, we find ϕk, ψk ∈ Sc with ϕk ≤ f ≤ ψk and
´

Rn(ψk−ϕk) ≤ εk. Setting uk = uk−1∨ϕk

and vk = ψk ∧ vk−1 we conclude the induction (note that vk − uk ≤ ψk − ϕk). That (ii) implies (i) is
trivial. �

Assuming f Riemann integrable and uk, vk as above we now set:

u(x) = lim
k→∞

uk(x) = sup{uk(x) : k ∈ N}; v(x) = lim
k→∞

vk(x) = inf{vk(x) : k ∈ N};

then u ≤ f ≤ v, the functions u and v are Borel measurable, and all three functions are Riemann integrable
with the same integral. By dominated convergence

´

Rn uk converges to
´

Rn u and
´

Rn vk converges to
´

Rn v in L1(λn). Then
´

Rn(v−u) = 0 both in the Lebesgue and the Riemann sense, so that the Lebesgue
measure of the set {x ∈ Rn : v(x) − u(x) > 0} is zero. This implies that f is Lebesgue measurable (it is
a.e. equal to the Borel measurable functions u and v), and

´

Rn f =
´

Rn u =
´

Rn v, both in the Lebesgue

and the Riemann sense. We have proved that if f is R-integrable then it is also in L1(λn), and the two
integrals coincide.

4.6.1. Lebesgue integral and generalized Riemann integral. Assume now that I is an open interval of
R, and that f : I → K is R-integrable on every compact subinterval of I. Let [ak, bk] be an increasing
sequence of compact subintervals of I whose union is I (such a sequence always exists, pick ak, bk ∈ I
such that ak ↓ inf I and bk ↑ sup I). If χk = χ[ak,bk] then |f |χk ↑ |f | on I; by monotone convergence we
then have that the Lebesgue integral of |f | on I is

ˆ

I

|f | = lim
k→∞

ˆ

I

|f |χk = lim
k→∞

ˆ bk

ak

|f(x)| dx;

but the last limit is also the generalized integral, in the Riemann sense, of |f |; we have proved that a
locally R-integrable function is Lebesgue summable on the open interval I if and only if it absolutely
R–integrable in the generalized sense. Of course, if this is the case, dominated convergence implies also
that

ˆ

I

f(x) dλ(x) = lim
k→∞

ˆ

I

f χk dλ = lim
k→∞

ˆ bk

ak

f(x) dx,

so that, in this case, the Lebesgue integral coincides with the generalized Riemann integral; but without
absolute convergence the function is not Lebesgue integrable.

4.6.2. Theorem of Lebesgue–Vitali. Step functions are not pliable enough to adapt closely to wildly
oscillating functions, and R-integrability is equivalent to continuity almost everywhere, as the following
theorem shows.

. Theorem of Lebesgue–Vitali. A function f : Rn → K is R–integrable if and only if it is
bounded with compact support, and its set of points of discontinuity has Lebesgue measure 0.

Proof. We assume that f is real valued. By definition the lower Riemann integral of f is

I(f) = sup

{
ˆ

Rn

u : u ∈ Sc, u ≤ f

}

,

while the upper Riemann integral of f is

I(f) = inf

{
ˆ

Rn

v : v ∈ Sc, v ≥ f

}

,

so that f is Riemann integrable if and only if I(f) = I(f). Recall the lsc and usc approximations f∗ and f∗ of
f discussed in 1.9.3; the functions f∗ and f∗ are Borel measurable, bounded and with compact support (their
support is contained in Supp(f)), so they both belong to L1(λn). We shall prove that

(*) I(f) =

ˆ

Rn

f∗ dλn; I(f) =

ˆ

Rn

f∗ dλn,
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(both integrals intended as Lebesgue integrals). This concludes the proof because:

f is Riemann integrable ⇐⇒
ˆ

Rn

(f∗ − f∗) dλn = 0 ⇐⇒ f∗(x) = f∗(x) for almost every x ∈ R
n

⇐⇒ f is continuous almost everywhere.

First we see that

. If u ∈ Sc and u ≤ f , then u(x) ≤ f∗(x) for a.e. x ∈ Rn; and similarly if v ∈ Sc and v ≥ f then v(x) ≥ f∗(x)
for a.e. x ∈ Rn; then I(f) ≤

´

Rn f∗ and I(f) ≥
´

Rn f
∗.

In fact, if u =
∑m

k=1 αk χE(k) with the E(k) pairwise disjoint we have u(x) ≤ f∗(x) for every x /∈
⋃m

k=1 ∂E(k):
for, if x belongs to the interior of E(k) then we have u(t) = αk ≤ f(t) for every t ∈ int(E(k)), so that αk ≤
inf f(int(E(k))) ≤ f∗(x), hence u(x) = αk ≤ f∗(x) (by the same argument we also have u(x) = 0 ≤ f∗(x) for
x /∈ ⋃m

k=1 cl(E(k))). Since
⋃m

k=1 ∂E(k) has n−dimensional measure 0 we conclude. The proof for v is entirely
analogous. It remains to prove equality in (*). We choose a compact interval Q containing the support of f in
its interior; by partition of Q we mean, in this section, a finite disjoint family P = {A(1), . . . , A(m)} of intervals
whose union is Q; the mesh of the partition is mesh(P) = max{diam(A(j)) : j ∈ {1, . . . ,m}}. To every partition
P = {A(1), . . . , A(m)} of Q there are a lower step function uP ≤ f and an upper step function vP ≥ f associated
to it, in the following way:

uP =

m
∑

j=1

inf f(A(j))χA(j);

vP =

m
∑

j=1

sup f(A(j))χA(j) :

in other words uP is the largest step function smaller than f with P as an associated partition, while vP is the
smallest step function larger than f with P as associated partition. Assume now that P(k) is a sequence of
partitions of Q such that limk→∞mesh(P(k)) = 0, and for every k set uk = uP(k) and vk = vP(k). Let F (k) be
the union of the boundaries of all intervals in P(k); then F (k) has n−dimensional measure zero, and hence the
same holds for F =

⋃∞
k=0 F (k). We shall prove:

. For every x ∈ Rn r F we have f∗(x) = limk→∞ uk(x) and f∗(x) = limk→∞ vk(x).

Proof. We prove that f∗(x) = limk→∞ uk(x) if x /∈ F , analogous proof for vk and f∗. Given x ∈ Q and ε > 0,
we find an open ball B(x, δ[ centered at x such that inf f(B(x, δ[) ≥ f∗(x) − ε. For k large enough, say k ≥ kε
we have mesh(P(k)) ≤ δ, so that every interval of P(k) containing x is contained in B(x, δ[. Since x /∈ F , for
every k the point x is in the interior of some interval A ∈ P(k), and if A ⊆ B(x, δ[ we have uk(x) = inf f(A) and
f∗(x) ≥ inf f(A) ≥ inf f(B(x, δ[) ≥ f∗(x)− ε. �

Since λn(F ) = 0 we have that uk converges a.e, to f∗ and vk converges a.e to f∗; both sequences are clearly
dominated by ‖f‖∞ χQ ∈ L1(λn), so that by dominated convergence

ˆ

Rn

f∗ = lim
k→∞

ˆ

Rn

uk,

ˆ

Rn

f∗ = lim
k→∞

ˆ

Rn

vk.

�
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5. Product measures

Given two measurable spaces (X,M) and (Y,N ) we have defined a product (X×Y,M⊗N ) of these
spaces (3.0.12). If we have two measure spaces (X,M, µ) and (Y,N , ν) we plan to define a measure on
M⊗N , the product measure, which will be denoted µ× ν or µ⊗ ν, and to relate integrals with respect
to this measure to integrals on the factor spaces.

5.1. Product measure. The set G = {E × F : E ∈ M, F ∈ N} of all measurable rectangles is
a semialgebra of parts in X × Y (see 1.4.2); let’s call A the generated algebra, consisting of all finite
(disjoint) unions of elements of G; the σ−algebra generated by A is of course M⊗N (3.0.12). Guided by
our geometrical intuition we define µ⊗ ν(E×F ) := µ(E) ν(F ) (as usual the convention 0 ·∞ = ∞·0 = 0
is used), and we prove (see 5.1.1) that on G this set function is countably additive: this implies that we
can extend it to a premeasure on the generated rectangle algebra A. We can then give the:

Definition. Given two measure spaces (X,M, µ) and (Y,N , ν) their product measure space is the
triple

(X × Y,M⊗N , µ⊗ ν),

where µ⊗ ν is the restriction to M⊗N of the Carathèodory extension of the premeasure defined on the
rectangle algebra by µ⊗ ν(E × F ) = µ(E) ν(F ), for every rectangle E × F .

5.1.1. Product premeasure. A function f ∈ L+(X×Y )(= L+
M⊗N (X×Y )) will be called a function of

class I if the functions obtained integrating the sections (recall that all sections of a measurable function
are measurable, see 3.0.12):

ϕ(x) =

ˆ

Y

f(x, y) dν(y); ψ(y) =

ˆ

X

f(x, y) dµ(x)

belong to L+(X) and L+(Y ) respectively, and moreover
ˆ

X

ϕ(x) dµ(x) =

ˆ

Y

ψ(y) dν(y).

In other words, function of class I are those positive measurable function on the product for which the
iterated integrals both exist and coincide:

ˆ

X

(
ˆ

Y

f(x, y) dν(y)

)

dµ(x) =

ˆ

Y

(
ˆ

X

f(x, y) dµ(x)

)

dν(y);

this common value (which will be
´

X×Y f d(µ⊗ ν) in the right cases) is provisionally denoted I(f).

Proposition. If f, g ∈ L+(X × Y ) are of class I then f + g and λ f , for every λ ≥ 0, are of class
I and I(f + g) = I(f)+ I(g), I(λ f) = λI(f). If fn is an increasing sequence of functions of class I and
fn ↑ f , then f is of class I and I(fn) ↑ I(f). And if fn ∈ L+(X × Y ) is a sequence of functions of class
I then

∑∞
n=0 fn is of class I and:

(*) I

(

∞
∑

n=0

fn

)

=

∞
∑

n=0

I(fn).

Proof. Left to the reader, we only prove the monotone convergence: for every x ∈ X the x−section
fn(x,#) is an increasing sequence in L+(Y ), converging to the x−section f(x,#) of f , so that ϕn(x) =
´

Y fn(x, y) dν(y) ↑
´

Y f(x, y) dν(y) = ϕ(x); then ϕ ∈ L+(X), and since ϕn ↑ ϕ we have also

I(fn) =

ˆ

X

ϕn(x) dµ(x) ↑
ˆ

X

(
ˆ

Y

f(x, y) dν(y)

)

dµ(x);

exchanging the variables we get

I(fn) =

ˆ

Y

ψn(y) dν(y) ↑
ˆ

Y

(
ˆ

X

f(x, y) dµ(x)

)

dν(y),

and the iterated integrals of f must then coincide, being limits of the same sequence I(fn). �

Notice now that if f ∈ L+(X) and g ∈ L+(Y ) then f ⊗ g ∈ L+(X × Y ) is of class I and I(f ⊗ g) =
´

X f
´

Y g (trivial):
ˆ

X

(
ˆ

Y

f(x) g(y) dν(y)

)

dµ(x) =

ˆ

X

f(x)

(
ˆ

Y

g(y) dν(y)

)

dµ(x) =

(
ˆ

Y

g(y) dν(y)

)
ˆ

X

f(x) dµ(x),
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and exchanging x and y we get the same result. If E ∈ M and F ∈ N then χE×F = χE ⊗ χF , so that
all characteristic functions of measurable rectangles, and hence also all positive A−simple functions are
of class I; formula (*) of the preceding proposition says that the set function

µ⊗ ν(E × F ) = I(χE ⊗ χF )

is well–defined (because it depends only on the characteristic function χE×F = χE ⊗ χF and not on the
representation of E×F as a countable disjoint union of rectangles) and is countably additive on the set G
of all measurable rectangles, and hence is a premeasure on the generated algebra A. Then we can define
the product measure on M⊗N as in 5.1. From now on we call Tonelli function every function f of the
class I such that I(f) =

´

X×Y
f dµ⊗ ν; a Tonelli set is a subset of X × Y whose characteristic function

is a Tonelli function; thus all measurable rectangles and their finite unions are Tonelli sets; from (*) we
get that the class T of all Tonelli sets is also closed under countable disjoint union. But as the following
example shows, in absence of σ−finiteness not all measurable sets are Tonelli sets.

5.1.2. An example. First we get some practice with the product measure:

Exercise 5.1.1. Prove that a subset E of X × Y has σ−finite µ⊗ ν−outer measure if and only if

E ⊆ (P × Y ) ∪ (X ×Q) ∪ (A×B),

where P , Q are null sets, and A, B are sets of σ−finite measure, in X and Y respectively.

Solution. Since µ⊗ ν(P × Y ) = µ⊗ ν(X ×Q) = 0, it is clear that a set verifying this condition has
σ−finite outer measure; let’s prove the converse. Clearly E has σ−finite µ ⊗ ν−outer measure iff there
exists a sequence (Ak ×Bk)k∈N of rectangles of finite measure (µ⊗ ν(Ak ×Bk) = µ(Ak) ν(Bk) <∞, for
every k ∈ N) which covers E. Let

I = {k ∈ N : µ(Ak) = 0}; J = {k ∈ N : ν(Bk) = 0};K = Nr (I ∪ J).
If P =

⋃

k∈I Ak, Q =
⋃

k∈J Bk, A =
⋃

k∈K Ak, B =
⋃

k∈K Bk it is clear that these sets are as required. �

Now an example to show that not all M⊗N−measurable sets are Tonelli sets. Consider X = Y =
[0, 1] with M = N = B([0, 1]), Borel subsets of [0, 1], µ counting measure, ν Lebesgue measure. Let
D = {(x, x) : x ∈ [0, 1]} be the diagonal; clearly D is M ⊗ N−measurable (D is closed in the square
[0, 1]2, hence it is a Borel subset of the square, and B([0, 1]2) = B([0, 1])⊗B([0, 1]) = M⊗N , by second
countability of [0, 1]). Clearly
ˆ

X

(
ˆ

Y

χD(x, y) dν(y)

)

dµ(x) =

ˆ

X

0 dµ(x) = 0;

ˆ

Y

(
ˆ

X

χD(x, y) dµ(x)

)

dν(y) =

ˆ

Y

1 dν(y) = 1,

so that χD is not a Tonelli function. Let us prove that µ⊗ ν(D) = ∞; even more, every subset E of D
of σ−finite µ ⊗ ν−measure is contained in a rectangle such as X × N , with N of Lebesgue measure 0,
and hence has µ ⊗ ν−measure zero. In fact the previous exercise shows that E ⊆ (X × Q) ∪ (A × B),
where Q has Lebesgue measure zero, and A and B are σ−finite (in the counting measure the only null
set is the empty set); then A is countable, so that F = D ∩ (A×B) = {(x, x) : x ∈ A ∩B} is countable.
It follows that p2(E) ⊆ Q ∪ p2(F ); if N is this set, then ν(N) = 0, and E ⊆ X × N . Thus there are
situations in which integrals of measures of sections have no relation to the measure of the set; absence
of σ−finiteness is at the root of this bad behavior.

5.1.3. Fubini–Tonelli’s theorem. In all the following we assume that (X,M, µ) and (Y,N , ν) are fixed
measure spaces. A rectangle with σ−finite sides in X × Y is a measurable rectangle A× B whose sides
A,B are both σ−finite in X and Y respectively; if X and Y are both σ−finite, then clearly the entire
space X × Y is a rectangle with σ−finite sides.

Lemma. Every measurable subset of X × Y contained in a rectangle with σ−finite sides is a Tonelli
set.

Proof. First we prove that every measurable subset E of a measurable rectangle A× B whose sides
A,B have both finite measure is a Tonelli set. Consider the class of sets:

D = {E ⊆ A× B : E is a Tonelli set}.
Clearly A × B ∈ D; by (*) of 5.1 D is closed under countable disjoint union; if we prove that E ∈ D
implies A × B r E ∈ D, then D is a Dynkin class of parts of A × B, which contains all measurable
rectangles contained in A×B; since these rectangles are closed under intersection, this Dynkin class is a
σ−algebra of parts of A×B (see 2.6.1) which contains all rectangles contained in A×B; thus D contains
all M⊗N−measurable subsets of A×B.
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We have, assuming E ∈ D:
ˆ

X

(
ˆ

Y

(χA×B(x, y)− χE(x, y)) dν(y)

)

dµ(x) =

ˆ

X

(

χA(x)

ˆ

Y

χB(y)−
ˆ

Y

χE(x, y) dν(y)

)

dµ(x) =

ˆ

X

(

χA(x) ν(B) −
ˆ

Y

χE(x, y) dν(y)

)

dµ(x) = µ(A) ν(B) − I(χE) = µ⊗ ν(A×B)− µ⊗ ν(E) =

µ⊗ ν(A ×B r E),

and clearly the same holds exchanging x and y, so that A× B r E ∈ D. Finally, every rectangle A×B
with σ−finite sides can be written as a countable disjoint union

⋃∞
k=0 Ak ×Bk of rectangles whose sides

have finite measure; if E ⊆ A × B is measurable, and Ek = E ∩ (Ak × Bk), then every Ek is a Tonelli
set, hence so is E, by (*) of 5.1. �

. The Fubini–Tonelli theorem Let (X,M, µ) and (Y,N , ν) be σ−finite measure spaces.

(i) (Tonelli) If f ∈ L+(X × Y ) then
ˆ

X×Y

f(x, y) dµ⊗ ν(x, y) =

ˆ

X

(
ˆ

Y

f(x, y) dν(y)

)

dµ(x) =

ˆ

Y

(
ˆ

X

f(x, y) dµ(x)

)

dν(y).

(ii) (Fubini) If f ∈ L1(µ ⊗ ν) then the x−section f(x,#) of f is in L1(ν) for µ−a.e. x ∈ X,
the a.e. defined function ϕ(x) =

´

Y f(x, y) dν(y) is in L1(µ) and we have
´

X ϕ(x) dµ(x) =
´

X×Y
f(x, y) dµ⊗ ν(x, y), in other words

ˆ

X×Y

f(x, y) dµ⊗ ν(x, y) =

ˆ

X

(
ˆ

Y

f(x, y) dν(y)

)

dµ(x).

Of course an entirely analogous statement holds with x and y exchanged.

Proof. (i) By the preceding lemma and σ−finiteness of the measures the characteristic functions of
all measurable sets in the product are Tonelli functions, so that every positive simple function is Tonelli,
and hence every function in L+(X × Y ) is Tonelli.

(ii) With the usual decomposition of a measurable function we can assume f ∈ L+(X × Y ) and
the theorem is already proved by (i). We only observe that for f positive the integral of the x−section
ϕ(x) =

´

Y f(x, y) dν(y) is defined for every x ∈ X , possibly being ∞, and that ϕ ∈ L+(X); since
´

X
ϕdµ < ∞, the set {ϕ = ∞} has µ−measure zero: not necessarily all sections are in L1, in general

only almost all. �

Remark. We assume σ−finiteness to make the statement simpler; in fact, for the validity of (i) it is
enough to assume that Coz(f) is contained in a rectangle with σ− finite sides. And since cozero sets of
functions in L1 always have σ−finite measure, Fubini’s theorem is always applicable.

5.1.4. Completion of a product measure. Even if the factor spaces (X,M, µ) and (Y,N , ν) are com-
plete, the product measure is almost never complete: simply note that if P ∈ M is a non–empty µ−null
set then P × Y has µ ⊗ ν−measure zero, but if there is S ⊆ Y with S /∈ N then P × S /∈ M ⊗ N .
But we do not discuss this situation in depth. If (X × Y,L, λ) is the completion of µ⊗ ν, then for every
L−measurable function f : X × Y → K there is a g : X × Y → K which is µ⊗ ν−measurable and such
that {f 6= g} is a µ⊗ ν−null set. So we may always replace f with such a g and reason on g, assuming
of course σ−finite factor spaces.

5.1.5. Finite products. There is no difficulty in treating products of finite families of measure spaces
by induction on the number of factors. There is an obvious associativity of products, in the sense that
(X × Y ) × Z is naturally identified with X × (Y × Z), and both are identified with the set of ordered
triples X × Y × Z, analogous identifications with σ−algebras and measures.

The Lebesgue measure on Rn was defined as the complete Carathèodory extension of the premeasure
defined on intervals by λn (

∏n
k=1 Ik) =

∏n
k=1 λ1(Ik); it is then also the completion of the product measure

λ⊗n1 = λ1⊗· · ·⊗λ1 on Borel subsets of Rn (these measures coincide and are finite on compact intervals):
Lebesgue measurable sets are obtained adding to Borel sets sets of outer measure zero (or removing from
them sets of outer measure 0).

Exercise 5.1.2. Consider the map δ : R2n = Rn × Rn → Rn given by δ(x, y) = x − y (difference).
Prove that if N ⊆ Rn is λn−null, then δ←(N) is λ2n−null. Deduce from this that if f : Rn → K
is Lebesgue measurable then f ◦ δ : Rn × Rn → K (i.e the map (x, y) 7→ f(x − y)) is also Lebesgue
measurable.
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Solution. If N has Lebesgue measure zero, it is contained in a Borel set B ⊆ Rn of λn−measure zero.
Then δ←(B) = C is a Borel subset of Rn × Rn. On Borel sets we have

λ2n(C) =

ˆ

Rn

λn(Cx) dλn(x) where Cx = {y ∈ Rn : (x, y) ∈ C},

equivalently Cx = {y ∈ Rn : x − y ∈ B} = x − B; then λn(Cx) = λn(x − B) = λn(B) = 0 for every
x ∈ Rn, so that λ2n(C) = 0. Since δ←(N) ⊆ C, this implies λ2n(δ

←(N)) = 0.
Given a Borel subset V of K the set f←(V ) is Lebesgue measurable in Rn, hence it has the form A∪N ,

with A ∈ B(Rn) and N a Lebesgue null set; then (f ◦ δ)←(V ) = δ←(A) ∪ δ←(N), with δ←(A) ∈ B(R2n)
and λ2n(δ

←(N)) = 0.
�

Exercise 5.1.3. Let (X,M, µ) be a measure space, and let f ∈ L+(X).

(i) Prove that all these sets are measurable in X × [0,∞] with M ⊗ B([0,∞]): the trapezoid
Trap(f) = {(x, y) ∈ X × [0,∞] : 0 ≤ y ≤ f(x)}; the epigraphic Epi(f) = {(x, y) ∈ X × [0,∞] :
f(x) ≤ y} and the graphic Graph(f) = {(x, y) ∈ X × [0,∞] : y = f(x)}.

Assume now that the measure space is σ−finite.

(ii) Prove that (λ is one dimensional Lebesgue measure on [0,∞])
ˆ

X

f = µ⊗ λ(Trap(f));

ˆ

X

f =

ˆ ∞

0

µ({f > t}) dt

(the last formula is already known).
(iii) Prove that the graph of f has measure zero.

Solution. (i) The function g : X× [0,∞] → [0,∞]× [0,∞] defined by g(x, y) = (f(x), y) is measurable
(its composition with the first projection is f ◦ pX , with the second projection the composition is p[0,∞]).
Then

Trap(f) = g←({(s, t) ∈ [0,∞]2 : s ≤ t}); Epi(f) = g←({(s, t) ∈ [0,∞]2 : s ≥ t});
Graph(f) = g←({(s, t) ∈ [0,∞]2 : s = t}).

(ii) We get, by Tonelli’s thorem:

µ⊗ λ(Trap(f)) =

ˆ

X

(

ˆ

[0,+∞]

χTrap(f)(x, y) dλ(y)

)

dµ(x) =

ˆ

X

f dµ.

(note that the x−section of χTrap(f) is χ[0,f(x)]). Integrating in the other way:

µ⊗ λ(Trap(f)) =

ˆ

[0,∞]

(
ˆ

X

χTrap(f)(x, y) dµ(x)

)

dλ(y),

and {x ∈ X : (x, y) ∈ Trap(f)} = {x ∈ X : y ≤ f(x)}, so that
ˆ

X

χTrap(f)(x, y) dµ(x) = µ({f ≥ y}) = ρf (y
−),

if ρf (y) := µ({f > y} (see 4.1.14). Then

µ⊗ λ(Trap(f)) =

ˆ

[0,∞]

ρf (y
−) dy

(

=

ˆ

[0,∞]

ρf (y) dy

)

,

the last equality due to the fact that ρf (y) = ρf (y
−) for all y ∈ [0,∞] but a countable subset.

(iii) The x−sections ot the graph are singletons, of zero Lebesgue measure in [0,∞]. �

Exercise 5.1.4. For every a > 0 let E(a) = [0, a]× [0,∞[ and let E = [0,∞[2. Let f : R2 → R be
defined by f(x, y) = e−xy sinx.

(i) Prove that f ∈ L1(E(a)) for every a > 0 and express the integral of f on E(a) as an iterated
integral, reducing it to integrals in one variable, in both ways.

(ii) Prove that f /∈ L1(E).
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(iii) In spite of (ii), lima→∞

´

E(a) f(x, y) dxdy exist and is finite; compute it, and use it to evaluate

the generalized integral
ˆ ↑∞

0

sinx

x
dx := lim

a→∞

ˆ a

0

sinx

x
dx.

Solution. (i) The function f is continuous and hence measurable, and all sets are measurable. We
apply Tonelli’s theorem to |f |, and check finiteness of the iterated integral, integrating in y first:

ˆ

E(a)

|f(x, y)| dxdy =

ˆ a

0

(
ˆ y=∞

y=0

e−xy dy

)

sinx dx =

ˆ a

0

| sinx|
x

dx <∞,

since clearly x 7→ | sinx|/x is bounded measurable on the set [0, a], of finite measure. We may as well
answer now to (ii): the same reduction brings us to

ˆ

E

|f(x, y)| dxdy =

ˆ ∞

0

| sinx|
x

dx.

It is well known, and worth remembering, that this last integral is ∞:
ˆ ∞

0

| sinx|
x

dx =

∞
∑

k=1

ˆ kπ

(k−1)π

| sinx|
x

dx ≥
∞
∑

k=1

ˆ kπ

(k−1)π

| sinx|
kπ

dx =
2

π

∞
∑

k=1

1

k
= ∞.

Let’s complete the answer to (i): removing the absolute value clearly brings
ˆ

E(a)

f(x, y) dxdy =

ˆ a

0

sinx

x
dx;

integrating first in the variable x we get
ˆ

E(a)

f(x, y) dxdy =

ˆ y=∞

y=0

(
ˆ x=a

x=0

e−xy sinx dx

)

dy =

ˆ y=∞

y=0

[−e−xy
1 + y2

(cosx+ y sinx)

]x=a

x=0

dy =

ˆ ∞

0

dy

1 + y2
−
ˆ ∞

0

e−ay

1 + y2
(cos a+ y sina) dy.

We have obtained that for every a > 0:
ˆ

E(a)

f(x, y) dxdy =

ˆ a

0

sinx

x
dx =

π

2
−
ˆ ∞

0

e−ay

1 + y2
(cos a+ y sin a) dy.

Now we have, for y ≥ 0:
| cos a+ y sin a|

1 + y2
≤ 1 + y

1 + y2
;

the function y 7→ (1 + y)/(1 + y2) has a finite maximum µ in [0,∞] (it is continuous, positive, and tends
to 0 at infinity; we could easily compute µ, but it is not relevant), so that

∣

∣

∣

∣

ˆ ∞

0

e−ay

1 + y2
(cos a+ y sin a) dy

∣

∣

∣

∣

≤
ˆ ∞

0

∣

∣

∣

∣

e−ay

1 + y2
(cos a+ y sin a)

∣

∣

∣

∣

dy ≤ µ

ˆ ∞

0

e−ay dy =
µ

a
,

which tends to 0 as a→ ∞. We have obtained the important result (Dirichlet’s integral):
ˆ ↑∞

0

sinx

x
dx := lim

a→∞

ˆ a

0

sinx

x
dx =

π

2
.

We reiterate the fact that this is not a Lebesgue integral: as seen above sinx/x /∈ L1
m([0,∞[) �

5.1.6. Partial integration for Radon–Stieltjes measures.

. Let F,G : R → R be increasing and right–continuous. Denote the respective measures by
´

E
dF and

´

E
dG respectively. Prove that if a, b ∈ R and a < b then

ˆ

]a,b]

F (x−) dG(x) = F (b)G(b)− F (a)G(a)−
ˆ

]a,b]

G(x) dF (x)

(consider the triangle T = {(x, y) ∈ R2 : a < y ≤ x ≤ b}; compute the product measure of this triangle
with Fubini’s theorem . . . ). Prove also that if F and G do not have a common point of discontinuity (in
particular, if one of them is continuous) then the formula can also be written as:

ˆ

]a,b]

F (x) dG(x) = F (b)G(b)− F (a)G(a) −
ˆ

]a,b]

G(x) dF (x).
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Proof. Observe first that all measures considered are σ−finite (actually even finite on the sets con-
sidered) so that Fubini’s theorem is applicable. Integrating first with respect to y, then to x

ˆ

T

(dF ⊗ dG) =

ˆ

x∈]a,b]

(

ˆ

y∈T (x)

dG(y)

)

dF (x) =

ˆ

x∈]a,b]

(G(x) −G(a)) dF (x) =

(T (x) = {y : a < y ≤ x} =]a, x])
ˆ

]a,b]

G(x) dF (x) −G(a)(F (b) − F (a));

reversing the order of integration:
ˆ

T

(dF ⊗ dG) =

ˆ

y∈]a,b]

(

ˆ

x∈T (y)

dF (x)

)

dG(y) =

ˆ

y∈]a,b]

(F (b)− F (y−)) dG(y) =

(T (y) = {x : y ≤ x ≤ b} = [y, b])

F (b)(G(b) −G(a))−
ˆ

]a,b]

F (y−) dG(y);

comparison of results yields the formula.
If F and G do not have a common point of discontinuity then the set of discontinuities of F has dG

measure zero, hence the functions F and x 7→ F (x−) are dG−a.e. equal, so that
ˆ

]a,b]

F (x−) dG(x) =

ˆ

]a,b]

F (x) dG(x).

�

Remark. We can drop the requirement of right continuity; the same proof leads then to the formula
ˆ

]a,b]

F (x−) dG(x) = F (b+)G(b+)− F (a+)G(a+)−
ˆ

]a,b]

G(x+) dF (x),

which simplifies to
ˆ

]a,b]

F (x) dG(x) = F (b+)G(b+)− F (a+)G(a+)−
ˆ

]a,b]

G(x) dF (x)

if F and G have no common point of discontinuity.

Exercise 5.1.5. (Lebesgue measure of the euclidean unit ball in Rn) By Fubini’s theorem we have,

if f(x) = e−|x|
2

:
ˆ

Rn

f(x) dλn(x) =

ˆ

Rn

e−x
2
1 . . . e−x

2
n dλ⊗n1 =

n
∏

k=1

ˆ

R

e−x
2

dx = πn/2.

Compute the function ρf (t) = λn({f > t}) and
´∞

0 ρf (t) dt, and deduce that, if B = {x ∈ Rn : |x| ≤ 1}
we have

λn(B) =
πn/2

Γ(n/2 + 1)
=

2 πn/2

nΓ(n/2)
.

Solution. Clearly ρf (t) = 0 for t ≥ 1. If 0 < t < 1 we get {f > t} = {x ∈ Rn : |x| < (log(1/t))1/2},
the open ball of center 0 and radius (log(1/t))1/2, with measure (log(1/t))n/2 λn(B), so that (using also
the change of variable t = e−x):

ˆ ∞

0

ρf (t) dt = λn(B)

ˆ 1

0

(log(1/t))n/2 dt = λn(B)

ˆ ∞

0

xn/2 e−x dx = λn(B) Γ(n/2 + 1).

Observe that λ1(B) = 2, λ2(B) = π, λ3(B) = 4π/3, λ4(B) = π2/2, ecc. �

Exercise 5.1.6. Prove the formula

Γ(x+ y)B(x, y) = Γ(x) Γ(y)

(

Rex, Re y > 0, B(x, y) :=

ˆ 1

0

(1− t)x−1 ty−1 dt

)

;

(you may find it, e.g, in Analisi Due, 9.24.7).
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6. Lp spaces

There are various situations in which one needs to consider integrals of a measurable function raised
to some power; the most common situation is integrals of squares of functions, but other exponents are
also sometimes useful. The theory is very important in modern analysis.

6.1. Basics.

Definition. Given a measure space (X,M, µ), a measurable function f ∈ L(X,K), and a real
number p > 0 we set

‖f‖p =

(
ˆ

X

|f |p
)1/p

.

This is a non–negative real number, or ∞ (∞1/p := ∞), and is zero iff f = 0 a.e.. We denote Lp
µ(X,K)

the set of all measurable K−valued functions for which ‖f‖p <∞.

Thus Lp
µ(X,K) may also be described as the set of all measurable functions such that |f |p ∈ L1(µ).

