REAL ANALYSIS EXAMS

A.A 2011-12

GIUSEPPE DE MARCO

Analisi Reale per Matematica-Precompitino 21 novembre 2011

Exercise 1. Let (X, \mathcal{M}, μ) be a measure space.
(i) For $f \in L^{+}(X)$ define the integral of f, and making use of this definition prove that $\int_{X} f=0$ only if $\mu(\{f \neq 0\})=0$.
(ii) Prove that if $f, g \in L_{\mu}^{1}(X, \mathbb{R})$ then $f=g$ a.e. if and only if $\int_{E} f=\int_{E} g$ for every $E \in \mathcal{M}$ (hint: consider $E=\{f<g\} \ldots)$.
(iii) Prove that if $f, g \in L_{\mu}^{1}(X, \mathbb{C})$ then $f=g$ a.e. if and only if $\int_{E} f=\int_{E} g$ for every $E \in \mathcal{M}$.
(iv) Define Dynkin classes and state Dynkin's theorem.
(v) Let $\mathcal{E} \subseteq \mathcal{M}$ be closed under intersection, assume that $\mathcal{M}(\mathcal{E})=\mathcal{M}$, and that X is covered by a countable subset of \mathcal{E}. Assume that $f, g \in L^{1}(\mu)$ are such that $\int_{E} f=\int_{E} g$ for every $E \in \mathcal{E}$. Prove that $f=g$ a.e.
Solution. (i) Definition: $\int_{X} f=\sup \left\{\int_{X} \varphi: 0 \leq \varphi \leq f, \varphi\right.$ simple $\}$. If $\int_{X} f=0$ then $\int_{X} \varphi=0$ for every positive simple φ under f; in particular, if $E(n)=\{f>1 / n\}$ then $(1 / n) \chi_{E(n)}$ is a simple function under f, so that $\int_{X}(1 / n) \chi_{E(n)}=0$, that is $(1 / n) \mu(E(n))=0$, which implies $\mu(E(n))=0$; since

$$
\{f \neq 0\}=\{f>0\}=\bigcup_{n=1}^{\infty} E(n), \text { we have } \mu(\{f>0\})=0 .
$$

(ii) From $\int_{E} f=\int_{E} g$ we get $\int_{E}(g-f)=0$; but we have $g(x)-f(x)>0$ for every $x \in E$, so that $\int_{E}(g-f)=0$ implies $\mu(E)=0$. In the same way, if $F=\{f>g\}$ we get $\mu(F)=0$, so that $f=g$ a.e. in X.
(iii) $\int_{E} f=\int_{E} g$ is equivalent to $\int_{E} \operatorname{Re} f=\int_{E} \operatorname{Re} g$ and $\int_{E} \operatorname{Im} f=\int_{E} \operatorname{Im} g$. By (ii) this happens for every measurable E iff $\operatorname{Re} f=\operatorname{Re} g$ and $\operatorname{Im} f=\operatorname{Im} g$ a.e., that is $f=g$ a.e.
(iv) See Lecture Notes, 3.4.1
(v) The proof mimics the proof of LN, 3.4.3. Given a set $E \in \mathcal{E}$ consider the set $\mathcal{E}_{E}=\{F \cap E: F \in$ $\mathcal{E}\}(=\{G \subseteq E: G \in \mathcal{E}\})$, and the set $\mathcal{C}_{E}=\left\{A \in \mathcal{M}: A \subseteq E, \int_{A} f=\int_{A} g\right\}$. This set is a Dynkin class of parts of E, as is easy to check: closure under countable disjoint union is countable additivity of the integral: if $f \in L^{1}(\mu)$ and $(A(n))_{n \in \mathbb{N}}$ is a countable disjoint sequence of elements of \mathcal{M}, then $\sum_{n=0}^{\infty} f \chi_{E(n)}$ is a normally convergent series in $L^{1}(\mu)$, so $\int_{\bigcup_{n} A(n)} f \chi_{A(n)}=\sum_{n=0}^{\infty} \int_{X} f \chi_{A(n)}=\sum_{n=0}^{\infty} \int_{A(n)} f$; same for g. And since $\int_{E \backslash A} f=\int_{E} f-\int_{A} f$ for every measurable subset A of E, and the same for g, we also have closure under complementation. Since this set \mathcal{C}_{E} contains \mathcal{E}_{E}, it contains the Dynkin class generated by it, and since \mathcal{E}_{E} is closed under intersection, by Dynkin's theorem \mathcal{C}_{E} contains the σ-algebra generated by \mathcal{E}_{E}, which is $\mathcal{M}_{E}=\{A \in \mathcal{M}: A \subseteq E\}$. Now X can be written as a countable union of members of \mathcal{E}, say $X=\bigcup_{k \in \mathbb{N}} E_{k}$; by the usual technique $\left(F_{k}=E_{k} \backslash\left(\bigcup_{j=0}^{k-1} E_{j}\right)\right)$ we can write X as a countable disjoint union of members F_{k} of $\mathcal{M}(\mathcal{E})$ with $F_{k} \subseteq E_{k}$; given $A \in \mathcal{M}(\mathcal{E})$ we have $A=\bigcup_{k=0}^{\infty} A \cap F_{k}$, a countable disjoint union, and $\int_{A \cap F_{k}} f=\int_{A \cap F_{k}} g$ for every k, since $A \cap F_{k} \in \mathcal{M}_{E_{k}}$.
Remark. Of course, considering $h=f-g$, (i),(iii),(iv), (v) may be stated as $\int_{E} h=0$ for every $E \in \ldots$ implies $h=0$ a.e.. The statement:

- If $f, g \in L^{+}(X)$ are such that $\int_{E} f=\int_{E} g$ for every $E \in \mathcal{M}$, then $f=g$ a.e.
is FALSE unless some additional hypothesis is made on μ : take an uncountable set X with the σ-algebra of countable or co-countable subsets, and the measure μ that is ∞ for co-countable, and 0 for countable sets: the constants 1 and 2 have integral 0 on countable and ∞ on co-countable sets, but are never equal. We can prove (but the proof is much more complicated than (ii) above, owing to possibly infinite integrals):
. If μ is semifinite, and $f, g \in L^{+}(X)$ are such that $\int_{E} f=\int_{E} g$ for every $E \in \mathcal{M}$, then $f=g$ a.e.

Proof. Let $A=\{f<g\}$; it is enough to prove that $\mu(A)=0$ (an analogous proof will work for $B=\{g<f\}$). Given $n \in \mathbb{N}$, let $E(n)=\{g \leq n\} \cap A$. Then $\mu(E(n))=0$; in fact, if not, by semifiniteness we get $E \subseteq E(n)$ with $0<\mu(E)<\infty$. Then $\int_{E} f=\int_{E} g \leq \int_{E} n=n \mu(E)<\infty$; it follows that $\int_{E}(g-f)=0$, but $g(x)-f(x)>0$ for every $x \in E$, impossible if $\mu(E)>0$. Then $\mu(E(n))=0$ for every n, so that $\mu(\{g<\infty\} \cap A)=0$ (since $\left.\{g<\infty\}=\bigcup_{n=1}^{\infty}\{g \leq n\}\right)$. If $\mu(\{g=\infty\} \cap A)>0$ we still get a contradiction: notice that since $f(x)<\infty$ for every $x \in A$ we still have $\{g=\infty\} \cap A=\bigcup_{n=1}^{\infty}\{g=\infty\} \cap A \cap\{f \leq n\}$; unless these sets have all measure zero we can get $E \subseteq\{g=\infty\} \cap A \cap\{f \leq n\}$ with $0<\mu(E)<\infty$; then $\int_{E} f \leq n \mu(E)<\infty$, but $\int_{E} g=\infty$. Then $\mu(A)=\mu(A \cap\{g<\infty\})+\mu(A \cap\{g=\infty\})=0$.

Exercise 2. (i) Let U be an open subset of \mathbb{R}^{n}. Prove that U is a countable union of compact intervals (or even compact cubes).
(ii) Prove that if X is an open subset of \mathbb{R}^{n} then the σ-algebra of Borel subsets of X is generated by the compact intervals contained in X.
From now on U and V are open subintervals of \mathbb{R} and $\phi: U \rightarrow V$ is a C^{1} diffeomorphism (a C^{1} bijective map with C^{1} inverse).
(iii) We define on the σ-algebra \mathcal{B} of Borel subsets of U the set functions:

$$
\mu(E)=\lambda(\phi(E)) ; \quad \nu(E)=\int_{E}\left|\phi^{\prime}(x)\right| d \lambda(x)
$$

where of course $\lambda=\lambda_{1}$ is the one dimensional Lebesgue measure. Prove that μ and ν are measures, and that $\mu=\nu$ on \mathcal{B}.
(iv) The measure μ can be considered as an image measure, in which way? Using this fact prove that, for every $f \in L_{\lambda}^{1}(V, \mathbb{K})$ we have the change of variable formula:

$$
\int_{V} f(y) d y=\int_{U} f(\phi(x))\left|\phi^{\prime}(x)\right| d x
$$

Solution. (i) Consider the set of all closed cubes $Q(c, r]=\left\{x \in \mathbb{R}^{n}:\|x-c\|_{\infty} \leq r\right\}$ with centers $c \in \mathbb{Q}^{n}$ and half-sides $r \in \mathbb{Q}^{>}$which are contained in U : this is a countable set of compact cubes, whose union is U. In fact, given $a \in U$, pick $c \in \mathbb{Q}^{n}$ such that $\|a-c\|_{\infty}<d=\operatorname{dist}\left(a, \mathbb{R}^{n} \backslash U\right) / 3$, where $\operatorname{dist}\left(a, \mathbb{R}^{n} \backslash U\right)=\inf \left\{\|a-y\|_{\infty}: y \in \mathbb{R}^{n} \backslash U\right\}$. Picking a rational number r such that $d<r<2 d$ we get $a \in Q(c, r] \subseteq U$.
(ii) The compact intervals are Borel sets, so they generate a σ-algebra contained in the Borel sets of X. But as shown in (i), every open set is a countable union of compact intervals, so the generators of the Borel σ-algebra are all contained in the σ-algebra generated by compact intervals, and so these σ-algebras coincide.
(iii) Answering now to part of (iii) we can observe that $\mu=\lambda \phi^{-1 \leftarrow}$ is the image measure of the Lebesgue measure on V, by means of the map $\phi^{-1}: V \rightarrow U($ see LN, 3.3.7.2). Anyway the direct verification that μ is a measure (thanks to the fact that ϕ is a homeomorphism) is trivial. We know that ν is a measure (the one with density $\left|\phi^{\prime}\right|$ with respect to Lebesgue measure), owing to countable additivity of integrals of positive functions (LN, 3.3.5.2). Remember now that a diffeomorphism between intervals of \mathbb{R} has necessarily a derivative always strictly positive or strictly negative: it cannot vanish, and intervals are connected. If $[a, b]$ is a compact subinterval of U we have $\phi([a, b])=[\phi(a), \phi(b)]$ if ϕ is increasing $\left(\phi^{\prime}(x)>0\right)$, and $\phi([a, b])=[\phi(b), \phi(a)]$ if ϕ is decreasing $\left(\phi^{\prime}(x)<0\right)$. And we have

$$
\int_{[a, b]}\left|\phi^{\prime}(x)\right| d x= \pm \int_{a}^{b} \phi^{\prime}(x) d x= \pm(\phi(b)-\phi(a))
$$

where + holds if ϕ is increasing, - in the other case. Then μ and ν coincide and are finite on compact intervals, a class of sets closed under finite intersection which generates the σ-algebra \mathcal{B}, with U also a countable union of compact intervals; so the measures coincide on \mathcal{B} (we are using the uniqueness result in LN, 3.4.3).
(iv) We have seen that $\mu=\lambda \phi^{-1 \leftarrow}$; then for $g \in L^{+}\left(\lambda \phi^{-1 \leftarrow}\right)$ we have

$$
\int_{U} g(x) d \lambda \phi^{-1 \leftarrow}(x)=\int_{V} g \circ \phi^{-1}(y) d \lambda(y) ;
$$

on the other hand, since $d \lambda \phi^{-1 \leftarrow}=\left|\phi^{\prime}\right| d \lambda$ we have also (see LN, 3.3.5.2):

$$
\int_{U} g(x) d \lambda \phi^{-1 \leftarrow}(x)=\int_{U} g(x)\left|\phi^{\prime}(x)\right| d \lambda(x)
$$

so that, equating the right-hand sides of the two preceding equations:

$$
\int_{V} g \circ \phi^{-1}(y) d \lambda(y)=\int_{U} g(x)\left|\phi^{\prime}(x)\right| d \lambda(x)
$$

for every $g \in L^{+}(U)$; and setting $f(y)=g \circ \phi^{-1}(y)$ we get $g(x)=f \circ \phi(x)$, and we conclude.
Exercise 3 . Let (X, \mathcal{M}, μ) be a measure space.
(i) State the dominated convergence theorem.
(ii) Prove that if $f, g \in L^{+}$, then $(g-f)^{+} \leq g$.
(iii) Let f_{n} in $L^{+}(X)$ converge a.e. to $f \in L^{+}(X)$, and assume that all integrals are finite and $\int_{X} f_{n} \rightarrow \int_{X} f<\infty$. Prove that then f_{n} converges to f in $L^{1}(\mu)$, i.e. $\left\|f-f_{n}\right\|_{1} \rightarrow 0$ (by (ii) we have $\left(f-f_{n}\right)^{+} \leq \ldots$, then apply (i) ...).
(iv) We now assume that f_{n} in $L^{+}(X)$ converge a.e. to $f \in L^{+}(X)$, that $f_{n} \leq f$ for every n, and that all integrals are finite. Is it true that f_{n} converges to f in $L^{1}(\mu)$?
Solution. (i) See the Lecture Notes, 3.3.2. (ii) If $(g-f)^{+}(x)=0$ the assertion is trivial, since $g(x) \geq 0$ for every $x \in X$. If $(g-f)^{+}(x)>0$, then $(g-f)^{+}(x)=g(x)-f(x)>0$; and since $f(x) \geq 0$ by the hypothesis $f \in L^{+}(X)$, we conclude that $(g-f)^{+}(x)=g(x)-f(x) \leq g(x)$.
(iii) If all integrals are finite then all functions are in $L^{1}(\mu)$, being all positive. Then $\left(f-f_{n}\right)^{+} \leq f$ is a sequence which converges to 0 a.e and is dominated by $f \in L^{1}(\mu)$. By dominated convergence we have $\lim _{n} \int_{X}\left(f-f_{n}\right)^{+}=0$. But then, since $\left(f-f_{n}\right)^{-}=\left(f-f_{n}\right)^{+}-\left(f-f_{n}\right)$ we get

$$
\lim _{n} \int_{X}\left(f-f_{n}\right)^{-}=\lim _{n}\left(\int_{X}\left(f-f_{n}\right)^{+}-\int_{X}\left(f-f_{n}\right)\right)=\lim _{n} \int_{X}\left(f-f_{n}\right)^{+}-\int_{X} f+\lim _{n} \int_{X} f_{n}=0
$$

hence also

$$
\lim _{n} \int_{X}\left|f-f_{n}\right|=\lim _{n}\left(\int_{X}\left(f-f_{n}\right)^{+}+\int_{X}\left(f-f_{n}\right)^{-}\right)=0 .
$$

(iv) Since all integrals, including that of f, are finite, we have that $f \in L^{1}(\mu)$; since $0 \leq f_{n} \leq f$, dominated convergence is applicable (one-sided limits, 3.3.17.6), hence we have convergence in $L^{1}(\mu)$.

Remark. Of course (iii) can also be obtained from the generalized dominated convergence theorem; in fact, the proof suggested here follows essentially the same route as the proof of that result (LN, 3.3.17.7).

Analisi Reale per Matematica- Primo Compitino, 26 novembre 2011

Exercise 4. Let (X, \mathcal{M}, μ) be a measure space.
(i) State Fatou's lemma.
(ii) Using Fatou's lemma prove the monotone convergence theorem for functions in $L^{+}(X)$.
(iii) Let $g:[0, \infty[\rightarrow[0, \infty[$ be continuous. Given $a>0$ let

$$
M_{a}=\left\{f \in L^{1}(\mu):\|g(|f|)\|_{1} \leq a\right\}
$$

Prove that M_{a} is closed in $L^{1}(\mu)$ (if $f_{n} \in M_{a}$ converges to f in $L^{1}(\mu)$, then some subsequence converges to f also ...).

Solution. (i) LN, 3.3.6.
(ii) If $f_{n} \in L^{+}(X)$ and $f_{n} \uparrow f$, Fatou's lemma says that $\int_{X} f \leq \liminf _{n} \int_{X} f_{n}$. But the sequence f_{n} is increasing, hence also the sequence $\int_{X} f_{n}$ is increasing, so that $\lim _{n} \int_{X} f_{n}=\sup _{n} \int_{X} f_{n}$ exists. Then the preceding assertion implies $\int_{X} f \leq \lim _{n} \int_{X} f_{n}$; and since $\int_{X} f_{n} \leq \int_{X} f$ for every n, we have also $\lim _{n} \int_{X} f_{n} \leq \int_{X} f$, and hence equality, $\lim _{n} \int_{X} f_{n}=\int_{X} f$.
(iii) If $f_{n} \in M_{a}$ converges to f in $L^{1}(\mu)$, then some subsequence converges to f also a.e.; let's assume that the entire sequence converges a.e. to f. Then $\left|f_{n}\right|$ converges a.e. to $|f|$, and by continuity of g on $\left[0, \infty\left[\right.\right.$ we have that $g\left(\left|f_{n}(x)\right|\right)$ converges to $g(|f(x)|)$ if $\left|f_{n}(x)\right|$ converges to $|f(x)|$. Then Fatou's lemma says that

$$
\int_{X} g \circ|f| \leq \liminf _{n} \int_{X} g \circ\left|f_{n}\right| \leq a
$$

so that $f \in M_{a}$, and M_{a} is closed in $L^{1}(\mu)$.

Remark. (ii) Many have proved monotone convergence by applying Fatou's lemma to the sequence $f-f_{n}$ to get the inequality $\lim \sup _{n} \int_{X} f_{n} \leq \int_{X} f$; this not only makes the proof uselessly longer, it is strictly speaking an incomplete proof, because it excludes the case $\int_{X} f_{n}=\infty$.