For p = 1 we naturally re–obtain the already familiar L1
µ(X,K). We easily see that

. For every p > 0 the set Lp
µ(X,K) is a vector subspace of L(X,K).

Proof. If f, g ∈ Lp
µ(X,K) then

|f + g|p ≤ (|f |+ |g|)p ≤ (2|f | ∨ |g|)p = 2p|f |p ∨ |g|p ≤ 2p(|f |p + |g|p),
and the last function is clearly in L1(µ), since |f |p, |g|p ∈ L1(µ). For λ ∈ K we get ‖λ f‖p = |λ| ‖f‖p �

The quotient space Lp
µ(X,K)/Nµ(X,K) where a.e. equal functions are identified will be denoted

Lp
µ(X,K) or simply Lp(µ). Caution: f 7→ ‖f‖p will be a norm on Lp(µ) only for p ≥ 1; if 0 < p < 1

the function ‖#‖p is absolutely homogeneous, as observed in the above proof, but it is not subadditive,
barring extremely trivial cases (6.4.2).

6.1.1. L∞(µ) and Lp(µ). The space L∞(µ) of essentially bounded functions has ben defined in 4.4;
let us relate it to Lp(µ). On infinite measure spaces constant (non–zero) functions are not in Lp, for no
p > 0, and in general there are bounded functions not in any Lp; for these functions their finite L∞ norm
is not related to their infinite Lp norms. But we have

. If ‖f‖∞ = ∞, or if f ∈ Lp(µ) for some p > 0 then ‖f‖∞ = limq→∞ ‖f‖q.
Proof. We can assume f 6= 0. Let’s prove first that lim infq→∞ ‖f‖q ≥ ‖f‖∞. Take 0 < α < ‖f‖∞;

then {|f | ≥ α} has strictly positive measure and for every q > 0:

‖f‖q =
(
ˆ

X

|f |q
)1/q

≥
(

ˆ

{|f |≥α}

|f |q
)1/q

≥
(

ˆ

{|f |≥α}

|α|q
)1/q

= α (µ({|f | ≥ α}))1/q ;

so that, for every α > 0:

‖f‖q ≥ α (µ({|f | ≥ α}))1/q;
taking liminf in the preceding inequality we obtain lim infq→∞ ‖f‖q ≥ α (if µ({f ≥ α}) = ∞ then both

sides are ∞ for every q; otherwise limq→∞ α (µ({|f | ≥ α}))1/q = α). Since α is an arbitrary positive
number strictly less than ‖f‖∞, we conclude. If ‖f‖∞ = ∞ the proof is concluded. Assume then
‖f‖∞ < ∞ and that f ∈ Lp(µ) for some p > 0, and let’s prove that lim supq→∞ ‖f‖q ≤ ‖f‖∞; we have,

for q > p: |f |q = |f |q−p |f |p ≤ ‖f‖q−p∞ |f |p, so that
ˆ

X

|f |q ≤ ‖f‖q−p∞
ˆ

X

|f |p =⇒ ‖f‖q ≤ ‖f‖1−p/q∞ ‖f‖p/qp ,

and taking limsups as q → ∞ we get the desired inequality.
�

Remark. Observe that if µ(X) < ∞ then ‖f‖∞ = limq→∞ ‖f‖q for every measurable function
f ∈ L(X).

In the course of the proof of the preceding proposition we have proved the:

. Čebičeff’s inequality for Lp. For every measurable f and every α, p > 0 we have

‖f‖p ≥ α (µ({|f | ≥ α}))1/p.
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6.1.2. Conjugate exponents and Hölder inequality. Given p > 1 there is one and only one number
p̃ > 1 such that (1/p) + (1/p̃) = 1, namely p̃ = p/(p− 1); p̃ is the conjugate exponent of p, and p, p̃ are a
pair of conjugate exponents (clearly p is the exponent conjugate to p̃). To complete the definition, we say
that 1,∞ are also a pair of conjugate exponents; notice that 2 is a self–conjugate exponent. Recall the
familiar arithmetico–geometric inequality: if u, v > 0 then we have

√
u v ≤ (u + v)/2: for two positive

real numbers the geometric mean
√
u v is smaller than the arithmetic mean (u + v)/2. This inequality

generalizes to weighted averages: if α, β > 0 and α+β = 1, then, for every pair of real numbers u, v > 0:

uα vβ ≤ αu+ β v (with equality iff u = v).

The proof is an immediate consequence of the (strict) concavity of the logarithm function on ]0,∞[; if
u, v are distinct strictly positive real numbers, and α+β = 1 with α, β > 0, then the convex combination
αu+ β v belongs to the open interval of extremes u and v, so that

log(αu+ β v) > α log u+ β log v = log(uα vβ) ⇐⇒ uα vβ < αu+ β v.

We need the following corollary:

. Young’s inequality If p, q > 1 are conjugate exponents (i.e. 1/p+ 1/q = 1) and a, b ≥ 0 then

ab ≤ ap

p
+
bq

q
,

and equality holds if and only if ap = bq.

Proof. In the above inequality put α = 1/p, β = 1/q, u = ap, v = bq. �

. Hölder’s inequality Let (X,M, µ) be a measure space, let f, g be measurable, and let p, q be
conjugate exponents. Then

‖f g‖1 ≤ ‖f‖p ‖g‖q.
Proof. The case p = 1, q = ∞ is trivial, and has been proved in 4.4.2. Assume then p, q > 1. If f ,

or g, is a null function, then both sides of the inequality are zero. Excluding this case, if ‖f‖p = ∞ or if
‖g‖q = ∞ the right hand–side is ∞. We are then reduced to the case in which ‖f‖p and ‖g‖q are both
finite and nonzero; putting |f(x)|/‖f‖p in place of a and |g(x)|/‖g‖q in place of b in the above inequality
we get

|f(x)| |g(x)|
‖f‖p ‖g‖q

≤ |f(x)|p
p ‖f‖pp

+
|g(x)|q
q ‖g‖qq

;

integrating both sides of this inequality we get

1

‖f‖p ‖g‖q
‖f g‖1 ≤ ‖f‖pp

p ‖f‖pp
+

‖g‖qq
q ‖g‖qq

=
1

p
+

1

q
= 1,

and we conclude. �

When p = q = 2 Hölder’s inequality is also known as the Cauchy–Schwarz inequality for integrals.

Exercise 6.1.1. Assuming p > 1 and q = p̃, prove that Hölder’s inequality is an equality if and only
if |f |p and |g|q are linearly dependent in L(X).

One often uses the fact that if f ∈ Lp(µ) then |f |p−1 ∈ Lp̃(µ), in fact (p− 1)p̃ = p; the space Lp̃(µ)
is called the conjugate space of Lp(µ).

6.1.3. Triangular, or Minkowski’s, inequality. We now prove that on Lp(µ), for p ≥ 1 the map
f 7→ ‖f‖p is indeed a norm.

. Let (X,M, µ) be a measure space, and let f, g ∈ L(X) be measurable. If p ≥ 1 we have

‖f + g‖p ≤ ‖f‖p + ‖g‖p.
Proof. For p = 1 and p = ∞ the inequality is known, assume 1 < p <∞. If f or g are not in Lp(µ)

then the right–hand side is ∞. Assuming f, g ∈ Lp we have f + g ∈ Lp(µ) and:

|f + g|p = |f + g| |f + g|p−1 ≤ |f | |f + g|p−1 + |g| |f + g|p−1;
we integrate both sides and apply Hölder’s inequality, putting for simplicity q = p̃:

‖f + g‖pp ≤ ‖f‖p ‖f + g‖p/qp + ‖g‖p ‖f + g‖p/qp =⇒ ‖f + g‖p−p/qp ≤ ‖f‖p + ‖g‖p,
and since p− p/q = 1 we conclude. �
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6.2. Completeness of Lp(µ). We have proved that L1(µ) is Banach space. A similar proof yields
the same result for Lp(µ). Remember that convergence of fn to f in Lp(µ) is equivalent to assert that
|f − fn|p converges to 0 in L1(µ).

. Let (X,M, µ) be a measure space, and let
∑∞

n=0 fn be a normally convergent series in Lp(µ). Then
the series converges a.e. and in Lp(µ) to a function f ∈ Lp(µ).

Proof. Let gm =
∑m

k=0 |fk|; then gm is an increasing sequence and

‖gm‖p ≤
m
∑

k=0

‖fk‖p ≤
∞
∑

k=0

‖fk‖p = S,

so that gpm is an increasing sequence in L1(µ) whose integrals
´

X
gpm ≤ Sp have a finite upper bound;

then gpm converges a.e. to gp ∈ L1(µ). It follows that the series
∑∞

k=0 fk(x) converges for a.e. x ∈ X to
a function which we call f(x). Let’s prove that the series converges to f in Lp(µ); in fact

∣

∣

∣

∣

∣

f(x)−
m
∑

k=0

fk(x)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∞
∑

k=m+1

fk(x)

∣

∣

∣

∣

∣

≤
∞
∑

k=m+1

|fk(x)| = g(x)− gm(x) ≤ g(x),

for a.e. x ∈ X . Then |f −∑m
k=0 fk|

p ≤ gp ∈ L1(µ); by dominated convergence, we have

lim
m→∞

ˆ

X

∣

∣f −
m
∑

k=0

fk
∣

∣

p
= 0, but

ˆ

X

∣

∣f −
m
∑

k=0

fk
∣

∣

p
=

∥

∥

∥

∥

∥

f −
m
∑

k=0

fk

∥

∥

∥

∥

∥

p

p

and the proof ends.
�

6.2.1. Convergence in Lp(µ) and pointwise convergence. The sequence of functions considered in 4.2.7
converges to the zero function in Lp([0, 1]) for every p ∈]0,∞[, but nowhere pointwise, so that convergence
in Lp(µ) does not in general imply a.e. convergence if p <∞. However

Proposition. For 0 < p < ∞, if a sequence fn ∈ Lp(µ) converges to f in Lp(µ), then some
subsequence converges to f also a.e.

Proof. Pick a subsequence fν(k) of bounded variation, i.e. such that
∑∞

k=0 ‖fν(k+1) − fν(k)‖p < ∞,
and apply the theorem on normal convergence of series in Lp(µ). �

Of course, convergence of a sequence in L∞(µ) is uniform convergence on the complement of some
set of measure zero, and implies convergence a.e.

6.2.2. Approximation of Lp functions. Recall that S(µ) is the set of simple functions that are in
L1(µ) (4.2.9). Trivially, S(µ) ⊆ Lp(µ) for every p ≥ 0 (notice that if ϕ =

∑m
j=1 αj χE(j), standard

representation with the value 0 omitted if in the range of ϕ, then |ϕ|p =
∑m

j=1 |αj |p χE(j) ∈ S(µ), since

all E(j) have finite measure if ϕ ∈ S(µ)). It is easy to see that S(µ) is dense in Lp(µ): if f ∈ Lp(µ)
and ϕn is a sequence of simple functions converging pointwise to f , and such that |ϕn| ↑ |f | (3.2.2), then
ϕn ∈ Lp(µ) and ‖f − ϕn‖p → 0 as n → ∞ (|f − ϕn|p ≤ 2p |f |p ∈ L1(µ)). Now, if E and F are sets of
finite measure, and p >∞ then

‖χE − χF ‖p =

(
ˆ

X

|χE − χF |p
)1/p

=

(
ˆ

X

χp
E△F

)1/p

= µ(E △ F )1/p = ‖χE − χF ‖1/p1 ,

so that if the measure µ is the Carathèodory extension of a premeasure on an algebra A, for every
f ∈ Lp(µ) and every ε > 0 there is an A−simple function g which is also in S(µ) such that ‖f − g‖p ≤ ε.
In particular, if µ is a Radon measure on Rn, for every f ∈ Lp

µ(R
n) and ε > 0 there is a step function ϕ

with compact support such that ‖f−ϕ‖p ≤ ε. We leave to the reader the proof of the fact that continuous
compactly supported functions can also approximate functions in Lp

µ(R
n) if p <∞: the proof in 4.2.9 is

easily adapted to this case. For p = ∞ and µ = m, Lebesgue measure, the closure of Cc(Rn) in L∞m (Rn)
is the space C0(Rn) of continuous functions in Rn which are 0 at infinity, i.e. such that limx→∞ f(x) = 0;
the proof is not difficult (but perhaps non–trivial for beginners).
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6.3. Variation of Lp with p. As a paradigmatic easy example consider the function f(x) = 1/x
for x > 0: we have that f ∈ Lp([0, 1]) for 0 < p < 1, while f(x) ∈ Lp([1,∞[) for p > 1; there is no p > 0
such that f ∈ Lp(]0,∞[). We have

Proposition. Let (X,M, µ) be a measure space, and let 0 < p < q < r ≤ ∞. Then Lq(µ) ⊆
Lp(µ) + Lr(µ), and Lp(µ) ∩ Lr(µ) ⊆ Lq(µ); moreover, if 1/q = α/p + β/r, a convex combination
(α, β > 0, α+ β = 1) then we have

‖f‖q ≤ ‖f‖αp ‖f‖βr .

Proof. We can write a measurable f : X → K as the sum of a function whose non zero values are of
absolute value larger than 1, and a function bounded by 1: simply take E = {|f | > 1}, F = X r E =
{|f | ≤ 1} and write f = f χE + f χF . We have |f |q = |f |q χE + |f |q χF , for every q > 0, so that, if we
assume f ∈ Lq(µ), we have |f |q χE , |f |q χF ∈ L1(µ). Notice that if p < q then |f |p χE ≤ |f |q χE , so that
|f |p χE ∈ L1, i.e. f χE ∈ Lp; and if r > q then |f |r χF ≤ |f |q χF , so that |f |r χF ∈ L1, in other words
f χF ∈ Lr. This proves that Lq ⊆ Lp + Lr. For the second part assume first r = ∞; then α = p/q, and
β = 1− p/q, and

|f |q = |f |p |f |q−p ≤ |f |p ‖f‖q−p∞ =⇒
ˆ

X

|f |q ≤
ˆ

X

|f |p ‖f‖q−p∞ =⇒ ‖f‖q ≤ ‖f‖p/qp ‖f‖1−p/q∞ .

If r < ∞ we have 1 = α q/p + β q/r = 1/(p/(αq)) + 1/(r/(β q)) and we apply Hölder’s inequality with
conjugate exponents p/(α q) and r/(β q) to the pair of functions |f |αq and |f |β q:

ˆ

X

|f |q =

ˆ

X

|f |αq |f |β q ≤
(
ˆ

X

|f |p
)α q/p (ˆ

X

|f |r
)β q/r

=⇒ ‖f‖q ≤ ‖f‖αp ‖f‖βr .

�

Exercise 6.3.1. Strictly connected to the interpolation inequality is the following

. Generalization of Hölder’s inequality If p, q > 1 and 1/r = 1/p+ 1/q then, for any mea-
surable f, g we have

‖f g‖r ≤ ‖f‖p ‖g‖q.

Hint: apply Hölder’s inequality to |f |r and |g|r, with conjugate exponents p/r and q/r.

Solution. Following the hint we get

‖|f |r|g|r‖1 ≤ ‖|f |r‖p/r ‖|g|r‖q/r =

(
ˆ

X

|f |p
)r/p (ˆ

X

|g|q
)r/q

= ‖f‖rp ‖g‖rq,

while the left-hand side is ‖f g‖rr.
�

6.3.1. Lp spaces if µ(X) <∞. The following result is very important:

Proposition. Let (X,M, µ) be a finite measure space, µ(X) < ∞. Then Lp(µ) decreases as p
increases, and if p < q ≤ ∞ then

‖f‖p ≤ µ(X)1/p−1/q‖f‖q in particular, if q = ∞ we get ‖f‖p ≤ µ(X)1/p ‖f‖∞.

Proof. On finite measure spaces bounded measurable functions are in L1; then L∞(µ) ⊆ Lp(µ) for
every p > 0, if µ(X) < ∞. The preceding proposition 6.3 then implies that if p < q < ∞ we have
Lq ⊆ Lp+L∞ = Lp, and also the inequality with the norms (which then is obtained by applying Hölder’s
inequality to |f |p and |f |0 = 1, with conjugate exponents q/p and q/(q − p)). �

Remark. The situation is particularly neat in the case of probability spaces, µ(X) = 1: then p < q
implies ‖f‖p ≤ ‖f‖q.

Exercise 6.3.2. Find f ∈ ⋂p>0 L
p([0, 1])r L∞([0, 1]).
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6.3.2. ℓp spaces. The opposite behavior is encountered in the case of ℓp spaces, spaces Lp(X,P(X),κ)
where κ is the counting measure. Here ℓ∞ ⊇ ℓp for all p > 0: in fact |f(x)|p ≤∑t∈X |f(t)|p = ‖f‖pp for
every x ∈ X , so that |f(x)| ≤ ‖f‖p for every x ∈ X , equivalently ‖f‖∞ ≤ ‖f‖p. Then spaces ℓp increase
with p, while p 7→ ‖f‖p decreases. In fact by proposition 6.3 if if p < q < ∞ we have ℓp ∩ ℓ∞ ⊆ ℓq, that
is ℓp ⊆ ℓq; and the inequality in that same proposition gives (α = p/q, β = 1− p/q)

‖f‖q ≤ ‖f‖p/qp ‖f‖1−p/q∞ ≤ ‖f‖p/qp ‖f‖1−p/qp = ‖f‖p.
We have proved:

Proposition. Let X be a set, and put ℓp = ℓp(X). If 0 < p < q ≤ ∞ then ℓp ⊆ ℓq, and ‖f‖p ≥ ‖f‖q.
Proof. See above. �

The inequality on the norms means that the norm topologies get stronger as p decreases. Uniform
convergence on these spaces is weaker than any ℓp convergence. On the contrary, on finite measure
spaces L∞ (i.e. uniform a.e.) convergence is stronger than any Lp convergence, and these convergences
get weaker as p decreases, as implied by the inequality ‖f‖p ≤ µ(X)1/p−1/q‖f‖q for p < q.

Exercise 6.3.3. Assume 0 < p < ∞, and f ∈ ℓp. Prove that for every ε > 0 there is a finite
set Fε ⊆ X such that |f(x)| < ε for x ∈ X r Fε, and deduce from this that there is c ∈ X such that
|f(c)| = ‖f‖∞, and that ‖f‖p = ‖f‖∞ if and only if the cozero set of f contains at most one element.

Exercise 6.3.4. Observe that if α > 0 then n 7→ 1/nα is in ℓp(N>) iff p > 1/α. Deduce from this
that if there exist p, q with 0 < p < q ≤ ∞ such that ℓp(X) = ℓq(X) then X is a finite set.

6.3.3. Exercises on the variation of Lp with p.

Exercise 6.3.5. Let (X,M, µ) be a measure space. Assume that (A(n))n∈N is a disjoint sequence
of sets in M of finite strictly positive measure. Let 0 < p < q <∞.

(i) Assuming that for some subsequence B(k) = A(n(k)) we have limk→∞ µ(A(n(k)) = 0, prove
that there is f ∈ Lp(µ) r Lq(µ) (hint: it is not restrictive to assume µ(B(k)) ≤ 1/2k; set
bk = µ(Bk), and for α > 0 define the measurable function gα : X → R by gα =

∑∞
k=0 b

−α
k χB(k).

Given 0 < p < q <∞, prove that if 1/q < α < 1/p we have gα ∈ Lp(µ)r Lq(µ)).
(ii) Prove that if for some subsequence Bk = A(n(k)) we have bk = µ(B(k)) ≥ a > 0, then there

is f ∈ Lq(µ) r Lp(µ) (consider separately the cases of bk bounded and limk→∞ bk = ∞; in the
second case we may assume bk ≥ 2k . . . ).

Solution. (i) We have, for r > 0:
ˆ

X

grα =

∞
∑

k=0

b−αrk bk =

∞
∑

k=0

b1−αrk ;

Since limk→∞ bk = 0, if 1− αr < 0 we have limk→∞ b1−αrk = ∞ and the integral is infinite; if 1− αr > 0
we have

b1−αrk ≤ 1

2k(1−αr)
=

(

1

21−αr

)k

,

so that
∑∞

k=0 b
1−αr
k <∞; the integral is finite.

(ii) Assume bk bounded, then we have a ≤ bk ≤ b for every k ∈ N. Given α > 0 we consider
gα =

∑∞
k=0 χB(k)/(k + 1)α; for r > 0 we have

ˆ

X

grα dµ =

∞
∑

k=0

1

(k + 1)αr
bk, so that

∞
∑

k=0

a

(k + 1)αr
≤
ˆ

X

grα dµ ≤
∞
∑

k=0

b

(k + 1)αr

then
´

X
grα dµ <∞ if and only if α r > 1; if 1/q < α < 1/p we have gα ∈ Lq(µ) but gα /∈ Lp(µ).

If bk has no bounded subsequence then limk→∞ bk = ∞, and passing to a subsequence we may assume
bk ≥ 2k. Given α > 0 we consider gα =

∑∞
k=0 b

−α
k χB(k), as in (i); then again

ˆ

X

grα =
∞
∑

k=0

b−αrk bk =
∞
∑

k=0

b1−αrk ,

and we conclude as in (i), noting that now bk ≥ 2k. �

Exercise 6.3.6. Let (X,M, µ) be a measure space. The following are equivalent:
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(a) There exists a sequence En ∈ M with limn→∞ µ(En) = 0 and 0 < µ(En) for every n.
(b) There is a sequence Ak ∈ M with 0 < µ(Ak) ≤ 1/2k for every k.
(c) There is a function f ∈ L1(µ)r L∞(µ).
(d) There is a disjoint sequence Bk ∈ M with 0 < µ(Bk) ≤ 1/2k for every k.

((a) implies (b) easy; for (b) implies (c) prove that the formula f(x) =
∑∞

k=0 k χAk
defines a.e. a function

f ∈ L1(µ)r L∞(µ); for (c) implies (d) consider a suitable subsequence of the sequence En = {n < |f | ≤
n+ 1}, with f ∈ L1(µ)r L∞(µ) . . . ). Other equivalences are:

(e) For every p, q with 0 < p < q there is f ∈ Lp(µ)r Lq(µ).
(f) There exist p, q in R with 0 < p < q such that Lp(µ) ( Lq(µ).

Solution. That (a) implies (b) is trivial: if a sequence of strictly positive numbers tends to 0, then
there is a subsequence (µ(En(k)))k∈N such that µ(En(k)) ≤ 1/2k; simply set Ak = En(k).

(b) implies (c) The series
∑∞

k=0 k χAk
is a series of positive measurable functions, so that we have

ˆ

X

f =

∞
∑

k=0

k µ(Ak) ≤
∞
∑

k=0

k

2k
<∞.

Then {f = ∞} has measure 0, and f ∈ L1(µ) (to be more precise for the punctilious: f coincides a.e.
with a function in L1(µ), which we still call f). And f /∈ L∞(µ): since all terms are positive, we have
f ≥ k χAk

, so that {f ≥ k} ⊇ Ak, hence µ({f ≥ k}) ≥ µ(Ak) > 0, for every k ∈ N, consequently
‖f‖∞ = ∞.

(c) implies (d) Since f /∈ L∞(µ), infinitely many En have strictly positive measure. Moreover
limn→∞ µ(En) = 0, since by Čebičeff’s inequality we have µ(En) ≤ (1/n)‖f‖1; and the En are pairwise
disjoint. Some subsequence Bk = En(k) will then be such that µ(Bk) ≤ 1/2k.

That (d) implies (a) is trivial.
For the other equivalences: (d) implies (e) is exercise 6.3.5; (e) implies (f) is trivial. Finally, (f)

implies (c): if f ∈ Lp(µ)r Lq(µ) then |f |p ∈ L1(µ) by definition, but |f |p /∈ L∞(µ) (by Proposition 6.3,
L1(µ) ∩ L∞(µ) ⊆ Lq(µ) for every q > p).

�

Exercise 6.3.7. (uses the previous exercises 6.3.5 and 6.3.6) Let (X,M, µ) be a measure space.
Prove that the following are equivalent:

(i) There exist p, q, with 0 < p < q <∞, such that Lp(µ) ⊇ Lq(µ).
(ii) For every disjoint family E(n) ∈ M of sets of finite nonzero measure we have limn→∞ µ(E(n)) =

0.
(iii) For every disjoint sequenceE(n) ∈ M of sets of finite nonzero measure we have that sup{µ(E(n) :

n ∈ N} <∞.
(iv) There are disjoint sets A,B ∈ M, with A of finite measure, and B either empty or an atom of

infinite measure, such that X = A ∪B.
(v) If 0 < p < q <∞ we have Lp(µ) ⊇ Lq(µ).

And if (ii) holds, then L∞(µ) ⊆ Lp(µ) for every p > 0 if and only if B is empty.

Solution. (i) implies (ii): exercise 6.3.5; (ii) implies (iii) is trivial. (iii) implies (iv) Let s = sup{µ(E) :
E ∈ M, µ(E) <∞}; we claim that s is finite, and in fact s = max{µ(E) : E ∈ M, µ(E) <∞}: picking
a sequence E(n) of sets of finite measure such that limn→∞ µ(E(n)) = s, we consider F (n) =

⋃n
k=0 E(k);

then F (n) is increasing, and s ≥ µ(F (n)) ≥ µ(E(n)) so that, setting F =
⋃∞

n=0 F (n) we have

s ≥ µ(F ) = lim
n→∞

µ(F (n)) ≥ lim
n→∞

µ(E(n)) = s,

i.e., µ(F ) = s. If s = ∞ then for some subsequence F (n(k)) of F (n) we have limk→∞ µ(F (n(k + 1)) r
F (n(k))) = ∞, contradicting hypothesis (i). Then s is finite, and F has maximum measure among the
sets of finite measure. Consequently X r F cannot contain sets of finite strictly positive measure: if
µ(X r F ) = 0 we set A = X and B = ∅; if µ(X rF ) > 0, then X rF is an atom of infinite measure; we
set A = F and B = X r F .

(iv) implies (v). On an atom of infinite measure every summable function is almost everywhere 0;
then Lp

µ(X,C) can be identified with Lp
µ(A,C); then recall 6.3.1. And (v) trivially implies (i) �

Exercise 6.3.8. Let (X,M, µ) be a measure space. The following are equivalent:

(i) There are p, q ∈ R, with 0 < p < q such that Lp(µ) ⊆ Lq(µ).
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(ii) For every disjoint sequence E(n) ∈ M of sets of finite nonzero measure we have that inf{µ(E(n) :
n ∈ N} = a > 0.

(iii) inf{µ(E) : E ∈ M, µ(E) > 0} = α > 0.
(iv) Every E ∈ M of finite nonzero measure is a finite disjoint union of atoms.
(v) For every real number p > 0 we have Lp(µ) ⊆ L∞(µ).
(vi) For every pair of real numbers p, q with 0 < p < q we have Lp(µ) ⊆ Lq(µ).

Solution. (i) implies (ii): see 6.3.5; (ii) implies (iii): see 6.3.6; (iii) is equivalent to (iv) was proved in
2.4.3.

(iii), (iv) imply (v): if f is in Lp(µ) then Coz(f) = {f 6= 0} has σ−finite measure; by (iv) every set
E ∈ M of σ−finite measure is a countable disjoint union of atoms of finite measure, so that Coz(f) =
⋃∞

n=0A(n), where each A(n) is an atom of finite measure, and the A(n) are pairwise disjoint, so that
we can write f =

∑∞
n=0 yn χn, where χn = χA(n) and yn ∈ K. By (iii) the measures of these atoms are

bounded way from zero, an = µ(A(n)) ≥ α > 0 for every n. Then, for every m ∈ N:

‖f‖pp =

∞
∑

n=0

|yn|p µ(A(n)) ≥
∞
∑

n=0

|yn|p α ≥ |ym|p α

which implies |ym| ≤ ‖f‖p/α1/p for every m, hence

‖f‖∞ ≤ ‖f‖p
α1/p

.

(v) implies (vi): Proposition 6.3; (iv) implies (i) trivially.
�

6.4. Convexity and Lp spaces.
6.4.1. Convexity combinations of arbitrary length. In a real vector space V , given two vectors a, b

the set {αa+ β b : α, β ≥ 0, α+ β = 1} = {(1− t)a+ t b : t ∈ [0, 1]} of all convex combinations of a, b is
the convex hull of the set {a, b}, the smallest convex subset of V containing the two points a, b, namely
the segment of extremes a, b. Given a set of n vectors {a1, . . . , an} ⊆ V a convex combination of these
vectors is

n
∑

k=1

αk ak, provided that αk ≥ 0,

n
∑

k=1

αk = 1.

By induction on the cardinality of the subset one proves easily:

. A convex set contains all convex combinations of its finite subsets.

Proof. For singletons it is trivial. Assuming that all convex combinations of subsets with n elements of the
convex set C are in C, let {a1, . . . , an, an+1} ⊆ C, and let αk > 0 be such that

∑n+1
k=1 αk = 1; we want to prove

that
∑n+1

k=1 αk ak ∈ C. In fact, setting α =
∑n

k=1 αk, and a =
∑n

k=1(αk/α) ak, a convex combination of the first
n vectors:

n+1
∑

k=1

αk ak =
n
∑

k=1

αk ak + αn+1 an+1 = α
m
∑

k=1

αk

α
ak + αn+1 an+1 = αa+ αn+1 an+1.

By the inductive hypothesis a ∈ C; then αa + αn+1 an+1 ∈ C as the convex combinations of two vectors, a and

an+1, belonging to C. �

Corollary. Let I be an interval of R, and let f : I → R be convex. Then, for every convex
combination

∑n
k=1 αk xk of a finite subset {x1, . . . , xn} of I we have

f(α1 x1 + · · ·+ αn xn) ≤ α1 f(x1) + · · ·+ αn f(xn) or f

(

n
∑

k=1

αk xk

)

≤
n
∑

k=1

αk f(xk)

(with strict inequality if f is strictly convex, all αk are strictly positive, and the xk are distinct).

Proof. {(xk, f(xk)) : k = 1, . . . , n} is a finite subset of the convex set Epi(f) = {(x, y) : x ∈ I, y ≥
f(x)}, which contains every convex combination of its finite subsets. �

Exercise 6.4.1. Prove
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. Jensen’s inequality for positive functions Let (X,M, µ) be a probability space (µ(X) = 1),
and let ω : [0,∞[→ [0,∞[ be continuous, convex and increasing. Then for every f ∈ L+ we have

ω

(
ˆ

X

f

)

≤
ˆ

X

ω ◦ f.

Hint: pick a sequence ϕn of positive simple functions such that ϕn ↑ f . . .

Solution. If ϕn =
∑m(n)

k=1 yk χE(k) is the standard representation of ϕn, a representation of ω ◦ ϕn is

ω ◦ ϕn =
∑m(n)

k=1 ω(yk)χE(k); observe that

ˆ

X

ϕn =

m(n)
∑

k=1

yk µ(E(k)) and

ˆ

X

ω ◦ ϕn =

m(n)
∑

k=1

ω(yk)µ(E(k)),

are convex combinations, with µ(E(k)), k = 1, . . . ,m(n) as coefficients (in fact X =
⋃m(n)

k=1 E(k), disjoint

union, so that 1 =
∑m(n)

k=1 µ(E(k))), and convexity of ω says that

ω





m(n)
∑

k=1

yk µ(E(k))



 ≤
m(n)
∑

k=1

ω(yk)µ(E(k)),

in other words

ω

(
ˆ

X

ϕn

)

≤
ˆ

X

ω ◦ ϕn for every n ∈ N.

Since ω is increasing ω ◦ ϕn is also increasing and by continuity of ω this sequence converges pointwise
to ω ◦ f , i.e ω ◦ ϕn ↑ ω ◦ f . By monotone convergence the right–hand side has

´

X ω ◦ f as limit, while by

continuity of ω the left–hand side tends to ω
(´

X
f
)

. �

Exercise 6.4.2. In a probability space (X,M, µ) we have ‖f‖p ≤ ‖f‖q for p < q and every
measurable f : X → K (6.3.1). Prove it by Jensen inequality; then get from this the inequality
‖f‖p ≤ µ(X)1/p−1/q ‖f‖q valid when µ(X) is finite but not necessarily 1.

Exercise 6.4.3. (A generalized Hölder’s inequality) Let (p(k)1≤k≤n be an n−tuple of positive num-
bers such that 1 =

∑m
k=1 1/p(k). Prove that for every n−tuple a1, . . . , an of positive numbers we have

(*)

n
∏

k=1

ak ≤
n
∑

k=1

a
p(k)
k

p(k)
,

and that for every n−tuple f1, . . . , fn of measurable functions we have, denoting by f =
∏n

k=1 fk their
product:

‖f‖1 ≤
n
∏

k=1

‖fk‖p(k).

Assume now that
∑m

k=1 1/p(k) ≤ 1, and that 1/p =
∑m

k=1 1/p(k). Then, with fk and f as above:

‖f‖p ≤
n
∏

k=1

‖fk‖p(k).

Solution. Taking logarithms of both sides the given numerical inequality is equivalent to

n
∑

k=1

log ak ≤ log

(

n
∑

k=1

a
p(k)
k

p(k)

)

,

which, setting xk = a
p(k)
k , equivalently ak = x

1/p(k)
k , becomes

n
∑

k=1

log xk
p(k)

≤ log

(

n
∑

k=1

xk
p(k)

)

,

which, since 1 =
∑n

k=1 1/p(k), is consequence of the concavity of the logarithm function, and hence true.
Then we simply put in inequality (*) ak = |fk(x)|/‖fk‖p(k), and integrate both sides.
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For the second part: we have 1 =
∑n

k=1 1/(p(k)/p); apply the first part with p(k)/p in place of p(k)
and with fk replaced by |fk|p to get:

‖|f |p‖1 ≤
n
∏

k=1

‖|fk|p‖p(k)/p =

n
∏

k=1

‖fk‖pp(k),

and raising both sides to the power 1/p we conclude. �

6.4.2. Subadditivity, concavity, convexity. As observed in 1.8.8 a concave function q : [0,∞[→ R
which is 0 at 0 is subadditive: given a, b > 0 we get a, b as convex combinations of 0 and a + b,
that is a = (a/(a + b)) (a + b) + (1 − a/(a + b)) 0 so that q(a) ≥ (a/(a + b)) q(a + b) and analogously
q(b) ≥ (b/(a + b)) q(a + b) so that, adding these inequalities we get q(a) + q(b) ≥ q(a + b), with strict
inequality if a, b > 0 and q is strictly concave. If 0 < p < 1 the function q(x) = xp is strictly concave (in
fact q′′(x) = p(p− 1)xp−2 < 0 if x > 0), so that we have (a+ b)p < ap + bp if a, b > 0.

Conversely a convex function ρ : [0,∞[→ R such that ρ(0) = 0 is superadditive, that is ρ(a + b) ≥
ρ(a)+ρ(b) if a, b > 0, with strict inequality if ρ is strictly convex. This shows why ‖#‖p is not subadditive
for 0 < p < 1: if E,F are disjoint sets of finite strictly positive measure then

‖χE + χF ‖p =

(
ˆ

X

χE +

ˆ

X

χF

)1/p

= (µ(E) + µ(F ))1/p > µ(E)1/p + µ(F )1/p = ‖χE‖p + ‖χF ‖p;

at the same time subadditivity of x 7→ xp for 0 < p < 1 proves that the map f 7→ [f ]p =
´

X |f |p = ‖f‖pp
is subadditive. Then this map defines a metric on Lp(µ), by dist(f, g) = [f − g]p, translation invariant
(i.e. dist(f + h, g+ h) = dist(f, g) for any f, g, h ∈ Lp) (but we have [α f ]p = |α|p [f ]p, so that [f ]p is not
a norm) this metric makes Lp a metrizable complete topological vector space, completeness is still the
theorem on normal convergence. But these spaces have a limited interest in analysis.

We have seen that if p > 1 and a, b > 0 then (a + b)p ≤ 2p(ap + bp); but a better constant for it is
2p−1, as we see in the following exercise.

Exercise 6.4.4. Given a1, . . . , an > 0 we have

If p > 1 : ap1 + · · ·+ apn < (a1 + · · ·+ an)
p < np−1(ap1 + · · ·+ apn)

if 0 < p < 1 : np−1(ap1 + · · ·+ apn) < (a1 + · · ·+ an)
p < ap1 + · · ·+ apn.

Solution. Superadditivity of the convex function x 7→ xp has been proved above. And we have

(a1 + · · ·+ an)
p = np

(a1
n

+ · · ·+ an
n

)p

≤ np

(

ap1
n

+ · · ·+ apn
n

)

= np−1 (ap1 + · · ·+ apn),

the inequality due to the convexity of xp. �

6.4.3. Some problems.

Exercise 6.4.5. Let (X,M, µ) be a finite measure space. Let f be a measurable non zero function
belonging to Lp for every p <∞. Prove that

lim
p→∞

‖f‖p+1
p+1

‖f‖pp
= ‖f‖∞.

Solution. We have |f |p+1 = |f | |f |p ≤ ‖f‖∞ |f |p; integrating both sides we get ‖f‖p+1
p+1 ≤ ‖f‖∞ ‖f‖pp

so that
‖f‖p+1

p+1

‖f‖pp
≤ ‖f‖∞ =⇒ lim sup

p→∞

‖f‖p+1
p+1

‖f‖pp
≤ ‖f‖∞.

Recall that if p < q then ‖f‖p ≤ µ(X)1/p−1/q‖f‖q; applying this formula with q = p+ 1 we get:

‖f‖p+1 ≥
‖f‖p

µ(X)1/p−1/(p+1)
=⇒ ‖f‖p+1

p+1 ≥
‖f‖p+1

p

µ(X)1/p
,

so that
‖f‖p+1

p+1

‖f‖pp
≥ ‖f‖p
µ(X)1/p

;

the right–hand side tends to ‖f‖∞ as p tends to ∞ so that the liminf of the left–hand side is larger than
‖f‖∞. �
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Exercise 6.4.6. Let f : [0,∞[→ R be defined by f(x) = x e−x. Compute ‖f‖p for every p > 0. Find
the limit

lim
n→∞

(n!)1/n

n
.

Solution. Since f is positive, continuous, and 0 = f(0) = f(∞) we have ‖f‖∞ = max f([0,∞]); now
f ′(x) = (1− x) e−x is 0 for x = 1, so that ‖f‖∞ = f(1) = 1/e. And:

ˆ ∞

0

|f(x)|p dx =

ˆ ∞

0

xp e−px dx =

ˆ ∞

0

tp

pp
e−t

dt

p
=

Γ(p+ 1)

pp+1
;

then

‖f‖p =
(Γ(p+ 1))1/p

p p1/p
; since lim

p→∞
‖f‖p = ‖f‖∞ =

1

e
,

and since limp→∞ p1/p = 1, we get

lim
p→∞

(Γ(p+ 1))1/p

p
=

1

e
=⇒ lim

n→∞

(n!)1/n

n
=

1

e
.

�

Exercise 6.4.7. Consider fα :]0,∞[→ R defined by fα(x) = (1/(x(1 + log2 x))α; α > 0 is constant.

(i) Find {p > 0 : fα ∈ Lp([0, 1])}.
(ii) Find {p > 0 : fα ∈ Lp([1,∞[)}.
(iii) Find {p > 0 : fα ∈ Lp([0,∞[)}.

Do the same for g(x) = 1/xα. Given 0 < p < r < ∞ find functions f, g ∈ L([0,∞[) such that f ∈
Lq([0,∞[) iff q ∈ [p, r] and iff q ∈]p, r[, respectively.

(iv) Given α, β > 0 let f(= fα,β) : Rn → R be defined by

f(x) =
1

(1 + |x|)α (1 + | log |x||β) |x| =
(

n
∑

k=1

x2k

)1/2

.

Given p > 0 find α, β > 0 such that f ∈ Lp(Rn) (use integration on spheres, Analisi Due 9.27).

Exercise 6.4.8. Let (X,M, µ) be a measure space, and let 1 ≤ p <∞.

(i) Prove the dominated convergence theorem for Lp:

. If fn, f, g are measurable functions, fn → f a.e., |fn| ≤ g for every n ∈ N, and g ∈ Lp

then fn, f ∈ Lp and fn converges to f in Lp.

(ii) Generalize the dominated convergence theorem for Lp: if fn, f, gn, g are measurable, fn → f
a.e., gn → g a.e., |fn| ≤ gn, and gn, g ∈ Lp are such that

´

X gpn →
´

X gp, then fn converges to
f in Lp.

(iii) If fn → f a.e., and fn, f ∈ Lp, then fn converges to f in Lp if and only if ‖fn‖p → ‖f‖p.
Solution. (i) Since |fn|p ≤ gp ∈ L1, clearly also |f |p ≤ gp ∈ L1, so that fn, f ∈ Lp. And we have

|f − fn|p ≤ (|f | + |fn|)p ≤ 2p−1(|f |p + |fn|p) ≤ 2p−1(gp + gp) ≤ 2p gp ∈ L1; clearly |f − fn|p → 0 a.e..
The dominated convergence theorem says that

´

X
|f − fn|p → 0, that is ‖f − fn‖pp → 0.

(ii) We have, again:

|f − fn|p ≤ (|f |+ |fn|)p ≤ 2p−1(|f |p + |fn|p) ≤ 2p−1(gp + gpn),

and we can apply the generalized dominated convergence theorem to conclude that
´

X |f − fn|p → 0.
(iii) If fn converges to f in Lp, then ‖fn‖p → ‖f‖p, as in any normed space: recall that by the

triangle inequality we get |‖f‖p − ‖fn‖p| ≤ ‖f − fn‖p. The converse is the preceding result, with |fn| as
gn, |f | as g. �

Exercise 6.4.9. Let (X,M, µ) be measure space. Let 1 ≤ p <∞ and 1 ≤ r ≤ ∞.

(i) Prove that L1 ∩ L∞ is dense in Lp.
(ii) Prove that the set {f ∈ Lp ∩ Lr : ‖f‖r ≤ 1} is closed in Lp (hint: Fatou’s lemma).
(iii) Let fn be a sequence in Lp ∩ Lr, and let f ∈ Lr. Assume that fn converges to f in Lp and

that there is a > 0 such that for every n we have ‖fn‖r ≤ a. Prove that f ∈ Lq, and that fn
converges to f in Lq for every q 6= r in the closed interval of extremes p, r.
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Solution. (i) L1 ∩L∞ contains S(µ), space of integrable simple functions, which is dense in every Lp

with p <∞.
(ii) Assume that fn is a sequence in the given set, converging to f in Lp. We have to prove that f is

still in the set, i.e. that ‖f‖r ≤ 1. There is a subsequence that converges to f also a.e., and we may as
well assume that fn itself converges a.e to f . If r <∞ then, by Fatou’s lemma:

ˆ

X

|f |r ≤ lim inf
n→∞

ˆ

X

|fn|r ≤ 1;

if r = ∞ then |fn(x)| ≤ 1 for a.e. x ∈ X clearly implies |f(x)| ≤ 1 for a.e x ∈ X , that is, ‖f‖∞ ≤ 1.
(iii) If q ∈ [p, r[ there is α, with 0 < α ≤ 1, such that 1/q = α/p + (1 − α)/r. The interpolation

inequality then says that for every n ∈ N:

‖f − fn‖q ≤ ‖f − fn‖αp ‖f − fn‖1−αr .

Moreover from (ii), with a in place of 1, we know that ‖f‖r ≤ a, so that ‖f − fn‖r ≤ ‖f‖r + ‖fn‖r ≤ 2a,
so that

‖f − fn‖q ≤ (2a)1−α ‖f − fn‖αp ;
the proof is completed. �

Exercise 6.4.10. (A more general Young’s inequality) Let ϕ : [0,∞[→ [0,∞[ be a self–homeomor-
phism of [0,∞[.

(i) Prove that ϕ is strictly increasing, that ϕ(0) = 0 and limx→∞ ϕ(x) = ∞.

Given nowa, b > 0 we consider subsets S(a) and T (b) E(a, b) of R2 so obtained:
S(a) = {(x, y) ∈ R2 : x ∈ [0, a], 0 ≤ y ≤ ϕ(x)}, trapezoid of ϕ over [0, a].
T (b) = {(x, y) ∈ R2 : y ∈ [0, b], 0 ≤ x ≤ ϕ−1(y)}, trapezoid of ϕ−1 over [0, b].

(ii) Prove that

λ2(S(a)) =

ˆ a

0

ϕ(x) dx, λ2(T (b)) =

ˆ b

0

ϕ−1(y) dy,

and that, if E(a, b) = S(a) ∪ T (b) then

λ2(E(a, b)) = λ2(S(a)) + λ2(T (b)) =

ˆ a

0

ϕ(x) dx +

ˆ b

0

ϕ−1(y) dy.

(iii) Let R(a, b) = [0, a]×[0, b] be the rectangle; prove that R(a, b) ⊆ E(a, b), and that unless b = ϕ(a)
then

λ2(R(a, b)) = ab < λ2(E(a, b)) that is ab <

ˆ a

0

ϕ(x) dx +

ˆ b

0

ϕ−1(y) dy.

(iv) Let p > 1; using ϕ(x) = xp−1 prove that ab < ap/p+ bq/q if 1/p+ 1/q = 1 and ap 6= bq.

Solution. Schematic: (i) easy (an injective continuous function on an interval is strictly monotone;
since 0 is the minimum of [0,∞[ and 0 = ϕ(a) for some a ≥ 0, ϕ cannot be decreasing, otherwise ϕ(c) < 0
if c > a, impossible. Then ϕ is increasing; by surjectivity ϕ(0) = 0 and limx→∞ ϕ(x) = ∞).

(ii) Fubini’s theorem; note that S(a) ∩ T (b) ⊆ Graph(ϕ) and that λ2(Graph(ϕ)) = 0, so that
λ2(E(a, b)) = λ2(S(a)) + λ2(T (b)).

(iii) Look at the figures; if b < ϕ(a) then E(a, b)rR(a, b) = {(x, y) : ϕ−1(b) < x ≤ a, b < y ≤ ϕ(x)},
a set with area

´ a

ϕ−1(b)(ϕ(x) − b) dx > 0. If b > ϕ(a) then E(a, b)rR(a, b) = {(x, y) : ϕ(a) < y ≤ b, a <

x ≤ ϕ−1(y)}, a set with area
´ b

ϕ(a)(ϕ
−1(y)− a) dy > 0. If b = ϕ(a) then E(a, b) = R(a, b).

(iv) Compute. �

Exercise 6.4.11. Let (X,M, µ) be a measure space.

(i) Let f, g ∈ L1(µ). Prove that ‖f + g‖1 = ‖f‖1 + ‖g‖1 if and only if f = 0, or there exists
λ : X → [0,+∞[ measurable and such that g(x) = λ(x) f(x) for a.e. x ∈ Coz(f).

(ii) Let p ∈]1,∞[ and assume that f, g ∈ Lp(µ). Prove that ‖f + g‖p = ‖f‖p + ‖g‖p if and only if
f = 0, or there exists a constant λ ≥ 0 such that g(x) = λ f(x) for a.e. x ∈ X (in other words,
Lp spaces are strictly convex if 1 < p <∞).
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a

b (a, b)

(a, ϕ(a)

ϕ−1(b)

Figure 3. Case b < ϕ(a).

a

b

ϕ(a)

(ϕ−1(b), b)

Figure 4. Case b > ϕ(a).

Solution. Recall first that the absolute value on K is a strictly convex norm: that is, we have |a+b| = |a|+ |b|
for a, b ∈ K iff a = 0 or b = λ a with λ ≥ 0.

(i) The inequality ‖f+g‖1 ≤ ‖f‖1+‖g‖1 is obtained by integrating the inequality |f(x)+g(x)| ≤ |f(x)|+|g(x)|,
and the resulting inequality between integrals is an equality if and only if |f(x) + g(x)| = |f(x)|+ |g(x)| for a.e.
x ∈ X; in turn this happens iff f(x) = 0 or g(x) = λ(x) f(x), with λ(x) ≥ 0, for a.e. x ∈ X. If f(x) = 0 a.e., then
clearly we have equality; if not, setting λ(x) = g(x)/f(x) for every x ∈ Coz(f) we have equality iff λ(x) ≥ 0 for
almost all x ∈ Coz(f).

(ii) The conditions are clearly sufficient for equality, as in every normed space. Assume then f, g both
nonzero; we also assume f + g nonzero (otherwise the inequality is assuredly strict) Repeating the proof of
Minkowski inequality we see that it is satisfied as an equality iff

(a) We have

|f(x) + g(x)| |f(x) + g(x)|p−1 = |f(x)| |f(x) + g(x)|p−1 + |g(x)| |f(x) + g(x)|p−1 for almost every x ∈ X,

equivalently |f(x) + g(x)| = |f(x)|+ |g(x)| for a.e. x ∈ Coz(f + g);
(b) Hölder’s inequality with functions |f |, |f + g|p−1 and |g|, |f + g|p−1 are verified as equalities.

This last condition, since f + g 6= 0, holds iff |f |p = a |f + g|p and |g|p = b |f + g|p for some constants a, b > 0
(6.1.1). Then |g|p = k |f |p for some k > 0, so that |g(x)| = c |f(x)| for some c > 0; on Coz(f + g) we must, by
(a), have g(x)/f(x) = λ(x) ≥ 0, so that c = |λ(x)| = λ(x) for a.e. x ∈ Coz(f). �

6.4.4. Jensen inequality.

. Let (X,M, µ) be a probability space (i.e. µ(X) = 1). Let I be an open interval of R, and let
ω : I → R be a convex function. Let f : X → I belong to L1(µ). Then

´

X f ∈ I, the function ω ◦ f is
integrable in the extended sense, and we have the

Jensen inequality ω

(
ˆ

X

f

)

≤
ˆ

X

ω ◦ f.

If ω is strictly convex and f is non–constant, then the inequality is strict.
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Proof. Let c =
´

X f ; then c ∈ I; in fact, by the hypothesis f ∈ L1(µ) we have that c ∈ R, and if

inf I = a is finite then we have a < f(x) for every x ∈ X , so that integrating we get a =
´

X
a <

´

X
f = c,

i.e. a < c; similarly we get c < b if b = sup I <∞. Since c is in the interior of I and ω is convex there is
a real m such that ω(t) ≥ ω(c) +m (t− c) for every t ∈ I (simply take any m between the left and right
derivatives of ω at c). Then for every x ∈ X we have

ω(f(x)) ≥ ω(c) +m (f(x)− c);

the function on the right–hand side of this inequality is in L1(µ); then the function on the left–hand side,
which is measurable because ω is continuous, is integrable in the extended sense (4.4.1) and

ˆ

X

ω ◦ f ≥ ω(c) +m

(
ˆ

X

f − c

)

= ω(c) +m (c− c) = ω

(
ˆ

X

f

)

.

If ω is strictly convex we have ω(t) > ω(c) +m (t− c) for every t ∈ I r {c}, so that integrating we get a
strict inequality, unless f(x) = c for a.e. x ∈ X . �

Remark. It may very well happen that ω◦f has ∞ as integral. If X = [0, 1] with Lebesgue measure,
I = R, ω(t) = t2 and f(x) = 1/

√
x, then

´

X
f = 2, but ω ◦ f(x) = 1/x has infinite integral over X .

Of course we also have

. Let (X,M, µ) be a probability space (i.e. µ(X) = 1). Let I be an open interval of R, and let
φ : I → R be a concave function. Let f : X → I belong to L1(µ). Then

´

X f ∈ I, the function φ ◦ f is
integrable in the extended sense, and we have the

Jensen inequality for concave functions φ

(
ˆ

X

f

)

≥
ˆ

X

φ ◦ f.

If φ is strictly convex and f is non–constant, then the inequality is strict.

Proof. Apply Jensen inequality to the convex function ω = −φ. �

Exercise 6.4.12. Recall that on a finite measure space (X,M, µ) for every measurable f we have
‖f‖∞ = limp→∞ ‖f‖p. Given a real valued measurable f : X → R, compute:

lim
p→∞

1

p
log

(
ˆ

X

ep f(x) dµ(x)

)

; lim
p→∞

1

p
log

(
ˆ

X

cosh(p f(x)) dµ(x)

)

(the second may be a little difficult . . . ).

Exercise 6.4.13. Let (X,M, µ) be a measure space. Given a measurable not a.e. zero f ∈ L(X)
we consider the function ϕ :]0,∞] →]0,∞] given by

ϕ(p) =

ˆ

X

|f |p = ‖f‖pp

Prove that this function is finite–valued on an interval I of ]0,∞] (which may be empty or reduced to a
single point) and that in this interval logϕ is a convex function.

Solution. (of Exercise 6.4.2) If q > p the function ω(t) = tq/p is continuous, positive, increasing and
strictly convex on [0,∞[; given a measurable f : X → K we apply Jensen inequality for positive functions
(6.4.1) to |f |p, obtaining

ω

(
ˆ

X

|f |p
)

≤
ˆ

X

ω ◦ |f |p that is

(
ˆ

X

|f |p
)q/p

≤
ˆ

X

|f |q ⇐⇒ ‖f‖p ≤ ‖f‖q.

This inequality can be applied to finite measure spaces with the measure ν = µ/µ(X) obtaining:
(
ˆ

X

|f |p dν
)1/p

≤
(
ˆ

X

|f |q dν
)1/q

⇐⇒
(
ˆ

X

|f |p dµ

µ(X)

)1/p

≤
(
ˆ

X

|f |q dµ

µ(X)

)1/q

,

which immediately implies the desired result. �

Solution. (of Exercise 6.4.12) If g(x) = ef(x) then
´

X ep f(x) dµ(x) =
´

x(g(x))
p dµ(x) so that

1

p
log

(
ˆ

X

ep f(x) dµ(x)

)

= log

(
ˆ

X

ep f(x) dµ(x)

)1/p

= log ‖g‖p → log ‖g‖∞ as p→ ∞.

Since g ≥ 0 we have ‖g‖∞ = essup g, and since exp is increasing and continuous on the reals essup g =
exp(essup f) so that the required limit is essup f .
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For the second limit first notice that cosh(p f(x)) = cosh(p |f(x)|), since cosh is an even function.
It is not restrictive then to assume f(x) = |f(x)| ≥ 0. As p goes to ∞ the term e−p f(x) tends to 0 if
f(x) > 0, and is constantly 1 if f(x) = 0, so that it should be ininfluent; in other words we guess that
(assuming f(x) ≥ 0) the second limit coincides with the first. In fact:

1

p
log

(
ˆ

X

cosh(p f(x)) dµ(x)

)

− 1

p
log

(
ˆ

X

ep f(x) dµ(x)

)

=
1

p
log

(

´

X
cosh(pf)
´

X
ep f

)

;

for t ≥ 0 we have et/2 ≤ cosh t ≤ et so that the argument of the logarithm is between 1/2 and 1, hence
the preceding is between − log 2/p and 0, and tends to 0 as p → ∞. Then the second limit is exactly
essup |f | = ‖f‖∞. �

Solution. (of Exercise 6.4.13) We know that if 0 < p < q < r < ∞ and 1/q = α/p + β/r, with
α, β > 0 and α+ β = 1 then ‖f‖q ≤ ‖f‖αp ‖f‖βr , so that

ϕ(q) = ‖f‖qq ≤ ‖f‖αq
p ‖f‖β q

r = ϕ(p)α q/p ϕ(r)β q/r ;

taking logarithms we get

logϕ(q) ≤ α q

p
logϕ(p) +

α q

r
logϕ(r),

we now have α q/p + β q/r = 1, so that if γ = α q/p and δ = β q/r we have q = γ p + δ r, a convex
combination, and from above we get

logϕ(γ p+ δ r) ≤ γ logϕ(p) + δ logϕ(r),

thus concluding the proof.
�
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7. Signed and complex measures

As remarked at the beginning, additive functions appear also with arbitrary real values, not only
positive values, e.g the electric charge contained in a given portion of space. The fundamental requirement
is that of countable additivity.

7.1. Preliminaries. Assume that (X,M) is a measurable space; we have seen (2.1.8) that any
linear combination with positive coefficients of positive measures defined on M is still a positive measure
on M. We then try to define a signed measure in the following way: assume that µ, ν : M → [0,∞] are
positive measures defined on M; define λ : M → [−∞,∞] by λ(E) = µ(E) − ν(E), for every E ∈ M;
of course, since ∞− ∞ is not defined, one of the two measures has to be finite for this to make sense;
assume for definiteness µ(X) < ∞; then λ is defined, and λ does not assume the value ∞. It is easy to
check that λ is countably additive.

Definition. Let (X,M) be a measurable space. A function ν : M → R̃ is said to be a signed
measure if ν(∅) = 0 and ν is countably additive, that is, for every disjoint sequence (An)n∈N of M we
have

ν

(

∞
⋃

n=0

An

)

=
∞
∑

n=0

ν(An).

Implicit in this formula is the fact that
∑∞

n=0 ν(An) is meaningful, whatever the disjoint sequence
(An)n∈N is, in particular, no ∞−∞ or −∞+∞ is ever encountered; and we have

∞
∑

n=0

ν(An) := lim
m→∞

m
∑

n=0

ν(An),

but the convergence is necessarily also absolute, as is easy to see: the union
⋃∞

n=0 An does not depend
on the order of the terms, so that the series is commutatively convergent, hence absolutely convergent;
this fact will be confirmed also indirectly. A signed measure can assume at most one of the two values
{−∞, ∞}: if A ∈ M has measure ν(A) = ±∞ then every B ∈ M containing A has the same infinite
measure: in fact ν(B) = ν(A) + ν(B r A) = ±∞ + ν(B r A); then ν(B r A) cannot be ∓∞, and
ν(B) = ±∞. In particular, ν(X) must be ∞ (−∞) if some set A ∈ M has measure ∞ (−∞), so if
∞ ∈ ν(M) then −∞ /∈ ν(M).

As seen above, the difference of two positive measures, one of which finite, is a signed measure. If
µ : M → [0,∞] is a positive measure, and f is an extended real valued measurable function, µ−integrable

in the extended sense (4.4.1) the indefinite integral of f , νf = ν : M → R̃ defined by

ν(E) =

ˆ

E

f dµ =

ˆ

E

f+ dµ−
ˆ

E

f− dµ

is then a signed measure (each of ν±(E) =
´

E
f± is a measure, and at least one of them is finite). We

shall prove that every signed measure arises in this way, for a convenient positive measure µ.
7.1.1. Continuity on monotone sequences. Exactly as in the positive case we get:

Proposition. Let (X,M, ν) be a signed measure space. Then :

(i) Continuity from below If A0 ⊆ A1 ⊆ . . . is an increasing sequence in M with union A,
then ν(A) = limn→∞ ν(An).

(ii) Continuity from above on sets of finite measure A0 ⊇ A1 ⊇ . . . is a decreas-
ing sequence in M with intersection A, and ν(Am) is finite for some m ∈ N, then ν(A) =
limn→∞ ν(An).

Proof. Imitate the proof given in 2.1.6 and 2.1.7 for positive measures. �

7.1.2. Terminology. If (X,M, ν) is signed measure space, given a subset A ∈ M we say that:

• A is positive if ν(B) ≥ 0 for every B ⊆ A, B ∈ M.
• A is negative if ν(B) ≤ 0 for every B ⊆ A, B ∈ M.
• A is null if ν(B) = 0 for every B ⊆ A, B ∈ M.

Then a set is null if and only if it is simultaneously positive and negative. If ν(E) =
´

E f dµ for a function

f : X → R̃ integrable in the extended sense on the measure space (X,M, µ), then every measurable subset
of P = {f ≥ 0} is positive, every measurable subset of Q = {f ≤ 0} is negative, and every measurable
subset of Z(f) = {f = 0} is null. Clearly:



100

. The positive sets P, the negative sets Q, and the null sets N are all σ−ideals of the tribe M, that
is, they are closed under countable union and measurable subsets.

Proof. Easy exercise. �

Of course a set of strictly positive/negative measure is not necessarily a positive/negative set!
7.1.3. The Hahn decomposition. The following lemma is the key result in our approach to the theory

of signed measures:

Lemma. Let ν : M → [−∞,∞[ be a signed measure which does not assume the value ∞. Then
s = sup{ν(E) : E ∈ M} is finite, and actually there is P ∈ M such that ν(P ) = s (i.e., the supremum
is a maximum).

Proof. Clearly we have 0 ≤ s ≤ ∞. Pick a sequence sn = ν(An) ≥ 0, with An ∈ M, such that
limn→∞ sn = s. For every n ∈ N let An be the subalgebra of M generated by the subset {A0, . . . , An}:
it is a finite algebra of parts of X , whose elements can be written as disjoint unions of intersections of
the Ak and their complements (see 1.4.1). Let Bn be the union of all the elements G of the basis of An

with ν(G) ≥ 0: then ν(Bn) = max{ν(E) : E ∈ An}, in particular ν(Bn) ≥ ν(An).
We prove that ν(lim supn→∞Bn) = s, so that we conclude, with P = lim supn→∞Bn. For, consider

the sequence k 7→ ν(Bn∪· · ·∪Bn+k); we claim that this is an increasing sequence of real numbers. In fact,
since An+k+1 ⊇ An+k, the set Bn+k+1r (Bn∪· · ·∪Bn+k) is the union of those elements G of the basis of
An+k+1 not already contained in Bn∪· · ·∪Bn+k, with ν(G) ≥ 0, so that we have ν(Bn+k+1r (Bn∪· · ·∪
Bn+k)) ≥ 0. By continuity from below, if Cn =

⋃∞
k=0Bn+k we get ν(Cn) = limk→∞ ν(Bn ∪ · · · ∪Bn+k),

with ν(Cn) ≥ ν(Bn) ≥ ν(An). Now C0 ⊇ C1 ⊇ C2 ⊇ . . . is a decreasing sequence of sets of finite positive
measure, so that if P =

⋂∞
n=0 Cn(= lim supBn) we get ν(P ) = limn→∞ ν(Cn) ≥ limn→∞ ν(An) = s by

continuity from above. �

. The Hahn decomposition theorem If (X,M, ν) is a signed measure space then there is a pos-
itive set P ∈ M whose complement Q = X rP is a negative set. Such a decomposition is unique modulo
null sets: if P ′, Q′ is another, then P △ P ′ = Q △ Q′ is a null set.

Proof. Assume that the measure does not assume the value ∞. By the lemma there is P ∈ M
such that ν(P ) = s = max{ν(A) : A ∈ M} is the largest possible measure of a measurable set. If
A ⊆ P is measurable with ν(A) < 0 then ν(A) is finite (otherwise, as seen, ν(P ) = −∞, too) and
then ν(P r A) = ν(P ) − ν(A) > ν(P ), contradicting maximality of ν(P ), so that P is a positive set.
And Q = X r P cannot contain a set B of strictly positive measure, otherwise P ∪ B has measure
ν(P )+ ν(B) > ν(P ), again contradicting maximality of ν(P ). Hence Q is a negative set. If P ′ is another
positive set with negative complement then P rP ′ is negative being disjoint from P ′, and positive being
contained in P , hence it is null; same for P ′ r P . �

Given a signed measure ν and a Hahn decomposition X = P ∪Q for ν, we set for E ∈ M:

ν+(E) = ν(E ∩ P ), ν−(E) = −ν(E ∩Q); |ν|(E) = ν+(E) + ν−(E);

then ν = ν+−ν−, and ν+, ν−, |ν| are positive measures, called respectively the positive part, the negative
part, and the total variation of ν. If σ : X → {−1, 1} is defined by σ(x) = χP − χQ then

ν(E) = ν+(E)− ν−(E) =

ˆ

E

σ(x) d|ν|(x), for every E ∈ M.

We have done what we set out to do with signed measures.
The Hahn decomposition has certain minimality properties that we explore in the next exercise.

Exercise 7.1.1. Let (X,M, ν) be a signed measure space; let µ : M → [0,∞] be a positive measure
that dominates ν, in the sense that |ν(E)| ≤ µ(E) for every E ∈ M. Prove that then |ν|(E) ≤ µ(E) for
every E ∈ M.

Thus the total variation |ν| of the signed measure ν may be described as the smallest positive measure
that dominates ν.

Solution. Immediate: if X = P ∪Q is a Hahn decomposition for ν we have, for every E ∈ M:

ν+(E) = ν(E ∩ P ) ≤ µ(E ∩ P ); ν−(E) = −ν(E ∩Q) = |ν(E ∩Q)| ≤ µ(E ∩Q),

so that
|ν|(E) = ν+(E) + ν−(E) ≤ µ(E ∩ P ) + µ(E ∩Q) = µ(E).

�
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We stress the fact that a signed measure which does not assume the value ∞ has actually a finite
maximum value (ν(P ) = ν+(X)), and if it does not assume the value −∞ it has a finite minimum value
(ν(Q) = −ν−(X)). It can be proved that the set of values of a finite signed measure is always a compact
subset of R.

7.1.4. Mutual singularity of measures. Let (X,M) be a measurable space, and let ν : M → R̃ be a
signed measure. We say that ν is supported by a measurable M ∈ M if X rM is a ν−null set. Clearly
the set of allM ∈ M which support ν is closed under countable intersection (a countable union of ν−null
sets is a ν−null set), and the formation of supersets (it is the set of all complements of the σ−ideal of
ν−null sets). To give some examples: Lebesgue measure is supported by R r Q, a counting measure is
supported only by the entire space, the Dirac measure δ0 on P(R) is supported by the singleton {0}, or
by any set containing 0. The identically zero measure is supported by any set in M, ∅ included.

Definition. Let ν and µ be signed measures on the measurable space (XM). We say that ν is
singular with respect to µ, and write ν ⊥ µ, if ν is supported by a set B ∈ M that is null for µ.