Exercise 5. Let (X, \mathcal{M}, μ) be a measure space.
(i) Prove that if $f \in L^{1}(\mu)$ then for every $\alpha>0$ we have $\|f\|_{1} \geq \int_{\{|f| \geq \alpha\}}|f|$, and prove that $\lim _{\alpha \rightarrow \infty} \int_{\{|f| \geq \alpha\}}|f|=0$ (i.e. prove that for every sequence $\alpha_{n} \rightarrow \infty$ we have $\lim _{n} \int_{\left\{|f| \geq \alpha_{n}\right\}}|f|=$ 0).
(ii) If $f \in L^{\infty}(\mu)$, given $\varepsilon>0$ there is $\delta>0$ such that $\mu(E) \leq \delta$ implies $\left|\int_{E} f\right| \leq \varepsilon$ (trivial, 1 point). Prove that the same is true if $f \in L^{1}(\mu)$: given $\varepsilon>0$ and $\alpha>0$ write

$$
\left|\int_{E} f\right| \leq \int_{E}|f|=\int_{E \cap\{|f| \geq \alpha\}}|f|+\int_{E \cap\{|f|<\alpha\}}|f|
$$

and estimate separately the two terms.
(iii) State and prove Čebičeff's inequality: $\mu(\{|f| \geq \alpha\}) \leq \ldots$, and use it to prove that if f_{n} is a sequence in $L^{1}(\mu)$ converging to f in $L^{1}(\mu)$ then, for every $\alpha>0$:

$$
\lim _{n \rightarrow \infty} \mu\left(\left\{\left|f-f_{n}\right| \geq \alpha\right\}\right)=0
$$

Solution. (i) Clearly $|f| \geq|f| \chi_{\alpha}$, if χ_{α} is the characteristic function of the set $\{|f| \geq \alpha\}$. Then

$$
\int_{\{|f| \geq \alpha\}}|f|=\int_{X}|f| \chi_{\alpha}=\int_{\{|f| \geq \alpha\}}|f| \leq \int_{X}|f|=\|f\|_{1} .
$$

If $\alpha(n)$ tends to ∞, then $|f| \chi_{\alpha(n)} \rightarrow 0$ everywhere, and $|f| \chi_{\alpha(n)} \leq|f|$ for every n, so that dominated convergence implies $\lim _{n} \int_{\{|f| \geq \alpha(n)\}}|f|=0$.
(ii) Clearly we have

$$
\left|\int_{E} f\right| \leq \int_{E}|f| \leq \int_{E}\|f\|_{\infty}=\|f\|_{\infty} \mu(E) \quad \text { for every } E \in \mathcal{M} \text { of finite measure, }
$$

so that given ε we simply take $\delta=\varepsilon /\|f\|_{\infty}$. Following the hint, we write

$$
\left|\int_{E} f\right| \leq \int_{E \cap\{|f| \geq \alpha\}}|f|+\int_{E \cap\{|f|<\alpha\}}|f|
$$

given $\varepsilon>0$ we first pick $\alpha>0$ so that $\int_{\{|f| \geq \alpha\}}|f| \leq \varepsilon / 2$. Then we have also

$$
\int_{E \cap\{|f| \geq \alpha\}}|f| \leq \int_{\{|f| \geq \alpha\}}|f| \leq \varepsilon / 2 \quad \text { for every } E \in \mathcal{M}
$$

Keeping now α fixed we have, if $\mu(E) \leq \delta$

$$
\int_{E \cap\{|f|<\alpha\}}|f| \leq \alpha \mu(E \cap\{|f|<\alpha\}) \leq \alpha \mu(E) \leq \alpha \delta,
$$

so that we need only to pick $\delta=\varepsilon /(2 \alpha)$ to conclude.
(iii) The inequality is $\mu\left(\{|f| \geq \alpha\} \leq(1 / \alpha)\|f\|_{1}\right.$, and the proof is immediate, the first part already done in (i):

$$
\|f\|_{1}=\int_{X}|f| \geq \int_{\{|f| \geq \alpha\}}|f| \geq \int_{\{|f| \geq \alpha\}} \alpha=\alpha \mu(\{|f| \geq \alpha\})
$$

Then we have

$$
\mu\left(\left\{\left|f-f_{n}\right| \geq \alpha\right\}\right) \leq \frac{1}{\alpha}\left\|f-f_{n}\right\|_{1} \rightarrow 0 \text { for } n \rightarrow \infty
$$

Remark. (i) Many wanted to use monotone convergence, or the fact that $E \mapsto \int_{E}|f|$ is a measure; this is possible if $\alpha_{n} \uparrow \infty$. Now this can be assumed without loss of generality. In fact we have:
. Let $\varphi: D \rightarrow \mathbb{R}$ be a function, and assume that $c \in \tilde{\mathbb{R}}$ is an accumulation point for $D \cap]-\infty, c[$. Then $\lim _{x \rightarrow c^{-}} \varphi(x)$ exists and is ℓ if and only if $\lim _{n \rightarrow \infty} \varphi\left(x_{n}\right)=\ell$ for every increasing sequence $x_{n} \in D$ with $x_{n} \uparrow c$.

In fact we know that $\lim _{x \rightarrow c^{-}} \varphi(x)$ exists and is ℓ if and only if $\lim _{n \rightarrow \infty} \varphi\left(x_{n}\right)=\ell$ for every sequence $x_{n} \in D$ with $x_{n} \rightarrow c$; now every real valued sequence has a monotone subsequence, and if $x_{n}<c$ and $x_{n} \rightarrow c$ this subsequence must be increasing, since it has c as limit.

This fact, applied to $\varphi(\alpha)=\int_{\{|f| \geq \alpha\}}|f|$ shows that we can assume $\alpha_{n} \uparrow \infty$. But a proof ought to be given.

It is however impossible to prove (i) using Čebičeff's inequality, or vague arguments such as

$$
\lim _{n} \int_{\left\{|f| \geq \alpha_{n}\right\}}|f|=\int_{\{|f|=\infty\}}|f|
$$

stated without proof. In this respect also notice that, by definition, functions in $L^{1}(\mu)$ are finite valued, so that $\{|f|=\infty\}$ is empty for $f \in L^{1}(\mu)$, and not only of measure zero: this is a minor point, but is worth noticing.

ExERCISE 6. Let $F, G: \mathbb{R} \rightarrow \mathbb{R}$ be increasing and right continuous; recall that we have the formula of integration by parts, if $a, b \in \mathbb{R}$ and $a<b$ then

$$
\begin{equation*}
\int_{] a, b]} F\left(x^{-}\right) d G(x)+\int_{] a, b]} G(x) d F(x)=F(b) G(b)-F(a) G(a) . \tag{}
\end{equation*}
$$

In the sequel we assume also $F(-\infty)=G(-\infty)=0$.
(i) Prove that

$$
\int_{\mathbb{R}} F\left(x^{-}\right) d G(x)+\int_{\mathbb{R}} G(x) d F(x)=F(\infty) G(\infty)
$$

(infinite values are possible),
(a): directly using Tonelli's theorem
(b): using formula $\left(^{*}\right)$ and passing to the limit with $a \downarrow \ldots$ and $b \uparrow \ldots$
(ii) Prove that if F and G do not have a common point of discontinuity then we may replace $F\left(x^{-}\right)$ with $F(x)$ in the preceding formula.
(iii) Assuming F bounded and continuous prove that

$$
\int_{\mathbb{R}} F(x) d F(x)=\frac{1}{2}(F(\infty))^{2}
$$

Now we take $F(x)=\chi_{[0, \infty[}$ the Heaviside step, and

$$
G(x)= \begin{cases}e^{x} & x<0 \\ 3-e^{-x} & x \geq 0\end{cases}
$$

(iv) Plot the graph of G and compute

$$
\int_{\mathbb{R}} F\left(x^{-}\right) d G(x) ; \quad \int_{\mathbb{R}} F(x) d G(x) .
$$

(v) Compute $(d G-d F)(] a, b])$ for every $a, b \in \mathbb{R}$ with $a<b$. Prove that there is a function $\rho \in L_{\lambda}^{+}(\mathbb{R})$ such that $(d G-d F)(E)=\int_{E} \rho d \lambda$ for every Borel $E \subseteq \mathbb{R}$, and find it.

Solution. (i) (a) We compute $d F \otimes d G(T)$, where $T=\left\{(x, y) \in \mathbb{R}^{2}: x \leq y\right\}$. Since all measures are σ-finite, and T is a Borel subset of \mathbb{R}^{2}, hence measurable, Tonelli's theorem is applicable and gives $\left.\left.\left(T_{x}=\{y \in \mathbb{R}:(x, y) \in T\}=\right]-\infty, x\right]\right)$

$$
d F \otimes d G(T)=\int_{\mathbb{R}}\left(\int_{T_{x}} d G\right) d F(x)=\int_{\mathbb{R}}\left(\int_{]-\infty, x]} d G\right) d F(x)=\int_{\mathbb{R}} G(x) d F(x)
$$

reversing the order of integration $\left(T^{y}=[x,+\infty[)\right.$:

$$
d F \otimes d G(T)=\int_{\mathbb{R}}\left(\int_{T^{y}} d F\right) d G(y)=\int_{\mathbb{R}}\left(F(\infty)-F\left(x^{-}\right)\right) d G(x)
$$

so that

$$
\int_{\mathbb{R}} G(x) d F(x)=\int_{\mathbb{R}}\left(F(\infty)-F\left(x^{-}\right)\right) d G(x)
$$

Caution: we cannot say that $\int_{\mathbb{R}}\left(F(\infty)-F\left(x^{-}\right)\right) d G(x)=F(\infty) G(\infty)-\int_{\mathbb{R}} F\left(x^{-}\right) d G(x)$ because of possible infinities. Adding to both sides $\int_{\mathbb{R}} F\left(x^{-}\right) d G(x)$, which certainly exists since $x \mapsto F\left(x^{-}\right)$is positive measurable, we get that

$$
\begin{aligned}
\int_{\mathbb{R}} F\left(x^{-}\right) d G(x)+\int_{\mathbb{R}} G(x) d F(x)= & \int_{\mathbb{R}} F\left(x^{-}\right) d G(x)+\int_{\mathbb{R}}\left(F(\infty)-F\left(x^{-}\right)\right) d G(x)=\int_{\mathbb{R}} F(\infty) d G(x)= \\
& F(\infty) G(\infty)
\end{aligned}
$$

(b) Let $a_{n} \downarrow-\infty$ and $b_{n} \uparrow \infty$. Then $\left.f_{n}(x)=F\left(x^{-}\right) \chi_{]} a_{n} a, b_{n}\right]$ and $\left.g_{n}=G(x) \chi_{]} a_{n} a, b_{n}\right]$ are increasing sequences of positive functions such that $f_{n}(x) \uparrow F\left(x^{-}\right)$and $g_{n}(x) \uparrow G(x)$, for every $x \in \mathbb{R}$. Then monotone convergence implies that

$$
\int_{\mathbb{R}} f_{n} d G+\int_{\mathbb{R}} g_{n} d F \uparrow \int_{\mathbb{R}} F\left(x^{-}\right) d G(x)+\int_{\mathbb{R}} G(x) d F(x)
$$

and since

$$
\int_{\mathbb{R}} f_{n} d G+\int_{\mathbb{R}} g_{n} d F=\int_{] a_{n}, b_{n}\right]} F\left(x^{-}\right) d G(x)+\int_{] a_{n}, b_{n}\right]} G(x) d F(x)=F\left(b_{n}\right) G\left(b_{n}\right) \uparrow F(\infty) G(\infty)
$$

we conclude.
(ii) Clear: discontinuities of F are a countable set of $d G$ measure 0 , so that $F(x)$ and $F\left(x^{-}\right)$are $d G$-almost equal.
(iii) Is a trivial application of the second formula, given continuity of F.

Figure 1. Plot of G
(iv) Notice that $x \mapsto F\left(x^{-}\right)=\chi_{] 0, \infty[\text {. Then }}$

$$
\int_{\mathbb{R}} F\left(x^{-}\right) d G(x)=\int_{] 0, \infty[} d G(x)=d G(] 0, \infty[)=G(\infty)-G(0)=3-2=1
$$

And

$$
\int_{\mathbb{R}} F(x) d G(x)=\int_{[0, \infty[} d G=G(\infty)-G\left(0^{-}\right)=3-1=2 .
$$

(v) We have

$$
(d G-d F)(] a, b])=d G(] a, b])-d F(] a, b])=G(b)-G(a)-(F(b)-F(a)=(G-F)(b)-(G-F)(a)
$$

for every pair $a, b \in \mathbb{R}$ with $a<b$. Observe that $H=G-F$ is still an increasing function: we have

$$
H(x)= \begin{cases}e^{x} & \text { for } \quad x<0 \\ 2-e^{-x} & \text { for } \quad x \geq 0\end{cases}
$$

then $d G-d F=d H$ is the Radon-Stieltjes measure associated to H. And we have

$$
(d G-d F)(] a, b])=H(b)-H(a)= \begin{cases}e^{-a}-e^{-b} & \text { for } 0 \leq a<b \\ 2-e^{-b}-e^{-a} & \text { for } a<0<b \\ e^{b}-e^{a} & \text { for } 0<b \leq 0\end{cases}
$$

It is clear that H is a C^{1} function: it is continuous, and its derivative is e^{x} for $x<0$, while $H^{\prime}(x)=e^{-x}$ for $x>0$, so that $H^{\prime}(0)=1$ also exists; we have that $H^{\prime}(x)=e^{-|x|}$ for every $x \in \mathbb{R}$, so the density function is $\rho(x)=e^{-|x|}$.

Figure 2. Plot of $H=G-F$, a function of class C^{1}.
REmARK. (i), part (a): A more elegant solution has been found by a student: write the first term of the formula to be proved as $\int_{\mathbb{R}} F\left(y^{-}\right) d G(y)$; then, since $F\left(y^{-}\right)=d F(]-\infty, y[)=\int_{]-\infty, y[} d F(x)$ we have

$$
\int_{\mathbb{R}} F\left(y^{-}\right) d G(y)=\int_{\mathbb{R}}\left(\int_{]-\infty, y[} d F(x)\right) d G(y)=\int_{S} d F \otimes d G(x, y) \quad \text { where } S=\left\{(x, y) \in \mathbb{R}^{2}: x<y\right\}
$$

For the second term we get

$$
\int_{\mathbb{R}} G(x) d F(x)=\int_{\mathbb{R}}\left(\int_{]-\infty, x]} d G(y)\right) d F(x)=\int_{T} d F \otimes d G(x, y) \quad \text { where } T=\left\{(x, y) \in \mathbb{R}^{2}: y \leq x\right\}
$$

so that, observing that $\mathbb{R}^{2}=S \cup T$, disjoint union of the two half-planes S, T

$$
\begin{aligned}
\int_{\mathbb{R}} F\left(x^{-}\right) d G(x)+\int_{\mathbb{R}} G(x) d F(x)= & \int_{S} d F \otimes d G(x, y)+\int_{T} d F \otimes d G(x, y)=\int_{\mathbb{R}^{2}} d F \otimes d G(x, y)= \\
& (F(\infty)-F(-\infty))(G(\infty)-G(-\infty))=F(\infty) G(\infty)
\end{aligned}
$$

1. Analisi Reale per Matematica-Secondo Precompitino 18 gennaio 2012

ExERCISE 7. (i) Define a signed measure $\nu: \mathcal{M} \rightarrow \tilde{\mathbb{R}}$. If $\nu(A)$ is not finite, and $B \supseteq A$, is $\nu(B)$ also not finite? and if $B \subseteq A$ is $\nu(B)$ also not finite? or what else can be said ?(of course $A, B \in \mathcal{M}$)
(ii) Prove that a signed measure can assume only one of the values $\pm \infty$.
(iii) Prove that if $A_{0} \subseteq A_{1} \subseteq \ldots$ is an increasing sequence in \mathcal{M}, and $A=\bigcup_{n=0}^{\infty} A_{n}$, then

$$
\lim _{n \rightarrow \infty} \nu\left(A_{n}\right)=\nu(A)
$$

Is there an analogous proposition for decreasing sequences? if so, state and prove it.
(iv) Assume that $\nu(X) \in \mathbb{R}$. Is it true that $\nu(\mathcal{M})$ has a maximum? and a minimum?

Solution. (i) Let (X, \mathcal{M}) be a measurable space. A signed measure is a function $\nu: \mathcal{M} \rightarrow[-\infty, \infty]$ such that $\nu(\emptyset)=0$, and which is countably additive, that is, for every disjoint sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$ of \mathcal{M} we have

$$
\nu\left(\bigcup_{n=0}^{\infty} A_{n}\right)=\sum_{n=0}^{\infty} \nu\left(A_{n}\right)
$$

If $B \supseteq A$ we have $\nu(B)=\nu(A)+\nu(B \backslash A)$; if $\nu(A)= \pm \infty$, any meaningful addition $\nu(A)+c$, with $c \in \tilde{\mathbb{R}}$ has $\nu(A)$ as the resulting sum, so $\nu(B)=\nu(A)$. Similarly, if $B \subseteq A$ we have $\nu(A)=\nu(B)+\nu(A \backslash B)$; $\nu(B)$ may be finite, but then we have $\nu(A \backslash B)=\nu(A)= \pm \infty$.
(ii) Since $X \supseteq A$ and $X \in \mathcal{M}$, as seen above we have $\nu(X)=\nu(A)$ when $\nu(A)= \pm \infty$.
(iii) We can write $A=\bigcup_{n=1}^{\infty}\left(A_{n}-A_{n-1}\right)$, disjoint union, so that by countable additivity we get, setting $A_{-1}=\emptyset$:

$$
\nu(A)=\sum_{n=0}^{\infty} \nu\left(A_{n} \backslash A_{n-1}\right):=\lim _{m \rightarrow \infty} \sum_{n=0}^{m} \nu\left(A_{n} \backslash A_{n-1}\right)=
$$

(by finite additivity, since $\bigcup_{n=0}^{m}\left(A_{n} \backslash A_{n-1}\right)=A_{m}$)

$$
\lim _{m \rightarrow \infty} \nu\left(A_{m}\right)
$$

The statement for decreasing sequences requires the additional hypothesis that $\nu\left(A_{m}\right)$ be finite for some m (hence, by (i), also for all $n>m$):
. Let $A_{0} \supseteq A_{1} \supseteq A_{2} \supseteq \ldots$ be a decreasing sequence in \mathcal{M}, with intersection A. If for some $m \in \mathbb{N}$ the measure $\nu\left(A_{m}\right)$ is finite, we have $\nu(A)=\lim _{n \rightarrow \infty} \nu\left(A_{n}\right)$.