This relation is clearly symmetric: if B is null for µ then µ is supported by A = X r B, a set null
for ν. Then we often say that µ and ν are mutually singular, instead of saying that ν is singular with
respect to µ, or vice–versa. In other words:

Two signed measures µ, ν on the same measurable space (X,M) are said to be mutually singular if
they are supported by disjoint sets, equivalently there is a partition X = A ∪ B of X into disjoint sets
A,B ∈ M such that B is a null set for µ and A is null for ν. If ν is a signed measure then ν+ and ν−,
the positive and negative parts of ν, are mutually singular, being supported on the two complementary
pieces of a Hahn decomposition for ν. The Lebesgue measure and Dirac’s measure are mutually singular.

7.1.5. Absolute continuity.

Definition. Let ν be a signed measure, µ a positive measure on the measurable space (X,M). We
say that ν is absolutely continuous with respect to µ, and write ν ≪ µ, if E ∈ M and µ(E) = 0 imply
ν(E) = 0.

Typically, if f : X → R̃ is µ−integrable in the extended sense, then ν(E) :=
´

E f dµ is absolutely
continuous with respect to µ. And any measure is absolutely continuous with respect to the counting
measure, for the simple fact that the only set with counting measure zero is the empty set, which by
definition has ν−measure zero for every measure ν. Clearly ν ≪ µ if and only if ν+, ν− ≪ µ, as is
immediate to see. Absolute continuity and mutual singularity exclude each other, in this sense:

. If µ, ν : M → R̃ are measures, µ positive and ν signed, ν ⊥ µ and ν ≪ µ together imply ν = 0.

Proof. By mutual singularity we can write X = P ∪Q, disjoint union, with µ(Q) = 0 and P null for
ν. For every E ∈ M contained in Q we have µ(E) = 0, so that ν(E) = 0 by absolute continuity. Then
Q is a null set for ν, so that X , union of two sets null for ν, is null for ν. �

If F : R → R is increasing, then clearly the Radon–Stieltjes measure dF = µF is not absolutely
continuous with respect to Lebesgue measure when F is not continuous (singletons have Lebesgue measure
zero). Surprisingly, there are continuous increasing functions F such that not only µF is not absolutely
continuous with respect to λ, it is even singular, µF ⊥ λ! One such example is the devil’s staircase, or
Cantor’s function, which we shall describe later (8.5).

Exercise 7.1.2. On a measurable space (X,M) let µ be a positive measure, and let λ, ν be signed
measures. Assume that λ+ ν is also a signed measure. Prove that:

(i) If λ ⊥ µ and ν ⊥ µ then (λ+ ν) ⊥ µ.
(ii) If λ≪ µ and ν ≪ µ then λ+ ν ≪ µ.

Solution. (i) If X = P1 ∪ Q1 and X = P2 ∪ Q2 are measurable partitions of X such that µ is
supported by Q1 and Q2, and λ is supported by P1, ν by P2, then µ is supported by Q1 ∩Q2 and λ+ ν
by P1 ∪ P2 = X r (Q1 ∩Q2).

(ii) Trivial.
�

7.1.6. As said above, the typical example of the situation ν ≪ µ is when ν(E) =
´

E
f dµ for some f

integrable in the extended sense. But it may happen that ν ≪ µ, yet there is no f such that dν = f dµ:
in (R,B(R)), with λ Lebegue measure and µ = κ counting measure we have λ ≪ µ, but there is no
f : R → R such that λ(E) =

´

E f dµ =
∑

x∈E f(x) for every E ∈ B(R): necessarily such an f , having
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finite sum on any bounded interval, would have a countable cozero set, thus of Lebesgue measure zero,
and for every E ⊆ R r Coz(f) we would have

´

E
f dµ = 0; in fact we have ν ⊥ λ, if ν(E) =

´

E
f dµ. As

it frequently happens, this situation is due to lack of σ−finiteness of the measure µ.
We turn to the proof of the most important result in this context, the Radon–Nikodym theorem.

First a lemma:

Lemma. Let µ, ν be finite positive measures on the measurable space (X,M). Then, unless ν ⊥ µ
there is ε > 0 and E ∈ M such that µ(E) > 0 and E is a positive set for ν − ε µ.

Proof. Consider the signed measure ν − (1/n)µ, for n = 1, 2, . . . ; for every n ≥ 1 let Pn ∪ Qn be a
Hahn decomposition for it. If for some n ≥ 1 we have µ(Pn) > 0, then we have our E = Pn and our
ε = 1/n. If not, then µ(Pn) = 0 for every n implies µ(P ) = 0, with P =

⋃∞
n=1 Pn. Then µ ⊥ ν; in fact, if

Q = X r P =
⋂∞

n=1Qn we have (ν − (1/n)µ)(Q) ≤ 0 for every n ≥ 1 (since Q ⊆ Qn, a negative set for
ν − (1/n)µ), hence ν(Q) ≤ (1/n)µ(Q) for every n ≥ 1, that is, ν(Q) = 0. �

7.1.7. The Radon–Nikodym theorem.

Theorem. Let (X,M, µ) be a σ−finite measure space, and let ν : M → R̃ be a σ−finite signed

measure. Then there exist unique signed measures νs, νa : M → R̃ such that νs ⊥ µ, νa ≪ µ and
ν = νs + νa. Moreover there is, unique up to equality µ−almost everywhere, a function ρ : X → R,
integrable in the extended sense, such that νa(E) =

´

E ρ dµ, for every E ∈ M.

Proof. First, we split ν into its negative and its positive part, and prove the theorem separately
for ν±; in other words we assume ν positive. We can also assume that both measures are finite: since
the measures are both σ−finite by hypothesis we can consider a countable partition X =

⋃∞
n=0Xk

into disjoint sets Xk such that µ(Xk) < ∞ and ν(Xk) < ∞, and prove the theorem on each piece Xk

separately.
So we assume that µ and ν are finite positive measures on (X,M). Let (all integrals are with respect

to the measure µ):

V = {f ∈ L+(X) :

ˆ

E

f dµ ≤ ν(E) for every E ∈ M}.

Observe that V is closed under ∨, that is, if f, g ∈ V then f ∨ g ∈ V . In fact, for every E ∈ M:
ˆ

E

f ∨ g =
ˆ

E∩{f≤g}

f ∨ g +
ˆ

E∩{f>g}

f ∨ g =

ˆ

E∩{f≤g}

g +

ˆ

E∩{f>g}

f ≤

≤ ν(E ∩ {f ≤ g}) + ν(E ∩ {f > g}) = ν(E).

Let now:

a = sup

{
ˆ

X

f : f ∈ V

}

.

We prove that there exists ρ ∈ V such that
´

X ρ = a. In fact there is a sequence fn ∈ V such that

an =
´

X
fn ↑ a; if gn = f0 ∨ f1 · · · ∨ fn then gn is an increasing sequence in V , hence

´

E
gn ≤ ν(E)

for every E ∈ M and every n ∈ N, and
´

X gn ≥ an, so that, if ρ ∈ L+(X) is the limit of gn, by

monotone convergence we have
´

E ρ = limn

´

E gn ≤ ν(E) for every E ∈ M, in particular for E = X

we get
´

X
ρ = limn

´

X
gn ≥ limn an = a. Let νa(E) =

´

E
ρ dµ; then νa ≪ µ, and we claim that

(ν − νa) ⊥ µ. If not, the lemma just proved implies that there are ε > 0 and E ∈ M such that
µ(E) > 0 and ν(A) − νa(A) ≥ ε µ(A) per ogni A ∈ M contained in E; then ρ + ε χE ∈ V , but
´

X(ρ+ ε χE) = a+ ε µ(E) > a, a contradiction.
Uniqueness of the singular part and the absolutely continuous part: if ν = νs + νa = λs + λa, with

νs, λs ⊥ µ and νa ≪ µ, νa ≪ µ then

α := νs − λs = λa − νa,

where the left–hand side is singular with respect to µ, and the right–hand side is absolutely continuous.
Then the measure α is identically zero (7.1.5). Uniqueness of the density function is in 4.2.3. �

Remark. The most interesting and important part of this theorem is the existence of the density ρ;
that is, observe that

. If (X,M, µ) is a σ−finite measure space, ν : M → R̃ is a σ−finite signed measure, and ν ≪ µ, then
there is, unique up to equality µ−almost everywhere, a function ρ : X → R, integrable in the extended
sense, such that ν(E) =

´

E
ρ dµ, for every E ∈ M.
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7.1.8. L1 for a sum of measures. Observe that if µ, ν are positive measures on the measurable space
(X,M), then L1

µ+ν = L1
µ ∩ L1

ν , and that for f ∈ L1(µ+ ν) we have
ˆ

X

f d(µ+ ν) =

ˆ

X

f dµ+

ˆ

X

f dν.

As usual the proof is carried out first for positive simple functions, then for functions in L+, etc.; do it.
Moreover we trivially have µ≪ µ+ν and ν ≪ µ+ν. If µ and ν are σ−finite we then have dµ = αd(µ+ν)
and dν = β d(µ + ν) for some positive functions α, β; since d(µ + ν) = (α + β) d(µ + ν) we clearly have
α+ β = 1 (a.e).

7.1.9. The (ε, δ)−condition for absolute continuity. For future use we give the following:

Definition. Let (X,M) be a measurable space, let µ : M → [0,∞] be a positive measure and

ν : M → R̃ a signed measure. We say that ν is (ε, δ)−absolutely continuous with respect to µ if for every
ε > 0 there exists δ = δε > 0 such that |ν(E)| ≤ ε for every E ∈ M with µ(E) ≤ δ.

Trivially this form of absolute continuity is stronger than the previous one: if µ(E) = 0 then |ν(E)| ≤
ε for every ε > 0, so that ν(E) = 0. And it is strictly stronger, in general: if X = [0, 1], M = B([0, 1]),
µ = m = dx =Lebesgue measure, and dν = dx/x (that is, ν(E) =

´

E
dx/x) then ν ≪ µ, but for any

given δ > 0 we have ν(]0, δ]) =
´

]0,δ] dx/x = ∞. However:

Exercise 7.1.3. With µ and ν as above, if ν is a finite measure then ν ≪ µ implies that ν is
(ε, δ)−absolutely continuous with respect to µ (reduce to ν positive; see also 7.2.9).

7.2. Complex measures.

Definition. If (X,M) is a measurable space, a countably additive function µ : M → C is said to
be a complex measure.

Notice that µ(∅) = 0: in fact µ(∅) = µ(∅ ∪ ∅) = µ(∅) + µ(∅), and since µ(∅) is finite this implies
µ(∅) = 0. Of course, if µ : M → C is a complex measure then µr = Reµ and µι = Imµ are finite signed
measures, and as such they have finite total variations; if ν = |µr| + |µι|, then µr ≪ ν and µι ≪ ν;
since all measures are finite by Radon–Nikodym theorem there are real functions u, v ∈ L1(ν) such that
dµr = u dν and dµι = v dν, so that dµ = (u + i v) dν, meaning that

µ(E) =

ˆ

E

(u + i v) dν for every E ∈ M;

Let’s define the total variation of the complex measure µ, a positive measure |µ| that dominates µ, in the
sense that |µ(E)| ≤ |µ|(E), and |µ| is the smallest positive measures ν that verifies this condition; it is of
course to be proved that such a minimal measure exists.

Assume that ν is any positive measure on M such that dµ = ρ dν with ρ ∈ L1
ν(X,C) (we have seen

that such measures exist, e.g. ν = |µr| + |µι|). We shall prove that then |ρ| dν is the required total
variation.

For every E ∈ M define

(Total Variation) |µ|(E) = sup

{

m
∑

k=1

|µ(Ek)| : E1, . . . , Em ∈ M, E =

m
⋃

k=1

Ek, disjoint union

}

.

We immediately have |µ|(E) ≤ λ(E) for any positive measure λ that dominates µ:
m
∑

k=1

|µ(Ek)| ≤
m
∑

k=1

λ(Ek) = λ(E);

if we prove that |µ|(E) =
´

E
|ρ| dν for every E ∈ M we are done: this proves also that |µ| is a measure.

The proof, which requires a little work, is in the next number. However, the real case is very easy:

Exercise 7.2.1. Prove that if µ : M → R is a signed measure and dµ = ρ dν for some positive
measure ν on M and some ρ : X → R, with ρ ν−integrable in the extended sense, then |µ|, as defined
by the above formula, is exactly µ+ + µ−, and we also have d|µ| = |ρ| dν.

Exercise 7.2.2. Prove directly that the Total Variation formula defines |µ| as a positive measure.

Exercise 7.2.3. If µ, ν : M → C are complex measures on the same measurable space (X,M), then
|µ+ ν| ≤ |µ|+ |ν|, and for every α ∈ C |αµ| = |α| |µ|.
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Solution. The second statement is trivial. For the first, for every E ∈ M:

|(µ+ ν)E| = |µ(E) + ν(E)| ≤ |µ(E)|+ |ν(E)| ≤ |µ|(E) + |ν|(E),

so that |µ| + |ν| is a measure that dominates µ + ν, and is hence larger than |µ + ν|, smallest measure
that does it. �

7.2.1. The total variation as an integral. Given an interval I of R, we consider the angle (with vertex at the
origin) given by A(I) = {z ∈ C : z = r eiθ, θ ∈ I, r ≥ 0}. If 0 < ε < π, since cos is decreasing in [0, ε] we have
cos ϑ ≥ cos ε for ϑ ∈ [−ε, ε], so that

A[−ε, ε] = {r (cosϑ+ i sinϑ) : r ≥ 0, ϑ ∈ [−ε, ε]} = {z ∈ C : Re z ≥ |z| cos ε};
then, if α, β ∈ R, (β − α)/2 = ε < π and γ = (α+ β)/2 we have, since e−iγ A[α, β] = A[−ε, ε] that

A[α, β] = {z ∈ C : Re(e−iγ z) ≥ cos ε |z|}.

Proposition. Let µ : M → C be a complex measure on the measurable space (X,M), and assume that

ν : M → [0,∞] is a positive measure such that dµ = ρ dν, for a function ρ ∈ L1
ν(X,C). Then |µ|(E) =

´

E
|ρ| dν

for every E ∈ M, if |µ| is defined as in the above formula.

Proof. It is clearly enough to prove that

|µ|(X) =

ˆ

X

|ρ| dν

since the same proof will work for every E ∈ M. Let Z = Z(ρ) be the zero–set of ρ. For n = 3, 4, . . . we
partition the complex plane into n angles A ]θn,(k−1), θn,k] where θn,k = −π + 2kπ/n, k = 0, . . . , n, and consider
E(nk) = ρ←(A ]θn,(k−1), θn,k] r {0}). Then, for every n ≥ 3 the family {Z, E(n1), . . . , E(nn)} is a partition of
X into measurable sets; we write E(k) in place of E(n, k) and γ(k) in place of γ(nk) = (θn,(k−1) + θn,k)/2 in the

proof that follows. For x ∈ E(k) we have cos(π/n)|ρ(x)| ≤ Re(e−iγ(k) ρ(x)) so that:

cos(π/n)

ˆ

X

|ρ(x)| dµ(x) = cos(π/n)

ˆ

XrZ

|ρ(x)| dµ(x) =
n
∑

k=1

ˆ

E(k)

cos(π/n) |ρ(x)|dµ(x) ≤

≤
n
∑

k=1

ˆ

E(k)

Re(e−iγ(k) ρ(x))dµ(x) =
n
∑

k=1

Re

(

e−iγ(k)

ˆ

E(k)

ρ(x) dµ(x)

)

≤
n
∑

k=1

∣

∣

∣

∣

∣

e−iγ(k)

ˆ

E(k)

ρ(x) dµ(x)

∣

∣

∣

∣

∣

=

=
n
∑

k=1

|ν(E(k))| ≤ |ν|(X).

We have obtained

cos(π/n)

ˆ

X

|ρ(x)|dµ(x) ≤ |ν|(X),

for every n ≥ 3; letting n tend to ∞ we conclude. �

Notice that with notations as in the preceding proposition we have for every E ∈ M:

µ(E) =

ˆ

E

sgn ρ(x) |ρ| dν =

ˆ

E

σ(x) d|µ|,

where σ(x) = sgn ρ(x) is a measurable function of absolute value 1 for |µ|−almost every x ∈ X . Of course
if µ = µr + i µι then µr ≪ |µ| and µι ≪ |µ| so that dµr = u d|µ| and dµι = v d|µ| with u, v positive
functions in L1(|µ|); then from µ(E) =

´

E σ(x) d|µ| we get

µr(E) =

ˆ

E

Reσ d|µ| =
ˆ

E

u d|µ| and µι(E) =

ˆ

E

Imσ d|µ| =
ˆ

E

v d|µ|,

so that u = Reσ and v = Imσ (|µ|−a.e. in X).
7.2.2. Total variation of a premeasure. The following result has some intrinsic interest, and will be

used in the future:

. Let (X,M) be a measurable space, and let ν : M → C be a complex measure. Assume that A is an
algebra of parts of X which generates M as a σ−algebra. Then for every A ∈ A we have

|ν|(A) = sup

{

m
∑

k=1

|ν(Ak)| : Ak ∈ A, {A1, . . . , Am} pairwise disjoint subsets of A

}

.
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Proof. It is clearly enough to prove it for A = X . Given a disjoint finite family E1, . . . , Em ∈ M, and
ε > 0, for every k ∈ {1, . . . ,m} we pick Ak ∈ A such that |ν|(Ek △ Ak) ≤ ε (being finite, the measure |ν|
on M is the Carathèodory extension of the restriction of |ν| to A, so we can apply 2.5.7). By the usual

trick we make {A1, . . . , Am} into a disjoint family, Bk = Ak r
(

⋃k−1
j=1 Aj

)

. We claim that

m
∑

k=1

|ν(Bk)| ≥
m
∑

k=1

|ν(Ek)| − α(ε),

where limε→0+ α(ε) = 0. This clearly concludes the proof. Notice that

|ν(Bk)| =

∣

∣

∣

∣

∣

∣

ν(Ak)− ν





k−1
⋃

j=1

Ak ∩ Aj





∣

∣

∣

∣

∣

∣

≥ |ν(Ak)| −

∣

∣

∣

∣

∣

∣

ν





k−1
⋃

j=1

Ak ∩ Aj





∣

∣

∣

∣

∣

∣

≥

≥ |ν(Ak)| − |ν|





k−1
⋃

j=1

Ak ∩Aj



 ≥ |ν(Ak)| −
k−1
∑

j=1

|ν|(Aj ∩ Ak).

Now we have, for j 6= k, since Ej ∩Ek = ∅:

|χA(k) ∧ χA(j)| = |χA(k) ∧ χA(j) − χE(k) ∧ χE(j)| ≤ |χA(k) − χE(k)| ∨ |χA(j) − χE(j)|,

(formula 1.2.3) so that

|ν|(Ak ∩ Aj) =

ˆ

X

χA(k) ∧ χA(j) d|ν| ≤
ˆ

X

|χA(k) − χE(k)| ∨ |χA(j) − χE(j)| d|ν| ≤

≤
ˆ

X

(|χA(k) − χE(k)|+ |χA(j) − χE(j)|) d|ν| = |ν|(Ak △ Ek) + |ν|(Aj △ Ej) ≤ 2ε.

We then have

|ν(Bk)| ≥ |ν(Ak)| − 2(k − 1)ε ≥ |ν(Ak)| − 2mε,

so that
m
∑

k=1

|ν(Bk)| ≥
m
∑

k=1

|ν(Ak)| − 2m2ε;

moreover

|ν(Ak)| = |ν(Ak)− ν(Ek) + ν(Ek)| ≥ |ν(Ek)| − |ν(Ak)− ν(Ek)|,
and

|ν(Ak)− ν(Ek)| = |ν(Ak r Ek)− ν(Ek rAk)| ≤ |ν(Ak r Ek)|+ |ν(Ek rAk)| ≤ |ν|(Ak △ Ek) ≤ ε,

so that |ν(Ak)| ≥ |ν(Ek)| − ε; finally we get

m
∑

k=1

|ν(Bk)| ≥
m
∑

k=1

|ν(Ek)| − (2m2 +m)ε.

�

Exercise 7.2.4. Prove that if µ is a complex measure and µ(X) = |µ|(X) then µ is a positive
measure.

Solution. Recall that for a complex function the modulus of the integral (with respect to a positive
measure) is the integral of the modulus if and only if there is α ∈ R such that for almost all points in the
domain the values of the function are in the ray {reiα : r ≥ 0} (4.2.1). Then, if

µ(X) = |µ|(X) =

ˆ

X

σ(x) d|µ| =
ˆ

X

d|µ|(> 0),

we have that σ(x) = 1 for |µ|−a.e. x ∈ X , so that µ(E) = |µ|(E) for every measurable E. �
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7.2.3. L1(µ) for signed or a complex measure. Having a measurable space (X,M) and a signed or a
complex measure µ on it, we define L1(µ) as L1(|µ|), with |µ| the total variation of µ. By definition the
integral is

ˆ

X

f dµ :=

ˆ

X

fσ d|µ|
(

=

ˆ

X

f Reσ d|µ|+ i

ˆ

X

f Imσ d|µ| =
ˆ

X

f dµr + i

ˆ

X

f dµι

)

.

where σ is the density of µ with respect to |µ|, a measurable function with values in the unit circle U for
|µ|−almost every x ∈ X . We have the fundamental inequality:

∣

∣

∣

∣

ˆ

X

f dµ

∣

∣

∣

∣

≤
ˆ

X

|f | d|µ|.

If µ is a signed measure, µ = µ+ − µ−, with dµ+ = χP d|µ| and dµ− = χQ d|µ|, with P,Q a Hahn
decomposition for µ we evidently have

ˆ

X

f dµ :=

ˆ

X

f(χP − χQ) d|µ| =
ˆ

X

f χP d|µ| −
ˆ

X

f χQ d|µ| =
ˆ

X

f dµ+ −
ˆ

X

f dµ−,

in other words
ˆ

X

f dµ =

ˆ

X

f dµ+ −
ˆ

X

f dµ−.

From this it is easy to see, arguing as we did for proving linearity of the integral on L1
µ(X,R) that if µ

and ν are real valued signed measures, and f ∈ L1(µ) ∩ L1(ν), then (assuming that µ+ ν is defined):
ˆ

X

f d(µ+ ν) =

ˆ

X

f dµ+

ˆ

X

f dν.

The same is true for a sum of complex measures, as is easy to check. In other words, the symbol
´

X f dµ
is bilinear, linear in f when µ is given, but also in µ for f fixed

Exercise 7.2.5. Let µ be a complex measure on the measurable space (X,M). Prove that

|µ|(X) = sup

{∣

∣

∣

∣

ˆ

X

f dµ

∣

∣

∣

∣

: f measurable, |f | ≤ 1

}

;

and that the sup is actually a max.

Solution. First observe that since |µ| is a finite measure every bounded measurable function is in
L1(µ), so the integrals in the formula exist. By the fundamental inequality

∣

∣

∣

∣

ˆ

X

f dµ

∣

∣

∣

∣

≤
ˆ

X

|f | d|µ| ≤
ˆ

X

|dµ| = |µ|(X);

and since dµ = σ d|µ| with |σ(x)| = 1 for |µ|−a.e. x ∈ X we have
∣

∣

∣

∣

ˆ

X

σ̄ dµ

∣

∣

∣

∣

=

ˆ

X

d|µ| = |µ|(X).

�

7.2.4. The chain rule. If (X,M) is a measurable space, ν : M → [0,∞] a positive measure and µ
a signed or a complex measure defined on M, we have used the notation dµ = ρ dν to mean that for
every E ∈ M we have µ(E) =

´

E
ρ dν, with ρ in L1(ν) if µ is a finite measure, an extended real valued

function integrable in the extended sense if ν is a not finite signed measure. In this case of course µ≪ ν;
and the Radon–Nikodym theorem says that if both measures are σ−finite then ρ exists. That dµ = ρ dν
may also be denoted as

dµ

dν
= ρ;

in fact the function ρ, if it exists, is uniquely determined up to ν−a.e. equality (4.2.3).

Proposition. (i) In the above hypotheses a measurable function f : X → C is in L1(µ) if and only
if fρ ∈ L1(ν), and

ˆ

X

f dµ =

ˆ

X

f ρ dν.
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(ii) Assume that µ is also a positive measure, that λ is a signed or complex measure defined on M,
and that dλ = τ dµ. Then dλ = τ ρ dν; in the other notation

dλ

dν
=
dλ

dµ

dµ

dν
.

Proof. (i) By definition f ∈ L1(µ) iff f ∈ L1(|µ|) and
´

X
f dµ =

´

X
f σ d|µ|, and from 7.2.1 we have

d|µ| = |ρ| dν, and σ = sgn ρ. Since σ(x) has absolute value 1 for |µ|−a.e. x ∈ X , we have f σ ∈ L1(|µ|) iff
f ∈ L1(|µ|); with the usual decomposition into real and imaginary parts, and into positive and negative
parts, we have to prove that if f ∈ L+(X) then

ˆ

X

f d|µ| =
ˆ

X

f |ρ| dν,

knowing that for every E ∈ M we have |µ|(E) =
´

E |ρ| dν. This was proposition 4.1.9.

(ii) Since
´

X
f dλ =

´

X
f sgn τ(x) d|λ| we can consider only positive measures. That is, we are reduced

to prove the chain rule for positive measures. We have to prove that λ(E) =
´

E
τ ρ dν for every E ∈ M.

From (i) we know that
ˆ

X

(χE τ) ρ dν =

ˆ

X

(χEτ) dµ :=

ˆ

E

τ dµ = λ(E);

the last equality being dλ = τ dµ. The proof is concluded. �

Exercise 7.2.6. Prove that if µ is a complex measure on the measurable space (X,M) then, for
every f ∈ L1(|µ|) we have

ˆ

X

f dµ =

ˆ

X

f dµr + i

ˆ

X

f dµι.

Prove that if µ, ν are complex measures on M and f : X → C is a bounded measurable function then
ˆ

X

f d(µ+ ν) =

ˆ

X

f dµ+

ˆ

X

f dν.

Solution. Since dµ = σ d|µ| we have dµr = Re(σ) d|µ| and dµι = Im(σ) d|µ|; if f ∈ L1(|µ|):
ˆ

X

f dµ :=

ˆ

X

f σ d|µ| =
ˆ

X

f (Re(σ) + i Im σ) d|µ| =
ˆ

X

f Re(σ) d|µ| + i

ˆ

X

f Imσ d|µ| =

=

ˆ

X

f dµr + i

ˆ

X

f dµι,

the last equality being due to (i) of the above proposition.
For the last assertion: the hypothesis that f is bounded measurable implies that f ∈ L1(λ) for every

finite positive measure λ on (X,M), in particular then f ∈ L1(|µ+ ν|). We clearly have

(µ+ ν)r = µr + νr; (µ+ ν)ι = µι + νι,

so that, by what just proved:
ˆ

X

f d(µ+ ν) =

ˆ

X

f d(µr + νr) + i

ˆ

X

f d(µι + νι),

and we are reduced to the case in which µ and ν are real, i.e. signed measures. We know by direct proof
(see 7.1.8) that if µ, ν are positive measures then

´

X
f d(µ+ ν) =

´

x
f dµ +

´

X
f dν, so that we have to

prove that for f ∈ L1(µ) ∩ L1(ν), with µ and ν positive measures we have
ˆ

X

f d(µ− ν) =

ˆ

X

f dµ−
ˆ

X

f dν.

If dµ = u d(µ + ν) and dν = v d(µ + ν) then 0 ≤ u, v ≤ 1 so that f u, f v ∈ L1(µ) ∩ L1(ν) if f ∈
L1(µ) ∩ L1(ν), and since d(µ− ν) = (u− v) d(µ + ν) we get

ˆ

X

f d(µ− ν) =

ˆ

X

f (u− v) d(µ+ ν) =

ˆ

X

f u d(µ+ ν)−
ˆ

X

f v d(µ+ ν) =

ˆ

X

f dµ−
ˆ

X

f dν.

�
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7.2.5. The Banach space of finite K−valued measures. If (X,M) is a measurable space a finite K−valued
measure on M is a countably additive function µ : M → K. We shall drop the adjective finite unless needed for
emphasis or to avoid ambiguity. When K = R one also speaks of a finite signed measure, or charge (as we have
seen signed measures are allowed to take −∞ or +∞ as values, but we exclude this in what follows).

It is clear that any finite linear combination with coefficients in K of K−valued measures on M is still a
K−valued measure on M, so that these measure are naturally a K−linear space. We have

. For every measurable space (X,M) the set M(X) =MM(X,K) of all finite K−valued measures defined on

M is a Banach space under the norm ‖µ‖ = |µ|(X).

Proof. By exercise 7.2.5, if µ, ν are K−valued measures on (X,M) we have |µ+ ν| ≤ |µ|+ |ν|, in particular
|µ+ ν|(X) ≤ |µ|(X) + |ν|(X), so that µ 7→ |µ|(X) is subadditive and hence a norm (the remaining conditions are
trivial). Completeness: assume that

∑

n∈N µn is a normally convergent series of K−valued measures, that is, the
series

∑

n∈N ‖µn‖ =
∑

n∈N |µn|(X) is convergent. Given E ∈ M we set

µ(E) :=
∑

n∈N

µn(E)

(note that this series is absolutely convergent, since |µn(E)| ≤ |µn|(E) ≤ |µn|(X) = ‖µn‖, so that the definition
makes sense), and we have to prove that µ is countably additive. If E =

⋃

m∈NEm, with the Em ∈ M pairwise
disjoint, we get

µ(E) =
∑

n∈N

µn(E) =
∑

n∈N

(

∑

m∈N

µn(Em)

)

=

(we interchange the sums, proving later the admissibility of this action)

∑

m∈N

(

∑

n∈N

µn(Em)

)

=
∑

m∈N

µ(Em),

as required. The interchange is admissible because the sum of absolute values:

∑

n∈N

(

∑

m∈N

|µn(Em)|
)

≤
∑

n∈N

(

∑

m∈N

|µn|(Em)

)

=
∑

n∈N

|µn|(E) ≤
∑

n∈N

|µn|(X) <∞

is finite; we apply Tonelli–Fubini theorem in the space ℓ1(N× N). Thus µ is a K−valued measure and since:
∣

∣

∣

∣

∣

µ(E)−
m
∑

n=0

µn(E)

∣

∣

∣

∣

∣

≤
∞
∑

n=m+1

|µn(E)| ≤
∞
∑

n=m+1

|µn|(E),

we have (remember that the sum of a series of positive measures is always a (not necessarily finite) positive
measure):

∣

∣

∣

∣

∣

µ−
m
∑

n=0

µn

∣

∣

∣

∣

∣

(E) ≤
∞
∑

n=m+1

|µn|(E),

in particular, for E = X, we get
∥

∥

∥

∥

∥

µ−
m
∑

n=0

µn

∥

∥

∥

∥

∥

≤
∞
∑

n=m+1

‖µn‖,

and the proof ends. �

Exercise 7.2.7. Let (X,M) be a measurable space and let M(X) = MM(X,K) be the Banach
space of finite K−valued measures. As usual, we say that µ, ν ∈ M(X) are mutually singular, and we
write µ ⊥ ν if there is a decomposition of X as X = A ∪B, disjoint union, with A, B ∈ M and B null
for µ, A null for ν.

(i) Prove that if µ ⊥ ν then |µ+ ν| = |µ|+ |ν|, so that ‖µ+ ν‖ = ‖µ‖+ ‖ν‖.
(ii) Let (µn)n∈N be a sequence in M(X) such that

∑∞
n=0 ‖µn‖ < ∞, and let µ : M → [0,∞] be a

σ−finite measure. Let µj = λj + νj = ρj dµ + νj be the Radon-Nikodym decomposition of µj

with respect to µ, in other words, νj ⊥ µ. Prove that then

∞
∑

n=0

µn =
∞
∑

n=0

λn +
∞
∑

n=0

νn =

(

∞
∑

n=0

ρn

)

dµ+
∞
∑

n=0

νn,

with both series
∑∞

n=0 λn,
∑∞

n=0 νn normally converging in M(X), and
∑∞

n=0 ρn normally con-
verging in L1(µ).
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7.2.6. Exercises.

Exercise 7.2.8. Let µ, ν : M → [0,∞] be positive measures such that λ = µ− ν is a signed measure
(equivalently, one at least of them is a finite measure). Then λ+ ≤ µ and λ− ≤ ν; and if µ ⊥ ν, then
λ+ = µ and λ− = ν

Solution. Let X = P ∪Q be a Hahn decomposition for λ. Then, for every E ∈ M:

λ+(E) = λ(E ∩ P ) = µ(E ∩ P )− ν(E ∩ P ) ≤ µ(E ∩ P ) ≤ µ(E),

the last inequality being monotonicity of the positive measure µ. Similarly:

λ−(E) = −λ(E ∩Q) = ν(E ∩Q)− µ(E ∩Q) ≤ ν(E ∩Q) ≤ ν(E).