Proof. It is not restrictive to assume $\nu\left(A_{0}\right)$ finite, re-indexing if necessary. Then, by (i), every A_{n} and A have finite ν-measure; the sequence $A_{0} \backslash A_{n}$ is increasing and has $B=A_{0} \backslash A$ as its union, so that, by the result on increasing sequences we get $\nu\left(A_{0} \backslash A\right)=\lim _{n \rightarrow \infty} \nu\left(A_{0} \backslash A_{n}\right)$. Since every set involved has finite $\nu-$ measure we get $\nu\left(A_{0} \backslash A\right)=\nu\left(A_{0}\right)-\nu(A)$ and $\nu\left(A_{0} \backslash A_{n}\right)=\nu\left(A_{0}\right)-\nu\left(A_{n}\right)$; then we have:

$$
\nu\left(A_{0}\right)-\nu(A)=\lim _{n \rightarrow \infty}\left(\nu\left(A_{0}\right)-\nu\left(A_{n}\right)\right)=\nu\left(A_{0}\right)-\lim _{n \rightarrow \infty} \nu\left(A_{n}\right) \Longrightarrow \nu(A)=\lim _{n \rightarrow \infty} \nu\left(A_{n}\right) .
$$

(iv) If $\nu(X)$ is finite, by (i) every $A \in \mathcal{M}$ has finite ν-measure. If we consider a Hahn decomposition for ν, let's say $X=P \cup Q$, with P positive and Q negative, $\nu(P)$ and $\nu(Q)$ are both finite and they are respectively $\max \nu(\mathcal{M})$ and $\min \nu(\mathcal{M}): \nu(A)=\nu(A \cap P)+\nu(A \cap Q) \leq \nu(A \cap P) \leq \nu(P)$ (because $\nu(A \cap Q) \leq 0$ and $\nu(P \backslash A) \geq 0)$; and also $\nu(A)=\nu(A \cap P)+\nu(A \cap Q) \geq \nu(A \cap Q) \geq \nu(Q)$ (because $\nu(A \cap P) \geq 0$, and $\nu(Q \backslash A) \leq 0)$.

Exercise 8. (12) Let (X, \mathcal{M}, μ) be a measure space.
(i) [1] Assume that $g: X \rightarrow \mathbb{C}$ is measurable and such that $\|g\|_{q}<\infty$ for some $q>0$. Then $\lim _{p \rightarrow \infty}\|g\|_{p}=\ldots$ (no proof required, simply state the result).
(ii) [7] Let $f \in L^{+}(X)$ be such that $\int_{X} f^{n}$ is finite for $n \in \mathbb{N}$ large, and

$$
\lim _{n \rightarrow \infty} \int_{X} f^{n}=a \in \mathbb{R}
$$

Prove that then $f \in L^{\infty}(\mu)$, find the possible values of $\|f\|_{\infty}$, and prove that $f^{n}(x)$ converges a.e. in X to a function g to be described. Is this convergence also in $L^{1}(\mu)$?
(iii) [1] In \mathbb{R} with Lebesgue measure give an example of an f for which the preceding limit is a given $a>0$.
(iv) [3] In (ii) we remove the assumption that $f \geq 0$, we assume f real-valued but of arbitrary sign, leaving the other hypotheses intact. What can you say about f and the sequence f^{n} ?

Solution. (i) $\lim _{p \rightarrow \infty}\|g\|_{p}=\|g\|_{\infty}$.
(ii) If $c_{n}=\|f\|_{n}$, we gave that $c_{n}<\infty$ for large n, so that $c_{n} \rightarrow\|f\|_{\infty}$. But by hypothesis c_{n}^{n} has a finite limit $a \in \mathbb{R}$. This implies that either $\|f\|_{\infty}=0$ or $\|f\|_{\infty}=1$. In fact, if $\|f\|_{\infty}>1$, and $1<\alpha<\|f\|_{\infty}$, then $\alpha<c_{n}$ for n large, and then $\alpha^{n}<c_{n}^{n}$ for n large, implying that $c_{n}^{n} \rightarrow \infty$, against the hypothesis. Then $\|f\|_{\infty} \leq 1$. Then we have $0 \leq f(x) \leq 1$ for a.e. $x \in X$, implying that for a.e. $x \in X$ we have either $f^{n}(x) \rightarrow 0$ (if $f(x)<1$) or $f^{n}(x)=f(x)=1$ for all n. In other words

$$
f^{n}(x) \text { converges pointwise a.e. in } X \text { to } \chi_{C} \text {, where } C=\{f=1\} .
$$

Morever the sequence is decreasing, $f^{0} \geq f^{1} \geq f^{2} \geq f^{3} \geq \ldots$; if $m \in \mathbb{N}$ is such that $f^{m} \in L^{1}(\mu)$ then dominated convergence (or decreasing monotone convergence) says that f^{n} converges to its pointwise limit χ_{C} also in $L^{1}(\mu)$. In particular we have

$$
\left.a=\lim _{n} \int_{X} f^{n}=\int_{X} \chi_{C}=\mu(C)=\mu\left(f^{\leftarrow} \leftarrow 1\right\}\right) ;
$$

Notice that if $\|f\|_{\infty}<1$ then $\mu(C)=0$ and hence $a=0$.
(iii) Simply take for f the characteristic function of any set of measure a, e.g, $\chi_{[0, a]}$. The sequence f^{n} is constantly f, then also $\int_{X} f^{n}=a$ is constant.
(iv) We have that $f^{2 n}=\left(f^{2}\right)^{n}$ verifies the hypotheses of (i), then $\left\|f^{2}\right\|_{\infty} \leq 1$, hence also $\|f\|_{\infty} \leq 1$, and $f^{2 n}$ converges decreasing and in $L^{1}(\mu)$ to the characteristic function of $\left\{f^{2}=1\right\}=\{f=1\} \cup\{f=-1\}$. If this set has measure 0 then $\|f\|_{\infty}<1$, and the entire sequence f^{n} converges to 0 , pointwise and in $L^{1}(\mu)$. Otherwise this set has a positive measure $a=\lim _{k \rightarrow \infty} \int_{X} f^{2 k}$. We claim that the $\operatorname{limit} \lim _{n} \int_{X} f^{n}$ exists and is a iff $\mu(\{f=-1\})=0$. In fact, if $f=f^{+}-f^{-}$we have, for $k \geq 1$:

$$
f^{2 k}=\left(f^{+}\right)^{2 k}+\left(f^{-}\right)^{2 k} ; \quad f^{2 k-1}=\left(f^{+}\right)^{2 k-1}-\left(f^{-}\right)^{2 k-1} ;
$$

now the sequences $\left(f^{+}\right)^{n}$ and $\left(f^{-}\right)^{n}$ are exactly in the situation of f in the hypotheses in (i): that is, they are in $L^{1}(\mu)$ for n large enough and converge decreasing to $\chi_{\{f=1\}}$ and $\chi_{\{f=-1\}}$ respectively; then

$$
\begin{aligned}
\lim _{k} \int_{X} f^{2 k-1}=\lim _{k}\left(\int_{X}\left(f^{+}\right)^{2 k-1}-\int_{X}\left(f^{-}\right)^{2 k-1}\right)=\lim _{k} \int_{X}\left(f^{+}\right)^{2 k-1}-\lim _{k} \int_{X}\left(f^{-}\right)^{2 k-1}= \\
\mu(\{f=1\})-\mu(\{f=-1\})
\end{aligned}
$$

and analogously

$$
\lim _{k} \int_{X} f^{2 k}=\lim _{k} \int_{X}\left(f^{+}\right)^{2 k}+\lim _{k} \int_{X}\left(f^{-}\right)^{2 k}=\mu(\{f=1\})+\mu(\{f=-1\}),
$$

and the two limits coincide if and only if $\mu(\{f=-1\})=0$.
Summing up: the limit $\lim _{n} \int_{X} f^{n}$ exists finite for f real measurable of arbitrary sign if and only if $|f(x)| \leq 1$ for a.e $x \in X, f^{n} \in L^{1}(\mu)$ for n large, and moreover $\mu(\{f=-1\})=0$; the limit a is $\mu(\{f=1\})$, the limit function is a.e. $\chi_{\{f=1\}}$, and convergence to this function is also in $L^{1}(\mu)$.

Exercise 9 . Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be defined as follows:

$$
F(x)= \begin{cases}-e^{x} & \text { if } x<0 \\ \sqrt{1-x^{2}} & \text { if } 0 \leq x<1 \\ 1-e^{-x} & \text { if } 1 \leq x\end{cases}
$$

(i) Find $T(x)=V F(]-\infty, x])$ and plot it.
(ii) $\operatorname{Plot} T^{ \pm}(x)=(T(x) \pm F(x)) / 2$.
(iii) Find a Hahn decomposition for the measure $\mu=d F$.
(iv) Find the absolutely continuous and the singular parts of $\mu=d F$.
(iv) Let $G(x)=x$ be the identity of \mathbb{R}. For every integer $k>0$ compute the integral

$$
\int_{]-k, k]} G(x) d F(x),
$$

both directly and with the partial integration formula:

$$
\int_{] a, b]} G\left(x^{-}\right) d F(x)=G(b) F(b)-G(a) F(a)-\int_{] a, b]} F(x) d G(x)
$$

(v) Find

$$
\int_{\mathbb{R}} G(x) d F(x) .
$$

Solution. We plot also a graph of F :

Figure 3. Graph of F.
(i) Since F is decreasing in] $-\infty, 0\left[\right.$ we have $T(x)=e^{x}$ in this interval. The jump of F at 0 is 2 , so $T(0)=T\left(0^{-}\right)+2=3$. Again F is decreasing in $\left[0,1\left[\right.\right.$ so that $V F\left([0, x]=F(0)-F(x)=1-\sqrt{1-x^{2}}\right.$ in this interval, hence $T(x)=T(0)+1-\sqrt{1-x^{2}}=4-\sqrt{1-x^{2}}$ for $x \in[0,1[$. Next we get $T(1)=$ $T\left(1^{-}\right)+1-1 / e=5-1 / e$ (the jump at 1 is $1-1 / e$). Finally $\operatorname{VF}([1, x])=1-e^{-x}-(1-1 / e)=1 / e-e^{-x}$, so that $T(x)=5-e^{-x}$ for $x \geq 1$.
(ii) We get

$$
T^{+}(x)=\left\{\begin{array}{ll}
0 & \text { if } x<0 \\
2 & \text { if } 0 \leq x<1 ; \\
3-e^{-x} & \text { if } 1 \leq x
\end{array} \quad T^{-}(x)= \begin{cases}e^{x} & \text { if } x<0 \\
2-\sqrt{1-x^{2}} & \text { if } 0 \leq x<1 \\
2 & \text { if } 1 \leq x\end{cases}\right.
$$

(iii) A positive set for μ is $P=\{0\} \cup\{1\} \cup] 0, \infty[$, its complement is a negative set.

Figure 4. Graph of T.

Figure 5. From left to right: graphs of T^{+}, T^{-}.
(iv) The absolutely continuous part is of course $F^{\prime}(x) d x$, where F^{\prime} is the derivative of F, which clearly exists in $\mathbb{R} \backslash\{0,1\}$ and is

$$
F^{\prime}(x)= \begin{cases}-e^{x} & \text { if } x<0 \\ -x / \sqrt{1-x^{2}} & \text { if } 0 \leq x<1 \\ e^{-x} & \text { if } 1 \leq x\end{cases}
$$

The singular part is $2 \delta_{0}+(1-1 / e) \delta_{1}$.
(v) We have directly, using the Radon-Nikodym decomposition

$$
\begin{aligned}
\int_{]-k, k]} G(x) d F(x)= & \int_{-k}^{k} G(x) F^{\prime}(x) d x+\int_{]-k, k]} G(x) d\left(2 \delta_{0}+(1-1 / e) \delta_{1}\right)= \\
& \int_{-k}^{0} x\left(-e^{x}\right) d x+\int_{0}^{1} x \frac{-x}{\sqrt{1-x^{2}}} d x+\int_{1}^{k} x e^{-x} d x+1-e^{-1}=
\end{aligned}
$$

(in the first integral we put $t=-x$, in the last $t=x$)

$$
\begin{aligned}
& \int_{0}^{k} t e^{-t} d t+\int_{0}^{1} \frac{1-x^{2}-1}{\sqrt{1-x^{2}}} d x+\int_{1}^{k} t e^{-t} d t+1-1 / e= \\
& 1-1 / e+\int_{0}^{1} t e^{-t} d t+2 \int_{1}^{k} t e^{-t} d t+\int_{0}^{1} \sqrt{1-x^{2}} d x-\int_{0}^{1} \frac{d x}{\sqrt{1-x^{2}}}=
\end{aligned}
$$

(una primitiva di $t e^{-t} \grave{\mathrm{e}}-(1+t) e^{-t}$)

$$
\begin{aligned}
& 1-1 / e+\left[-(1+t) e^{-t}\right]_{0}^{1}+2\left[-(1+t) e^{-t}\right]_{1}^{k}+\frac{\pi}{4}-\frac{\pi}{2}= \\
& 1-e^{-1}-2(1+k) e^{-k}+2 e^{-1}+1+\frac{\pi}{4}=2+\frac{1}{e}-2(1+k) e^{-k}-\frac{\pi}{4}
\end{aligned}
$$

With the partial integration formula we get, calling for simplicity $I(k)$ the required integral

$$
I(k)=k F(k)-(-k) F(-k)-\int_{-k}^{k} F(x) d x=k\left(1-e^{-k}-e^{-k}\right)-
$$

$$
\begin{aligned}
& -\int_{-k}^{0}\left(-e^{x}\right) d x-\int_{0}^{1} \sqrt{1-x^{2}} d x-\int_{1}^{k}\left(1-e^{-x}\right) d x= \\
& k\left(1-2 e^{-k}\right)+\left[e^{x}\right]_{-k}^{0}-\frac{\pi}{4}-\left[x+e^{-x}\right]_{1}^{k}=k\left(1-2 e^{-k}\right)+1-e^{-k}-\frac{\pi}{4}-k-e^{-k}+1+\frac{1}{e}= \\
& 2+\frac{1}{e}-2(1+k) e^{-k}-\frac{\pi}{4}
\end{aligned}
$$

(vi) We have that $G_{k}=G \chi_{]-k, k]}$ converges to G on \mathbb{R}. And $G \in L^{1}(\mu)$, because $x e^{-|x|} \in L^{1}(m)$ (more on this below). Then by dominated convergence we can we just take the limit:

$$
\int_{\mathbb{R}} G(x) d F(x)=\lim _{k \rightarrow \infty} \int_{1-k, k]} G(x) d F(x)=2+\frac{1}{e}-\frac{\pi}{4} .
$$

The function G is a continuous function, hence Borel measurable and bounded on compact subsets of \mathbb{R}; the measure μ is finite on compacta, hence for every compact subset K of \mathbb{R} we have that $G \in L_{\mu}^{1}(K)$. We need to prove that $G \in L_{\mu}^{1}(\mathbb{R} \backslash[-a, a])$, where $a>0$, say $a=2$. On the open set $]-\infty,-a[\cup] a, \infty[$ the measure $|\mu|=d T$ is absolutely continuous, with $d|\mu|(x)=e^{-|x|} d x$, as is easy to see. Then $G \in L^{1}(|\mu|)$ if and only if $|x| e^{-|x|} \in L_{m}^{1}(]-\infty,-a[\cup] a, \infty[)$, where m is Lebesgue measure. And this is immediate.

Analisi Reale per Matematica- Secondo compitino-28 gennaio 2012

ExErcise 10. Let (X, \mathcal{M}) be a measurable space, and let $\nu: \mathcal{M} \rightarrow \tilde{\mathbb{R}}$ be a signed measure; as usual $\nu^{ \pm}$ and $|\nu|$ are the positive/negative parts and the total variation of ν.
(i) Define the notion of positive/negative set for ν, and prove that positive sets form a σ-ideal of \mathcal{M} (closed under countable union and formation of subsets).
(ii) Assume that $A \in \mathcal{M}$ contains no negative subset of strictly negative measure. Is it true that then A is a positive subset?
(iii) For $A \in \mathcal{M}$ we have $\nu(A) \in \mathbb{R} \Longleftrightarrow|\nu|(A)<\infty$. True or false? Is the fact that X is covered by a sequence of sets in \mathcal{M} of finite ν-measure equivalent to σ-finiteness of $|\nu|$?
(iv) Assume that $\mu: \mathcal{M} \rightarrow \tilde{\mathbb{R}}$ is another signed measure. Define mutual singularity of μ and ν. Is it equivalent to mutual singularity of $|\mu|$ and $|\nu|$?
(v) Let $\lambda: \mathcal{M} \rightarrow \tilde{\mathbb{R}}$ be a third signed measure; assume that $\lambda \ll|\mu|$ and $\lambda \ll|\nu|$, and that $\mu \perp \nu$. Is it true that $\lambda=0$?

Solution. (i) $A \in \mathcal{M}$ is said to be positive/negative for ν if for every $B \in \mathcal{M}$ contained in A we have $\nu(B) \geq 0 / \nu(B) \leq 0$. Given this definition, trivially the set \mathcal{P} of positive sets is closed under the formation of measurable subsets. And if $\left(A_{n}\right)_{n \in \mathbb{N}}$ is a sequence of positive sets, making the union A of these sets a disjoint union of sets $\left(B_{n}\right)_{n \in \mathbb{N}}$ with the usual trick, $B_{n}=A_{n} \backslash \bigcup_{k=0}^{n-1} A_{k}$, each B_{n} is positive, being a subset of the positive set A_{n}, and if $B \subseteq A$ then $B=\bigcup_{n=0}^{\infty}\left(B \cap B_{n}\right)$, a disjoint union, so that

$$
\nu(B)=\sum_{n=0}^{\infty} \nu\left(B \cap B_{n}\right) \geq 0 \quad \text { because } \nu\left(B \cap B_{n}\right) \geq 0 \text { for every } n \in \mathbb{N}
$$

(ii) Let $P \cup Q$ be a Hahn decomposition for ν; consider $A \cap Q$; then we have $\nu(A \cap Q)\left(=-\nu^{-}(A \cap Q)\right)=0$, since otherwise $A \cap Q$ would be a negative set of strictly negative measure contained in A. Then $A=$ $(A \cap P) \cup(A \cap Q)$, the union of the positive set $A \cap P$ and the null set $A \cap Q$, is a positive set.

Remark. We have proved a lemma, preparatory to the Hahn decomposition theorem, which says that if $\infty \notin \nu(\mathcal{M})$ then a set which does not contain positive sets of strictly positive measure is a negative set. One can apply this result in the opposite direction, but we need to know that $-\infty$ is not a value assumed by ν. It is simpler to apply the Hahn decomposition: strictly speaking there is a circularity of arguments in the case $-\infty \notin \nu(\mathcal{M})$, which needs however not concern us.
(iii) We know that if $\nu(A) \in \mathbb{R}$ then every measurable subset of A has finite measure, in particular $\nu(A \cap P)$ and $\nu(A \cap Q)$ are finite, so that $\nu^{ \pm}(A)$ are both finite, hence $|\nu|(A)=\nu^{+}(A)+\nu^{-}(A)<\infty$; since $|\nu(A)| \leq|\nu|(A)$ the converse is trivial. This of course immediately implies that the answer to the second question is yes.
(iv) We say that μ and ν are mutually singular if there is a partition $X=M \cup N, M, N \in \mathcal{M}$, with N null for μ and M null for ν. Since a set null for a signed measure is clearly null also for its total variation as we show immediately after, the two conditions are clearly equivalent.

If M is null for ν then it is also null for $|\nu|$; in fact (always assuming that $P \cup Q$ is a Hahn decomposition for ν) we have $\nu^{+}(M)=\nu(M \cap P)=0$ and $-\nu^{-}(M)=-\nu(M \cap Q)=0$, so that $\nu^{ \pm}(M)=0$, hence also $|\nu|(M)=0$.
(v) Clearly true: $|\mu|(N)=0$ implies that N is null for λ, and $|\nu|(M)=0$ implies that M is null for λ. Then $X=M \cup N$ is null for λ.

ExERCISE 11. Let $f, g: \mathbb{R}^{n} \rightarrow \mathbb{K}$ be Borel measurable functions, with $f \in L^{1}\left(\mathbb{R}^{n}\right)$ and $g \in L^{\infty}\left(\mathbb{R}^{n}\right)$ (we consider Lebesgue measure on all spaces \mathbb{R}^{n}).
(i) Prove that the formula

$$
\begin{equation*}
f * g(x)=\int_{\mathbb{R}^{n}} f(x-y) g(y) d y \tag{}
\end{equation*}
$$

defines a function $f * g: \mathbb{R}^{n} \rightarrow \mathbb{K}$, and prove that $\|f * g\|_{\infty} \leq\|f\|_{1}\|g\|_{\infty}$. Prove also that

$$
f * g(x)=g * f(x)=\int_{\mathbb{R}^{n}} f(t) g(x-t) d t
$$

(ii) Assume that $g \in C^{1}\left(\mathbb{R}^{n}\right) \cap L^{\infty}\left(\mathbb{R}^{n}\right)$ and that also all derivatives $\partial_{k} g$ belong to $L^{\infty}\left(\mathbb{R}^{n}\right)$, for $k=1, \ldots, n$. Prove that then $f * g \in C^{1}\left(\mathbb{R}^{n}\right)$ and that $\partial_{k}(f * g)=f *\left(\partial_{k} g\right)$.
We now assume $f \in L^{p}\left(\mathbb{R}^{n}\right)$ and $g \in L^{q}\left(\mathbb{R}^{n}\right)$, with $p, q>1$ conjugate exponents, i.e. $1 / p+1 / q=1$.
(iii) Prove that formula $\left(^{*}\right)$ defines a function $f * g: \mathbb{R}^{n} \rightarrow \mathbb{C}$, and prove that $\|f * g\|_{\infty} \leq\|f\|_{p}\|g\|_{q}$. (use Hölder's inequality ...).
Finally assume that $f, g \in L^{1}\left(\mathbb{R}^{n}\right)$.
(iv) Prove that the formula $\left(^{*}\right)$ now defines a.e. on \mathbb{R}^{n} a function $f * g$ that is Borel measurable, belongs to $L^{1}\left(\mathbb{R}^{n}\right)$, and $\|f * g\|_{1} \leq\|f\|_{1}\|g\|_{1}$ (consider $F: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{K}$ given by $F(x, y)=f(x-y) g(y)$ and apply Fubini-Tonelli's theorem ...).

Solution. (i) Trivially we have

$$
|f * g(x)|=\left|\int_{\mathbb{R}^{n}}(x-y) g(y) d y\right| \leq \int_{\mathbb{R}^{n}}|f(x-y) g(y)| d y \leq \int_{\mathbb{R}^{n}}|f(x-y)|\|g\|_{\infty} d y
$$

Now the change of variables $t=x-y$ says that

$$
\int_{\mathbb{R}^{n}}|f(x-y)| d y=\int_{\mathbb{R}^{n}}|f(t)| d t=\|f\|_{1}
$$

(remember that we are in \mathbb{R}^{n}, so the coordinate change is $t_{k}=x_{k}-y_{k} \Longleftrightarrow y_{k}=x_{k}-t_{k} 1 \leq k \leq n$, an affine self diffeomorphism of \mathbb{R}^{n}, with jacobian matrix -1_{n}, opposite of the identity matrix, hence determinant $(-1)^{n}$, with absolute value 1$)$. Then

$$
|f * g(x)| \leq \int_{\mathbb{R}^{n}}|f(x-y)|\|g\|_{\infty} d y=\|f\|_{1}\|g\|_{\infty} \Longrightarrow\|f * g\|_{\infty} \leq\|f\|_{1}\|g\|_{\infty}
$$

The change of variables $t=x-y$ above considered says also that

$$
\int_{\mathbb{R}^{n}} f(x-y) g(y) d y=\int_{\mathbb{R}^{n}} f(t) g(x-t) d t .
$$

(ii) We use the second expression for $f * g$:

$$
f * g(x)=\int_{\mathbb{R}^{n}} f(y) g(x-y) d y
$$

we have

$$
\frac{\partial}{\partial x_{k}}(f(y) g(x-y))=f(y) \partial_{k} g(x-y)
$$

moreover $\left|f(y) \partial_{k} g(x-y)\right| \leq\left\|\partial_{k} g\right\|_{\infty}|f(y)|$; since $y \mapsto\left\|\partial_{k} g\right\|_{\infty}|f(y)|$ is in $L^{1}\left(\mathbb{R}^{n}\right)$ the theorem of differentiation under the integral sign applies to say that

$$
\partial_{k}(f * g)=\int_{\mathbb{R}^{n}} f(y) \partial_{k} g(x-y) d y=\left(f *\left(\partial_{k} g\right)\right)(x)
$$

and the theorem on continuity of parameter depending integrals says that these derivatives are continuous.
(iii) We have. for every $x \in \mathbb{R}^{n}$:

$$
|f * g(x)|=\left|\int_{\mathbb{R}^{n}} f(x-y) g(y) d y\right| \leq \int_{\mathbb{R}^{n}}|f(x-y) g(y)| d y \leq
$$

$$
\leq\left(\int_{\mathbb{R}^{n}}|f(x-y)|^{p} d y\right)^{1 / p}\left(\int_{\mathbb{R}^{n}}|g(y)|^{q} d y\right)^{1 / q}=\|f\|_{p}\|g\|_{q}
$$

(the usual change of variables $t=x-y$ says that $\int_{\mathbb{R}^{n}}|f(x-y)|^{p} d y=\|f\|_{p}^{p}$) which immediately implies the thesis.
(iv) Let us prove that F belongs to $L^{1}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$. Clearly F is Borel measurable, since so are f and g. And the iterated integral:

$$
\int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}}|f(x-y)||g(y)| d x\right)=\int_{\mathbb{R}^{n}}|g(y)|\left(\int_{\mathbb{R}^{n}}|f(x-y)| d x\right) d y=\int_{\mathbb{R}^{n}}|g(y)|\|f\|_{1} d y=\|f\|_{1}\|g\|_{1}
$$

is finite. By Tonelli's theorem $F \in L^{1}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$. Then Fubini's theorem says that for a.e $x \in \mathbb{R}^{n}$ the integral

$$
f * g(x)=\int_{\mathbb{R}^{n}} f(x-y) g(y) d y
$$

is finite, the resulting a.e. defined function is Borel measurable, and moreover, since

$$
|f * g(x)|=\left|\int_{\mathbb{R}^{n}} f(x-y) g(y) d y\right| \leq \int_{\mathbb{R}^{n}}|f(x-y) g(y)| d y
$$

we have

$$
\|f * g\|_{1}=\int_{\mathbb{R}^{n}}|f * g(x)| d x \leq \int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}}|f(x-y) g(y)| d y\right) d x
$$

and since $|F|:(x, y) \mapsto|f(x-y) g(y)|$ belongs to $L^{1}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ this iterated integral is the double integral over $\mathbb{R}^{n} \times \mathbb{R}^{n}$ of $|F|$, just computed above, with value $\|f\|_{1}\|g\|_{1}$.

ExERcise 12. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be defined as follows:

$$
F(x)= \begin{cases}e^{x+1} & \text { if } x<-1 \\ -x & \text { if }-1 \leq x<1 \\ e^{-(x-1)} & \text { if } 1 \leq x\end{cases}
$$

(i) Plot the graph of F; find $T(x)=V F(]-\infty, x])$ and plot it.
(ii) Plot $T^{ \pm}(x)=(T(x) \pm F(x)) / 2$. What are $\mu^{+}(\mathbb{R})$ and $\mu^{-}(\mathbb{R})$?
(iii) Find a Hahn decomposition for the measure $\mu=d F$.
(iv) Find the absolutely continuous and the singular parts of $\mu=d F$.
(iv) Let $G(x)=\cos (\alpha x)$, where $\alpha>0$ is a constant. For every $a>1$ compute the integral

$$
\int_{]-a, a]} G(x) d F(x)=\int_{]_{-a, a]}} G(x) d \mu^{+}-\int_{]_{-a, a]}} G(x) d \mu^{-},
$$

(compute both integrals), and also by the partial integration formula

$$
\int_{[a, b]} G\left(x^{-}\right) d F(x)=G(b) F(b)-G(a) F(a)-\int_{] a, b]} F(x) d G(x)
$$

(v) Prove that $G \in L^{1}(\mu)$ and find

$$
\int_{\mathbb{R}} G(x) d F(x) .
$$

Solution. (i) Graph of F is easy; note that there is only one jump at $1, F\left(1^{+}\right)-F\left(1^{-}\right)=2$.

Figure 6. Plot of F.

We have (notice that F is increasing in] $-\infty,-1]$, and that $T(-\infty)=0$ so that $T(x)=F(x)$ in this interval; T is decreasing in $[-1,1[$ so that $\operatorname{VF}([-1, x])=F(-1)-F(x)=1+x$ for $x \in[-1,1[$, and $T(1)=T\left(1^{-}\right)+\left(F\left(1^{+}\right)-F\left(1^{-}\right)\right)$, etc $):$

$$
T(x)= \begin{cases}e^{x+1} & \text { for } \quad x<-1 \\ 2+x & \text { for } \quad-1 \leq x<1 \\ 6-e^{-(x-1)} & \text { for } 1 \leq x\end{cases}
$$

consequently

$$
T^{+}(x)=\left\{\begin{array}{ll}
e^{x+1} & \text { for } \quad x<-1 \\
1 & \text { for }-1 \leq x<1 \\
3 & \text { for } 1 \leq x
\end{array} \quad T^{-}(x)= \begin{cases}0 & \text { for } x<-1 \\
1+x & \text { for }-1 \leq x<1 \\
3-e^{-(x-1)} & \text { for } 1 \leq x\end{cases}\right.
$$

Figure 7. Plot of T.

Figure 8. Plot of $T^{ \pm}$

Since $T^{ \pm}(\infty)-T^{ \pm}(-\infty)=3-0$ we have $\mu^{ \pm}(\mathbb{R})=3$, hence $|\mu|(\mathbb{R})=6$.
(iii) A Hahn decomposition is $P=]-\infty,-1] \cup\{1\}, Q=[-1,1[\cup] 1, \infty[$.
(iv) The derivative $F^{\prime}(x)$ exists for every $x \in \mathbb{R} \backslash\{-1,1\}$ and we have

$$
F^{\prime}(x)= \begin{cases}e^{x+1} & \text { for } \quad x<-1 \\ -1 & \text { for } \quad-1 \leq x<1 \\ -e^{-(x-1)} & \text { for } 1 \leq x\end{cases}
$$

The singular part is clearly $2 \delta_{1}$ so that $d F=F^{\prime} d m+2 \delta_{1}$.
(v) Clearly $d \mu^{+}=\chi_{-] \infty,-1]} e^{x+1} d x+2 \delta_{1}$ so that

$$
\int_{]_{-a, a]}} G(x) d \mu^{+}(x)=\int_{-a}^{-1} \cos (\alpha x) e^{x+1} d x+2 G(1)=2 \cos \alpha+e \int_{1}^{a} \cos (\alpha t) e^{-t} d t
$$

A primitive of $e^{-t} \cos (\alpha t)$ is $e^{-t}(\alpha \sin (\alpha t)-\cos (\alpha t)) /\left(1+\alpha^{2}\right)$ so that

$$
\begin{align*}
\int_{1}^{a} \cos (\alpha t) e^{-t} d t= & {\left[\frac{e^{-t}}{1+\alpha^{2}}(\alpha \sin (\alpha t)-\cos (\alpha t))\right]_{t=1}^{t=a}=} \tag{*}\\
& \frac{e^{-a}}{1+\alpha^{2}}(\alpha \sin (\alpha a)-\cos (\alpha a))-\frac{e^{-1}}{1+\alpha^{2}}(\alpha \sin (\alpha)-\cos (\alpha)),
\end{align*}
$$

and

$$
\int_{]-a, a]} G(x) d \mu^{+}(x)=\frac{e^{1-a}}{1+\alpha^{2}}(\alpha \sin (\alpha a)-\cos (\alpha a))-\frac{1}{1+\alpha^{2}}(\alpha \sin (\alpha)-\cos (\alpha))+2 \cos \alpha .
$$

We have next, since $d \mu^{-}=\left(\chi_{]-1,1[}+e^{-(x-1)} \chi_{] 1, \infty[}\right) d x$:

$$
\int_{]-a, a]} G(x) d \mu^{-}=\int_{-1}^{1} \cos (\alpha x) d x+\int_{1}^{a} \cos (\alpha x) e^{-(x-1)} d x=2 \frac{\sin \alpha}{\alpha}+\int_{1}^{a} \cos (\alpha x) e^{-(x-1)} d x
$$

the last integral has already been computed (see $\left(^{*}\right)$). Taking the difference:

$$
\int_{]-a, a]} G(x) d F(x)=\int_{]-a, a]} G(x) d \mu^{+}-\int_{]_{-a, a]}} G(x) d \mu^{-}=2 \cos \alpha-2 \frac{\sin \alpha}{\alpha} .
$$

By partial integration:

$$
\begin{aligned}
\int_{]-a, a]} G(x) d F= & G(a) F(a)-G(-a) F(-a)-\int_{]-a, a]} F(x) \alpha \sin (\alpha x) d x= \\
& \int_{-a}^{-1} e^{x+1} \alpha \sin (\alpha x) d x+\int_{-1}^{1}(-x) \alpha \sin (\alpha x) d x+\int_{1}^{a} e^{1-x} \alpha \sin (\alpha x) d x
\end{aligned}
$$

the first integral and the third cancel; we are left with:

$$
\int_{-1}^{1}(-x) \alpha \sin (\alpha x) d x=2 \int_{0}^{1} x(-\alpha \sin (\alpha x)) d x=2[x \cos (\alpha x)]_{0}^{1}-2 \int_{0}^{1} \cos (\alpha x) d x=2 \cos \alpha-2 \frac{\sin \alpha}{\alpha} .
$$

(vi) The entire space has finite measure, $|\mu|(\mathbb{R})=6$. Every bounded measurable function is then in $L^{1}(\mu)=L^{1}(|\mu|)$, in particular $G \in L^{1}(\mu)$. Clearly we have

$$
\int_{\mathbb{R}} G d F=\int_{[-1,1]} G d F=2 \cos \alpha-2 \frac{\sin \alpha}{\alpha}
$$

(the integrals over $]-\infty,-1[$ and $] 1, \infty[$ are finite, and cancel with each other).

Analisi Reale-Primo appello-7 febbraio 2012

Exercise 13. Let (X, \mathcal{M}, μ) be a measure space, and let $L^{+}=L^{+}(X, \mathcal{M})$ denote the set of all $\mathcal{M}-$ measurable functions from X to $[0, \infty]$ (as usual).
(i) Prove that if $f \in L^{+}$and $\int_{X} f<\infty$, then $\mu(\{f=\infty\})=0$. If $\int_{X} f=0$, what can we say about $\{f>0\}$?
(ii) State Fatou's lemma.