If µ ⊥ ν and A∪B is a partition of X into measurable sets, with µ supported by A and ν supported
by B, then, trivially, this is also a Hahn decomposition for λ, so that

λ+(E) = λ(E ∩ A) = µ(E ∩ A)− ν(E ∩ A) = µ(E ∩ A) = µ(E), for every E ∈ M,

and similarly for λ− and ν.
�

Exercise 7.2.9. Let (X,M, µ) be a measure space. Let ν : M → C be a (finite) measure.

(i) Prove that ν ≪ µ iff ν±r and ν±ι are all absolutely continuous with respect to µ, and also iff
|ν| ≪ µ.

(ii) Prove that if ν ≪ µ, then for every ε > 0 there is δ > 0 such that µ(E) ≤ δ implies |ν(E)| ≤ ε.
(iii) Assertion (ii) fails if ν is not finite: consider dν = dx/x on [0, 1], or dν = |x| dx on R

(see also 7.1.9)

Solution. (i) Assume ν ≪ µ and that µ(E) = 0. Then ν(E) = νr(E) + i νι(E) = 0 ⇐⇒ νr(E) =
νι(E) = 0, so that ν ≪ µ ⇐⇒ νr ≪ µ and also νι ≪ µ. Assuming ν signed measure we prove that
ν ≪ µ iff ν± ≪ µ. Let P ∪Q be a Hahn decomposition of ν; if µ(E) = 0 then µ(E ∩ P ) = µ(E ∩Q) = 0
by monotonicity of µ, so that ν(E ∩ P ) = ν+(E) = 0 and also −ν(E ∩ Q) = ν−(E) = 0. Thus ν ≪ µ
implies ν± ≪ µ, and clearly ν± ≪ µ implies in turn ν = ν+ − ν− ≪ µ and |ν| = ν+ + ν− ≪ µ. And if ν
is a complex measure such that νr, νι ≪ µ we have |νr|, |νι| ≪ µ hence also |ν| ≤ |νr|+ |νι| ≪ µ.

(ii) By (i) we can assume that ν is a finite positive measure. We argue by contradiction: if not, there
is ε > 0 such that for every n ∈ N there is En ∈ M, with µ(En) ≤ 1/2n+1, such that ν(En) > ε. Consider
Fm =

⋃

n≥mEn. Then µ(Fm) ≤∑n≥m µ(En) ≤
∑

n≥m 1/2n+1 = 1/2m. The sequence Fm is decreasing,

F0 ⊇ F1 ⊇ F2 ⊇ . . . ; let F =
⋂∞

m=0 Fm; then µ(F ) = limm→∞ µ(Fm) = 0, but ν(Fm) ≥ ν(Em) > ε for
every m, so that ν(F ) = limm→∞ ν(Fm) ≥ ε, contradicting ν ≪ µ.

(iii) In fact
´

[a,a+δ] dx/x = log(1 + δ/a) → ∞ as a → 0+, and
´

[a,a+δ] |x| dx = a δ + δ2/2 → ∞ as

a→ ∞. �

Exercise 7.2.10. Let (X,M, µ) be a measure space, and let ν : M → [0,∞] be another positive
measure. We consider the ideal F = F(µ) = {E ∈ M : µ(E) < ∞} of the sets of finite µ−measure as
a semimetric(=pseudometric) space under the semimetric ρ(E,F ) = µ(E △ F ) = ‖χE − χF ‖1, and we
assume that ν is finite on F .

Prove that the following are equivalent:

(a) ν is uniformly continuous.
(b) ν is continuous.
(c) ν is continuous at ∅
(d) ν ≪ µ.

If we consider the quotient F∗ of F obtained by identifying E and F when ρ(E,F ) = 0, observe that ν
is well defined on this quotient iff ν ≪ µ.

Solution. That (a) implies (b) and that (b) implies (c) is trivial. (c) implies (d): continuity of ν
at the emptyset is exactly this: given ε > 0 there is δ > 0 such that ρ(E, ∅)(= µ(E)) ≤ δ implies
|ν(E) − ν(∅)| = ν(E) ≤ ε. If µ(E) = 0, then µ(E) ≤ δ holds for every δ > 0, then ν(E) ≤ ε for every
ε > 0, i.e ν(E) = 0. By exercise 7.2.9, we also have (d) implies (c); that (c) implies (a) is trivial, because
of additivity of ν.

�
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8. Differentiation of measures in euclidean spaces

Recall that by a Radon measure in Rn we mean a positive Borel measure µ : Bn → [0,∞] that
is finite on compact (hence also on bounded) sets (Bn is the σ−algebra of Borel sets of Rn). Let B∗n
denote the ideal of Bn consisting of bounded sets. If, as usual, K = R or K = C, a locally finite Radon
K−valued measure is a countably additive function µ : B∗n → K. Notice that strictly speaking µ is not
a measure, since it is not defined on a σ−algebra. However µ induces a finite measure on the Borel sets
of any compact subset of Rn. And there is a unique positive Radon measure |µ| : Bn → [0,∞] such
that |µ(E)| ≤ |µ|(E) for every bounded set, and |µ| is the smallest measure that does so: simply put
together all total variations of measures induced on compact subsets; specifically: Rn =

⋃∞
k=0Qk, where

Qk = [−k, k]n is the compact cube centered at the origin with side 2k; if µk is the K−valued finite measure
induced by µ on Qk, let νk be the measure νk(E) = |µk|(E∩(QkrQk−1)), and set |µ|(E) =

∑∞
k=1 νk(E).

It is obvious that |µ| has the required properties. Moreover µ extends to a finite K−valued measure on
all of Bn iff |µ|(Rn) < ∞: finite K−valued Borel measures are of course Radon measures as well. For
every locally finite Radon measure µ and every bounded open set U ⊆ Rn there is a finite Borel measure
ν which coincides with µ on subsets of U and is zero outside U : simply put ν(E) = µ(U ∩ E). This
explains why, when concerned with properties of a local nature, we may assume µ finite and defined on
all Bn.

8.0.7. Regularity of Radon measures.

Proposition. Every positive Radon measure µ is regular.

Proof. The proof was given in section 2.7. �

Let us recall that this means that for every Borel set E we have µ(E) = sup{µ(K) : K ⊆
E, K compact}, and µ(E) = inf{µ(U) : U ⊇ E, U open}.

8.1. Derivatives with respect to the Lebesgue measure. The most important Radon measure
is of course Lebesgue measure; we shorten λn to m, dimension will be understood somehow. Every
locally finite Radon measure µ that is absolutely continuous with respect to Lebesgue measure is of the
form f dm, where f ∈ L1

loc(R
n,K): by this symbol we denote all measurable f : Rn → K such that

f|K ∈ L1
m(K), for every compact subset K ⊆ Rn. All continuous functions, and in general all measurable

functions bounded on bounded sets are in L1
loc(R

n), as all functions in L1(Rn); but there are others, e.g.
if f(x) = 1/|x|α with 0 < α < n then f ∈ L1

loc(R
n) r L1(Rn), and f is unbounded in every nbhd of 0.

Since Lebesgue measure is σ−finite, it is easy to deduce from the Lebesgue–Radon–Nikodym theorem:

. If µ : B∗n → K is a locally finite Radon measure on Rn, there exist and are unique two locally finite
Radon measures λ and ν, with λ ≪ m and ν ⊥ m such that µ = λ + ν. Moreover there is a function
f ∈ L1

loc(R
n,K), unique up to equality m−a.e., such that dλ = f dm.

Proof. Apply the Lebesgue–Radon–Nikodym theorem to Qk, then put together the results. �

The Radon–Nikodym derivative with respect to m assumes a much more analytical character, and
can be related to the usual notion of derivative given in Calculus (in the one–dimensional case; in the
n−dimensional case it becomes the notion of density, as defined and used by physicists). To be more
precise, the following result can be proved:

. With µ, λ, ν and f as in the preceding proposition, we have for a.e. x ∈ Rn

lim
r→0+

µ(B(x, r])

m(B(x, r])
= lim

r→0+

λ(B(x, r])

m(B(x, r])
= f(x) lim

r→0+

ν(B(x, r])

m(B(x, r])
= 0.

here B(x, r] = {ξ ∈ Rn : |ξ − x| ≤ r} is the closed euclidean ball centered at x of radius r, but any
norm can be used, and even sets much more general than balls. Call substantial family any family of
Borel subsets of Rn, indexed by the points of Rn and the strictly positive reals, {Er(x) : x ∈ Rn, r > 0}
such that:

• For every x ∈ Rn and r > 0 we have Er(x) ⊆ B(x, r].
• For every x ∈ Rn there is α = α(x) > 0 such that m(Er(x)) ≥ αm(B(x, r]), for every r > 0.

That is, the sets Er(x) must have a measure which is at least a fixed percentage of the measure of
the ball they are in. They do not have to contain the point x; given E ⊆ B(0, 1] with m(E) > 0 the
family Er(x) = {x + rE : x ∈ Rn, r > 0} is substantial. A typical example are the half–open intervals



8. DIFFERENTIATION OF MEASURES IN EUCLIDEAN SPACES 111

{]x, x+r] : x ∈ R, r > 0} and {]x−r, x] : x ∈ R, r > 0}. Notice also that no relation is assumed between
Er(x) and Er(y) for different x, y ∈ Rn.

Then the above theorem is true with Er(x) replacing B(x, r]. Let us give an explicit statement:

. The differentiation theorem Let µ : B∗n → K be a locally finite Radon measure on Rn; let
µ = λ + ν, with λ ≪ m, dλ = f dm and ν ⊥ m. If (Er(x))x∈Rn, r>0 is a substantial family in Rn, then
for m−almost every x ∈ Rn we have

lim
r→0+

µ(Er(x))

m(Er(x))
= lim

r→0+

λ(Er(x))

m(Er(x))
= f(x); lim

r→0+

ν(Er(x))

m(Er(x))
= 0.

We prove now parts of this theorem; completion of the proof is in 8.6
8.1.1. Derivative of the absolutely continuous part. For f ∈ L1

loc(R
n,K) and r > 0, x ∈ Rn we define

the average of f over the ball B(x, r]:

Arf(x) =

 

B(x,r]

f(ξ) dm(ξ) :=
1

m(B(x, r])

ˆ

B(x,r]

f(ξ) dm(ξ);

the function (x, r) 7→ Arf(x) is continuous from Rn×]0,∞[ to K (see exercise 8.1.1). For the time being,
we accept without proof the following difficult:

Theorem. If f ∈ L1
loc(R

n) then limr→0+ Arf(x) = f(x) for almost every x ∈ Rn.

For every constant k we have k =
ffl

B(x,r]
k dm(ξ), in particular f(x) =

ffl

B(x,r]
f(x) dm(ξ) so that the

preceding theorem says that

lim
r→0+

 

B(x,r]

(f(ξ)− f(x)) dξ = 0 for almost every x ∈ Rn.

We can prove that the same is true with an absolute value in the integral. Specifically: we call a point
x ∈ Rn a Lebesgue point for f if

lim
r→0+

 

B(x,r]

|f(ξ)− f(x)| dξ = 0;

this clearly implies that f(x) = limr→0+ Arf(x). Then

. If f ∈ L1
loc(R

n) then almost all points of Rn are Lebesgue points for f .

Proof. For every constant c ∈ K we consider the function x 7→ |f(x)− c|; by the preceding theorem
we have

|f(x)− c| = lim
r→0+

 

B(x,r]

|f(ξ)− c| dξ, for every x ∈ Rn r E(c) with m(E(c)) = 0.

Let D be a countable subset of K dense in K, and let E =
⋃

c∈D E(c); then m(E) = 0. We prove that
every x ∈ Rn r E is Lebesgue point for f . In fact, given x ∈ Rn r E and ε > 0 we may pick c ∈ D such
that |f(x)− c| ≤ ε; then, for every r > 0:

 

B(x,r]

|f(ξ)− f(x)| dξ ≤
 

B(x,r]

(|f(ξ)− c|+ |c− f(x)|) dξ =
 

B(x,r]

|f(ξ)− c| dξ + |f(x)− c|,

and taking lim supr→0+ of both sides:

lim sup
r→0+

 

B(x,r]

|f(ξ)− f(x)| dξ ≤ |f(x)− c|+ |f(x)− c| ≤ 2ε.

�

We now immediately have:

. Let f ∈ L1
loc(R

n), and le Er(x) be a substantial family in Rn. Then for every x in the Lebesgue set
of f , hence for almost every x ∈ Rn, we have

lim
r→0+

 

Er(x)

|f(ξ)− f(x)| dξ = 0; lim
r→0+

 

Er(x)

f(ξ) dξ = f(x).
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Proof. We have, for x in the Lebesgue set of f :
 

Er(x)

|f(ξ)− f(x)| dξ = 1

m(Er(x))

ˆ

Er(x)

|f(ξ)− f(x)| dξ ≤ 1

m(Er(x))

ˆ

B(x,r]

|f(ξ)− f(x)| dξ ≤

≤ 1

αm(B(x, r])

ˆ

B(x,r]

|f(ξ)− f(x)| dξ = 1

α

 

B(x,r]

|f(ξ)− f(x)| dξ → 0,

as r → 0+. Since
∣

∣

∣

∣

∣

 

Er(x)

f(ξ) dξ − f(x)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

 

Er(x)

(f(ξ)− f(x)) dξ

∣

∣

∣

∣

∣

≤
 

Er(x)

|f(ξ)− f(x)| dξ,

the first statement immediately implies the second. �

Exercise 8.1.1. In Rn let xk be a sequence converging to x ∈ Rn, and let rk > 0 converge to r > 0.
If χk = χB(xk,rk] then χk converges a.e. to χ = χB(x,r]. Moreover, if R = supk{rk + |x − xk|} then

B(xk, rk] ⊆ B(x,R] for every k ∈ N. Prove that if f ∈ L1
loc(R

n) then Arf(x) is continuous as a map of
Rn×]0,∞[→ K.

Solution. Assume that |x − y| < r, and pick t with |x − y| < t < r then, since |xk − y| → |x − y|,
and rk → r for k large enough, say k ≥ N , we have |xk − y| < r and rk > t; then χk(y) = 1 for
k ≥ N . Similarly one proves that χk(y) = 0 for k large enough if |x − y| > r. Thus χk(y) converges to
χ(y) for every y ∈ Rn but at most when |x − y| = r, the (n − 1)−dimensional sphere of center x and
radius r, a set of n−dimensional measure zero. The rest is clear: |f |χB(x,R) dominates all f χk, because
B(xk, rk] ⊆ B(x,R] for every k (if |xk − y| ≤ rk then |x − y| ≤ |x − xk|+ |xk − y| ≤ |x − xk|+ rk ≤ R)
so that

lim
k→∞

ˆ

B(xk,rk]

f(ξ) dξ =

ˆ

B(x,r]

f(ξ) dξ.

�

8.1.2. Monotone functions are derivable almost everywhere. As a first application of the preceding
powerful theorems we show:

Theorem. Let F : R → R be increasing. Then F is differentiable a.e., with derivative F ′(x) ≥ 0
a.e.; moreover F ′ ∈ L1

loc(R), and for every interval [a, b] we have

F (b)− F (a) ≥
ˆ

[a,b]

F ′(x) dx.

Proof. Let µ = µF be the Radon–Stieltjes measure associated to F , defined by µ(]a, b]) = F (b+) −
F (a+), µ(]a, b[) = F (b−) − F (a+), etc., see 2.2. Let C be the set of points of continuity of F . The
following four families are all substantial families in R

[x, x+ r]; [x, x+ r[; ]x− r, x]; [x− r, x],

so that, if f ∈ L1
loc(R) is a representative of the Radon–Nikodym derivative dλ/dm, where λ is the abso-

lutely continuous part of µ, we have f(x) ≥ 0, because λ is a positive measure, and by the differentiation
theorem 8.1, for a.e x ∈ C:

f(x) = lim
r→0+

µ([x, x + r])

r
= lim

r→0+

µ([x, x + r[)

r
= lim

r→0+

µ(]x− r, x])

r
= lim

r→0+

µ([x− r, x])

r
,

that is

f(x) = lim
r→0+

F ((x + r)+)− F (x)

r
= lim

r→0+

F ((x+ r)−)− F (x)

r
=

lim
r→0+

F (x) − F ((x− r)+)

r
= lim

r→0+

F (x)− F ((x − r)−)

r
.

But F (t−) ≤ F (t) ≤ F (t+) for every t ∈ R so that

F ((x+ r)−)− F (x)

r
≤ F (x + r)− F (x)

r
≤ F ((x+ r)+)− F (x)

r
;

F (x)− F ((x− r)+)

r
≤ F (x)− F (x− r)

r
≤ F (x)− F ((x − r)−)

r
,



8. DIFFERENTIATION OF MEASURES IN EUCLIDEAN SPACES 113

and the three functions theorem (it: teorema dei carabinieri) allows us to conclude that F ′(x) = f(x)
exists for a.e. x ∈ C; and since Rr C is countable, hence of zero Lebesgue measure, F ′(x) exists a.e. in
R. If µ = λ+ ν, with λ≪ m and ν ⊥ m we have dλ = f(x) dx and if a, b ∈ R with a < b we have

µ(]a, b[) = F (b−)− F (a+) =

ˆ

]a,b[

f(x) dx + ν(]a, b]) ≥
ˆ

[a,b]

f(x) dx,

and since F (b)−F (a) ≥ F (b−)−F (a+) the proof is concluded (notice that
´

]a,b]
f(x) dx =

´

[a,b]
f(x) dx =

´

]a,b[ f(x) dx etc).

�

8.2. Radon measures on the real line and functions of bounded variation. Locally finite
Radon measures on R have a distribution function; in 2.2.1 we defined it for positive Radon measures,
called there Radon–Stieltjes measures. The same definition can be given here:

Definition. If µ : B∗1 → K is a locally finite Radon measure its distribution function with initial
point 0 is F = Fµ : R → K defined by

F (x) =

{

µ(]0, x]) x ≥ 0

−µ(]x, 0]) x < 0
.

When µ is a finite Borel measure one often chooses the distribution function with −∞ as origin, the
function G(x) = µ(]−∞, x]); clearly we have G(x) = F (x)− F (−∞) = F (x) + µ(]−∞, 0]). Notice that
on left–open intervals we recover the measure from F as µ(]a, b]) = F (b)− F (a).

8.2.1. First properties. Continuity from below and above of measures implies:

. If µ is a locally finite Radon measure then its distribution function F is right continuous and has
finite left limits at every point.

If the measure µ is real then F is the difference of two right continuous increasing functions, F =
A−B, the distribution functions of µ+ and µ−; if the measure is complex then F = (A−B)+ i (C −D),
where all four functions A,B,C,D are right–continuous and increasing.

Proof. For continuity, imitate the proof given for positive measures. For the rest: write µ = µ+−µ−

and let A,B be the distribution functions of µ+, µ− respectively. If µ is complex, write µ = (µ+
r −µ−r )+

i (µ+
ι − µ−ι ) and let A,B,C,D be the distribution functions of these four positive measures. �

8.2.2. Functions of bounded variation. The total variation of a locally finite Radon measure µ on
R is a positive Radon measure, whose distribution function (with initial point 0) is a monotone right–
continuous function S with S(0) = 0. The minimality property of |µ| implies that for every pair a, b ∈ R
with a < b we have

|µ(]a, b])| = |F (b)− F (a)| ≤ S(b)− S(a).

And this is the property we need to characterize functions which are the distribution functions of some
locally finite Radon measure.

Definition. Let I be an interval of R, and let F : I → K be a function. We say that F has locally
bounded variation on I, or that F is a function of locally bounded variation on I if there is a monotone
function S : I → R such that

|F (x1)− F (x2)| ≤ |S(x1)− S(x2)| for every x1, x2 ∈ I.

We say that F has bounded variation on I if the function S above may be taken bounded on I.

The definition usually given is another, and we shall give it in 8.3. In the situation of the previous
definition we say that the monotone function S controls, or dominates the variation of F ; we may always
assume that S is increasing, changing the sign if necessary, so that the definition above might be given by
saying that there is an increasing function S such that x1, x2 ∈ I and x1 < x2 imply |F (x2)− F (x1)| ≤
S(x2) − S(x1). The space of all K−valued functions on I of locally bounded, resp. bounded variation
is denoted BVloc(I,K), resp. BV (I,K), with the usual shortenings. Lipschitz continuous functions have
locally bounded variation, controlled by linear functions. Clearly monotone functions are in BVloc(I), and
in BV (I) if they also are bounded; in fact BVloc(I) is the vector space generated by monotone functions.
We collect here some results on functions of bounded variation:

. Let I be an interval of R. Then
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(i) BVloc(I,K) and BV (I,K) are vector spaces.
(ii) A complex function F : I → C is in BV (I) or BVloc(I) iff so are ReF and ImF
(iii) A real function F : I → R is in BVloc(I) if and only if F is the difference of two increasing

functions.
(iv) A function F ∈ BVloc(I) has finite left and right limits at every point c ∈ I; and has an at most

countable set of points of discontinuity. Moreover F ′(x) exists for m−a.e. x ∈ I.

Proof. (i) If F, G ∈ BVloc(I,K) and the increments of F and G are controlled by the increasing
functions S and T respectively, then, assuming x1 < x2:

|(F +G)(x2)− (F +G)(x1)| ≤ |F (x2)− F (x1)|+ |G(x2)−G(x1)| ≤
≤ (S(x2)− S(x1)) + (T (x2)− T (x1)) = (S + T )(x2)− (S + T )(x1),

with S + T increasing; and |αF (x2) − αF (x1)| ≤ |α|S(x2) − |α|S(x1), with |α|S increasing; same for
BV .

(ii) If F has (locally) bounded variation then

|Re(F )(x1)− ReF (x2)| ≤ |F (x1)− F (x2)| ≤ |S(x1)− S(x2)|
for x1, x2 ∈ I, and the same for ImF . And if A,B : I → R have (locally) bounded variation, by (i) so
has F = A+ i B.

(iii) If F is real with variation dominated by the increasing function S : I → R then S+F and S−F
are increasing functions; assume in fact x1 < x2, x1, x2 ∈ I:

(S + F )(x1) ≤ (S + F )(x2) ⇐⇒ F (x1)− F (x2) ≤ S(x2)− S(x1);

(S − F )(x1) ≤ (S − F )(x2) ⇐⇒ F (x2)− F (x1) ≤ S(x2)− S(x1),

and since |F (x2) − F (x1)| = max{F (x1) − F (x2), F (x2) − F (x1)} ≤ S(x2) − S(x1), both are true. We
have F = (S + F )/2− (S − F )/2

(iv) All this is true for increasing functions, hence for their linear combinations. �

8.2.3. The Radon measure defined by a function BVloc(R). We prove that:

Proposition. Let F : R → K be a function in BVloc(R). There is a unique locally finite Radon
measure µ = µF : B∗1 → K such that for every a, b ∈ R, a < b:

µ(]a, b]) = F (b+)− F (a+); µ(]a, b[) = F (b−)− F (a+); µ([a, b]) = F (b+)− F (a−);

µ([a, b[) = F (b−)− F (a−); µ({a}) = F (a+)− F (a−).

Moreover the distribution function of µF with initial point 0 is

G(x) = F (x+)− F (0+).

And the measure is finite on all of B1 if and only if F has globally bounded variation.

Proof. Write F = (A − B) + i (C −D) (with C,D missing if F is real valued); then µA, µB, µC , µD

are positive Radon measures defined on B1; and µ = µA − µB + i (µC − µD) is a locally finite Radon
measure on B∗1 , whose values on intervals are as described. This proves existence; for uniqueness, two
locally finite K−valued Radon measures µ, ν which coincide on compact intervals coincide on all of B∗1 :
in fact, given a bounded Borel E set pick a compact interval containing it, say [−a, a] ⊇ E. The set
D = {A ⊆ [−a, a] : A ∈ B1, µ(A) = ν(A)} is a Dynkin class of parts of [−a, a], as is immediate to prove;
since D contains all subintervals of [−a, a], it contains also all Borel subsets of [−a, a], in particular E.

The assertions on global boundedness are easy. �

Notice that the values of F on its points of discontinuity are completely irrelevant for the measure
µF .

8.3. The point variation of a function on an interval. We have defined functions of bounded
variation, or locally bounded variation, but we haven’t defined variation; we are going to do it now. Given
a function f : I → K (the range could be also any normed space) its total variation V f(I) on I is a
positive real number, or +∞, defined in the following way. A subdivision of the interval I is a finite subset
{x0, . . . , xm} of I containing the extremes of I that belong to I; it is understood that a subdivision has
always a strictly increasing indexing, x0 < · · · < xm. The variation of f on the subdivision {x0, . . . , xm}
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is defined as
∑m

k=1 |f(xk)− f(xk−1)|. The total variation of f on the interval I is the supremum of the
variations of f over all subdivisions of I:

V f(I) = sup

{

m
∑

k=1

|f(xk)− f(xk−1)| : {x0, . . . , xm} a subdivision of I

}

.

Observe that V f(I) = 0 if and only if f is constant on I. We immediately see that if f is of bounded
variation according to the definition in 8.2.2, then V f(I) <∞; in fact, if S : I → R is bounded increasing,
and |f(t)− f(s)| ≤ S(t)− S(s) for s < t and s, t ∈ I, then

m
∑

k=1

|f(xk)− f(xk−1)| ≤
m
∑

k=1

(S(xk)− S(xk−1)) = S(xm)− S(x0) ≤ S(sup I)− S(inf I),

so that

(*) V f(I) ≤ S(sup I)− S(inf I).

8.3.1. The variation function. To prove the converse, namely that V f(I) <∞ implies the existence
of a bounded monotone function controlling the variation, we need to prove a sort of additivity of the
variation with respect to the interval I. First observe that the finer the subdivision, the higher the
variation: we say of course that a subdivision {y0, . . . , yn} is finer than the subdivision {x0, . . . , xm}
when it has more points, that is {x0, . . . , xm} ⊆ {y0, . . . , yn}; then

m
∑

k=1

|f(xk)− f(xk−1)| ≤
n
∑

l=1

|f(yl)− f(yl−1)|;

it is in fact enough to prove that the variation on a subdivision increases when adding just one point,
and this is trivial. Notice in particular that if a, b ∈ I and a < b then |f(b) − f(a)| ≤ V f([a, b]). This
monotonicity shows that the variation is attained also on subdivisions which are prescribed to contain a
given finite subset.

Lemma. If A,B are subintervals of I, and maxA = minB, then A ∪B is an interval, and

V f(A∪B) = V f(A)+V f(B) in particular, if a < c < b, a, b ∈ I thenV f([a, b]) = V f([a, c])+V f([c, b]).

Proof. Let c = maxA = minB. To compute the variations we may work with subdivisions of A ∪B
that contain the point c; if {x0, . . . , xm−1, c} is a subdivision of A and {c, y1, . . . , yn} is a subdivision of
B then the union {x0, . . . , xm−1, c, y1, . . . , yn} is a subdivision of A ∪B so that

m−1
∑

k=0

|f(xk)− f(xk−1)|+ |f(c)− f(xm−1)|+ |f(y1)− f(c)|+
n
∑

l=2

|f(yl − f(yl−1)| ≤ V f(A ∪B),

and taking suprema of the left–hand side we get (1.1.1):

V f(A) + V f(B) ≤ V f(A ∪B);

but we also have
m−1
∑

k=0

|f(xk)− f(xk−1)|+ |f(c)− f(xm−1)|+ |f(y1)− f(c)|+
n
∑

l=2

|f(yl − f(yl−1)| ≤ V f(A) + V f(B),

and again taking suprema of the left–hand side we get the reverse inequality. �

Proposition. Let I be an interval of R, and let f : I → K be a function. The following are
equivalent:

(i) The function f is locally of bounded variation, that is, there is an increasing S : I → R such
that |f(x2)− f(x1)| ≤ S(x2)− S(x1) for x1 < x2, x1, x2 ∈ I.

(ii) For every compact subinterval [a, b] of I the total variation V f([a, b]) of f on [a, b] is finite.

Moreover S may be taken bounded if an only if V f(I) <∞.

Proof. That (i) implies (ii) has been observed above: V f([a, b]) ≤ S(b)− S(a). (ii) implies(i). Fix a
point c ∈ I and define T : I → R by T (x) = V f([c, x]) for x ≥ c, T (x) = −V f([x, c]) for x < c (T = Tcf
is the total variation function of f , with initial point c; in the case of continuous curves, T is exactly the
curvilinear abscissa; one can also pick c = inf I for functions of globally bounded variation). It is easy to
see that:

if x1 < x2, with x1, x2 ∈ I, then T (x2)− T (x1) = V f([x1, x2]);
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(one has to consider some cases; if c ≤ x1 < x2 then we have, by the lemma, V f([c, x2]) = V f([c, x1]) +
V f(x1, x2)); if x1 ≤ c ≤ x2 we have V f([x1, x2]) = V f([x1, c]) + V f([c, x2]), etc). Then T controls the
variation of f :

(**) T (x2)− T (x1) = V f([x1, x2]) ≥ |f(x2)− f(x1)|.
The assertion on globally bounded variation is easy. �

8.3.2. Continuity of the variation function. Notice that formulae (*) and (**) above imply that if S
is any increasing function that controls the variation of f , then S controls also the variation of T , that is
T (x2)− T (x1) ≤ S(x2)− S(x1). Some other interesting properties of T are investigated in the following
proposition.

Proposition. Let f : I → K be of locally bounded variation, and let T = Tcf : I → R the variation
function of f of initial point c. Then, if a is in the interior of I we have

T (a+) = T (a) + |f(a)− f(a+)|; T (a) = T (a−) + |f(a)− f(a−)|;
in particular T is left/right continuous at a iff f is left/right continuous at a.

Proof. Given ε > 0 there is δ > 0 such that if x ∈]a, a+δ] then T (x)−T (a+) ≤ ε and |f(x)−f(a+)| ≤
ε. Pick next a subdivision {a, x1, . . . , xm = x} of [a, x], with x ∈]a, a+ δ], such that

T (x)− T (a)− ε = V f([a, x])− ε ≤ |f(x1)− f(a)|+
m
∑

k=2

|f(xk)− f(xk−1)| ≤

|f(x1)− f(a)|+ T (x)− T (x1) ≤ |f(x1)− f(a)|+ T (x)− T (a+) + T (a+)− T (x1) ≤
|f(x1)− f(a)|+ ε ≤ |f(x1)− f(a+) + f(a+)− f(a)|+ ε ≤ |f(a+)− f(a)|+ 2ε;

the last two inequalities because x1 ∈]a, a + δ]. We have proved that given ε > 0 there is δ > 0
such that for every x ∈]a, a + δ] we have T (x) − T (a) ≤ |f(a+) − f(a)| + 3ε; letting x → a+ we get
T (a+)−T (a) ≤ |f(a+)−f(a)|+3ε, so that T (a+)−T (a) ≤ |f(a+)−f(a)|; since |f(x)−f(a)| ≤ T (x)−T (a)
we get also |f(a+)− f(a)| ≤ T (a+)− T (a), and finally

T (a+) = T (a) + |f(a+)− f(a)|;
in much the same way we get T (a) = T (a−) + |f(a)− f(a−)|. �

8.3.3. Essential variation and point variation. Unless f ∈ BVloc(I) is continuous, the variation is not
finitely additive on the interval algebra of I: if a < c < b, a, b ∈ I then V f([a, b]) = V f([a, c])+V f([c, b]),
as seen in 8.3.1; now V f([a, c]) = V f([a, c[) + |f(c)− f(c−)| and V f([c, b]) = |f(c)− f(c+)|+ V f(]c, b]),
as seen in the previous proposition, so that

V f([a, b])−(V f([a, c[)+V f([c, b])) = |f(c)−f(c−)|; V f([a, b])−(V f([a, c])+V f(]c, b])) = |f(c)−f(c+)|.
But if f is continuous then the variation is a premeasure on the interval algebra, the Radon–Stieltjes
premeasure of its total variation function T = Tcf , as is immediate to see. And the variation is also a
premeasure on the algebra of finite disjoint union of subintervals of I whose extremes are in the set C
of points of continuity of f . We call this measure the point variation measure of f , and we denote it by
pµf .

We remarked in 8.2.3 that every function f : I → K of locally bounded variation gives a locally
finite Radon measure µf = df , and that this measure depends only on left and right limits of f , and is
insensible to the values of f on its points of discontinuity. Accordingly, the total variation of this measure
must depend only on left and right limits of f . On the other hand the variation V f([a, b]) introduced in
the previous sections depends strongly on all values of f , including those on discontinuity points, and we
won’t have in general V f(J) = |µf |(J), not even for intervals with extremes at points of continuity of f ,
as the following trivial example shows:

Exercise 8.3.1. For f : R → R the characteristic function of {0} find

T (x) = T−∞(x) = V f(]−∞, x]),

write f as the difference of two increasing functions A and B and describe µf , |µf | and pµf .