From now on f_{n} is a sequence in L^{+}that converges pointwise everywhere to $f \in L^{+}$.
(iii) Assume that $\{f=\infty\}$ has strictly positive measure. Then $\lim _{n \rightarrow \infty} \int_{X} f_{n}=\infty$: true or false?
(iv) Suppose that there exists $g \in L^{+}$, with finite integral, such that $f_{n}(x) \leq g(x)$ for every $x \in X$. Then $\int_{X} f=\lim _{n \rightarrow \infty} \int_{X} f_{n}$.
(iv) Assume now that there is a constant $a \in[0, \infty[$ such that, for every $n \in \mathbb{N}$

$$
\int_{X} f_{0} \vee \cdots \vee f_{n} \leq a ; \quad \text { prove that then } \lim _{n \rightarrow \infty} \int_{X} f_{n}=\int_{X} f
$$

Solution. (i) if $E=\{f=\infty\}$, then for every $n>0$ we have $n \chi_{E} \leq f$ so that $n \mu(E)=\int_{X} n \chi_{E} \leq \int_{X} f$, which clearly implies $\mu(E)=0$ (otherwise we may choose $n>\int_{X} f / \mu(E)$). If the integral of a positive f is zero, then $\mu(\{f>0\})=0$: in fact $n f$ is an increasing sequence of functions in L^{+}, all with zero integral, whose pointwise limit is the function constantly ∞ on $\{f>0\}$; by monotone convergence this pointwise limit has integral 0 , hence finite, and so its infinity set has zero measure. Otherwise, every measurable positive simple function dominated by f has integral 0 , hence $\{f>1 / n\}$ has measure 0 for all $n \geq 1$, hence $\{f>0\}=\bigcup_{n \geq 1}\{f>1 / n\}$ has measure 0 .
(ii) See the Lecture Notes.
(iii) By Fatou's lemma we get (recalling that $\left.\liminf _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} f_{n}(x)=f(x)\right)$:

$$
\int_{X} f \leq \liminf _{n \rightarrow \infty} \int_{X} f_{n}
$$

since $\{f=\infty\}$ has strictly positive measure we have $\int_{X} f=\infty$; then $\infty \leq \liminf _{n \rightarrow \infty} \int_{X} f_{n}$, clearly equivalent to $\lim _{n \rightarrow \infty} \int_{X} f_{n}=\infty$.
(iv) This is essentially the dominated convergence theorem; the only difference is that f_{n} and g might be infinite valued, so we simply set all the f_{n}, f and g to be 0 on the set $\{g=\infty\}$, which has measure 0 by (i): no integral has been modified, and all functions are now in $L^{1}(\mu)$.
(v) Setting $g_{n}=f_{0} \vee \cdots \vee f_{n}, g_{n}$ is an increasing sequence of functions in L^{+}, with integrals all dominated by a; then $g_{n} \uparrow g$, and $\int_{X} g \leq a<\infty$, by the monotone convergence theorem. We are now in the hypotheses of (iv), since clearly $f_{n} \leq g_{n} \leq g$ for every n.
Exercise 14. Let (X, \mathcal{M}, μ) be a measure space. Given q, with $1<q<\infty$ and $a>0$ consider $a \bar{B}=\left\{f \in L^{q}(\mu):\|f\|_{q} \leq a\right\}$ (the closed ball of center 0 and radius $a>0$ in $L^{q}(\mu)$).
(i) Prove that if the sequence $f_{n} \in a \bar{B}$ converges pointwise a.e. to f, then $f \in a \bar{B}$ (Fatou's lemma ...)
(ii) Let $E \in \mathcal{M}$ be a subset of X of finite measure. Prove that for every $p \in[1, q[$ and every $f \in a \bar{B}$ we have:

$$
\left(\int_{E}|f|^{p} d \mu\right)^{1 / p} \leq \mu(E)^{\alpha(p, q)} a
$$

where the exponent $\alpha(p, q)$ is to be found (hint: consider $|f|^{p}$ and 1 , with convenient conjugate exponents...).
(iii) Deduce from (ii) that for every $\varepsilon>0$ there is $\delta=\delta(\varepsilon)>0$ such that for every $E \in \mathcal{M}$ with $\mu(E) \leq \delta$, every $f \in a \bar{B}$ and every $p \in[1, q[$ we have

$$
\left(\int_{E}|f|^{p} d \mu\right)^{1 / p} \leq \varepsilon
$$

From now on X is assumed of finite measure, $\mu(X)<\infty$.
(iv) State the Severini-Egoroff's theorem on almost uniform convergence. Assume that the sequence $f_{n} \in a \bar{B}$ converges pointwise a.e. to f. Using this theorem and (iii) prove that f_{n} converges to f in $L^{p}(\mu)$, for every $p \in[1, q[$.
Solution. (i) If f_{n} converges a.e. to f, then $\left|f_{n}\right|^{q}$ converges a.e. to $|f|^{q}$, and Fatou's lemma says that:

$$
\int_{X}|f|^{q}\left(=\int_{X} \liminf _{n \rightarrow \infty}\left|f_{n}\right|^{q}\right) \leq \liminf _{n \rightarrow \infty} \int_{X}\left|f_{n}\right|^{q} \leq a^{q}
$$

(ii) We use q / p and $(q / p) /(q / p-1)=q /(q-p)$ as conjugate exponents, and consider E as the ambient space, obtaining

$$
\int_{E}|f|^{p} \leq\left(\int_{E}|f|^{q}\right)^{p / q}\left(\int_{E} 1^{q /(q-p)}\right)^{(q-p) / q}=\mu(E)^{1-p / q}\left(\int_{E}|f|^{q}\right)^{p / q} \leq \mu(E)^{1-p / q}\left(\int_{X}|f|^{q}\right)^{p / q}
$$

taking $p^{\text {th }}$-roots of both sides we get

$$
\left(\int_{E}|f|^{p} d \mu\right)^{1 / p} \leq \mu(E)^{1 / p-1 / q}\|f\|_{q} \leq \mu(E)^{1 / p-1 / q} a
$$

(iii) Immediate: since $\delta^{1 / p-1 / q} a$ has to be smaller than ε we get $\delta \leq(\varepsilon / a)^{p q /(q-p)}$; any such δ will do.
(iv) For the statement we refer to the Lecture Notes. Next, by (i) we have $f \in a \bar{B}$; considering $f-f_{n}$ in place of f we can assume that $f=0$, and we have to prove that $\left\|f_{n}\right\|_{p}$ has limit 0 . Given $\varepsilon>0$ we
find δ such that $\mu(E) \leq \delta$ implies $\left(\int_{E}\left|f_{n}\right|^{p}\right)^{1 / p} \leq \varepsilon$ for every $n \in \mathbb{N}$; since the convergence to 0 is almost uniform we can find a set E such that $\mu(E) \leq \delta$ and on $X \backslash E$ the sequence converges uniformly to 0 . Then, if $\left\|f_{n}\right\|_{X \backslash E}=\sup \left\{\left|f_{n}(x)\right|: x \in X \backslash E\right\}$:

$$
\int_{X}\left|f_{n}\right|^{p}=\int_{E}\left|f_{n}\right|^{p}+\int_{X \backslash E}\left|f_{n}\right|^{p} \leq \varepsilon^{p}+\left\|f_{n}\right\|_{X \backslash E}^{p} \mu(X \backslash E) \leq \varepsilon^{p}+\left\|f_{n}\right\|_{X \backslash E}^{p} \mu(X) ;
$$

since $\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{X \backslash E}^{p}=0$, we conclude.
Exercise 15. Assume that $f \in L^{p}\left(\mathbb{R}^{n}\right)$, with $1 \leq p<\infty$.
(i) Prove that

$$
\lim _{r \rightarrow \infty} \int_{|x|>r}|f|^{p} d m=0
$$

We now define $F: \mathbb{R}^{n} \rightarrow \mathbb{K}$ by

$$
F(x)=\int_{B(x, 1[} f(y) d y \quad \text { where, as usual, } B\left(x, 1\left[=\left\{y \in \mathbb{R}^{n}:|y-x|<1\right\} .\right.\right.
$$

(ii) Prove that the preceding formula effectively defines a function $F: \mathbb{R}^{n} \rightarrow \mathbb{K}$; prove that F is continuous and bounded, and find an estimate for $\|F\|_{\infty}$ involving $\|f\|_{p}$.
(iii) Prove that $\lim _{x \rightarrow \infty} F(x)=0$ (use (i)).

Solution. (i) By definition of $L^{p}\left(\mathbb{R}^{n}\right)$ we have $|f|^{p} \in L^{1}\left(\mathbb{R}^{n}\right)$; clearly $|f|^{p} \chi_{\mathbb{R}^{n} \backslash r B}$ tends to 0 as $r \rightarrow \infty$, and is dominated by $|f|^{p}$, so that the limit of integrals $\lim _{r \rightarrow \infty} \int_{|x|>r}|f|^{p} d m=0$ by dominated convergence.
(ii) If $p=1$ there is nothing to prove. If $p>1$ the usual estimates for L^{p} spaces on sets of finite measure give (we apply Hölder's inequality to $|f|$ and 1 of $B(x, 1[$, with conjugate exponents p and $q=p /(p-1)$):

$$
\begin{equation*}
|F(x)| \leq \int_{B(x, 1[}|f(y)| \leq\left(\int_{B(x, 1[}|f(y)|^{p}\right)^{1 / p}\left(m \left(B \left(x, 1[)^{1 / q} \leq v_{n}^{1 / q}\|f\|_{p}\right.\right.\right. \tag{}
\end{equation*}
$$

which immediately implies

$$
\|F\|_{\infty} \leq v_{n}^{1 / q}\|f\|_{p} .
$$

In other words, we have proved the well known fact that if $f \in L^{p}\left(\mathbb{R}^{n}\right)$ then $f \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$. We know that if x_{j} tends to x in \mathbb{R}^{n} then $\chi_{B\left(x_{j}, 1[\right.}$ tends a.e. to $\chi_{B(x, 1[}$, and the sequence is dominated by $\chi_{B(x, 1+R]}$ with $R=\max _{j}\left\{\left|x-x_{j}\right|\right\}$. Then F is continuous, by the dominated convergence theorem.
(iii) By (i), given $\varepsilon>0$ there is $r(\varepsilon)$ such that $\int_{\{|x| \geq r(\varepsilon)\}}|f|^{p} \leq \varepsilon^{p}$. If $|x| \geq r(\varepsilon)+1$ we have that $B(x, 1[\subseteq\{|x| \geq r(\varepsilon)\}$ so that, for these x :

$$
|F(x)| \leq\left(\int_{B(x, 1[}|f(y)|^{p}\right)^{1 / p}\left(m \left(B \left(x, 1[)^{1 / q} \leq v_{n}^{1 / q}\left(\int_{\{|x| \geq r(\varepsilon)\}}|f|^{p}\right)^{1 / p} \leq v_{n}^{1 / p} \varepsilon\right.\right.\right.
$$

Exercise 16. For every $n=1,2,3, \ldots$ and every $x \in \mathbb{R}$ define $F_{n}(x)=\int_{0}^{x} n t^{n-1} \chi_{[0,1]}(t) d t$.
(i) Plot some F_{n} and the limit function $F(x)=\lim _{n \rightarrow \infty} F_{n}(x)$. What is the measure $\mu=\mu_{F}$?
(ii) Setting $\mu_{n}=\mu_{F_{n}}$, compute

$$
\left.\left.\lim _{n \rightarrow \infty} \mu_{n}(]-\infty, a\right]\right)(0<a<1) ; \quad \lim _{n \rightarrow \infty} \mu_{n}\left(\left[0,1[) ; \quad \lim _{n \rightarrow \infty} \mu_{n}([0,1])\right.\right.
$$

(iii) Assume that $f: \mathbb{R} \rightarrow \mathbb{R}$ is bounded and Borel measurable. Prove that $f \in L^{1}\left(\mu_{n}\right)$ for every n, and moreover, if f is also left-continuous at 1 then:

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f d \mu_{n}=f(1)\left(=\int_{\mathbb{R}} f d \mu\right)
$$

(prove first that if $f(1)=0$ then the limit is 0 ; split the integral in $\int_{]-\infty, a]}+\int_{[a, 1]}$ and use (ii)).
Solution. (i) We have $F_{n}(x)=0$ for $x<0 ; F_{n}(x)=x^{n}$ for $0 \leq x<1$ and $F(x)=1$ for $x \geq 1$. Then $F(x)=0$ for $x<1$, and $F(x)=1$ for $1 \leq x ; F$ is the characteristic function of $\left[1, \infty\left[\right.\right.$, and hence $\mu=\delta_{1}$, unit mass at 1 . Notice that all these measures are supported by $[0,1]$.
(ii) Clearly, if $0<a<1$

$$
\left.\left.\left.\left.\mu_{n}(]-\infty, a\right]\right)=a^{n}-0=a^{n} \quad \text { so that } \quad \lim _{n \rightarrow \infty} \mu_{n}(]-\infty, a\right]\right)=0
$$

Figure 9. Plots of some F_{n}.
and we have $\mu_{n}\left(\left[0,1[)=\mu_{n}([0,1])=1\right.\right.$, so that the limit is 1 .
(iii) Since $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \mu_{n}\right)$ is a finite measure space for every n, all bounded measurable functions are in $L^{1}\left(\mu_{n}\right)$ for every n. Next, if f is left continuous and 0 at 1 , given $\varepsilon>0$ find $\left.a \in\right] 0,1[$ such that $|f(x)| \leq \varepsilon$ if $x \in[a, 1]$ so that

$$
\begin{aligned}
\left|\int_{\mathbb{R}} f d \mu_{n}\right| & =\left|\int_{[0,1]} f d \mu_{n}\right|=\left|\int_{[0, a[} f d \mu_{n}+\int_{[a, 1]} f d \mu_{n}\right| \leq \int_{[0, a[}|f| d \mu_{n}+\int_{[a, 1]}|f| d \mu_{n} \leq \\
& \leq\|f\|_{\infty} \int_{[0, a]} d \mu_{n}+\int_{[a, 1]} \varepsilon d \mu_{n}=\|f\|_{\infty} a^{n}+\varepsilon\left(1-a^{n}\right)
\end{aligned}
$$

since this expression has limit ε as $n \rightarrow \infty$, we conclude that

$$
\lim _{n \rightarrow \infty}\left|\int_{\mathbb{R}} f d \mu_{n}\right|=0
$$

for f bounded left continuous and zero at 1 . For f bounded left continuous at 1 we simply write $f=f-f(1)+f(1)$ and note that $\int_{\mathbb{R}} f(1) d \mu_{n}=f(1)$ for every n, while by what just proved we have

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}}(f-f(1)) d \mu_{n}=0 .
$$

Analisi Reale- Secondo appello-28-02-2012

Exercise 17. (10) Let (X, \mathcal{M}, μ) be a measure space
(i) [2] Assume that $f, g: X \rightarrow \mathbb{R}$ are measurable, that $E \in \mathcal{M}$, that $f(x)<g(x)$ for every $x \in E$, and that $f, g \in L_{\mu}^{1}(E)$. Prove that if $\int_{E} f<\int_{E} g$ iff $\mu(E)>0$.
(ii) [2] Let $E \in \mathcal{M}$ be such that $0<\mu(E)<\infty$, and let $f \in L^{1}(\mu)$ be real valued. Prove that there exists $x \in E$ such that

$$
f(x) \leq f_{E} f d \mu:=\frac{1}{\mu(E)} \int_{E} f d \mu ;
$$

more precisely, prove that the set $\left\{x \in E: f(x) \leq f_{E} f d \mu\right\}$ has strictly positive measure.
This expresses the intuitively obvious fact that not all values of f on E can be larger than its average on E : not everybody can be above the mean!
(iii) [2] Let now $f, g \in L^{1}(\mu)$ be real functions. Prove that $f(x) \leq g(x)$ for a.e. $x \in X$ if and only if $\int_{E} f \leq \int_{E} g$ for every $E \in \mathcal{M}$ (consider $E=\{f>g\} \ldots$).
(iv) [4] For $f, g, h \in L^{+}(X, \mathcal{M})$ assume that $f^{2}(x) \leq g(x) h(x)$ for a.e. $x \in X$. Prove that then, for every $E \in \mathcal{M}$ we have

$$
\begin{equation*}
\left(\int_{E} f\right)^{2} \leq\left(\int_{E} g\right)\left(\int_{E} h\right) \tag{*}
\end{equation*}
$$

($f^{2} \leq g h$ is equivalent to $f \leq g^{1 / 2} h^{1 / 2}$; apply a convenient inequality \ldots).
Solution. (i) We have

$$
\int_{E} f<\int_{E} g \Longleftrightarrow \int_{E}(g-f)>0 \Longleftrightarrow \int_{X}(g-f) \chi_{E}>0
$$

by hypothesis $(g-f)(x)=g(x)-f(x)>0$ for every $x \in E$, so that $\operatorname{Coz}\left((g-f) \chi_{E}=E\right.$; we know that a positive measurable function has integral 0 if and only if its cozero set has measure 0 , so we conclude.
(ii) Setting for simplicity $c=f_{E} f$, if there is no $x \in E$ such that $f(x) \leq c$, then $c<f(x)$ for every $x \in E$. Since $\mu(E)<\infty$, the constant c is in $L_{\mu}^{1}(E)$, so that (i) is applicable and gives that

$$
\int_{E} c<\int_{E} f \Longleftrightarrow c \mu(E)<\int_{E} f \Longleftrightarrow c<f_{E} f=c
$$

a contradiction. Since we can alter f on any subset of E of zero measure without altering the average c, the set $\{x \in E: f(x) \leq c\}$ must be of strictly positive measure.
(iii) If $f \leq g$ a.e. then $\int_{E} f \leq \int_{E} g$, by isotony of the integral, as is well-known. And if it is not true that $f(x) \leq g(x)$ for a.e. $x \in X$, then if $E=\{f-g>0\}$ has strictly positive measure; by (i)

$$
\int_{E} f>\int_{E} g
$$

contradicting the hypothesis.
(iv) Integrating over E the inequality $f \leq g^{1 / 2} h^{1 / 2}$ we get

$$
\int_{E} f \leq \int_{E} g^{1 / 2} h^{1 / 2}
$$

By Cauchy-Schwarz inequality for integrals we have

$$
\int_{E} g^{1 / 2} h^{1 / 2} \leq\left(\int_{E} g\right)^{1 / 2}\left(\int_{E} h\right)^{1 / 2}
$$

so that

$$
\int_{E} f \leq\left(\int_{E} g\right)^{1 / 2}\left(\int_{E} h\right)^{1 / 2}
$$

and squaring both sides we conclude.

Exercise 18. (12)
(i) [2] State the Radon-Nikodym theorem.
(ii) [4] Let (X, \mathcal{M}) be a measurable space, and let $\mu, \nu: \mathcal{M} \rightarrow[0, \infty]$ be positive measures, both σ-finite. Prove that the following are equivalent:
(a) We have $\nu \ll \mu$ and $\mu \ll \nu$.
(b) μ and ν have the same null sets.
(c) There is $\rho \in L^{+}(X, \mathcal{M})$ such that $\rho(x)>0$ for every $x \in X$ and

$$
\nu(E)=\int_{E} \rho d \mu \quad \text { for every } \quad E \in \mathcal{M}
$$

Let now (X, \mathcal{M}, μ) be a measure space.
(iii) [4] Assume that there exists $f \in L^{1}(\mu)$ such that $f(x) \neq 0$ for every $x \in X$. Prove that then X has σ-finite measure. Conversely, if X has σ-finite measure then there is $f \in L^{1}(\mu)$ such that $f(x)>0$ for every $x \in X$, and $\int_{X} f d \mu=1$.
(iv) [2] Prove that if (X, \mathcal{M}, μ) is σ-finite there exists a measure $\nu: \mathcal{M} \rightarrow[0, \infty[$ such that $\nu(X)=1$, $\nu \ll \mu$ and $\mu \ll \nu$.

Solution. (i) OK
(ii):(a) $\Longleftrightarrow(\mathrm{b})$ is by definition of absolute continuity. And by Radon-Nikodym theorem, since all measures are σ-finite we have that (a), more precisely the hypothesis $\nu \ll \mu$, implies the existence of $\rho \in L^{+}(X, \mathcal{M})$ such that

$$
\nu(E)=\int_{E} \rho d \mu \quad \text { for every } \quad E \in \mathcal{M}
$$

But since $\nu(E)=0$ implies also $\mu(E)=0$, the set $Z=\{\rho=0\}$, having ν-measure 0 , has also μ-measure 0 ; we can the alter ρ on this set, e.g. set $\rho(x)=1$ for $x \in Z$, and make $\rho(x)>0$ everywhere.
(iii) Any $f \in L^{1}(\mu)$ has the cozero set of σ-finite measure $\left(\operatorname{Coz}(f)=\bigcup_{n>1}\{|f|>1 / n\}\right.$, and $\mu(\{|f|>$ $\left.1 / n\}) \leq n \int_{X}|f|\right)$. And if a measurable set $A \in \mathcal{M}$ has σ-finite measure then it is the cozero set of a positive measurable function with integral 1 ; simply write A as a disjoint union of a sequence of sets of finite nonzero measure, $A=\bigcup_{n=0}^{\infty} A_{n}$, and consider $f: X \rightarrow \mathbb{R}$ defined by

$$
f=\sum_{n=0}^{\infty} \frac{1}{2^{n} \mu\left(A_{n}\right)} \chi_{A_{n}}
$$

(iv) is now obvious: take $d \nu=\rho d \mu$ where $\rho \in L^{1}(\mu)$ is everywhere positive with integral $1 ; \rho$ exists by (iii), by (i) we have $\mu \ll \nu$.

Exercise 19. (11) Let (X, \mathcal{M}, μ) be a measure space.
(i) [2] Compute

$$
\lim _{n \rightarrow \infty} n \log \left(1+(t / n)^{\alpha}\right)
$$

for $t>0$ and $\alpha>0$. Hint:

$$
n \log \left(1+(t / n)^{\alpha}\right)=n(t / n)^{\alpha} \frac{\log \left(1+(t / n)^{\alpha}\right)}{(t / n)^{\alpha}} ; \quad \text { remember that } \quad \lim _{u \rightarrow 0} \frac{\log (1+u)}{u}=\ldots
$$

What is the limit for $t=0$?
Let now f be a positive function in $L^{1}(\mu)$, and assume that $c=\int_{X} f>0$. We want to compute

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu \tag{}
\end{equation*}
$$

for various values of $\alpha>0$, here $f_{n}(x)\left(=f_{\alpha, n}(x)\right)=n \log \left(1+(f(x) / n)^{\alpha}\right)$ for $n=1,2,3, \ldots$ and $x \in X$.
(ii) [1] Compute $g(x)=\left(g_{\alpha}(x)=\right) \lim _{n \rightarrow \infty} f_{n}(x)$ (distinguish the cases $0<\alpha<1, \alpha=1, \alpha>1$).
(iii) [3] Suppose that $0<\alpha<1$. Prove that in this case Fatou's lemma is applicable and gives (*).
(iv) [2] Prove that $\log \left(1+t^{\alpha}\right)<\alpha t$ for every $\alpha \geq 1, t>0$ (consider $\alpha t-\log \left(1+t^{\alpha}\right)$ and differentiate ...).
(v) [3] Compute the limit (*) for $\alpha=1$ and for $\alpha>1$.

Solution. (i) Recall that $\lim _{u \rightarrow 0} \log (1+u) / u=1$; then:

$$
\lim _{n \rightarrow \infty} n \log \left(1+(t / n)^{\alpha}\right)=\lim _{n \rightarrow \infty} n(t / n)^{\alpha} \frac{\log \left(1+(t / n)^{\alpha}\right)}{(t / n)^{\alpha}}=\lim _{n \rightarrow \infty} n^{1-\alpha} t^{\alpha} \frac{\log \left(1+(t / n)^{\alpha}\right)}{(t / n)^{\alpha}}
$$

since $\lim _{n \rightarrow \infty} \log \left(1+(t / n)^{\alpha}\right) /(t / n)^{\alpha}=1$ we get

$$
\lim _{n \rightarrow \infty} n \log \left(1+(t / n)^{\alpha}\right)= \begin{cases}\infty & \text { for } \quad 0<\alpha<1 \\ t & \text { for } \quad \alpha=1 \\ 0 & \text { for } \quad \alpha>1\end{cases}
$$

For $t=0$ all the terms are 0 , so the limit is 0 .
(ii) By (i) we have, for $0<\alpha<1$ that $g(x)=\liminf _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} f_{n}(x)=\infty$ if $f(x)>0$, and 0 if $f(x)=0$. Then $g_{\alpha}=\infty \chi_{\operatorname{Coz}(f)}$, for $0<\alpha<1$. For $\alpha=1$ we have $g_{1}=f$. For $\alpha>1$ we have $g_{\alpha}=0$.
(iii) By Fatou's lemma (notice that all functions f_{n} are positive, since $1+(f(x) / n)^{\alpha} \geq 1$)

$$
\int_{X} g \leq \liminf _{n \rightarrow \infty} \int_{X} f_{n}
$$

Since $\int_{X} f>0$ by hypothesis, we have that $\mu(\operatorname{Coz}(f))>0$, and hence $\int_{X} g=\infty$, so that $\liminf _{n \rightarrow \infty} \int_{X} f_{n}=$ ∞, which implies $\lim _{n \rightarrow \infty} \int_{X} f_{n}=\infty$.
(iv) Differentiating we get

$$
\alpha-\frac{\alpha t^{\alpha-1}}{1+t^{\alpha}}>0 \Longleftrightarrow 1>\frac{t^{\alpha-1}}{1+t^{\alpha}}
$$

clearly true if $t>0$ and $\alpha \geq 1$ because $0<t^{\alpha-1} \leq t^{\alpha}<1+t^{\alpha}$ if $t \geq 1$, while if $0<t<1$ then $t^{\alpha-1} \leq 1<1+t^{\alpha}$. Then the function $\alpha t-\log \left(1+t^{\alpha}\right)$ is zero at 0 , continuous in $[0, \infty[$, and strictly increasing on $] 0, \infty\left[\right.$, so that $\alpha t-\log \left(1+t^{\alpha}\right)>0$ for $t>0($ if $\alpha \geq 1)$.
(v) By (iii) we have $0 \leq f_{n}(x) \leq n(\alpha(f(x) / n))=\alpha f(x)$, so that dominated convergence may be applied. For $\alpha=1$ we have, by (ii):

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x)
$$

so that $\lim _{n \rightarrow \infty} \int_{X} f_{n}=\int_{X} f=c$. For $\alpha>1$ we have $\lim _{n \rightarrow \infty} f_{n}(x)=0$, so that the required limit is 0 .

Exercise 20. (12) Let $\mu: \mathcal{B}_{1} \rightarrow[0, \infty]$ be defined by $\mu=(e-1) \sum_{n=1}^{\infty} e^{-n} \delta_{n}$, where δ_{n} is the unit mass at n, and \mathcal{B}_{1} is the σ-algebra of Borel subsets of \mathbb{R}.
(i) [2] Find $\mu(\mathbb{R})$ and the smallest closed set that supports μ. Is μ singular with respect to Lebesgue measure $m=\lambda_{1}$?
(ii) [3] Find a formula for the distribution function $F(x)=\mu(]-\infty, x]$), and plot F (it is convenient to express F with the integer part function $[x])$.
Let now ν be the Radon measure defined on \mathcal{B}_{1} by $d \nu=\chi_{]-\infty, 0]}(x) d x /(x-1)^{3}$, and consider the measure $\lambda=\nu+\mu$ on \mathcal{B}_{1}.
(iii) [2] Find the absolutely continuous and the singular part of λ (with respect to Lebesgue measure m), find $\lambda^{ \pm}$, and also a Hahn decomposition for λ.
(iv) [2] Find a formula for the total variation function $T(x)=|\lambda|(]-\infty, x])$, and plot T.
(v) [3] Given $f(x)=x$, determine the set of $p>0$ such that $f \in L^{p}(|\lambda|)$. Compute the integral

$$
\int_{\mathbb{R}} x d \lambda(x)
$$

if this integral exists (it may be useful to know that $\sum_{n=1}^{\infty} n z^{n-1}=1 /(1-z)^{2}$ for $|z|<1$).
Solution. (i) We have

$$
\mu(\mathbb{R})=(e-1) \sum_{n=1}^{\infty} e^{-n}=(e-1) \frac{1 / e}{1-1 / e}=1
$$

Plainly $\mu\left(\mathbb{R} \backslash \mathbb{N}^{>}\right)=0$, and every larger set has strictly positive measure. Since $\mathbb{N}^{>}$is closed, it is the required set. Since $m\left(\mathbb{N}^{>}\right)=0$, we have $\mu \perp m$.
(ii) We clearly have $F(x)=0$ for $x<1$. If $x \geq 1$, we have $F(x)=F([x])$, and

$$
F([x])=(e-1) \sum_{n=1}^{[x]} e^{-n}=(e-1) \frac{1}{e} \frac{1-e^{-[x]}}{1-1 / e}=1-e^{-[x]} .
$$

The plot is easily done.

Figure 10. Plot of F (not on scale).
(iii) By its very definition ν is absolutely continuous with respect to m, and μ is singular, so that ν is the absolutely continuous part and μ the singular part. Next, ν is negative (notice that $\chi_{]-\infty, 0]}(x) /(x-1)^{3} \leq 0$ for every $x \in \mathbb{R}$), so that $\lambda^{-}=-\nu$ and $\lambda^{+}=\mu$ (since also $\nu \perp \mu$). A Hahn decomposition for λ is for instance $\mathbb{N}^{>} \cup\left(\mathbb{R} \backslash \mathbb{N}^{>}\right)$, the first set positive, the second negative.
(iii) For $x<1$ we have

$$
T(x)=|\lambda|(]-\infty, x])=-\nu(]-\infty, x])=-\int_{]-\infty, x]} \chi_{]-\infty, 0]}(t) \frac{d t}{(t-1)^{3}}
$$

assuming $x \leq 0$ this integral is

$$
\int_{-\infty}^{x} \frac{-d t}{(t-1)^{3}}=\frac{1}{2}\left[\frac{1}{(t-1)^{2}}\right]_{-\infty}^{x}=\frac{1}{2(x-1)^{2}}
$$

then $T(0)=1 / 2$ and $T(x)=1 / 2$ for $x \in[0,1[$. For $x \geq 1$ we have $T(x)=1 / 2+F(x)$.
(iv) We have that $L^{p}(|\lambda|)=L^{p}\left(\lambda^{+}\right) \cap L^{p}\left(\lambda^{-}\right)=L^{p}(\mu) \cap L^{p}(-\nu)$. Thus $f \in L^{p}(|\lambda|)$ iff

$$
\int_{-\infty}^{0} \frac{|x|^{p}}{\left(1-x^{3}\right)} d x ; \quad \sum_{n=1}^{\infty} n^{p} e^{-n}
$$

Figure 11. Plot of T (not on scale).
are both finite. The second series converges for every $p \in \mathbb{R}$ (e.g. by the root test), while the integral is finite if and only if $3-p>1 \Longleftrightarrow p<2$: in fact the function is continuous and hence locally summable on $]-\infty, 0]$, and at $-\infty$ it is asymptotic to $1 /|x|^{3-p}$. So the answer is: for $0<p<2$. The integral is

$$
\begin{aligned}
& \int_{-\infty}^{0} \frac{x}{(x-1)^{3}} d x+\sum_{n=1}^{\infty} n e^{-n}=\left[\frac{-x}{2(x-1)^{2}}\right]_{x=-\infty}^{x=0}+\frac{1}{2} \int_{-\infty}^{0} \frac{d x}{(x-1)^{2}}+\frac{1}{e} \sum_{n=1}^{\infty} n \frac{1}{e^{n-1}} \\
& \frac{1}{2}\left[\frac{-1}{x-1}\right]_{-\infty}^{0}+\frac{1}{e} \frac{1}{(1-1 / e)^{2}}=\frac{1}{2}+\frac{e}{(e-1)^{2}} .
\end{aligned}
$$

Analisi Reale per Matematica - Appello di Ricupero - 18 Luglio 2012

Exercise 21. Let (X, \mathcal{M}, μ) be a measure space.
(i) Let $g_{n} \in L^{+}$be a sequence of measurable positive functions; assume that $\int_{X} g_{n}<\infty$ for every $n \in \mathbb{N}$. Consider the following statements:
(a) The series of functions $\sum_{n=0}^{\infty} g_{n}(x)$ converges to a finite sum for a.e. $x \in X$.
(b) The series $\sum_{n \in \mathbb{N}} \int_{X} g_{n}$ of the integrals is convergent, that is $\sum_{n \in \mathbb{N}} \int_{X} g_{n}<\infty$.

Are these statements equivalent? or does (b) imply (a)? or conversely does (a) imply (b)? Give proofs, or counterexamples.
(ii) Given any function $g \in L^{+}(\mathbb{R})$, with $\int_{\mathbb{R}} g=a>0$ (the measure is Lebesgue measure), and a sequence $c_{n} \in \mathbb{R}$, prove that the formula

$$
f(x)=\sum_{n=0}^{\infty} g\left(2^{n}\left(x-c_{n}\right)\right)
$$

defines for a.e. $x \in \mathbb{R}$ a function $f \in L^{1}(\mathbb{R})$. What is the integral of f ?
(iii) Let the function g in (ii) be $\log ^{+}(1 /|x|)=\max \{-\log |x|, 0\}$, with $g(0)=0$, and let $n \mapsto c_{n}$ be a bijection of \mathbb{N} onto the set of rational numbers. Plot g, and prove that for every $\alpha>0$ and every non-empty open interval I of \mathbb{R} the set $\{x \in I: f(x)>\alpha\}$ has strictly positive measure.
Solution. (i) It is true that (b) implies (a), but not the converse. If $h_{m}=\sum_{n=0}^{m} g_{n}$, then $h_{m} \in L^{+}$, and the sequence h_{m} is increasing to a limit h with $h(x)=\sum_{n=0}^{\infty} g_{n}(x)$; by the monotone convergence theorem we have

$$
\int_{X} h=\lim _{m \rightarrow \infty} \int_{X} h_{m}=\lim _{m \rightarrow \infty} \sum_{n=0}^{m} \int_{X} g_{n}=\sum_{n=0}^{\infty} \int_{X} g_{n}<\infty \quad(\text { by } \quad(\mathrm{b})) ;
$$

then $\int_{X} h<\infty$ implies that $E=\{h=\infty\}$ has measure 0 ; and E is exactly the set of all $x \in X$ such that $\sum_{n=0}^{\infty} g_{n}(x)=\infty$. Pointwise convergence everywhere of the series does not ensure convergence of the series of integrals: take e.g. $g_{n}(x)=g(x-n)$, where $g=\chi_{[0,1[}$.
(ii) The change of variable $t=2^{n}\left(x-c_{n}\right) \Longleftrightarrow x=t / 2^{n}+c_{n}$ reduces the integral to

$$
\int_{\mathbb{R}} g\left(2^{n}\left(x-c_{n}\right)\right) d x=\int_{\mathbb{R}} g(t) \frac{d t}{2^{n}}=\frac{a}{2^{n}},
$$

so that the series of integrals of the given series is

$$
\sum_{n=0}^{\infty} \int_{\mathbb{R}} g\left(2^{n}\left(x-c_{n}\right)\right) d x=\sum_{n=0}^{\infty} \frac{a}{2^{n}}=2 a
$$

and by (i) the series the converges pointwise a.e. to a measurable positive function f with $\int_{\mathbb{R}} f(x) d x=2 a$.
(iii) The plot is easy.

Figure 12. Plot of g
If I is non-empty open interval, by density of \mathbb{Q} there are infinitely many $n \in \mathbb{N}$ such that $c_{n} \in I$, and if n is such that $2^{-n}<m(I)$ (m Lebesgue measure) then either the right or the left half of the interval $] c_{n}-1 / 2^{n}, c_{n}+1 / 2^{n}$ [are contained in I. Since the series has positive terms, $f(x)>\alpha$ is ensured if $g\left(2^{n}\left(x-c_{n}\right)\right)>\alpha$ for at least one n; and

$$
g\left(2^{n}\left(x-c_{n}\right)\right)>\alpha \Longleftrightarrow 2^{n}\left|x-c_{n}\right|<e^{-\alpha} \Longleftrightarrow c_{n}-e^{-\alpha} / 2^{n}<x<c_{n}+e^{-\alpha} / 2^{n},
$$

so that the set $\{f>\alpha\} \cap I$ has measure not less than $e^{-\alpha} / 2^{n}$.

Exercise 22. Let (X, \mathcal{M}, μ) be a measure space.
(i) Let $\mathcal{S} \subseteq \mathcal{M}$ be closed under union (that is, $A, B \in \mathcal{S}$ imply $A \cup B \in \mathcal{S}$). Let $s=\sup \{\mu(A): A \in$ $\mathcal{S}\}$. Prove that there exists an increasing sequence $A_{0} \subseteq A_{1} \subseteq \ldots$ of elements of \mathcal{S} such that $\mu\left(\bigcup_{n \in \mathbb{N}} A_{n}\right)=s$. Prove that if \mathcal{S} is closed under countable union then $s=\max \{\mu(A): A \in \mathcal{S}\}$.
Given $E \in \mathcal{M}$ let $\mathcal{S}(E)=\{A \in \mathcal{M}: A \subseteq E, \mu(A)<\infty\}$, and set $\mu_{0}(E)=\sup \{\mu(A): A \in \mathcal{S}(E)\}$.
(ii) Prove that $\mathcal{S}(E)$ is closed under union, and that the following are equivalent:
(a) $\mu_{0}(E)=\max \{\mu(A): A \in \mathcal{S}(E)\}$.
(b) $\mu_{0}(E)<\infty$.
(c) $\mathcal{S}(E)$ is closed under countable union.