Solution. T (x) = 0 for x < 0, T (0) = 1, T (x) = 2 for x > 0; we have A = (T + f)/2 = χ[0,∞[,
B = (T − f)/2 = χ]0,∞[, µA = µB = δ0, unit mass at 0, and the measure is µf = δ0 − δ0 = 0(= |µf |).
The point variation measure is pµf = µA + µB = µT = 2δ0. �
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Also, |µf | is a measure, and V f is not a measure on the algebra of plurintervals contained in I, unless
f is continuous, as seen above. The measure |µf | is the essential variation of f .

We now compare the measures pµf and |µf |:
Proposition. Let I be an interval of R, and let f ∈ BVloc(I). For every x ∈ I let

w(x) = |f(x−)− f(x)|+ |f(x)− f(x+)| − |f(x+)− f(x−)|;
(notice that w(x) ≥ 0 for every x ∈ I, and w(x) = 0 if and only if f(x) belongs to the segment
[f(x−), f(x+)]). Let µw be the purely atomic measure µw(E) =

∑

x∈E w(x). Then for every Borel
subset E of I we have

pµf (E) = µw(E) + |µf |(E)|.
Consequently the point variation and essential variation of f coincide if and only if f(x) ∈ [f(x−), f(x+)]
for every x ∈ I.

The proof is in exercise ??.??. Notice only that if f is right continuous, or left continuous, or midpoint
continuous then the essential variation and the point variation coincide.

Exercise 8.3.2. Find a formula for T (x) = T0f(x), where f(x) = x− [x] is the fractional part of x,
and plot the graph of T . Write the measure µf as a positive and negative part, find a Hahn decomposition
for µf . Is the measure defined on all of B1 = B(R)?

Solution. The function T will be right continuous, and with a jump of 1 at every integer, since f is
right–continuous with a jump of −1 at every integer. For x ∈ [0, 1[ we have f(x) = x, and for x ∈ [n, n+1[,
n ∈ Z, we have of course T (x) = T (n) + (x − n); and T (n) = 2n, as easily seen by induction. Then
a formula which describes T is for instance T (x) = x + [x] (the plot, very easy, is omitted). We have
A(x) = (T + f)(x)/2 = x, B(x) = (T − f)(x)/2 = [x]. The measure µA = µ+ is the Lebesgue measure,
µB = µ− =

∑

n∈Z δn, with δn the Dirac measure at n. A Hahn decomposition is RrZ, positive set, and
Q = Z, negative set. Since µA(R) = ∞ and µB(R) = ∞, µ cannot be defined on B1. We have

µ(E) = µA(E)− µB(E) = m(E)− Card(E ∩ Z) for every bounded Borel set E ∈ B∗1 .
�

Example 8.3.3. Since functions of bounded variation are differentiable a.e., a nowhere differentiable
function will have infinite variation on every non degenerate interval; in particular, continuous nowhere
differentiable functions are of this sort.

8.3.4. Functions of class C1. If a function f is of class C1 on a compact interval [a, b], then we have
the formula

V f([a, b]) =

ˆ b

a

|f ′(t)| dt

(formula for the length of a curve, see e.g Analisi Due, 3.4.1). It follows that if f ∈ C1(I), with I not
necessarily compact, then

V f(I) =

ˆ

I

|f ′(t)| dt (finite or infinite).

In particular an f ∈ C1(I) is always in BVloc(I), and is in BV (I) iff f ′ ∈ L1(I).

Exercise 8.3.4. Prove that f(x) = sinx/x is not in BV (R) in two ways: by directly exhibiting a
sequence x0 < x1 < . . . such that

∑∞
k=1 |f(xk)− f(xk−1)| = ∞, and by proving that f ′ /∈ L1(R).

Prove that g(x) = sin2 x/x2 is in BV (R) in two ways: by proving that g′ ∈ L1(R), and also in the
following way: between two consecutive zeros ak < ak+1 the function g has a unique local maximum
g(ck); express V g(R) in terms of a series built with the g(ck), and prove that this series converges (do
NOT try to compute explicitly neither ck nor g(ck)!).

Solution. The obvious attempt is to take x0 = 0 and xk = π/2+kπ; we have f(xk) = (−1)k/(π/2+kπ)
and

m
∑

k=1

|f(xk)− f(xk−1)| ≥
m
∑

k=2

∣

∣

∣

∣

(−1)k

π/2 + kπ
− (−1)k−1

π/2 + (k − 1)π

∣

∣

∣

∣

=
m
∑

k=2

(

1

π/2 + kπ
+

1

π/2 + (k − 1)π

)

≥

≥
m
∑

k=2

1

π/2 + kπ
;
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clearly the last sum diverges to ∞ as m→ ∞.
For x 6= 0 we have

f ′(x) =
x cosx− sinx

x2
=

cosx

x
− sinx

x2
;

and sinx/x2 ∈ L1([1,∞[), but cosx/x /∈ L1([1,∞[).
We have, for x 6= 0:

g′(x) =
2 sinx cosxx2 − 2x sin2 x

x4
=

sin(2x)

x2
− 2

sin2 x

x3
,

a function that is clearly in L1(R r [−1, 1]), hence in L1(R), being continuous.
The zeroes of g are clearly ak = k π, k ∈ Z r {0}. We consider the function on [0,∞[ (it is an even

function). Writing

g′(x) = 2
sinx

x3
(x cos x− sinx),

the sign of the derivative is given by sinx(x cos x−sinx); in ]kπ, (k+1)π[ the derivative is zero at only one
point, the solution ck in this interval of the equation cotanx = 1/x (see at the end for a more detailed
proof); since f(kπ) = f((k + 1)π) = 0 and f(x) > 0 in the interior, ck is the only point of absolute
maximum of f in the interval, and f is increasing in [kπ, ck] and decreasing in [ck, (k + 1)π]. In every
interval [kπ, (k + 1)π] we then have V g([kπ, (k + 1)π]) = 2g(ck); and V g([0, π]) = 1 so that

V g([0,∞[) = 1 +

∞
∑

k=1

2g(ck);

now we have g(ck) = sin2 ck/(ck)
2 ≤ 1/(ck)

2 ≤ 1/(k2π2). Then

V g(R) = 2V g([0,∞[) = 2 +

∞
∑

k=1

4 g(ck) ≤ 2 +
4

π2

∞
∑

k=1

1

k2
= 2 +

2

3
.

Π

3 Π

2
2 Π 5 Π

2
3 Π

7 Π

2

Figure 5. Plot of g (not on scale), with 5π/6 < x < 5π.

Remark. Let’s give a more precise study of the sign of sinx(x cos x − sinx) in ]kπ; (k + 1)π[; since
sin2 x > 0 in this interval we have, dividing both sides by x sin2 x:

sinx(x cos x− sinx) > 0 ⇐⇒ cotanx > 1/x x ∈]kπ, (k + 1)π[;

it is plain that the set of these x is ]kπ, ck[, with kπ < ck < π/2 + kπ.
An ingenious application of methods of complex analysis, using fomulae related to the zeroes of

cotan z − 1/z, allows the exact computation of V g, which if I remember correctly is e2 − 5.

�

Exercise 8.3.5. (Not entirely easy) All functions considered here are real valued. Prove that a
function f belongs to L2([0, 1]) if and only if f ∈ L1([0, 1]), and there is an increasing function g : [0, 1] →
R such that, for 0 ≤ x1 < x2 ≤ 1:

∣

∣

∣

∣

ˆ x2

x1

f(t) dt

∣

∣

∣

∣

2

≤ (g(x2)− g(x1)) (x2 − x1)

(for the necessity part, use Cauchy–Schwarz inequality. . . ).
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Solution. Put x1 = x and x2 = x+ h with h > 0; dividing both sides of the inequality by h2 we get
∣

∣

∣

∣

∣

1

h

ˆ x+h

x

f(t) dt

∣

∣

∣

∣

∣

2

≤ g(x+ h)− g(x)

h
;

as h→ 0+ we have that
´ x+h

x
f(t) dt/h converges for a.e x ∈ [0, 1] to f(x), so the left hand–side converges

a.e. to (f(x))2, while the right hand side tends a.e to the derivative g′(x) of g. Then

(f(x))2 ≤ g′(x) for a.e. x ∈ [0, 1];

integrating we get
ˆ 1

0

(f(x))2 dx ≤
ˆ 1

0

g′(x) dx ≤ g(1)− g(0).

Then f ∈ L2([0, 1]). Conversely, assuming f ∈ L2([0, 1] a natural candidate for g is g(x) =
´ x

0 (f(t))
2 dt. To get the inequality we apply the Cauchy–Schwarz inequality to functions f and 1 on

the interval [x1, x2]:
∣

∣

∣

∣

ˆ x2

x1

f(t) dt

∣

∣

∣

∣

≤
ˆ x2

x1

|f | ≤
(
ˆ x2

x1

f2

)1/2

(x2 − x1)
1/2;

squaring both sides we get the required inequality. �

Solution. (Of exercise 7.2.7) If X is the disjoint union of A,B with A null for ν and B null for µ then,
given a partition (Aj)1≤j≤m if A into measurable sets, and a partition (Bk)1≤k≤n of B into measurable
sets we have that the join of these partitions is a partition of X so that:

m
∑

j=1

|(µ+ ν)(Aj)|+
n
∑

k=1

|(µ+ ν)(Bk)| ≤ |µ+ ν|(X);

but since ν(Aj) = µ(Bk) = 0 the left–hand side is

m
∑

j=1

|µ(Aj)|+
n
∑

k=1

|ν(Bk)|;

and the supremum of these sums as the partitions vary is |µ|(A) + |ν|(B) = |µ|(X) + |ν|(X); we have
proved that |µ|(X)+ |ν|(X) ≤ |µ+ ν|(X), and since the reverse inequality is always true we get equality.
The proof just given for X is clearly adaptable to any E ∈ M.

(ii) Since λj ≪ µ and νj ⊥ µ we also have λj ⊥ νj , so that ‖µj‖ = ‖λj‖+ ‖νj‖, by what just proved.
Then convergence of the series

∑∞
j=0 ‖µj‖ is equivalent to the convergence of the two series

∑∞
j=0 ‖λj‖

and
∑∞

j=0 ‖νj‖; and since d|λj | = |ρj | dµ and ‖λj‖ = ‖ρj‖1, everything follows easily. �

8.3.5. More exercises.

Exercise 8.3.6. Given f ∈ L1
loc(R

n) we have defined

Arf(x) =

 

B(x,r]

f(y) dy,

Prove that if f ∈ L1(Rn) then Arf ∈ L1(Rn), and compute
´

Rn Arf(x) dx in terms of
´

Rn f (hint: write

Arf(x) =
´

Rn f(x+ y)χrB(y) dy/m(rB) and use Fubini–Tonelli’s theorem. . . )

Solution. Consider the function F : Rn × Rn → K given by (x, y) 7→ f(x + y)χrB(y); if f is Borel
measurable this function is Borel measurable as a function of Rn×Rn into K ((x, y) 7→ x+y is continuous,
hence measurable, and so (x, y) 7→ f(x+y) is measurable if f is Borel measurable; clearly (x, y) 7→ χrB(y)
is measurable; and even if f is only Lebesgue measurable still the function F is Lebesgue measurable,
essentially because the inverse image under addition of a set of n−dimensional measure zero in Rn is a
set of 2n−dimensional measure zero in Rn × Rn). We prove that F ∈ L1(Rn × Rn). In fact, integrating
first in the x−variable

ˆ

Rn

(
ˆ

Rn

|F (x, y)| dx
)

dy =

ˆ

Rn

χrB(y)

(
ˆ

Rn

|F (x, y)| dx
)

=

ˆ

Rn

χrB(y)

(
ˆ

Rn

|f(x+ y)| dx
)

dy =

ˆ

Rn

‖f‖1χrB(y) dy = m(rB) ‖f‖1 <∞.



120

By Tonelli’s theorem F belongs to L1(Rn × Rn). Then Fubini’s theorem says that x 7→
´

Rn F (x, y) dy,

which is exactly m(rB)Arf(x), defines a.e (in our case everywhere) a function belonging to L1(Rn) (thus
proving that Arf ∈ L1(Rn)) and that

ˆ

Rn×Rn

F (x, y) dxdy =

ˆ

Rn

(
ˆ

Rn

F (x, y) dy

)

dx

(

= m(rB)

ˆ

Rn

Arf(x) dx

)

;

exchanging the order of integration in the integral of F we repeat the above calculation without the
absolute value on f , and get

ˆ

Rn×Rn

F (x, y) dxdy = m(rB)

ˆ

Rn

f(u) du;

since this equals m(rB)
´

Rn Arf(x) dx we get
ˆ

Rn

Arf(x) dx =

ˆ

Rn

f(u) du.

�

Exercise 8.3.7. Let F : R → R be defined by

F (x) =
1

(1− x)2
if x < 0; F (x) = sinx if 0 ≤ x < 2π; F (x) = −(x− 2π)2 if 2π ≤ x.

(i) Plot the graph of F .
(ii) Show that f has bounded variation on ]−∞, x], for every x ∈ R; describe TF (x) = V F (]−∞, x]);

plot it, and plot two increasing function A, B with A−B = F .
(iii) Prove that there is a unique signed measure ν : B1 → R̃ such that ν(]a, b]) = F (b) − F (a) for

every a, b ∈ R, a < b.
(iv) Find a Hahn decomposition for ν.
(v) Find the Radon– Nikodym decomposition of ν with respect to Lebesgue measure m.
(vi) Compute

´

R
u(x) dν(x), where u(x) is so defined: u(0) = 1/2, u(π) = 1, u(2π) = 3; u(x) = 1 for

x < 0, u(x) = 3 for 0 < x < π, u(x) = −1 for π < x < 2π, u(x) = 2 for 2π < x < 3π, u(x) = 0
for x ≥ 3π.

Solution. (i) OK.

Π

2

3 Π

2
2 Π

1

Figure 6. Graph of F .

(ii) First notice that since F is right continuous, and also left continuous but at x = 0, with a jump
σF (0) = F (0) − F (0−) = −1, T will be everywhere continuous but at 0, where will be right continuous
with a jump of 1. We have T (x) = 1/(1 − x)2 for x ≤ 0 (for monotone functions, the variation on an
interval is the absolute value of the increment), and hence T (0−) = 1; then T (0) = T (0+) = 2; in [0, π/2]
the function F is increasing, so that T (x) = T (0) + sinx − sin 0 = 2 + sinx. In [π/2, 3π/2] the function
F is decreasing, and hence T (x) = T (π/2) + F (π/2)− F (x) = 3 + 1 − sinx = 4 − sinx; in [3π/2, 2π] F
increases again, and T (x) = T (3π/2) + sinx − sin(3π/2) = 6 + sinx. Finally in [2π,+∞[ the function
F is decreasing and we then have T (x) = T (2π) + F ((2π) − F (x) = 6 + (x − 2π)2. We now compute
A = (T + F )/2:

A(x) =
1

(1− x)2
x ∈]−∞, 0[; A(x) = 1 + sinx x ∈ [0, π/2]; A(x) = 2 x ∈ [π/2, 3π/2];

A(x) = 3 + sinx x ∈ [3π/2, 2π]; A(x) = 3 x ∈ [2π,∞[.

Computation of B = (T − F )/2:

B(x) = 0 x ∈]−∞, 0[; B(x) = 1 x ∈ [0, π/2]; B(x) = 2− sinx x ∈ [π/2, 3π/2];
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B(x) = 3 x ∈ [3π/2, 2π];B(x) = 3 + (x− 2π)2 x ∈ [2π,∞[.

(iii) We see that A is bounded; hence the measure µA will be finite, µA(R) = A(∞) − A(−∞) = 3,
and ν = µA − µB can be defined.

Figure 7. Graph of T .

Π

����

2
Π 3 Π

��������

2
2 Π

1

2

3

Π

����

2
Π 3 Π
��������

2
2 Π

1

2

3

Figure 8. Graphs of A, B; B, on the right, has a jump of 1 at 0.

(iv) A set is positive for ν where A is increasing, negative where B is increasing; it is easy to
see that P =] − ∞, 0[∪]0, π/2] ∪ [3π/2, 2π[,is a positive set for ν, its complement Q = R r P =
{0}∪]π/2, 3π/2[∪[2π,∞[ is a negative set.

(v) For the absolutely continuous part we compute the derivative F ′, which exists everywhere but at
x = 0, 2π; this derivative is also continuous where it exists:

F ′(x) =
2

(1 − x)3
x ∈]−∞, 0[; F ′(x) = cosx x ∈]0, 2π[; F ′(x) = −2(x− 2π) x ∈]2π,∞[;

Then the absolutely continuous part is dλ = F ′(x) dm; notice that f(x) = F ′(x) is integrable in the
extended sense (the integral of the positive part is clearly finite). The singular part is −δ. A pair of
disjoint Borel sets which support these two measures is, for instance, R r {0} for λ, and {0} for the
singular part.

(vi) Finally the integral is:

ˆ

R

u(x) dλ(x) +

ˆ

R

u(x) d(−δ(x)) =
ˆ

Rr{0}

u(x)F ′(x) dm(x) − u(0) =
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− 1

2
+

ˆ 0

−∞

2

(1− x)3
dx+

ˆ π

0

3 cosx dx +

ˆ 2π

π

(−1) cosx dx +

ˆ 3π

2π

2(−2(x− 2π)) dx =

− 1

2
+ 1 + 0 + 0− 2π2 =

1

2
− 2π2.

�

8.4. Absolutely continuous functions. A function F : I → K where I is an interval of R is said
to be locally absolutely continuous in I if F ′(x) exists a.e. in I, it is in L1

loc(I), and for every pair a, b ∈ I

we have F (b) − F (a) =
´ b

a
F ′(x) dx; it is said to be absolutely continuous on I if it is locally absolutely

continuous, and moreover F ′ ∈ L1(I). We denote by ACloc(I) the set of locally absolutely continuous
functions on I, by AC(I) the subset of globally absolutely continuous functions on I; plainly these are
vector spaces of functions. As a reminder:

locally absolutely continuous functions are those a.e. differentiable functions which are the integral
of their derivative.

They clearly are continuous functions, and may alternatively be described as those functions F : I →
K of the form

F (x) = F (c) +

ˆ x

c

f(t) dt,

for some c ∈ I and some f ∈ L1
loc(I) (or f ∈ L1(I) in the case of globally a.c. functions).

Remark. The space AC(I) is, in Functional Analysis, denoted W 1,1(I) and similarly ACloc(I) is

denoted W 1,1
loc (I) (Sobolev spaces).

Functions in ACloc(I) are those functions in BVloc(I) whose associated measure is absolutely contin-
uous with respect to Lebesgue measure:

. For every interval I we have ACloc(I) ⊆ BVloc(I) and AC(I) = BV (I) ∩ ACloc(I). Moreover for
every function F ∈ AC(I) we have

V F (I) =

ˆ

I

|F ′(x)| dx = ‖F ′‖1.

Proof. Clearly the second statement implies the first. Given any subdivision x0 < · · · < xm of I we
have

m
∑

k=0

|F (xk)− F (xk−1)| ≤
m
∑

k=0

∣

∣

∣

∣

∣

ˆ xk

xk−1

F ′(x) dx

∣

∣

∣

∣

∣

≤
m
∑

k=0

ˆ xk

xk−1

|F ′(x)| dx =

ˆ xm

x0

|F ′(x)| dx ≤
ˆ

I

|F ′(x)| dx.

then:

V F (I) ≤
ˆ

I

|F ′(x)| dx;

this proves that F is of bounded variation. For the opposite inequality recall that if dλ = F ′(x) dx with
F ′ ∈ L1(I) then d|λ| = |F ′(x)| dx (7.2.1); and by 8.3.3, since F is continuous its point variation and
essential variation coincide. �

8.4.1. The (ε, δ) condition for absolute continuity. We have seen that if µ : M → [0,∞] is a positive
measure, and ν : M → K is a finite measure, then the condition ν ≪ µ, meaning that µ(E) = 0 implies
ν(E) = 0, may also be expressed as: given ε > 0 there is δ > 0 such that µ(E) ≤ δ implies |ν(E)| ≤ ε
(7.2.9 or 7.1.9). This condition may be used to characterize locally absolutely continuous functions among
continuous functions, with no differentiability involved. A sequence ([aj , bj ])1≤j≤n of compact intervals
is said to be non overlapping, or almost disjoint, if the interiors of two distinct intervals are disjoint,
equivalently two distinct intervals intersect on a set of Lebesgue measure 0.

Definition. Let f : I → K be a function, and let [a, b] be a compact subinterval of I. We say that
f satisfies the ε− δ condition for absolute continuity on [a, b] (briefly: satisfies the (ε, δ)AC condition on
[a, b]) if for every ε > 0 there is δ > 0 such that for every sequence ([aj , bj ])1≤j≤n of non overlapping
subintervals of [a, b], with

∑n
j=1(bj − aj) ≤ ε, we have

∑n
j=1 |f(bj)− f(aj)| ≤ ε.

It is clear that functions that satisy the (ε, δ)AC condition are continuous, and are a vector space of
functions. Let’s prove :

Lemma. Let f : [a, b] → K be a function. The following are equivalent:
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(i) f satisfies the (ε, δ)AC condition on [a, b].
(ii) For every ε > 0 there is a δ > 0 such that for every sequence ([aj , bj])1≤j≤n of non overlapping

subintervals of [a, b], with
∑n

j=1(bj − aj) ≤ δ, we have
∑n

j=1 V f([aj , bj]) ≤ ε.

In other words, if (i) holds, then the total variation function T (x) = V f([a, x]) of f satisfies the (ε, δ)AC
condition; in particular this function is continuous, hence bounded on [a, b].

Proof. Given ε > 0 let ([aj , bj ])1≤j≤n be a sequence of non overlapping intervals such that
∑n

j=1(bj−
aj) ≤ δ. For every j ∈ {1, . . . , n} let aj = x(j, 0) < x(j, 1) < · · · < x(j, n(j)) = bj a subdivision of [aj , bj].
Then [x(j, k − 1), x(j, k)]1≤j≤n, 1≤k≤n(j) is a sequence of non overlapping intervals with

n
∑

j=1





n(j)
∑

k=1

(x(j, k) − x(j, k − 1))



 =

n
∑

j=1

(bj − aj) ≤ δ hence

n
∑

j=1





n(j)
∑

k=1

|f(x(j, k)) − f(x(j, k − 1))|



 ≤ ε.

Taking suprema as x(j, k)0≤k≤n(j) varies in the set of all subdivisions of [aj , bj ], for every j, we get

n
∑

j=1

V f([aj, bj ]) ≤ ε.

Since V f([aj , bj]) ≥ |f(bj)− f(aj)|, (ii) implies (i) is trivial.
�

8.4.2. Characterization of local absolute continuity.

Proposition. Let I be an interval of R and let F : I → K be a function. The following are
equivalent:

(i) On every compact subinterval of I the function F verifies the (ε, δ)AC condition.
(ii) F is locally absolutely continuous, that is F ′ exists a.e on I, and

F (b)− F (a) =

ˆ b

a

F ′(x) dx for every a, b ∈ I.

Proof. We can of course assume that I is compact. (i) implies (ii): by lemma 8.4.1 the function F
has locally bounded variation and its total variation function is continuous; we prove that if M ⊆ I has
zero Lebesgue measure then µT (M)(= |µF |(M)) = 0; this proves µF ≪ m. Given ε > 0, let δ > 0 be
as in the (ε, δ)AC definition for T . Since M has m−measure zero, it can be covered by a countable set
(Ij)j∈N of subintervals of I, which may be assumed pairwise disjoint, such that

∑∞
j=0(bj −aj) ≤ δ, where

aj = inf Ij and bj = sup Ij . Then we have, for every n ∈ N,
∑n

j=0(T (bj)− T (aj)) ≤ ε because for every

n the sequence ([aj , bj ])0≤j≤n consists of non overlapping intervals whose lengths have a sum less than δ,
hence also

∑∞
j=0(T (bj)−T (aj)) ≤ ε; this means that µT (M) = 0, as desired. (ii) implies (i): the formula

ν(E) =
´

E F
′(x) dx defines a finite measure on the Borel subsets of I; apply 7.2.9. �

Exercise 8.4.1. Prove that if g : J → K is Lipschitz continuous, then g ∈ ACloc(J), and |g′(x)| ≤ k,
if k is a Lipschitz constant for g.

Let I be an interval of R, let F : I → R be in ACloc(I), and let g : F (I) → K be Lipschitz continuous.
Prove that g ◦ F ∈ ACloc(I) (hint: use the (ε, δ)AC condition).

Exercise 8.4.2. The identity F (x) = x of R verifies a global (ε, δ)AC condition (simply with δ = ε)
but its derivative, the constant 1, is not in L1(R); that is F is in ACloc(R) r AC(R). This does not
happen on bounded intervals. Prove that if the interval I is bounded then F : I → K is in AC(I) if and
only if it verifies a global (ε, δ)AC condition on I.

Solution. Clearly F (x) = F (c) +
´ x

c f(t) dt with f ∈ L1
loc(I) and we have to prove that if F verifies

a global (ε, δ)AC condition on I then f ∈ L1(I). From lemma 8.4.1 we know that the total variation
function TcF (x) =

´ x

c
|f(t)| dt verifies the same condition, in particular then it is uniformly continuous on

I. Then Tc is bounded on I and (theorem on extension of uniformly continuous functions) Tc extends to
a continuous function on the compact closure Ī of I) and this clearly implies that f ∈ L1(I) (

´

I
|f(t)| dt =

Tc(sup I)− Tc(inf I)). �
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8.5. The devil’s staircase. One wonders if the following might be true: let F be continuous
of (locally) bounded variation. Is F (locally) absolutely continuous? The simple minded examples of
monotone non absolutely continuous functions have jump discontinuities. Nevertheless this conjecture is
false. We describe here an example. Pick a strictly decreasing sequence 1 = δ0 > δ1 > . . . , with limit 0.
We construct a decreasing sequence [0, 1] = E0 ⊇ E1 ⊇ . . . of compact sets, withm(En) = δn, in this way:
remove from [0, 1] = E0 an open interval centered at 1/2, in such a way that the two remaining intervals,
I(0) < I(1), have the same length δ1/2; this is clearly possible, since δ1 < δ0. If E1 = I(0)∪I(1), then E1

is compact, and m(E1) = δ1; next, from each interval I(0), I(1) remove an open interval with the same
center as I(0) and I(1), in such a way that calling I(0, 0) and I(0, 1) the intervals obtained from I(0), and
I(1, 0) and I(1, 1) those obtained from I(1), each has length δ2/4; so that E2, union of these four compact
intervals, has length m(E2) = δ2. It is clear how the induction proceeds: we have En =

⋃

c∈{0,1}n I(c),

union of 2n disjoint compact intervals each of length δn/2
n so thatm(En) = δn; from each of the intervals

I(c) we remove an open interval with the same center as I(c), of length 2rn such that the two remaining
intervals I(c, 0) < I(c, 1) have both length δn+1/2

n+1 (we take rn = (δn − δn+1)/2
n+1); and En+1 is the

union of all these 2n+1 intervals. Clearly E =
⋂∞

n=0En is non empty, as the intersection of a decreasing
sequence of non empty compact sets, and m(E) = limn→∞m(En) = 0; we might also prove that |E| = c

and that E is perfect, i.e it has no isolated point (see 8.5.1). But we are interested in another construction.
For every n let gn = χEn

/δn, and put

fn(x) =

ˆ x

0

gn(t) dt.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 9. The devil’s staircase (here δn = (2/3)n).

Then fn is increasing, fn(x) = 0 for x ≤ 0 and fn(x) = 1 for x ≥ 1. Notice that fn is constant on
each open interval that is a connected component of R r En; even more, if A is one such interval, then
fn(x) = fn+1(x) for every x ∈ A. The key observation is that for every c ∈ {0, 1}n we have

ˆ

I(c)

gn(t) dt =

ˆ

I(c)

gn+1(t) dt =
1

2n
in fact

1

δn

δn
2n

=
1

δn+1

(

δn+1

2n+1
+
δn+1

2n+1

)

=
1

2n
,

so that if p is the cardinality of the set J = {c ∈ {0, 1}n : I(c) < A} we have, for every x ∈ A:

fn(x) =
∑

c∈J

ˆ

I(c)

gn(x) dx =
p

2n
; fn+1(x) =

∑

c∈J

ˆ

I(c)

gn+1(x) dx =
p

2n
.

And if x ∈ I(c) for some c ∈ {0, 1}n then fn and fn+1 coincide on the interval of RrEn to the immediate
left of I(c), in particular fn(min I(c)) = fn+1(min I(c)), so that

|fn(x)−fn+1(x)| =
∣

∣

∣

∣

∣

ˆ x

min I(c)

(gn(t)− gn+1(t)) dt

∣

∣

∣

∣

∣

≤
ˆ x

min I(c)

|gn(t)−gn+1(t)| dt ≤
ˆ

I(c)

|gn(t)−gn+1(t)| dt

for every x ∈ I(c). The computation is easy:
ˆ

I(c)

|gn(t)− gn+1(t)| dt =
ˆ

I(c,0)

(

1

δn+1
− 1

δn

)

dt+

ˆ

I(c,1)

(

1

δn+1
− 1

δn

)

dt+

ˆ

I(c)r(I(c,0)∪I(c,1))

dt

δn
=
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2δn+1

2n+1

(

1

δn+1
− 1

δn

)

+
1

δn

(

δn
2n

− 2δn+1

2n+1

)

=
1

2n

(

2− 2
δn+1

δn

)

<
1

2n−1
.

Then ‖fn+1 − fn‖∞ ≤ 1/2n−1 so that the sequence fn is of finite variation in the uniform norm, and
hence converges uniformly to a continuous increasing function f which is zero for x ≤ 0 and 1 for x ≥ 1.
On RrE the derivative of this function is zero: if x /∈ E, and n is the smallest integer for which x /∈ En,
then x belongs to an open interval A disjoint from Ek for all k ≥ n, and all functions fk, k ≥ n and f
have the same constant value on A. Then f ′(x) = 0 for every x ∈ A. Since m(E) = 0 we have f ′(x) = 0
for a.e. x ∈ R. The positive finite measure µf is supported by the set E, and we have µf ⊥ m.

With the sequence δn = (2/3)n the set E obtained is the celebrated Cantor’s ternary set. The
function f is the Cantor’s function; its graph is called devil’s staircase: f is a function that does its
growth only on a set of length zero! Notice that f([0, 1]r E) is a countable set: in fact [0, 1]r E is the
union of countably many open intervals, on each of which f is constant. It follows that the compact set
f(E) has Lebesgue measure 1: f is a continuous monotone function which maps a set of measure 0 onto
a set of measure 1.

It can be proved that every set of strictly positive measure contains a non measurable subset. If
B ⊆ f(E) is non measurable, then A = E ∩ f←(B) is a Lebesgue measurable subset of R (it is a subset
of a null set for m, so it is measurable) whose image B is non measurable.

Exercise 8.5.1. Prove that in fact f(E) = [0, 1]. Prove that E has the continuum as cardinality,
and that moreover no point of E is isolated.

Solution. Clearly f([0, 1]) = f(E)∪f([0, 1]rE) = [0, 1]; if A is one of the open intervals that compose
[0, 1]r E its extremes are in E, and f is constant on A, so that f(A) ⊆ f(E). Then |E| ≥ |f(E)| = c,
so that |E| = c. But a direct argument is perhaps more convincing: let D = {0, 1}{1,2,3,...} be the set of
all sequences of {0, 1}; clearly |D| = c = |R|. There is an obvious bijective map ϕ : D → E: for every
c ∈ D consider the restriction c|n of c to {1, . . . , n}; then (Ic|n)n≥1 is a decreasing sequence of compact
intervals, of lengths m(Ic|n) = δn/2

n with limit 0, so that their intersection contains exactly one point,
which we call ϕ(c). Clearly this map is injective: if c, d ∈ D and c 6= d, let p be the smallest integer such
that c(p) 6= d(p), say c(p) = 0 and d(p) = 1; we have ϕ(c) ∈ Ic|p, ϕ(d) ∈ Id|p and the intervals Ic|p < Id|p
have distance 2rp−1 = (δp−1−δp)/2p−1, so that also ϕ(d)−ϕ(c) ≥ ((δp−1−δp)/2p−1. On the other hand,
if c|p = d|p then we have |ϕ(d)− ϕ(c)| ≤ δp/2

p, since for every n ≥ p the intervals Ic|n and Id|n are both
contained in Ic|p = Id|p, an interval of length δp/2

p, and so also ϕ(c), ϕ(d) are both in this interval. Then
no point of E is isolated: given ε > 0, pick p ≥ 1 such that δp/2

p < ε, and all infinitely many points
ϕ(d), with d|p = c|p will be in [ϕ(c)− ε, ϕ(c) + ε]. �

Remark. The set E has continuum cardinality and Lebesgue measure 0; all of its 2c subsets have
then measure 0. Knowing that B1 has cardinality c, this proves that there are Lebesgue measurable
subsets of R that are not Borel sets.