Let's call atom in a measure space (X, \mathcal{M}, μ) any $A \in \mathcal{M}$ such that $0<\mu(A) \leq \infty$, and for every $B \subseteq A$, $B \in \mathcal{M}$, we have either $\mu(B)=0$ or $\mu(B)=\mu(A)$. Prove that if for some $E \in \mathcal{M}$ we have $\mu_{0}(E)<\mu(E)$ then E contains an atom of infinite measure.

Solution. (i) There is of course a sequence $S_{n} \in \mathcal{S}$ such that $\sup _{n} \mu\left(S_{n}\right)=s$. Set $A_{n}=S_{0} \cup \cdots \cup S_{n}$. Then $A_{n} \in \mathcal{S}$ because \mathcal{S} is closed under union, and clearly A_{n} is increasing. We have $\mu\left(S_{n}\right) \leq \mu\left(A_{n}\right)$, and $\mu\left(A_{n}\right) \leq s$ because $A_{n} \in \mathcal{S}$. Then

$$
s=\sup _{n} \mu\left(S_{n}\right) \leq \lim _{n \rightarrow \infty} \mu\left(A_{n}\right) \leq s \quad \text { so that } \quad s=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=\mu\left(\bigcup_{n \in \mathbb{N}} A_{n}\right) .
$$

Trivially we then have $s=\max \{\mu(A): A \in \mathcal{S}\}$ if $\bigcup_{n \in \mathbb{N}} A_{n} \in \mathcal{S}$.
(ii) Subadditivity implies immediately that $\mathcal{S}(E)$ is closed under \cup : $\mu(A \cup B) \leq \mu(A)+\mu(B)<\infty$ if both $\mu(A)$ and $\mu(B)$ are finite. Let us next show that (a) implies (b) implies (c) implies (a):
(a) implies (b) Since $\mathcal{S}(E)$ is closed under union, there is an increasing sequence $A_{0} \subseteq A_{1} \subseteq \ldots$ of elements of \mathcal{S} such that $\mu\left(\bigcup_{n \in \mathbb{N}} A_{n}\right)=s$; then $s=\mu_{0}(E)=\mu\left(\bigcup_{n \in \mathbb{N}} A_{n}\right)$; if $\mu_{0}(E)<\infty$ then $\bigcup_{n \in \mathbb{N}} A_{n} \in \mathcal{S}(E)$, and $s=\max \{\mu(A): A \in \mathcal{S}(E)\}$.
(b) implies (c) Since $\mathcal{S}(E)$ is closed under finite union, we only have to prove that the union of an increasing sequence in $\mathcal{S}(E)$ belongs to $\mathcal{S}(E)$. If $A_{0} \subseteq A_{1} \subseteq \ldots$ is such a sequence we have $\mu\left(A_{n}\right) \leq \mu_{0}(E)$ for every n; if $A=\bigcup_{n \in \mathbb{N}} A_{n}$ we then get $\mu(A)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right) \leq \mu_{0}(E)$, so that $\mu(A) \leq \mu_{0}(E)<\infty$; thus $A \in \mathcal{S}(E)$.
(c) implies (a) is immediate by (i).

Last question: if $\mu_{0}(E)<\mu(E)$ then certainly $\mu_{0}(E)<\infty$; if $\mu(E)$ is finite, then trivially $\mu_{0}(E)=\mu(E)$ so that the hypothesis implies $\mu_{0}(E)$ finite and $\mu(E)=\infty$; by (ii) there is $A \subseteq E$ such that $\mu(A)=$ $\mu_{0}(E)=\max \{\mu(B): B \in \mathcal{S}(E)\}$ Then $E \backslash A$ is the required atom; it clearly has infinite measure, and if $B \subseteq E \backslash A$ has finite measure then $A \cup B \in \mathcal{S}(E)$ and $\mu(A)=\mu(A)+\mu(B)$ implies $\mu(B)=0$ (otherwise $\mu(A \cup B)>\mu(A)=\mu_{0}(E)$, a contradiction)

Exercise 23. Let (X, \mathcal{M}, μ) be a measure space.
(i) If $0<p<q$, for every $f \in L(X)$ we have

$$
\|f\|_{q} \leq\|f\|_{p}^{p / q}\|f\|_{\infty}^{1-p / q}
$$

Prove it, and say when equality holds, assuming the right-hand side finite and nonzero.
On every set X the spaces $\ell^{p}=\ell^{p}(X, \mathbb{K})$ are defined, and also $\|f\|_{p}$ is defined for every $f: X \rightarrow \mathbb{K}$.
(ii) Explain how these spaces can be defined within the general theory of L^{p} spaces (that is, they are $L^{p}(X, \mathcal{M}, \mu)$ for some $\sigma-$ algebra \mathcal{M} on X and some measure μ). Prove that $\|f\|_{\infty} \leq\|f\|_{p}$ for every $p>0$, and determine the functions f for which equality holds. Prove that if $0<p<q<\infty$ then $\|f\|_{q} \leq\|f\|_{p}$.
(iii) Prove that if $\ell^{p}(X)=\ell^{q}(X)$ for $p, q>0$ and $p<q$, then X is finite (remember that $\sum_{n=1}^{\infty} 1 /(n+$ $1)^{\alpha}$ is in $\ell^{p}(\mathbb{N})$ iff $\left.p \alpha \ldots\right)$.
Solution. (i) For a.e. $x \in X$ we have

$$
\begin{gather*}
|f(x)|^{q}=|f(x)|^{p}|f(x)|^{q-p} \leq|f(x)|^{p}\|f\|_{\infty}^{q-p} \quad \text { integrating } \tag{}\\
\int_{X}|f|^{q} \leq \int_{X}|f|^{p}\|f\|_{\infty}^{q-p}=\left(\int_{X}|f|^{p}\right)\|f\|_{\infty}^{q-p}
\end{gather*}
$$

taking q-th roots of both sides:

$$
\|f\|_{q} \leq\|f\|_{p}^{p / q}\|f\|_{\infty}^{1-p / q}
$$

To avoid trivialities we consider the case in which the right-hand side is finite and nonzero. When integrating in $\left(^{*}\right)$, the inequality becomes an equality if and only if the set

$$
\left\{x \in X:|f(x)|^{q}<|f(x)|^{p}\|f\|_{\infty}^{q-p}\right\} \quad \text { has measure } 0
$$

this set is clearly contained in the cozero set $\{|f|>0\}$ of f, and coincides with

$$
\left\{x \in X:|f(x)|>0,|f(x)|^{q-p}<\|f\|_{\infty}^{q-p}\right\},
$$

and clearly it has measure 0 if and only if $|f(x)|$ is constantly a.e. equal to its esssupnorm on $\{|f|>0\}$, in other words $|f|=\|f\|_{\infty} \chi_{\operatorname{Coz}(f)}$; and for the right-hand side to be finite we need $\|f\|_{\infty}<\infty$ and $\mu(\operatorname{Coz}(f))<\infty$. To sum up: the inequality is an equality with finite nonzero sides if and only if $|f|$ is of the form $r \chi_{E}$, with $r>0$ and $0<\mu(E)<\infty$.
(ii) We know that $\ell^{p}(X)=L^{p}(X, \mathcal{M}, \mu)$ if $\mathcal{M}=\mathcal{P}(X)$, the power set of X, and μ the counting measure on $\mathcal{P}(X)$. It is trivial to see that $\|f\|_{\infty} \leq\|f\|_{p}$ for every p with $0<p<\infty$: for every $c \in X$ one has $|f(c)|^{p} \leq \sum_{x \in X}|f(x)|^{p}=\|f\|_{p}^{p}$, so that $|f(c)| \leq\|f\|_{p}$ for every $c \in X$, and then $\|f\|_{\infty}=\sup \{|f(c)|: c \in X\} \leq\|f\|_{p}$. Equality holds when $\|f\|_{\infty}=\infty$ or when $f=0$; excluding these cases $\|f\|_{p}$ has to be finite; then $\|f\|_{\infty}=\max \{|f(x)|: x \in X\}$; if $\|f\|_{\infty}=|f(c)|>0$, then we must have $f(x)=0$ for all $x \in X \backslash\{c\}$; if not we have $\|f\|_{\infty}^{p}=|f(c)|^{p}<|f(c)|^{p}+|f(x)|^{p} \leq\|f\|_{p}^{p}$ when $f(x) \neq 0$. Then equality holds in non-trivial cases iff the cozero set of f is a singleton. Finally, from (i) we get $\|f\|_{q} \leq\|f\|_{p}^{p / q}\|f\|_{\infty}^{1-p / q}$ if $0<p<q<\infty$; and since $\|f\|_{\infty} \leq\|f\|_{p}$ we conclude that $\|f\|_{q} \leq\|f\|_{p}^{p / q}\|f\|_{p}^{1-p / q}=\|f\|_{p}$.
(iii) If X is infinite, then X contains a countably infinite subset $N=\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$. Given $\alpha>0$ we consider the function $f=f_{\alpha}: X \rightarrow \mathbb{R}$ given by $f(x)=0$ if $x \in X \backslash N$, and $f\left(x_{n}\right)=1 /(n+1)^{\alpha}$. Clearly $f \in \ell^{p}(X)$ iff $p \alpha>1$; the conclusion is immediate.
Exercise 24. Define $\alpha: \mathbb{R} \rightarrow \mathbb{R}$ by $\alpha(x)=1 /(1-x)$ for $x<0, \alpha(0)=0, \alpha(x)=e^{-[1 / x]}$ for $x>0$ (as usual, $[t]$ is the integer part of t, for every $t \in \mathbb{R})$.
(i) Find all points of discontinuity of α, the jump of α at these points, and determine left or right continuity of α at these points.
(ii) Plot α and the total variation function $T(x)=V \alpha(]-\infty, x])$; compute $\mu(\mathbb{R})$, where μ is the total variation measure $\left|\lambda_{\alpha}\right|$ of the measure λ_{α} determined by α. Find the largest open set null for λ_{α}.
(iii) For λ_{α} find a Hahn decomposition, and describe the absolutely continuous and singular part with respect to Lebesgue measure m on \mathcal{B}_{1}.
(v) Given $f(x)=x^{+}=\max \{x, 0\}$, determine the set of all $p>0$ such that $f \in L^{p}(\mu)$. Is it true that $f \in L^{\infty}(\mu)$?

Solution. (i) Clearly α is continuous on $]-\infty, 0[$. For $x>1$ we have $[1 / x]=0$ so that $\alpha(x)=1$ for $x>1$. We have $[1 / x]=n \in \mathbb{N}$ iff $n \leq 1 / x<n+1$, that is iff $1 /(n+1)<x \leq 1 / n$. Then on the left-open interval $] 1 /(n+1), 1 / n]$ the function α has the constant value $e^{-n} ; \alpha$ is discontinuous at all points $1,1 / 2,1 / 3, \ldots$, and at these points it is left continuous, with $\alpha(1 / n)=e^{-n}=\lim _{x \rightarrow(1 / n)^{-}} \alpha(x)$, while $\lim _{x \rightarrow(1 / n)^{+}} \alpha(x)=e^{-(n-1)}$; the jump at $1 / n$ is then $\sigma_{\alpha}(1 / n)=e^{-(n-1)}-e^{-n}=e^{-n}(e-1)$. Another point of discontinuity is 0 , with $\lim _{x \rightarrow 0^{-}} \alpha(x)=1$, and $\lim _{x \rightarrow 0^{+}} \alpha(x)=0=\alpha(0)$; at 0 we have right continuity, and $\sigma_{\alpha}(0)=-1$.

Figure 13. Plot of α

Figure 14. Plot of T
(ii) With the previous information the plot of α is easy. For T : since α is increasing on] $-\infty, 0$ [and 0 at $-\infty$, for $x<0$ we get $T(x)=\alpha(x)=1 /(1-x)$, while $T(0)=2$; next we get $T(x)=2+\beta(x)$. where $\beta:] 0, \infty\left[\rightarrow \mathbb{R}\right.$ is the right-continuous modification of $\alpha ; T(+\infty)=3=\mu(\mathbb{R})$. Sets null for λ_{α} are those of $\left|\lambda_{\alpha}\right|$-measure 0 ; it is quite clear that the largest open set of μ-measure 0 is $] 0, \infty[\backslash\{1 / n: n \geq 1\}$ (any larger open set will either contain a point $1 / n$, with measure $\mu(\{1 / n\})=e^{-n}(e-1)$, or 0 , with measure $\mu(\{0\})=1$, or an open interval I of $]-\infty, 0[$, with measure $\alpha(\sup I)-\alpha(\inf I)>0)$.
(iii) The function α is increasing on $]-\infty, 0]$ and on $] 0, \infty[$, so that both these are positive sets; and $\{0\}$ is a negative set. Thus a Hahn decomposition is $P=\mathbb{R}^{*}, N=\{0\}$. The absolutely continuous part is $\left(\chi_{]-\infty, 0} /(1-x)^{2}\right) d m$ (or the measure associated to the monotone function $x \mapsto 1 /(1-x)$ for $x<0$, $x \mapsto 1$ for $x \geq 0$); the singular part is the measure $-\delta_{0}+\sum_{n=1}^{\infty} e^{-n}(e-1) \delta_{1 / n}$.
(iv) Clearly the integral of f^{p} is

$$
\int_{\mathbb{R}} f^{p}(x) d \mu(x)=\sum_{n=1}^{\infty} \frac{1}{n^{p}} e^{-n}(e-1) ;
$$

this sum is clearly finite for every $p>0$. Then $f \in L^{p}(\mu)$ for every $p>0$. And it is easy to see that $f \in L^{\infty}(\mu)$: the set $\left.\{f>1\}=\right] 1, \infty\left[\right.$ has clearly μ-measure 0 (it is also easy to see that $\|f\|_{\infty}=1$).

Analisi Reale per Matematica - Appello di ricupero - 4 Settembre 2012

EXERCISE 25. Let (X, \mathcal{M}, μ) be a measure space; as usual we denote by $L^{+}(X)=L_{\mathcal{M}}^{+}(X)$ the set of all measurable functions with values in $[0, \infty]$.
(i) Given $f \in L^{+}(X)$ which of the following two statements is correct?
(a) If $\int_{X} f$ is finite, then $f \in L^{1}(\mu)$.
(b) If $\int_{X} f$ is finite, then f coincides a.e. with a function $g \in L^{1}(\mu)$.
(ii) In $X=\mathbb{R}$ with Lebesgue measure consider the sequence $f_{n}=\chi_{[n, \infty}\left[\right.$. Notice that f_{n} is a decreasing sequence in $L^{+}(\mathbb{R})$, and find the limit f; is it true that $\int_{\mathbb{R}} f=\lim _{n} \int_{\mathbb{R}} f_{n}$?
(iii) State Fatou's lemma. Next, state and prove the analogous of Fatou's lemma for lim sup (with the necessary modifications).

Solution. (i) The correct statement is (b). Functions in $L^{+}(X)$ may assume the value $+\infty$; we know (LN, 3.3.5, corollary) that if the integral is finite then $\{f=\infty\}$ is measurable with zero measure.
(ii) The limit function f is identically 0 , with zero integral, whereas $\int_{\mathbb{R}} f_{n}=\infty$ for every n, so that also $\lim _{n} \int_{\mathbb{R}} f_{n}=\infty$
(iii) For Fatou's lemma see LN, 3.3.6. We were reminded, from (ii) that for a decreasing sequence of functions to have passage to the limit under the integral sign an hypothesis of finiteness of the integral has to be added. Then we can state:
. Let f_{n} be a sequence of functions in $L^{+}(X)$. Assume that for some $m \in \mathbb{N}$ the integral of $f_{m}^{*}=\bigvee_{n \geq m} f_{n}$ is finite. Then

$$
\int_{X} \limsup _{n} f_{n} \geq \limsup _{n} \int_{X} f_{n} .
$$

Proof. The sequence f_{k}^{*} is decreasing, converges pointwise to $f^{*}=\lim \sup _{n} f_{n}$ and $\int_{X} f_{k}^{*}$ is finite as soon as $k \geq m$; then $\int_{X} f^{*}=\lim _{k \rightarrow \infty} \int_{X} f_{k}^{*}$ (LN, 3.3.6.2; alternatively, dominated convergence); since $f_{k}^{*} \geq f_{l}$ for $l \geq k$ we have $\int_{X} f_{k}^{*} \geq \int_{X} f_{l}$ for every $l \geq k$, hence also $\int_{X} f_{k}^{*} \geq \sup _{l \geq k} \int_{X} f_{l}$; passing to the limit in this inequality as $k \rightarrow \infty$ we get

$$
\int_{X} f^{*}\left(=\int_{X} \limsup _{n} f_{n}\right) \geq \underset{k}{\limsup } \int_{X} f_{k},
$$

as required.
Remark. The hypothesis that f_{m}^{*} has finite integral for some m is equivalent to the hypothesis that some function in $L^{1}(\mu)$ dominates a.e. all functions f_{k} for $k \geq m$: combined with Fatou's lemma for lim inf the above in fact gives the dominated convergence theorem (another proof of)

Exercise 26. Let (X, \mathcal{M}) be a measurable space and let $\mu, \nu: \mathcal{M} \rightarrow[0, \infty]$ be positive measures on it.
(i) Define absolute continuity of ν with respect to $\mu, \nu \ll \mu$.