Exercise 8.5.2. With f the Cantor’s function, define g : [0, 1] → R by g(x) = x+ f(x). Then

(i) g induces a homeomorphism of [0, 1] onto [0, 2].
(ii) m(g(E)) = m(g([0, 1]r E)) = 1.

Let h : [0, 2] → [0, 1] be the inverse homeomorphism g−1 : [0, 2] → [0, 1]; as every set of strictly positive
measure, g(E) contains a non Lebesgue measurable subset B; if A = h(B), then χA ◦h : [0, 2] → R is not
Lebesgue measurable, although χA and h are both Lebesgue measurable (and h even continuous).

Having measure zero, clearly E contains no non–degenerate intervals. Since intervals are the con-
nected subsets of R, the connected components of E are the singletons. That is, E is a compact totally
disconnected set, one that contains no connected subset of more than one point. This feature can be
shared also by compact sets of positive measure, like e.g. the one constructed in 2.7.4. But we can repeat
the preceding construction with a decreasing sequence δn > δn+1 with limit δ > 0, since the proofs above
given for the topological properties of E do not depend on δ = 0, and prove that E is perfect and totally
disconnected: given ϕ(c) < ϕ(d), there is an interval of Rr E contained in ]ϕ(c), ϕ(d)[.

8.5.1. Continuous and discrete measures. For functions of locally bounded variation on R (or on an
interval I of R), F : I → K we denote by dF = dµF the measure µF ; we have already used this symbol for
positive measures when F is increasing. The only care to be observed is that we can write dF = F ′(x) dx
if and only if F is locally absolutely continuous. In all other cases dF is of the form dF = F ′(x) dx+ dν,
where ν is a measure singular with respect to Lebesgue measure dx. The function F ′(x) is in L1

loc(I)
and coincides a.e. with the classical derivative of F . The singular part can be further decomposed. Call
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continuous a locally finite Radon measure such that every singleton has zero measure, and call discrete
a measure of this form: µ(E) =

∑

x∈E c(x), equivalently µ(E) =
∑

x∈R c(x) δx(E), where c : R → K is
a function which is summable on every bounded subset E of R. Such a measure is supported by the
cozero–set of c, necessarily countable (its bounded parts are countable, since the sums over bounded sets
are finite), and hence singular with respect to any continuous measure, for which all countable sets are
null sets. For a function F ∈ BVloc(R) the discrete part of dF = µF is of course

∑

x∈R

(F (x+)− F (x−)) δx.

Sometimes the continuous part of a measure that is singular with respect to Lebesgue measure is
called the Cantor part of the measure; some authors call diffuse these measures.

8.5.2. Integration by parts. For increasing functions F,G : I → R we proved (see 5.1.6) that for a < b,
a, b ∈ I we have

ˆ

]a,b]

F (x−) dG(x) = F (b+)G(b+)− F (a+)G(a+)−
ˆ

]a,b]

G(x+) dF (x);

the bilinearity of this formula in F and G immediately implies that it holds also when F and G are of
locally bounded variation (for real F,G write F = A − B and G = C − B with A,B,C,D increasing
right continuous). Let us see some applications. Unless explicitly stated otherwise, functions of locally
bounded variation are taken right continuous.

Exercise 8.5.3. (The Abel–Dirichlet’s criterion for convergence of improper integrals) Let f ∈
L1
loc([0,∞[), and let g ∈ BV ([0,∞[). Assume that F (x) =

´ x

0
f(t) dt is bounded, and that limx→∞ g(x) =

0. Then

lim
x→∞

ˆ x

0

f(t) g(t) dt exists in K, in other words the generalized integral

ˆ ↑∞

0

f(t) g(t) dt is finite.

Solution. By the preceding formula (notice that F is continuous)
ˆ x

0

f(t) g(t) dt = F (x)g(x) −
ˆ x

0

F (t) dg(t);

now F is continuous and bounded, and hence is in L1(d|g|), so that limx→∞

´ x

0
F (t) dg(t) =

´

[0,∞[
F dg

exists finite (essentially dominated convergence: if xn is any sequence that diverges to ∞, the functions
F (t)χ[0,xn](t) sgn g(t) are dominated by ‖F‖∞, a constant which is in L1(d|g|) since d|g|([0,∞[) < ∞).
When x→ ∞, since F is bounded and g tends to 0 we get

lim
x→∞

ˆ x

0

f(t) g(t) dt = −
ˆ ∞

0

F (t) dg(t).

�

Exercise 8.5.4. Let f ∈ L1([0,∞[) be monotone. Prove that then limx→∞ xf(x) = 0.

Solution. Since f is monotone, limx→∞ f(x) exists in R̃; since f ∈ L1([0,∞[), this limit must be 0.
Then either f is positive and decreasing, or f is negative and increasing; by changing the sign we can
always assume the first case. Then f is of bounded variation on [0,∞[, with V f([0,∞[) = f(0); and

ˆ x

0

f(t) dt = f(x)x −
ˆ x

0

t df(t) = x f(x) +

ˆ x

0

t (−df(t));

since x f(x) ≥ 0 we have
´ x

0 t (−df(t)) ≤
´ x

0 f(t) dt; moreover x 7→
´ x

0 t (−df(t)), x 7→
´ x

0 f(t) dt are both

increasing, and by the hypothesis f ∈ L1([0,∞[) the limit limx→∞

´ x

0 f(t) dt =
´∞

0 f(t) dt is finite, so that
both limits are finite. But then also limx→∞ x f(x) ≥ 0 is finite, and this limit must be zero (otherwise
f /∈ L1([0,∞[)). Notice that we also get

ˆ ∞

0

f(x) dx =

ˆ ∞

0

x (−df(x)) for every decreasing function in L1([0,∞[).

�

Exercise 8.5.5. Assume that F,G ∈ ACloc(I). Then for any a, b ∈ I integration by parts formula
gives

ˆ b

a

(F ′G+ FG′)(x) dx = F (b)G(b)− F (a)G(a).
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Deduce from it that the product of two locally AC functions is locally AC, and that

(F G)′(x) = F ′(x)G(x) + F (x)G′(x) for a.e. x ∈ I.

Conversely, prove directly that FG ∈ ACloc(I) and deduce from this fact the integration by parts formula
for locally AC functions.

Solution. First part: immediate: the very formula is the assert.
Second part: fix a compact subinterval J of I. Given ε > 0 find δ > 0 such that for every non–

overlapping family of subintervals ([aj , bj])1≤j≤n of J such that
∑n

j=1(bj − aj) ≤ δ we get that

n
∑

j=1

|F (bj)− F (aj)| ≤ ε;

n
∑

j=1

|G(bj)−G(aj)| ≤ ε;

Let us estimate with the usual ”bilinear trick”: for any a, b ∈ J we have

|G(b)F (b)−G(a)F (a)| = |G(b)F (b)−G(b)F (a) +G(b)F (a)−G(a)F (a)| ≤
≤ |G(b)| |F (b)− F (a)|+ |F (a)| |G(b) −G(a)| ≤
≤ ‖G‖J |F (b)− F (a)|+ ‖F‖J |G(b)−G(a)|,

with ‖G‖J = max{|G(x)|; x ∈ J}, ‖F‖J = max{|F (x)|; x ∈ J}. Then
n
∑

j=1

|G(bj)F (bj)−G(aj)F (aj)| ≤
n
∑

j=1

(‖G‖J |F (bj)− F (aj)|+ ‖F‖J |G(bj)−G(aj)|) ≤

≤ ‖G‖J
n
∑

j=1

|F (bj)− F (aj)|+ ‖F‖J
n
∑

j=1

|G(bj)−G(aj)| ≤ (‖G‖J + ‖F‖J) ε.

Then F G is locally absolutely continuous. The Leibniz rule for the derivative of a product of course
holds wherever F and G are both differentiable, hence a.e.; then (F G)′(x) = F ′(x)G(x) + F (x)G′(x)
for a.e. x ∈ I, and

ˆ b

a

(F ′(x)G(x) + F (x)G′(x)) dx = F (b)G(b)− F (a)G(a) a, b ∈ I, a < b.

Of course the left–hand side may also be written
ˆ

[a,b]

G(x) dF (x) +

ˆ

[a,b]

F (x) dG(x).

�

Exercise 8.5.6. (Folland exercise 32) If Fn, F ∈ NBV (R) and Fn → F pointwise, then

T (x) ≤ lim inf
n→∞

Tn(x),

for every x ∈ R; here Tn(x) = V Fn(]−∞, x], T (x) = V F (]−∞, x]).

Solution. Given x ∈ R, let x0 < x1 < . . . xp = x be a subdivision of ]−∞, x]. For every n we have

p
∑

k=1

|Fn(xk)− Fn(xk−1)| ≤ Tn(x).

Keeping the sudivision fixed take lim infn→∞ on both sides; on the left–hand side we have actually a
limit, hence:

p
∑

k=1

|F (xk)− F (xk−1)| ≤ lim inf
n→∞

Tn(x);

since this holds for every subdivision {x0, . . . , xp} of ] − ∞, x] we also have, taking suprema on the
left–hand side:

V F (]−∞, x]) = T (x) ≤ lim inf
n→∞

Tn(x).

�
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Exercise 8.5.7. Observe that the sets En whose intersection is the Cantor set are all symmetric
with respect to x = 1/2, that is, χEn

(t) = χEn
(1 − t) for every t ∈ R; deduce from it that if f is the

Cantor function then

f(1− x) = 1− f(x) for every x ∈ R and hence

ˆ 1

0

f(x) dx =
1

2
.

Solution. Clearly also gn(t) = gn(1 − t) if gn = χEn
/δn. Then, by a change of variable, t = 1− s

fn(x) =

ˆ x

0

gn(t) dt =

ˆ 1−x

1

gn(1 − s) (−ds) =
ˆ 1

1−x

gn(s) ds =

ˆ 0

1−x

gn(s) ds+

ˆ 1

0

gn(s) ds =

1−
ˆ 1−x

0

gn(s) ds = 1− fn(1− x).

Passing to the limit we get f(x) = 1−f(1−x). This functional relation (which geometrically means that
the graph of f is self–symmetric in the plane symmetry of center (1/2, 1/2)) implies that the integral
over [0, 1] is 1/2:

ˆ 1

0

f(x) dx =

ˆ 0

1

f(1− t) (−dt) =
ˆ 1

0

(1− f(t)) dt = 1−
ˆ 1

0

f(t) dt,

so that
ˆ 1

0

f(x) dx =
1

2
.

�

Exercise 8.5.8. Let µ : Bn → [0,∞] be a σ−finite positive measure on the Borel tribe Bn of Rn.
If µ is not absolutely continuous with respect to Lebesgue measure m, then there is a set A ∈ Bn with
m(A) = 0 but µ(A) > 0. Prove that nevertheless m−almost all translates of A have µ−measure zero,
i.e. µ(x + A) = 0 for m−a.e. x ∈ Rn (let B = {(x, y) ∈ Rn × Rn : x − y ∈ A}; compute (µ ⊗m)(B) by
Fubini–Tonelli’s theorem . . . ).

Solution. Clearly B is Borel measurable, because (x, y) 7→ x − y is continuous. Both measures are
σ−finite, so that Fubini–Tonelli’s theorem is applicable and if Bx = {y ∈ Rn : (x, y) ∈ B} = x−A is the
x−section of B we get

µ⊗m(B) =

ˆ

Rn

(
ˆ

Bx

dm(y)

)

dµ(x) =

ˆ

Rn

m(x−A) dµ(x) =

ˆ

Rn

0 dµ(x) = 0.

The y−section is By = {x ∈ Rn : (x, y) ∈ B} = y +A, so that

µ⊗m(B) =

ˆ

Rn

(
ˆ

By

dµ(x)

)

dm(y) =

ˆ

Rn

µ(y +A) dm(y);

this must be zero; then the positive measurable function y 7→ µ(y+A), having integral zero with respect
to m, is zero m−a.e. �

Exercise 8.5.9. Let I = [a, b] be a compact interval. Assume that F : I → K is absolutely
continuous, and that F ′ ∈ Lp(I) with 1 < p ≤ ∞; let q be the exponent conjugate to p, and let α = 1/q.
Prove that F satisfies a Hölder condition of exponent α, that is, there exists a constant k ≥ 0 such that

|F (x2)− F (x1)| ≤ k |x2 − x1|α for every x1, x2 ∈ I.

Solution. Immediate: apply Hölder’s inequality with |F ′(x)| and 1 (assuming x1 < x2, p <∞):

|F (x2)− F (x1)| =
∣

∣

∣

∣

ˆ x2

x1

F ′(x) dx

∣

∣

∣

∣

≤
ˆ

[x1,x2]

|F ′(x)| dx ≤
(

ˆ

[x1,x2]

|F ′(x)|p dx
)1/p (

ˆ

[x1,x2]

1q dx

)1/q

≤

≤
(

ˆ

[a,b]

|F ′(x)|p dx
)1/p

|x2 − x1|α = ‖F ′‖p |x2 − x1|α.

The case p = ∞ is the case of Lipschitz continuous functions, already discussed in a previous exercise.
�

Exercise 8.5.10. Let I be an interval of R, and let f : I → K be locally of bounded variation. Given
c ∈ I we define T = Tcf as in 8.3, by T (x) = V f([a, x]) for x ≥ a, etc.
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(i) Prove that for every a ∈ I we have T (a+)−T (a−) = |f(a+)− f(a)|+ |f(a− f(a−)|, so that the
jump of T at a coincides with the absolute value of the jump of f at a iff f(a) ∈ [f(a−), f(a+)]
(see 8.3.2).

(ii) Given a > c, a ∈ I, observe that T (a−)(= limx→a− V f([c, x])) = V f([c, a[).
(ii) Prove that the total variation is an additive function on the interval algebra of I if and only if

f is continuous and that it is then countably additive, and the associated premeasure is then
equal to dT = µT .

Solution. (i) The result is contained in 8.3.2.
(ii) Given ε > 0, pick aε ∈ [c, a[ such that T (a−)− ε ≤ T (x) for every x ∈ [aε, a[. Then, if x ∈]aε, ε[:

T (a−)− ε ≤ V f([c, aε]) ≤ V f([c, x[) ≤ V f([c, x] = T (x) ≤ T (a−),

proving what claimed.
(ii) Assume that a > c is a point of discontinuity for f . Then T (a) = V f([c, a]) = T (a−) + |f(a) −

f(a−)| while V f([c, a[) = T (a−), and V f({a}) = 0, so that V f([c, a]) > V f([c, a[) + V f({a}). Then, if f
is discontinuous V f is not additive. It is trivial to prove additivity of the variation with f continuous,
and also that V f([a, b]) = T (b)− T (a); so that V f is on intervals the premeasure dT . �

Exercise 8.5.11. A standard way of embedding isometrically ℓ1(N) into L1([0,∞[) ⊆ L1(R) is by
the following interpolation: the sequence (an) = (a(n))n∈N is applied to the piecewise constant right–
continuous function Fa : [0,∞[→ K given by Fa(x) = a[x] = a([x]), where of course [x] is the integer part
of x, largest integer not strictly larger than x. Often this function a is considered defined on R, identically
zero on ] − ∞, 0[; the same trick is used to embed ℓ1(Z) into L1(R), and also arbitrary sequences, not
necessarily summable, two sided or not, can be identified in this way with piecewise constant functions.
The embedding is isometrical because a ∈ ℓ1(N) iff Fa ∈ L1([0,∞[) and

∑

n∈N

an =

ˆ ∞

0

Fa(x) dx in particular, taking absolute values ‖a‖1 = ‖Fa‖1.

Notice that for any sequence we have

n
∑

k=0

ak =

ˆ n+1

0

Fa(x) dx

(

=

ˆ

[0,n+1]

Fa(x) dx =

ˆ

[0,n+1[

Fa(x) dx =

ˆ

]0,n+1[

Fa(x) dx =

ˆ

]0,n+1]

Fa(x) dx

)

;

and that, considering Fa as defined on R the measure dFa is:

dFa =
∞
∑

n=0

(an − an−1) δn (a−1 = 0).

(i) For any sequence a ∈ KN, prove that V Fa([0,∞[) =
∑∞

n=1 |an − an−1| (this justifies the name:
”sequence of bounded variation” given to sequences (an)n∈N such that

∑∞
n=1 |an− an−1| <∞).

(ii) Prove Abel’s summation formula

n
∑

k=0

ak bk = bn

n
∑

k=0

ak −
n
∑

k=1





k−1
∑

j=0

aj



 (bk − bk−1),

and deduce from it Abel–Dirichlet criterion for (nonabsolute) convergence of a series:

. If an and bn are sequences, an has bounded partial sums (supn {|
∑n

k=0 ak|} <∞) and bn
is of bounded variation and with limit 0 at infinity, then the series

∑∞
k=0 ak bk is convergent,

i.e. limn→∞
∑n

k=0 ak bk exists finite).

Solution. (i) Easy (notice that pairs on the same interval [n, n + 1[ give zero contribution to the
variation).

(ii) With Fa and Fb as previously defined we have
∑n

k=0 ak bk =
´

[0,n+1[ Fa(x)Fb(x) dx; by partial

integration formula, taking Fa(x) dx = dA(x), where A(x) =
´ x

0
Fa(t) dt:

ˆ

[0,n+1[

Fa(x)Fb(x) dx = A((n+ 1)−)Fb((n+ 1)−)−A(0−)Fb(0
−)−

ˆ

[0,n+1[

A(x) dFb(x) =
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bn

n
∑

k=0

ak −
ˆ

[0,n+1[

A(x)

(

∞
∑

k=0

(bk − bk−1) δk

)

= bn

n
∑

k=0

ak −
n
∑

k=1





k−1
∑

j=0

aj



 (bk − bk−1)

(taking account of the fact that A is continuous, A(0) = 0, and in general A(n) =
∑

j<n aj , for every

integer n. The criterion is now immediate (it is of course a particular case of that for integrals done in
exercise 8.5.3): we have

(*)

n
∑

k=0

ak bk = bn

n
∑

k=0

ak −
n
∑

k=1





k−1
∑

j=0

aj



 (bk − bk−1);

since bn → 0 and the sum
∑n

k=0 ak remains bounded, say by M , the first term in the right hand side of
(*)tends to 0; and since

∞
∑

k=1

∣

∣

∣

∣

∣

∣

k−1
∑

j=0

aj

∣

∣

∣

∣

∣

∣

|bk − bk−1| ≤M

∞
∑

k=1

|bk − bk−1| <∞,

the second term is the nth−partial sum of an absolutely converging series. �

Exercise 8.5.12. (Folland, exercises 39, 40) Let Fn be a sequence of positive increasing functions
such that F (x) =

∑∞
n=0 Fn(x) is finite for every x ∈ [a, b]. Then F ′(x) =

∑∞
n=0 F

′
n(x) for a.e x ∈ [a, b]

(consider the series of measures µn = dFn in the space M([a, b]) of finite measures . . . ).
Let now f : R → R be the Cantor function. Let n 7→ [an, bn] be a bijection of N onto the set of

subintervals of [0, 1] with rational endpoints, and let fn(x) = f((x− an)/(bn − an)). Then

F (x) =

∞
∑

n=0

fn(x)

2n+1

is continuous, it is strictly increasing on [0, 1], but F ′(x) = 0 for a.e. x ∈ R.

Solution. We can consider finite measures in M(R), by extending the functions as Fn(x) = Fn(a)
for x < a and Fn(x) = Fn(b) for x > b: this is equivalent to extending the measures µn = dFn by
declaring ] −∞, a[ and ]b,+∞[ null sets for them. Then µn = F ′n(x) dx + νn, with νn ⊥ m. The series
∑∞

n=0 ‖µn‖(R) =
∑∞

n=0(Fn(b)−Fn(a)) converges; then (see exercise 7.2.7) the series
∑∞

n=0 F
′
n converges

normally in L1
m(R) and a.e. to F ′(x), where F ′(x) dx is the absolutely continuous part of dF = µF . The

first part is proved.
For the second part, setting Fn(x) = fn(x)/2

n+1 we clearly have F ′n(x) = 0 for a.e. x ∈ R and for
every n, so that by the first part F ′(x) = 0 a.e.; only the fact that F is strictly increasing is to be checked;
and this is trivial: if x1 < x2 then x1 < ap < bp < x2 for some p ∈ N (in fact for infinitely many p ∈ N),
so that

F (x2)− F (x1) =

∞
∑

n=0

Fn(x2)−
∞
∑

n=0

Fn(x1) =

∞
∑

n=0

(Fn(x2)− Fn(x1)) ≥ Fp(x2)− Fp(x1) ≥
1

2p+1
.

�

Before the next exercise read this: if I is an interval of R, and f : I → R is increasing, the set
S(f) = {y ∈ R : κ(f←(y)) ≥ 2}, where κ is the counting measure, is an at most countable set. In fact,
f←(y) is an interval, and as soon as it contains more than one element it has a non empty interior; and
any disjoint family of open intervals of R is at most countable (pick a rational number in each interval,
and obtain a one–to–one function of the family into Q). Then, for any pair A,B of disjoint subsets of I
we have that f(A) ∩ f(B) is at most countable, being contained in S(f). And also, for any A ⊆ I we
have that f(I r A) r (f(I) r f(A)) is at most countable (it coincides with f(I r A) ∩ f(A)). Taking
account of these observations:

Exercise 8.5.13. Let I be an interval of R and let F : I → R be increasing and continuous.

(i) Prove that for every B ∈ BI the set F (B) is a Borel set. Hint: consider the set

M = {B ∈ BI : F (B) is Borel};
prove that this set is a σ−algebra of parts of I containing the subintervals of I.
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(ii) Prove that the formula (m is Lebesgue measure)

µ(B) = m(F (B))

defines a measure on BI , and that this measure coincides with µF = dF . Prove that m is the
image measure of µ = µF on F (I).

(iii) Deduce from (ii) that for every g ∈ L+
m(F (I)) we have

ˆ

F (I)

g(y) dm(y) =

ˆ

I

g ◦ F (x) dF (x),

in particular if F ∈ AC(I) we get
ˆ

F (I)

g(y) dm(y) =

ˆ

I

g ◦ F (x)F ′(x) dx.

Solution. (i) Clearly M contains all intervals, since any continuous image of an interval is an interval,
hence a Borel set. Since the image preserves countable unions, M is closed under countable unions.
Finally, if E ∈ M, then F (I rE) differs from F (I)r F (E) by a countable set, hence is also a Borel set.

(ii) If (An)n∈N is a disjoint sequence of Borel subsets of I, then (F (An))n∈N is an almost disjoint
sequence of Borel sets (F (Ak) ∩ F (Aj) is at most countable, hence of zero Lebesgue measure), hence

m

(

∞
⋃

k=0

F (Ak)

)

=

∞
∑

k=0

m(F (Ak)),

proving countable additivity of µ. For an interval [a, b] ⊆ I we clearly have

µ([a, b]) = m(F ([a, b]) = m([F (a), F (b)] = F (b)− F (a) = µF ([a, b]);

since compact intervals are a generating system closed under intersection, by uniqueness we get µ = µF .
Let us now prove that for every compact interval [c, d] ⊆ F (I) the inverse image F←([c, d]) is an

interval J ⊆ I with µF (J) = d − c. In fact by monotonicity of F this inverse image is an interval,
closed in the relative topology of I because F is continuous; if F (a) = c and F (b) = d then a < b and
µF ([a, b]) = d − c = m([c, d]); but µF ([a, b]) = µF (J); in fact, if x ∈ J and x ≤ a we have F (x) = F (a)
and if x ∈ J and x ≥ b then F (x) = F (b), so that F (sup J)− F (inf J) = F (b)− F (a) = d− c.

(iii) Simply recall 4.1.12.
�

Exercise 8.5.14. (⊙⊙ quite difficult) Let [a, b] be a compact interval, f : [a, b] → R a continuous
function. We define N = Nf : R → [0,∞] as N(y) = κ(f←(y)), where κ is the counting measure; that
is N(y) is the number of points in the fiber of f over y if this fiber is finite, otherwise N(y) = ∞. We
consider a sequence of partitions of [a, b] : the nth partition is

I(n1) = [a, a+ (b− a)/2n]; I(nk) =]a+ ((k − 1)/2n)(b− a), a+ (k/2n)(b − a)], k = 2, . . . , 2n;

we also set J(nk) = f(I(nk)), k = 1, . . . , 2n, and gn =
∑2n

k=1 χJ(nk).

(i) Prove that

gn(y) = κ ({k ∈ {1, . . . , 2n} : f←(y) ∩ I(nk) 6= ∅}) ,
and that gn ↑ N .

(ii) Let λ(nk) = inf J(nk) and Λ(nk) = sup J(nk). Express
´

R
gn(y) dy with these constants, and

prove that
ˆ

R

N(y) dy = V f([a, b]) finite or ∞.

Assume now that f is of bounded variation on [a, b].

(iii) Prove that there is unique positive measure µ on the Borel subsets of [a, b] such that µ([c, d]) =
V f([c, d]) for every subinterval [c, d] of [a, b].

(iv) For every Borel subset B of [a, b] we define the function NB : R → [0,∞] as

NB(y) = κ(f←(y) ∩B).

Prove that for every such set B:
ˆ

R

NB(y) dy = µ(B).
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(v) Assume now that f is absolutely continuous. We say that y ∈ R is a regular value for f if for
every x ∈ f←(y) the derivative f ′(x) exists and is non zero (in particular, any y /∈ f([a, b]) is a
regular value). Prove that m−almost every y ∈ R is a regular value.

Solution. (i) is trivial: for every y ∈ R we have that gn(y) is the cardinality of the set {k ∈
{1, . . . , 2n} : y ∈ J(nk)}; and clearly y ∈ J(nk) = f(I(nk)) if and only if f←(y) ∩ I(nk) 6= ∅.
Clearly gn(y) ≤ gn+1(y); every J(nk) is the union of two J((n + 1)k), and the cardinality of the set
{k ∈ {1, . . . , 2n} : y ∈ J(nk)} can then only increase with n. And given a finite subset A ⊆ f←(y),
as soon as (b − a)/2n is smaller than the smallest distance of a pair of distinct points of A we have
gn(y) ≥ |A|, so that gn(y) ↑ N(y).

(ii) Clearly we have

ˆ

R

gn(y) dy =

2n
∑

k=1

m(J(nk)) =

2n
∑

k=1

(Λ(nk)− λ(nk));

of course Λ(nk) = max f(Ī(nk)) and λ(nk) = min f(Ī(nk)); assume that ξ(nk) ≤ η(nk) are points of
the closed interval Ī(nk) where these values are assumed, that is either λ(nk) = f(ξ(nk)) and Λ(nk) =
f(η(nk)), or viceversa λ(nk) = f(η(nk)) and Λ(nk) = f(ξ(nk)). Then

ˆ

R

gn(y) dy =

2n
∑

k=1

(Λ(nk)− λ(nk)) =

2n
∑

k=1

|f(ξ(nk))− f(η(nk))| ≤

≤
2n
∑

k=1

|f(ξ(nk))− f(η(nk))|+
2n
∑

k=2

|f(ξ(nk))− f(η(n(k − 1)))| ≤ V f([a, b]).

As n ↑ ∞, by monotone convergence we have
´

R
gn ↑

´

R
N , so that

ˆ

R

N(y) dy ≤ V f([a, b]),

and we need the reverse inequality. Given α, with 0 < α < V f([a, b]) get a subdivision a0 = a < a1 <
· · · < ap = b such that

∑p
j=1 |f(xj)−f(xj−1)| ≥ α. Take n ∈ N so large that (b−a)/2n < max{aj−aj−1 :

j = 1, . . . , p}. We have, using the notations previously introduced, and setting x(nk) = sup I(nk),
x(n(k − 1)) = inf I(nk):

ˆ

R

gn(y) dy =

2n
∑

k=1

|f(ξ(nk))− f(η(nk))| ≥
2n
∑

k=1

|f(x(nk)) − f(x(n(k − 1)))|;

let S(j) = {k ∈ {1, . . . , 2n} : aj−1 ≤ x(n(k − 1)) < x(nk) ≤ aj}, and let T = {k ∈ {1, . . . , 2n} :
x(n(k − 1)) < aj(k) < x(nk), for some j(k) ∈ {1, . . . , p− 1}}. Then

ˆ

R

gn(y) dy ≥
2n
∑

k=1

|f(x(nk))− f(x(n(k − 1))| =
p
∑

j=1





∑

k∈S(j)

|f(x(nk))− f(x(n(k − 1))|



+

+
∑

k∈T

|f(x(nk))− f(x(n(k − 1))|;

If to this we add and subtract
∑

k∈T (|f(aj(k))−f(x(n(k−1)))|+|f(x(nk))−f(aj(k))|) we get the variation
of f on the subdivision obtained by joining the points {a0, . . . , ap} with the points {x(nk) : k = 0, . . . , 2n}
so that
ˆ

R

gn(y) dy ≥ α−
∑

k∈T

(|f(aj(k))− f(x(n(k − 1)))|+ |f(x(nk))− f(aj(k))| − |f(x(nk))− f(x(n(k − 1)))|);

since f is continuous at all points aj , as n tends to infinity this sum tends to 0. We then get
ˆ

R

N(y) dy ≥ α,

and since α is an arbitrary number smaller than V f([a, b]) we conclude.
(iii) Since f is continuous we have V f([c, d]) = V f([c, d[) = V f(]c, d]) = V f(]c, d[) = Ta(d)−Ta(c), so

that the measure is the Radon–Stieltjes measure associated to the monotone function Ta(x) = V f([a, x].
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(iv) We know, from (ii), that the formula is true when B is a compact subinterval of [a, b]. We simply
have to prove that

´

R
NB(y) dy is defined for every Borel subset B of [a, b] (in other words y 7→ NB(y) is

Lebesgue measurable) and that B 7→
´

R
NB(y) dy is a measure. Simply consider

D = {B ∈ B[a,b] : y 7→ NB(y) is Lebesgue measurable, and

ˆ

R

NB(y) dy = µ(B)};

it is easy to see that D is Dynkin class of parts of [a, b]: for the complement observe that the set
{y ∈ R; N[a,b](y) = ∞} has Lebesgue measure 0, since

´

R
N[a,b](y) dy = V f([a, b]) is finite. Since D

contains the intervals we have D = B[a,b].
(v) The set N of points of [a, b] at which f ′ does not exist is contained in a Borel set M of measure

0; if A =M ∪ Z(f ′) we clearly have
´

A |f ′(x)| dx = 0; but the measure B 7→
´

B |f ′(x)| dx coincides with
µ (because on intervals it coincides with µ); then

ˆ

R

NA(y) dy = 0,

and since NA ≥ 0 this implies NA(y) = 0 for a.e. y ∈ R; now NA(y) = 0 means that there is no x ∈ A
such that y = f(x); that is, if y = f(x) then x /∈ A, so that f ′(x) exists and is non–zero, i.e., y is a
regular value for f . �

8.6. The metric density of a Radon measure. If µ : B∗n → K is a locally finite Radon measure
on the bounded Borel subsets of Rn, given an open euclidean ball B(x, r[ we define the average density
of µ on B(x, r[ as

Qrµ(x) =

 

B(x,r[

dµ :=
µ(B(x, r[)

m(B(x, r[)
=
µ(B(x, r[)

vn rn
vn = m(B) =

2 πn/2

nΓ(n/2)
.

Notice that if µ ≪ m and dµ = f dm, with f ∈ L1
loc(R

n), then Qrµ(x) = Arf(x), as in 8.1.1. The
(metric) density at x ∈ Rn is

Dµ(x) = lim
r→0+

Qrµ(x), provided that the limit exists.

Exercise 8.6.1. Observe that r 7→ Qrµ(x) is left–continuous, and that

lim
t→r+

Qr(x) =
µ(B(x, r])

m(B(x, r])

(

=
µ(B(x, r])

vn rn

)

,

so that Qrµ(x) has finite left and right limits at every r > 0, and Dµ(x) can be computed also using
closed balls in place of open balls.

Exercise 8.6.2. Let µ : Bn → [0,∞] be a positive Radon measure. Keeping r > 0 fixed, prove
that x 7→ Qrµ(x) is a lower semicontinuous function from Rn to [0,∞[. If µ ≪ m then this function is
continuous.

Solution. Assume that xk is a sequence in Rn converging to x ∈ Rn. If χk = χB(xk,r[ and χ = χB(x,r[

then we have limk→∞ χk(y) = χ(y) if y ∈ B(x, r[) or if |y−x| > r (since limk→∞(|y−xk|−r) = |y−x|−r,
eventually |y − xk| − r has the same sign as |y − x| − r, if this is non–zero). In particular we have:

χ(x) ≤ lim inf
k→∞

χk(x) =⇒
ˆ

Rn

χdµ ≤
ˆ

Rn

(lim inf
k→∞

χk) dµ ≤ lim inf
k→∞

ˆ

Rn

χk dµ,

by Fatou’s lemma. In other words:

µ(B(x, r[) ≤ lim inf
k→∞

µ(B(xk, r[), (dividing both sides by m(B(x, r[) = vn r
n) Qrµ(x) ≤ lim inf

k→∞
Qrµ(xk).

If µ ≪ m then χk converges µ−a.e. to χ, since m({|y − x| = r}) = 0 implies µ({|y − x| = r}) = 0,
and we can apply Lebesgue’s dominated convergence theorem to the sequence χk χB(x,R], where R =
sup{r + |x− xk| : k ∈ N}.

�

Our aim is to prove the differentiation theorem stated in 8.1. Because of the local character of metric
derivatives, we need to prove the theorem only for finite measures: if µ is locally finite, given a big
bounded open set, say B(0, R[ with R large, we can consider the finite Radon measure µR : Bn → K
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given by µR(E) = µ(E ∩B(0, R[); then, given x ∈ B(0, R[ we have that Dµ(x) exists iff DµR(x) exists,
and they coincide. So we shall prove that if f ∈ L1

m(Rn) then

lim
r→0+

Arf(x) = f(x) m−a.e. in Rn,

and that if ν is a finite measure with ν ⊥ m then

Dν(x) = D|ν|(x) = 0 m−a.e. in Rn;

from these facts the differentiation theorem follows immediately. A convenient tool for the proof, of inde-
pendent interest, is the notion of maximal function, with the maximal theorem which is a generalization
of Čebičeff’s inequality. First we need a technical lemma.

8.6.1.

Lemma. Let (Bj)1≤j≤N be a finite family of open balls in Rn. Then there is a subset J ⊆ {1, . . . , N}
such that the balls (Bj)j∈J are pairwise disjoint and

m





N
⋃

j=1

Bj



 ≤ 3n
∑

j∈J

m(Bj).

Proof. Let Bj = cj + rj B, with B the open unit ball; assume that the indexing is with decreasing
radii, i.e. such that r1 ≥ r2 ≥ · · · ≥ rN . We define the subset J by induction in the following way:
j(1) = 1 ∈ J ; consider now the set J2 of all j ∈ {1, . . . , N} such that Bj ∩ B1 = ∅; if this set is empty,
then J = {1}, otherwise j(2) = min J2. Assuming that {j(1), . . . , j(p)} have been defined, set Jp+1 =
{j ∈ {1, . . . , N} : Bj ∩ Bj(k) = ∅, for all k ∈ {1, . . . , p}}; if Jp+1 is empty, then J = {j(1), . . . , j(p)},
otherwise j(p + 1) = min Jp+1. Since {1, . . . , N} is finite the process must end at some p; we define
J = {j(1), . . . , j(p)}. We now prove that

N
⋃

j=1

Bj ⊆
⋃

j∈J

(cj + 3rj B);

in fact, assume that k ∈ {1, . . . , N} is not in J ; then Bk = ck+rkB has non–empty intersection with some
ball cj + rj B, with rj ≥ rk, and j ∈ J ; then ck + rk B ⊆ cj + 3rj B. By monotonicity and subadditivity
we then get

m





N
⋃

j=1

Bj



 ≤ m





⋃

j∈J

(cj + 3rj B)



 ≤
∑

j∈J

m(cj + 3rj B) = 3n
∑

j∈J

m(Bj).

�

8.6.2. The maximal theorem. If µ : Bn → K is a finite K−valued measure on the Borel sets of Rn,
its maximal function is the function Mµ : Rn → [0,∞] defined by

Mµ(x) = sup{Qr|µ|(x) : r > 0} = sup

{ |µ|(B(x, r[)

m(B(x, r[)
: r > 0

}

.

Notice that Mµ =M |µ|: the notion is really a notion for finite positive measures. For any given x ∈ Rn

we of course have limr→∞ |µ|(B(x, r[)/m(B(x, r[) = 0, since |µ|(Rn) < ∞; but it is not at all apparent
that Mµ(x) is finite m−a.e., or even only for some x ∈ Rn. We observe that:

. Mµ : Rn → [0,∞] is lower semicontinuous: that is, for every α > 0 the set {Mµ > α} is open in
Rn.

Proof. Let a ∈ {Mµ > α}; then |µ|(B(a, t[)/m(B(a, t[) > α for some t > 0; given δ > 0, if |x−a| < δ
then B(x, t+ δ[⊇ B(a, t[, so that

|µ|(B(x, t+ δ[) ≥ |µ|(B(a, t[) =⇒ |µ|(B(x, t + δ[)

m(B(x, t+ δ[)
≥ |µ|(B(a, t)

m(B(a, t+ δ[)
;

as δ → 0+ the last quotient tends to |µ|(B(a, t[)/m(B(a, t[) > α, and hence it is larger than α for δ
small. For this δ we clearly have Mµ(x) > α, for all x ∈ B(a, δ[. Alternatively, we can use exercise
8.6.2: for fixed r > 0 the function x 7→ Qr|µ|(x) is lsc, so that Mµ is lsc, as a supremum of lsc functions
(immediate). �
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. The maximal theorem Let µ : Bn → K be a finite K−valued measure on the Borel sets of Rn.
Then, for any α > 0 we have

m ({Mµ > α}) ≤ 3n

α
‖µ‖ (‖µ‖ = |µ|(Rn)).

Proof. For each x ∈ E(α) = {Mµ > α} there is an open ball B(x, r(x)[ such that

|µ|(B(x, r(x)[) > αm(B(x, r(x)[).

Given a compact K ⊆ E(α), there is a finite set {B(xj , r(xj)[: 1 ≤ j ≤ N} of these balls which covers K;

by lemma 8.6.1 there is a disjoint subset of this set, say B1, . . . , Bp, such that m
(

⋃N
j=1 B(xj , r(xj)[

)

≤
3n
∑p

k=1m(Bk). Then

m(K) ≤ m





N
⋃

j=1

B(xj , r(xj)[



 ≤ 3n
p
∑

k=1

m(Bk) ≤ 3n
p
∑

k=1

|µ|(Bk)

α
=

3n

α
|µ|
(

p
⋃

k=1

Bk

)

≤ 3n

α
|µ|(Rn).

We have proved that for every compact subset K of E(α) we have m(K) ≤ (3n/α) |µ|(Rn) ; since
m(E(α)) = sup{m(K) : K ⊆ E(α), K compact}, we conclude. �

8.6.3. Differentiation of a singular measure.

Proposition. Let ν : Bn → K be a finite K−valued measure on the Borel sets of Rn. Assume that
ν is singular with respect to Lebesgue measure. Then, for every substantial family Er(x) and m−almost
every x ∈ Rn we have

lim
r→0+

ν(Er(x))

m(Er(x))
= 0.

Proof. We have

|ν(Er(x))|
m(Er(x))

≤ |ν|(Er(x))

m(Er(x))
≤ |ν|(B(x, r])

m(Er(x))
≤ 1

α(x)

|ν|(B(x, r])

m(B(x, r])
,

so that it is enough to prove that the metric density of |ν| is a.e. zero. So we assume that ν = |ν|, i.e., that
ν is positive. There is a Borel set A ⊆ Rn such that ν(Rn rA) = 0 and m(A) = 0. Given ε > 0 we find a
compact subset K of A such that ν(K) > ν(A)−ε = ν(Rn)rε = ‖ν‖−ε. Let us split ν as the sum of two
measures, ν1(E) = ν(E ∩K) and ν2(E) = ν(E rK). Then ‖ν2‖ = ν(Rn rK) < ε; clearly Dν1(x) = 0
for every x ∈ Rn rK; given α > 0, the set {x ∈ Rn : lim supr→0+ ν2(B(x, r[)/m(B(x, r[) > α} is clearly
contained in {Mν2 > α}; the maximal theorem implies

m ({Mν2 > α}) ≤ 3n

α
‖ν2‖ ≤ 3n

α
ε.

Then

{x ∈ Rn : lim sup
r→0+

Qrν(x) > α} ⊆ K ∪ {Mν2 > α},

a set of Lebesgue measure smaller than 3nε/α. By the arbitrariness of ε, we get

m

(

{x ∈ Rn : lim sup
r→0+

Qrν(x) > α}
)

= 0.

Since

{x ∈ Rn : lim sup
r→0+

Qrν(x) > 0} =
⋃

k≥1

{x ∈ Rn : lim sup
r→0+

Qrν(x) > 1/k},

we get

m

(

{x ∈ Rn : lim sup
r→0+

Qrν(x) > 0}
)

= 0,

as required �
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8.6.4. Density for absolutely continuous measures. Assume that f ∈ L1(Rn) is given. If g ∈ L1
loc(R

n)
it is easy to prove that at every point x of continuity for g we have:

lim
r→0+

|Arg(x)− g(x)| = lim
r→0+

Ar|g − g(x)|(x) = 0.

Integrable step–functions are continuous a.e., so that the preceding formula is a.e. true in Rn if g is a
step–function in L1(Rn). Now fix α > 0; we prove that the set

F (α) = {x ∈ Rn : lim sup
r→0+

|Arf(x)− f(x)| > α}

has Lebesgue measure 0; since the set {x ∈ Rn : Dνf (x) 6= f(x)} is contained in
⋃∞

k=1 F (1/k), we conclude
(here νf is the indefinite integral of f , dνf = f dm). Given ε > 0 pick a step–function g ∈ L1(m) such
that ‖f − g‖1 ≤ ε, and write

|Arf(x)− f(x)| =|Ar(f − g)(x) +Arg(x)− g(x) + g(x)− f(x)| ≤
≤ Ar|f − g|(x) +Ar|g − g(x)|(x) + |g(x)− f(x)| ≤
≤M |f − g|(x) +Ar|g − g(x)|(x) + |g(x)− f(x)|,

where M |f − g|(x) = sup{Ar|f − g| : r > 0} is the maximal function of the measure |f − g| dm; then

lim sup
r→0+

|Arf(x)− f(x)| ≤M |f − g|(x) + |g(x)− f(x)| for m−a.e. x ∈ Rn.

Then

{x ∈ Rn : lim sup
r→0+

|Arf(x)− f(x)| > α} ⊆ {M |f − g| > α/2} ∪ {|f − g| > α/2} ∪N ;

with m(N) = 0; the maximal theorem says that

m ({M |f − g| > α/2}) ≤ 3n
2

α
‖f − g‖1 ≤ 3n

2

α
ε,

and by Čebičeff’s inequality:

m({|f − g| > α/2}) ≤ 2

α
‖f − g‖1 ≤ 2

α
ε.

We have proved that

m(F (α)) ≤ 3n
2

α
ε+

2

α
ε,

and by the arbitrariness of ε we conclude that m(F (α)) = 0, as required.
The proof of theorem 8.1.1 is concluded.

Remark. Given f ∈ L1
loc(R

n) we have that limr→0+ Arf(x) = f(x) a.e. in Rn and also that almost
every x ∈ Rn is a Lebesgue point for f , that is

lim
r→0+

 

B(x,r]

|f(y)− f(x)| dy = 0.

These notions depend on the particular representative f , and are not invariant if we substitute f with
another function a.e. equal to it. However limr→0+ Arf(x), when it exists finite, and a value [f ](x) such
that limr→0+

ffl

B(x,r] |f(y)− [f ](x)| dy = 0, when such a value exists, depend only on x and on the class [f ]

of functions a.e. equal to f , and not on the particular representative f : the proposition in 8.1.1 asserts
that [f ](x) exists for a.e. x ∈ Rn, and that given any representative g ∈ [f ] we have g(x) = [f ](x) for a.e.
x ∈ Rn. We can of course get a representative a.e. defined by the formula x 7→ [f ](x): this is the one
with the largest Lebesgue set.

Exercise 8.6.3. Assume that f ∈ L1(Rn) is non zero. Prove that there is k > 0 such that, for |x|
large enough

Mf(x) ≥ k

|x|n ;

then Mf ∈ L1(Rn) if and only if f = 0.
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Solution. Since f is nonzero, we have limr→∞

´

rB |f | dm = ‖f‖1 > 0, so that there is r > 0 such that
´

rB
|f | dm = a > 0. If |x| > r, then rB ⊆ B(x, 2|x|] so that

 

B(x,2|x|]

|f(y)| dy =
1

2n vn|x|n
ˆ

B(x,2|x|]

|f(y)| dy ≥ 1

2n vn|x|n
ˆ

rB

|f(y)| dy ≥ a

2n vn|x|n
=
a/(2n vn)

|x|n ,

so that, if k = a/(2n vn) we have

Mf(x) ≥ k

|x|n (|x| > r).

For the last assertion, simply recall that x 7→ 1/|x|n is not in L1(Rn rB).
�

Exercise 8.6.4. (Folland, exercise 23 pag. 100) For f ∈ L1(Rn) define another maximal function
M∗f : Rn → [0,∞] as

M∗f(x) = sup

{
 

B

|f(y)| dy : x ∈ B, B an euclidean open ball

}

.

Prove that Mf(x) ≤M∗f(x) ≤ 2nMf(x).

Solution. The first inequality is trivial (Mf(x) is a supremum taken over a smaller set of averages,
those over balls centered at x). If B is an open ball containing x, of radius ρ > 0, then B(x, 2ρ[⊇ B, so
that

 

B

|f | = 1

vn ρn

ˆ

B

|f | ≤ 1

vn ρn

ˆ

B(x,2ρ[

|f | = 2n

vn (2ρ)n

ˆ

B(x,2ρ[

|f | = 2n
 

B(x,2ρ[

|f | ≤ 2nMf(x).

�

Exercise 8.6.5. Prove that if f ∈ L1(Rn) and x ∈ Rn is a Lebesgue point for f , then

|f(x)| ≤Mf(x).

Solution. If x is a Lebesgue point for f , then x is also a Lebesgue point for |f |, as is clear from the
inequality ||f(y)| − |f(x)|| ≤ |f(y)− f(x)|. Then

|f(x)| = lim
r→0+

 

B(x,r[

|f(y)| dm(y) which implies |f(x)| ≤ sup
r>0

 

B(x,r[

|f(y)| dm(y) =Mf(x).

�

8.7. Some complements.
8.7.1. The Severini–Egoroff’s theorem on almost uniform convergence. On finite measure spaces

pointwise convergence implies uniform convergence outside sets of arbitrarily small measure:

. Severini– Egoroff’s theorem Let (X,M, µ) be a finite measure space. If fn ∈ L(X,K) is a
sequence of measurable functions which converges pointwise a.e. to f : X → K, then fn converges to f
almost uniformly on X: in other words, given δ > 0 there is a set E ∈ M with µ(E) ≤ δ, such that on
X r E the sequence fn converges uniformly to f .

Proof. For a given x ∈ X it is false that fn(x) converges to f(x) if and only if there is ε > 0 such
that |f(x) − fn(x)| > ε for infinitely many n ∈ N; this last set is exactly lim supn→∞{|f − fn| > ε}; in
other words the set M = {x ∈ X : fn(x) does not converge to f(x)} is

M =
⋃

ε>0

lim sup
n→∞

{|f − fn| > ε} or also M =

∞
⋃

k=1

lim sup
n→∞

{|f − fn| > 1/k}.

Since by hypothesis µ(M) = 0, each set Ak = lim supn→∞{|f − fn| > 1/k} has zero measure. This set is

Ak =

∞
⋂

p=0

Bp(k), where Bp(k) =

∞
⋃

n=p

{|f − fn| > 1/k};

now B0(k) ⊇ B1(k) ⊇ . . . is a decreasing sequence of sets of finite measure with intersection of measure
zero, so we can find p(k) ∈ N such that E(k) = Bp(k) has measure smaller than δ/2k+1. If E =

⋃∞
k=0 E(k),

then µ(E) ≤ δ; and if x ∈ X r E, then x ∈ X r E(k), so that if n ≥ p(k) we have |f(x)− fn(x)| ≤ 1/k;
this says that fn converges uniformly to f on X r E. �



138

8.7.2. Severini–Egoroff’s theorem, version with dominated convergence. To make the preceding proof
work one needs only to know that for every k ≥ 1 there is p large enough to make the measure of
Bp(k) =

⋃∞
n=p{|f − fn| > 1/k} finite; this is trivially true if the entire space has finite measure; another

possibility is the following:

. Let (X,M, µ) be a measure space. If fn ∈ L(X,K) is a sequence of measurable functions which
converges pointwise a.e. to f : X → K, and |fn| ≤ g for some g ∈ L1(µ), then fn converges to f almost
uniformly on X.

Proof. Simply note that {|f−fn| > 1/k} ⊆ {g > 1/(2k)}, since |f−fn| ≤ 2g, hence
⋃∞

n=0{|f−fn| >
1/k} ⊆ {g > 1/(2k)}; by Čebičeff’s inequality µ({g > 1/(2k)}) ≤ 2k

´

X
g.

�

8.7.3. A continuity property for L1 functions. We have seen that functions in L1(R) can be nowhere
continuous, and even have essential supremum infinite on every non–empty open set. The following result
may therefore come as a surprise:

. Let f ∈ L1(Rn). Then, for every δ > 0 there exists a closed set F ⊆ Rn with m(Rn r F ) ≤ δ, such
that f |F ) is continuous on F .

Proof. Choose a sequence gk of functions in Cc(Rn) which converges in L1(Rn) to f and is of bounded
variation in L1(Rn), ie. such that

∑∞
k=1 ‖gk+1−gk‖1 <∞. We know that in this hypothesis the sequence

gk converges also a.e. to f ; moreover, if g = |g0| +
∑∞

k=1 |gk+1 − gk| we have g ∈ L1(Rn), and clearly
|gk| ≤ g for every k ∈ N. Then, given δ > 0 there is a subset of measure less than δ, and by outer
regularity we may suppose it to be an open set U , such that on the complement F = RnrU the sequence
gk converges uniformly to f . �

Some people express the above situation by saying that every L1 function is almost continuous. Of
course this does not mean that f has points of continuity; it is the restriction of f to F that is continuous
on F .

8.7.4. Lusin’s theorem. Strictly related to the preceding result is

. Lusin’s theorem. Let f : Rn → K be measurable. Then

(i) Assume that f is zero outside a set C of finite measure. Then for every δ > 0 there is a compact
subset K of C such that f |K is continuous, and m(C rK) ≤ δ.

(ii) For every δ > 0 there is a closed subset F of Rn, with m(Rn r F ) ≤ δ, such that f |F is
continuous.

Proof. (i) The sets Ek = {|f | > k}, k ≥ 1, are a decreasing sequence of sets of finite measure
(Ek ⊆ C) with empty intersection, so that m(Ek) ≤ δ/3 for k large; we may reset f to be 0 on Ek, so
that, calling f1 the new function, f1 is now bounded and zero outside a set of finite measure, and hence
f1 ∈ L1(Rn). The preceding result says that there is a closed subset F ⊆ Rn, with m(RnrF ) ≤ δ/3, such
that f1|F is continuous; next, simply pick a compact K ⊆ F ∩Coz(f1), with m(F ∩Coz(f1)rK) ≤ δ/3.

(ii) Write Rn =
⋃∞

j=0 j B. For j = 1, . . . pick a compact subset Lj ⊆ j B r (j − 1) B̄ such that f |Lj

is continuous, and m((j B r (j − 1) B̄) r Lj) ≤ δ/2j+1. Then F =
⋃∞

j=1 Lj is a closed set: if x /∈ F ,

and j is the smallest integer strictly larger than |x|, we have x ∈ j B r
⋃j

l=1 Ll, and open set disjoint
from F . And f |F is continuous, since each Lj is open–and–closed in the relative topology of F (we have
Lj = F ∩ (j B r (j − 1) B̄); clearly m(Rn r F ) ≤ δ �

There is a theorem of general topology which says that any continuous function from a closed subset
F of Rn to K may be extended to a K−valued continuous function on all of Rn (the Tietze–Urysohn
extension theorem). Then the preceding theorem implies that if f : Rn → K is measurable, and δ > 0,
there is g ∈ C(Rn,K) and a closed subset F ⊆ Rn, with m(Rn r F ) ≤ δ, such that f |F = g|F .

8.7.5. More exercises.

Exercise 8.7.1. Prove that the function F : R → R defined by F (x) = 2x+
´ x

0 sin(1/t) dt is strictly
increasing and has a finite derivative everywhere, but F ′ not continuous.

Solution. Clearly we have F ′(x) = 2 + sin(1/x) > 0 for x 6= 0, and F is continuous, so that it is
strictly increasing; we prove that F ′(0) = 2. In fact, assuming x 6= 0:

∣

∣

∣

∣

ˆ x

0

sin(1/t) dt

∣

∣

∣

∣

=

∣

∣

∣

∣

ˆ x

0

(t2)(− sin(1/t))(−1/t2) dt

∣

∣

∣

∣

=

∣

∣

∣

∣

[

t2 cos(1/t)
]t=x

t=0
−
ˆ x

0

2t cos(1/t) dt

∣

∣

∣

∣

≤
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≤
∣

∣x2 cos(1/x)
∣

∣+

∣

∣

∣

∣

ˆ x

0

2t cos(1/t) dt

∣

∣

∣

∣

≤ x2 | cos(1/x)|+
∣

∣

∣

∣

ˆ x

0

2|t| dt
∣

∣

∣

∣

≤

≤ x2 + x2 = 2x2,

so that we have, for x 6= 0:
∣

∣

∣

∣

1

x

ˆ x

0

sin(1/t) dt

∣

∣

∣

∣

≤ 2|x| hence lim
x→0

1

x

ˆ x

0

sin(1/t) dt = 0.

�

Exercise 8.7.2. Prove that for every subset E of R of zero Lebesgue measure there is an absolutely
continuous increasing function F : R → R such that F ′(x) = ∞ for every x ∈ E (Hint: there is a
decreasing sequence U0 ⊇ U1 ⊇ U2 ⊇ . . . of open sets such that E ⊆ ⋂∞n=0 Un and m(Un) ≤ 1/2n+1 . . . ).

Solution. Let fn be the characteristic function of Un, let Fn(x) =
´ x

−∞
fn(t) dt, and

F (x) =

∞
∑

n=0

Fn(x) =

∞
∑

n=0

ˆ x

−∞

fn(t) dt =

ˆ x

−∞

(

∞
∑

n=0

fn(t)

)

dt;

Then clearly F is increasing, finite–valued (F (+∞) =
∑∞

n=0m(Un) ≤ 1) and absolutely continuous. We
prove that F ′(c) = ∞ for every c ∈ ⋂∞n=0 Un. For x 6= c let ν(x) be the cardinality of the set

N(x) = {n ∈ N : x is contained in an interval contained in Un}.
If n ∈ N(x) we clearly have (Fn(x)− Fn(c))/(x− c) = 1, so that

F (x)− F (c)

x− c
=

∞
∑

k=0

Fk(x)− Fk(c)

x− c
≥

∑

k∈N(x)

Fk(x)− Fk(c)

x− c
= ν(x).

It is plain that limx→c ν(x) = ∞ (given an integer N , pick an interval ]c− δ, c+ δ[ contained in UN ; then
ν(x) ≥ N for every x in this interval); then

F ′(c) = lim
x→c

F (x)− F (c)

x− c
≥ lim

x→c
ν(x) = ∞.

�

Exercise 8.7.3. Given a function f : Rn → K and a ∈ Rn, we say that a is a period for f if f(x+ a) = f(x),
for every x ∈ Rn; trivially the zero vector is a period for every function; we say that a function is periodic when
it has a nonzero period. We may also weaken the notion of period by asking f(x + a) = f(x) only for m−a.e.
x ∈ Rn, with m Lebesgue measure.

(i) Prove that the set of all periods of a function is an additive subgroup of Rn; this subgroup is denoted
Per(f), the group of periods of f , so that f is periodic iff Per(f) is not the trivial subgroup. Notice
that if G is a non–trivial additive subgroup of Rn then its characteristic function χG is periodic and
Per(χG) ⊇ G.

(ii) Prove that a continuous periodic function f : Rn → K with a group of periods dense in Rn is a constant.
(iii) Let f : Rn → K be periodic and in L1

loc(R
n); prove that for every r > 0 the function Arf : Rn → K

defined by Arf(x) =
ffl

B(x,r[
f is also periodic, and Per(Arf) ⊇ Per(f).

(iv) Prove that a locally summable periodic function f with a dense group of periods is a.e. constant.
(v) Prove that a measurable periodic function f with a dense group of periods is a.e. constant (hint: to

use (iv), consider arctan f . . . ).
(vi) Prove that a proper additive subgroup of Rn is measurable if and only if it has zero m−measure (hint:

use the difference theorem 2.7.3, and observe that an additive subgroup that contains a nbhd of 0
necessarily coincides with Rn).

Solution. (i) Easy; to prove that if a ∈ Per(f) then also −a ∈ Per(f) simply observe that f(x) = f(x−a+a) =
f((x − a) + a) = f(x − a) for every x ∈ R. Clearly Per(χG) ⊇ G: if a ∈ G then x + a ∈ G if and only if x ∈ G
(we also have Per(χG) = G; but if periodicity is in the weaker sense of a.e. equality then Per(χG) may be strictly
larger, e.g. the Dirichlet function χQ is a.e. equal to the constant 0, hence its period group is R, in the weaker
sense).

(ii) If Per(f) = G with G dense, then f(a) = f(0) for every a ∈ G, so that f is constant on G; and clearly a
continuous function constant on a dense subset is constant (f←({f(0)}) is a closed subset of Rn containing the
dense subset G, hence f←({f(0)}) = Rn). Alternatively we might observe that for a continuous function Per(f)
is closed in Rn (proof immediate), and that a function with period group Rn is necessarily constant.
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(iii) We have

Arf(x) =
1

vn rn

ˆ

B(x,r]

f(y) dy =
1

vn rn

ˆ

rB

f(x+ t) dt,

and when written in this form it is clear that Arf(x+ a) = Arf(x) for every x ∈ Rn and every a ∈ Per(f).
(iv) Considering Arf , by (iii) and (ii) we have that Arf is a constant, for every r > 0. The sequence of

constants Arf converges a.e. in Rn to f by the differentiation theorem; of course a pointwise limit of a sequence
of constant functions is necessarily a constant function, so that f is constant a.e.

(v) Clearly arctan f is in L∞(Rn), and hence is locally summable. It is also periodic with the same period
group of f ; by (iv) arctan f(x) = k for a.e. x ∈ Rn; then f(x) = tan k for a.e. x ∈ Rn.

(vi) Let G be an additive subgroup of Rn. If G is measurable and m(G) > 0 the difference theorem says that
G−G is a nbhd of 0; but G−G = G since G is a subgroup. Now if δ B ⊆ G for some δ > 0 then G = Rn: given
x ∈ Rn there is a positive integer k such that x/k ∈ δ B (simply take k > |x|/δ) so that x = k(x/k) ∈ G.

Remark. Nonmeasurable subgroups do exist. We know that Rn is a Q−vector space of dimension c. If we
consider a proper Q−vector subspace of Rn of finite or countable codimension over Q, its additive group G has
countable index, i.e. its set Rn/G of cosets is countable (it is a Q−vector space of finite dimension); if G were
measurable, it could not have zero measure, since Rn is a countable union of translates of G; but then G cannot
be a proper subgroup of Rn; the contradiction can be avoided only if G is non measurable.

�

8.8. Change of variables in multiple integrals.

Proposition. Let U, V be open subsets of Rn, and let φ : U → V be a C1 diffeomorphism. Then the image

measure of the measure dµ = |detφ′(x)|dx on U is Lebesgue measure on V .

This proposition will be proved shortly by induction on the dimension n. First observe that the Proposition
is equivalent to any one of the following statements (the proof of this fact is left as an exercise):

• For every compact interval Q of Rn contained in U we have

m(φ(Q)) =

ˆ

Q

|detφ′(x)|dx.

• For every positive Borel measurable function f : V → [0,∞] we have
ˆ

V

f(y) dy =

ˆ

U

f(φ(x)) |detφ′(x)| dx.

• Variable change in multiple integrals The function f : V → K is in L1
m(V ) if and only if we

have f ◦ φ | detφ′| ∈ L1
m(U), and:

ˆ

V

f(y) dy =

ˆ

U

f(φ(x)) |detφ′(x)| dx.

Proof. For n = 1 see 4.1.13. Assume that φ : U → V and ψ : V →W are C1 diffeomorphisms, both verifying
the proposition. Then ψ◦φ : U →W also verifies the proposition. In fact, if f :W → [0,∞] is positive measurable
we have

ˆ

W

f(z) dz =

ˆ

V

f(ψ(y)) | detψ′(y)| dy

this is because ψ verifies the proposition; and since also φ verifies the proposition we have
ˆ

V

f(ψ(y)) |detψ′(y)|dy =

ˆ

U

f(ψ(φ(x))) |detψ′(φ(x))| | detφ′(x)| dx,

so that
ˆ

W

f(z) dz =

ˆ

U

f ◦ ψ ◦ φ(x) |detψ′(φ(x)) detφ′(x)| dx,

and since detψ′(φ(x)) detφ′(x) = det(ψ ◦ φ)′(x), we conclude that ψ ◦ φ verifies the proposition.
We say that a diffeomorphism φ : U → V verifies locally the Proposition if for every p ∈ U there is an open

nbhd Up of p in U such that, denoting by φp : Up → Vp = φ(Up) the induced diffeomorphism, φp verifies the
proposition. If φ verifies the proposition locally, then φ verifies the proposition. In fact, given a compact interval
Q contained in U , pick a nbhd Up for every p ∈ U where the proposition is verified; for every p pick then a compact
cube Qp centered at p and contained in Up. By compactness of Q there is a finite subset p(1), . . . , p(m) ∈ Q such
that Q ⊆ ⋃m

k=1Qp(k). Considering the subalgebra of parts of Q generated by the intervals Qp(k)∩Q, we can write
Q as a finite disjoint union of intervals I(1), . . . , I(r), each contained in some Up(k), where the proposition holds.
Then

m(φ(Q)) = m

(

r
⋃

j=1

φ(I(j))

)

=

r
∑

j=1

m(φ(I(j))) =

r
∑

j=1

ˆ

I(j)

|detφ′(x)|dx =

ˆ

Q

|detφ′(x)| dx.
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Next, assuming the inductive hypothesis that the proposition holds for every C1 diffeomorphism between
open subsets of Rn we prove that the proposition holds if U, V are open sets in Rn+1 and φ : U → V is of the
form (we denote by (t, x) the independent variable of Rn+1, i.e. t ∈ R and x ∈ Rn)

φ(t, x) = (φ0(t, x), . . . , φn(t, x)) with φ0(t, x) = t,

that is the first component of φ is the identity of R, φ0(t, x) = t, in other words we have

φ(t, x) = (t, φ1(t, x), . . . , φn(t, x)).

We may write φ as φ(t, x) = (t, ψt(x)), where for each t ∈ pr0(U) = J(= pr0(V )) the function ψt(x) =
(φ1(t, x), . . . , φn(t, x)) is a diffeomorphism of the t−section U(t) = {x ∈ Rn : (t, x) ∈ U} of U onto the t−section
V (t) = {y ∈ Rn : (t, y) ∈ V } of V . Given a positive Borel measurable f : V → [0,∞] we have, by Tonelli’s
theorem:

ˆ

V

f(t, y) dm(t, y) =

ˆ

t∈J

(

ˆ

V (t)

f(t, y) dy

)

dt;

Now ψt : U(t) → V (t) is a diffeomorphism of open subsets of Rn, so that by the inductive hypothesis we get, for
every t ∈ J :

ˆ

V (t)

f(t, y) dy =

ˆ

U(t)

f(t, ψt(x)) |det ∂xψt(x)|dx,

where ∂xψt(x) is the jacobian matrix of ψt with respect to the x−variables. Then det ∂xψt(x) = detφ′(t, x) for
every (t, x) ∈ U . We have obtained:

ˆ

V

f(t, y) dm(t, y) =

ˆ

t∈J

(

ˆ

U(t)

f(φ(t, x)) |detφ′(t, x)| dx
)

dt;

and again by Tonelli’s theorem we get
ˆ

t∈J

(

ˆ

U(t)

f(φ(t, x)) |detφ′(t, x)| dx
)

dt =

ˆ

U

f(φ(t, x)) | detφ′(t, x)|dm(t, x).

We now prove that locally every C1 diffeomorphism φ : U → V between open subsets U, V of Rn+1 may
be factored as the composition of two diffeomorphisms each of which is the identity on some variable. Given
p ∈ U , by a suitable permutation of coordinates on domain and range we may assume that ∂1ϕ(p) 6= 0. The
map α : U → Rn+1 defined by α(x) = (ϕ1(x), x2, . . . , xn+1) is locally invertible at p, having jacobian determinant
∂1ϕ(p) 6= 0, and hence induces a C1 diffeomorphism of an open nbhd Up of p onto an open subset W of Rn+1.
Let β : W → Up be the inverse diffeomorphism, and set ψ = ϕ ◦ β. Then ψ is a C1 diffeomorphism from W
onto Vp = ϕ(Up), and ϕ = ψ ◦ α. Now α is the identity on the last n variables, and ψ is the identity on the first
variable, so they both verify the Proposition. The proof is completed.

�
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