The $\varepsilon-\delta$ notion of absolute continuity is the following:
Definition. The measure ν is said to be $\varepsilon-\delta$ absolutely continuous with respect to μ if for every $\varepsilon>0$ there is $\delta=\delta_{\varepsilon}>0$ such that $(|\nu(E)|=) \nu(E) \leq \varepsilon$ for every $E \in \mathcal{M}$ with $\mu(E) \leq \delta$.
(ii) Prove that $\varepsilon-\delta$ absolute continuity implies absolute continuity.
(iii) With $X=\mathbb{R}$ and $\mathcal{M}=\mathcal{B}(\mathbb{R})$, Borel σ-algebra of \mathbb{R}, let $\mu=m=$ Lebesgue measure, and $d \nu=$ $x^{2} d m$. Prove that $\nu \ll m$, but that ν is not $\varepsilon-\delta$ absolutely continuous with respect to m.
(iv) On a measure space (X, \mathcal{M}, μ) let ρ be a positive function in $L^{\infty}(\mu)$, and let $d \nu=\rho d \mu$. Prove that ν is $\varepsilon-\delta$ absolutely continuous with respect to μ.
(v) Prove that if ν is a finite measure, and $\nu \ll \mu$ then ν is also $\varepsilon-\delta$ absolutely continuous with respect to μ.
Solution. (i) For every $E \in \mathcal{M}$, if $\mu(E)=0$ then also $\nu(E)=0$. (ii) If $\mu(E)=0$, then $\mu(E)<\delta$ for every $\delta>0$ so that $\nu(E) \leq \varepsilon$ for every $\varepsilon>0$, hence $\nu(E)=0$.
(iii) We compute $\nu([a, a+\delta])$:

$$
\nu([a, a+\delta])=\int_{a}^{a+\delta} x^{2} d m=\left[\frac{x^{3}}{3}\right]_{x=a}^{x=a+\delta}=\frac{(a+\delta)^{3}-a^{3}}{3}=\frac{a^{3}}{3}\left((1+\delta / a)^{3}-1\right)
$$

For $a \rightarrow+\infty$ we have $\nu([a, a+\delta]) \rightarrow \infty$, and the $\varepsilon-\delta$ condition cannot hold.
(iv) Trivial: for every $E \in \mathcal{M}$ of finite μ-measure we have

$$
\nu(E)=\int_{E} \rho d \mu=\int_{E} g d \mu \leq \int_{E}\|\rho\|_{\infty} d \mu=\|\rho\|_{\infty} \mu(E)
$$

so that, given $\varepsilon>0$ we take $\delta=\varepsilon /\|\rho\|_{\infty}$ and we get $\nu(E) \leq \varepsilon$ if $\mu(E) \leq \delta$.
(v) See LN,6.2.5.3: when ν is finite then $\nu \ll \mu$ implies that ν verifies also the $\varepsilon-\delta$ condition.

Exercise 27. Let (X, \mathcal{M}, μ) be a finite measure space, $\mu(X)<\infty$. Assume that $0<p<q \leq \infty$
(i) Prove that there exists a constant $C(p, q)>0$ such that for every measurable $f: X \rightarrow \mathbb{C}$ we have

$$
\|f\|_{p} \leq C(p, q)\|f\|_{q}
$$

and find such a constant.
(ii) We have $L^{p}(\mu) \supseteq L^{q}(\mu)$, and convergence of a sequence in $L^{q}(\mu)$ implies convergence of the sequence in $L^{p}(\mu)$, to the same limit; prove these statements.
(iii) Prove that $L^{p}([0,1]) \supsetneqq L^{q}([0,1])$, and that $L^{\infty}([0,1]) \varsubsetneqq \bigcap_{0<p<\infty} L^{p}([0,1])$; the measure is Lebesgue measure.

Solution. (i) Remember (LN, 5.1.8) that we have

$$
\|f\|_{p} \leq \mu(X)^{1 / p-1 / q}\|f\|_{q}
$$

for every measurable $f \in L(X)$. In fact, assuming first $q<\infty$, and applying Hölder's inequality to the pair of functions $|f|^{p}, 1$ with conjugate exponents $q / p, q /(q-p)$ we get:

$$
\int_{X}|f|^{p}=\int_{X}|f|^{p} 1 \leq\left(\int_{X}|f|^{q}\right)^{p / q}\left(\int_{X} 1^{q /(q-p)}\right)^{(q-p) / q}=\mu(X)^{1-p / q}\|f\|_{q}^{p}
$$

so we need only to take p-th roots of both sides. For $q=\infty$ the inequality is immediate.
(ii) Is now trivial: $f \in L^{q}(\mu)$ means that f is measurable and that $\|f\|_{q}<\infty$; the preceding inequality says that then also $\|f\|_{p}<\infty$, so that $f \in L^{p}(\mu)$. Similarly, $f_{n} \rightarrow f$ in $L^{q}(\mu)$ means that $\left\|f-f_{n}\right\|_{q} \rightarrow 0$; since for $p<q$

$$
\left\|f-f_{n}\right\|_{p} \leq \mu(X)^{1 / p-1 / q}\left\|f-f_{n}\right\|_{q}
$$

this implies $\left\|f-f_{n}\right\|_{p} \rightarrow 0$ and hence $f_{n} \rightarrow f$ also in $L^{p}(\mu)$.
(iii) The function $f_{\alpha}(x)=1 / x^{\alpha}$ is in $L^{p}([0,1])$ iff $p \alpha<1$; if $p \alpha<1$ but $q \alpha>1$, that is for $\left.\alpha \in\right] 1 / q, 1 / p[$ then $f_{\alpha} \in L^{p} \backslash L^{q}$. And $\log x$ is in $\bigcap_{0<p<\infty} L^{p}([0,1]) \backslash L^{\infty}([0,1])$.
ExErcise 28. Define $F: \mathbb{R} \rightarrow \mathbb{R}$ by $F(x)=-e^{-|x|}$ for $x<0, F(x)=\sqrt{\left(2 x-x^{2}\right)^{+}}$for $x \geq 0$ (as usual, $\left(2 x-x^{2}\right)^{+}=\max \left\{2 x-x^{2}, 0\right\}$ is the positive part of $2 x-x^{2}$, for every $x \in \mathbb{R}$).
(i) $\operatorname{Plot} F$.
(ii) Find the total variation function $T(x)=V F(]-\infty, x])$, the positive and negative variation $F_{ \pm}$ of F, and plot all these functions.
(iii) For the signed measure $\nu=\mu_{F}$ associated to F describe a Hahn decomposition, and describe the Lebesgue-Radon-Nikodym decomposition of $\nu^{ \pm}$with respect to Lebesgue measure m on \mathcal{B}_{1}.
Let now $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{+}=\max \{x, 0\}$.
(iv) Compute

$$
\int_{\mathbb{R}} f d|\nu|
$$

(v) Prove that $f \in L^{\infty}(|\nu|)$ and compute $\|f\|_{\infty}$ in this space.

Solution. (i) Easy:
(ii) We have $T(x)=e^{x}$ for $x<0 ; T(0)=2 ; T(x)=2+\sqrt{2 x-x^{2}}$ for $0 \leq x<1 ; T(x)=4-\sqrt{2 x-x^{2}}$ for $1 \leq x<2 ; T(x)=4$ for $x \geq 2$. And we have $F_{ \pm}(x)=(T(x) \pm F(x)) / 2$ so that

$$
\begin{aligned}
& F_{+}(x)=0 \quad(x<0) ; F_{+}(x)=1+\sqrt{2 x-x^{2}} \quad(0 \leq x<1) ; F_{+}(x)=2 \quad(1 \leq x) \\
& F_{-}(x)=e^{x} \quad(x<0) ; F_{-}(x)=1 \quad 0 \leq x<1 ; F_{-}(x)=2-\sqrt{\left(x-2 x^{2}\right)^{+}} \quad 1 \leq x
\end{aligned}
$$

(in particular, $F_{-}(x)=2$ if $2 \leq x$).
(iii) We can take $P=[0,1[$ and $Q=\mathbb{R} \backslash P$. Also

$$
d \nu^{+}=\delta_{0}+\frac{1-x}{\sqrt{2 x-x^{2}}} \chi_{] 0,1[}(x) d x ; \quad d \nu^{-}=e^{x} \chi_{[-\infty, 0[}(x) d x+\frac{x-1}{\sqrt{2 x-x^{2}}} \chi_{] 1,2[}(x) d x
$$

(iv) We have

$$
\int_{\mathbb{R}} f d|\nu|=\int_{\mathbb{R}} f d \nu^{+}+\int_{\mathbb{R}} f d \nu^{-}=\int_{0}^{1} x \frac{1-x}{\sqrt{2 x-x^{2}}} d x+\int_{1}^{2} x \frac{x-1}{\sqrt{2 x-x^{2}}} d x=
$$

$$
\begin{aligned}
& {\left[x \sqrt{2 x-x^{2}}\right]_{x=0}^{x=1}-\int_{0}^{1} \sqrt{2 x-x^{2}} d x+\left[-x \sqrt{2 x-x^{2}}\right]_{x=1}^{x=2}+\int_{1}^{2} \sqrt{2 x-x^{2}} d x=} \\
& 1-\int_{0}^{1} \sqrt{2 x-x^{2}} d x+1+\int_{1}^{2} \sqrt{2 x-x^{2}} d x=2
\end{aligned}
$$

(v) Since $|\nu|\left(\left[2,+\infty[)=0\right.\right.$ we have $\|f\|_{\infty}=2$.

Figure 15. Plots of F (left) and T (right).
(the plots of $F_{ \pm}$are omitted).
Analisi Reale per Matematica - Appello di Ricupero - 19 Settembre 2012
ExErcise 29. Let (X, \mathcal{M}, μ) be a measure space; for simplicity we consider only real valued functions on X, in particular here $L^{1}(\mu)$ consists of real-valued functions only.
(i) Define (real valued) measurable simple functions, and prove that such a function f is in $L^{1}(\mu)$ if and only if its cozero-set $\{f \neq 0\}$ has finite measure.
We call $S(\mu)$ the set of all simple functions which belong to $L^{1}(\mu)$.
(ii) Prove that a positive measurable function $f: X \rightarrow\left[0, \infty\left[\right.\right.$ is in $L^{1}(\mu)$ if and only if it is the limit in $L^{1}(\mu)$ of an increasing sequence of positive simple functions in $L^{1}(\mu)$, and deduce from this that $S(\mu)$ is dense in $L^{1}(\mu)$.
Assume now that (X, \mathcal{M}, μ) is the Carathèodory extension of a premeasure (still called μ) defined on an algebra \mathcal{A} of parts of X.
(iii) Prove that if $E \in \mathcal{M}$ and $\mu(E)<\infty$ then for every $\varepsilon>0$ there is $A \in \mathcal{A}$ such that $\mu(A \Delta E) \leq \varepsilon$; deduce from this fact that the subspace of \mathcal{A}-simple functions in $S(\mu)$ is still dense in $L^{1}(\mu)$.
Solution. (i) A simple function is a function with finite range; real-valued measurable simple functions are then functions f of the form $f=\sum_{k=1}^{m} \alpha_{k} \chi_{E(k)}$, where $\{E(k): k=1, \ldots, m\}$ is a finite partition of X into members of \mathcal{M}, and $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ is set of m different real numbers (we are here talking of the standard representation). The absolute value of such a function is then $|f|=\sum_{k=1}^{m}\left|\alpha_{k}\right| \chi_{E(k)}$, and by definition the integral of such a function is $\int_{X}|f|=\sum_{k=1}^{m}\left|\alpha_{k}\right| \mu(E(k))$; this is a finite value if and only if $\mu(E(k))=\infty$ implies $\left|\alpha_{k}\right|=0$, that is, on a set of infinite measure the simple function must be identically zero. The cozero-set of f is $\{|f|>0\}$ and is $\bigcup\left\{E(k):\left|\alpha_{k}\right|>0\right\}$; so $f \in L^{1}(\mu) \Longleftrightarrow|f| \in$ $L^{1}(\mu) \Longleftrightarrow \mu(\{|f|>0\})<\infty$ has been proved.
(ii) Recall that every positive measurable function f is the pointwise limit of an increasing sequence of positive measurable simple functions $\varphi_{n}(\mathrm{LN}, 3.2 .3)$. If $f \in L^{1}(\mu)$ then clearly $\varphi_{n} \in L^{1}(\mu)$, and by monotone convergence $\int_{X} f=\lim \int_{x} \varphi_{n}$, which implies

$$
\left\|f-\varphi_{n}\right\|_{1}=\int_{X}\left(f-\varphi_{n}\right)=\int_{X} f-\int_{X} \varphi_{n} \rightarrow 0 \quad \text { for } \quad n \rightarrow \infty
$$

Clearly any L^{1} limit of a sequence of functions in L^{1} is in L^{1}. Given a real $f \in L^{1}(\mu)$ we simply split f as $f=f^{+}-f^{-}$; if φ_{n}, ψ_{n} are sequences of simple functions converging in $L^{1}(\mu)$ to $f^{ \pm}$respectively, then $\varphi_{n}-\psi_{n}$ converges to f in $L^{1}(\mu)$.
(iii) The first part is LN, 2.3.4. Given a simple function in $L^{1}(\mu), f=\sum_{k=1}^{m} \alpha_{k} \chi_{E(k)}$ (where now the value 0 of f, if present, is omitted so that $\alpha_{k} \neq 0$ and $\mu(E(k))<\infty$ for every $\left.k \in\{1, \ldots, m\}\right)$ and $\varepsilon>0$ we can pick for every $k \in\{1, \ldots, m\}$ a set $A(k) \in \mathcal{A}$ such that $\mu(E(k) \Delta A(k)) \leq \varepsilon / \alpha$, where $\alpha=\sum_{k=1}^{m}\left|\alpha_{k}\right|$. If $g=\sum_{k=1}^{m} \alpha_{k} \chi_{A(k)}$ then g is \mathcal{A}-simple, belongs to $L^{1}(\mu)$, and

$$
\begin{gathered}
\|f-g\|_{1}=\int_{X}|f-g|=\int_{X}\left|\sum_{k=1}^{m} \alpha_{k} \chi_{E(k)}-\sum_{k=1}^{m} \alpha_{k} \chi_{A(k)}\right| \leq \int_{X} \sum_{k=1}^{m}\left|\alpha_{k}\right|\left|\chi_{E(k)}-\chi_{A(k)}\right|= \\
\sum_{k=1}^{m}\left|\alpha_{k}\right| \int_{X}\left|\chi_{E(k)}-\chi_{A(k)}\right|=\sum_{k=1}^{m}\left|\alpha_{k}\right| \mu(E(k) \Delta A(k)) \leq \varepsilon
\end{gathered}
$$

Then the closure of the set of \mathcal{A}-simple functions in $L^{1}(\mu)$ contains $S(\mu)$, which is dense in $L^{1}(\mu)$; then this closure is all of $L^{1}(\mu)$.
Remark. A more direct proof of the above is in LN, 3.3.15.

Exercise 30. Let (X, \mathcal{M}, μ) be a measure space.
(i) What does it mean that $E \in \mathcal{M}$ is of σ-finite measure? when is the measure space called σ-finite?
An atom in the measure space (X, \mathcal{M}, μ) is a set $A \in \mathcal{M}$ with $\mu(A)>0$ such that for every $E \in \mathcal{M}$ contained in A we either have $\mu(E)=0$ or $\mu(A \backslash E)=0$.
(ii) If $A, B \in \mathcal{M}$ are atoms, then either $\mu(A \cap B)=0$, or $\mu(A \cap B)=\mu(A)=\mu(B)$.
(iii) Prove that in a σ-finite measure space an atom has finite measure.

Two sets $A, B \in \mathcal{M}$ are said to be almost disjoint if $\mu(A \cap B)=0$.
(iv) Let $\left(A_{n}\right)_{n \in \mathbb{N}}$ be a sequence of pairwise almost disjoint sets in \mathcal{M}, and let $A=\bigcup_{n \in \mathbb{N}} A_{n}$. Prove that

$$
\mu(A)=\sum_{n=0}^{\infty} \mu\left(A_{n}\right) .
$$

(v) Prove that in a σ-finite measure space a family of pairwise almost disjoint atoms is at most countable.

Solution. (i) Lecture notes, 2.2.8. (ii) If $\mu(A \cap B)>0$, then $\mu(A \backslash(A \cap B))=\mu(B \backslash(A \cap B))=0$ because A and B are atoms. Then $\mu(A)=\mu(A \cap B)+\mu(A \backslash(A \cap B))=\mu(A \cap B)$ and $\mu(B)=$ $\mu(A \cap B)+\mu(B \backslash(A \cap B))=\mu(A \cap B)$ by finite additivity; by transitivity $\mu(A)=\mu(B)(=\mu(A \cap B))$. (iii) We can reproduce the argument given above that σ-finiteness implies semifiniteness; at any rate, if $A_{n} \in \mathcal{M}$ is an increasing sequence of sets of finite measure with union X, and A is an atom, we also have $A \cap A_{n} \uparrow A$, so that if $\mu\left(A \cap A_{n}\right)=0$ for every n we get $\mu(A)=0$, a contradiction; then $\mu\left(A \cap A_{n}\right)>0$ for some n, which implies $\mu\left(A \backslash A_{n}\right)=0$, and $\mu(A)=\mu\left(A \cap A_{n}\right)+\mu\left(A \backslash A_{n}\right)=\mu\left(A \cap A_{n}\right)<\infty$.
(iv)Let's apply the usual trick for making a disjoint union, $B_{k}=A_{k} \backslash\left(\bigcup_{j=0}^{k-1} A_{j}\right)$. We have $B_{k} \subseteq A_{k}$, and if the A_{k} 's are pairwise almost disjoint then $\mu\left(B_{k}\right)=\mu\left(A_{k}\right)$: in fact $A_{k} \backslash B_{k}=A_{k} \cap\left(\bigcup_{j=0}^{k-1} A_{j}\right)=$ $\bigcup_{j=0}^{k-1} A_{k} \cap A_{j}$ is a finite union of sets of measure zero, and has then measure zero.
(v) Assume that $E \subseteq X$ has finite measure, and let $\left(A_{\lambda}\right)_{\lambda \in \Lambda}$ be a family of almost disjoint atoms contained in E; we prove that $\sum_{\lambda \in \Lambda} \mu\left(A_{\lambda}\right)\left(:=\sup \left\{\sum_{\lambda \in F} \mu\left(A_{\lambda}\right): F\right.\right.$ a finite subset of $\left.\left.\Lambda\right\}\right) \leq \mu(E)$; this implies that Λ is countable (Lecture Notes, lemma 1.2.4). In fact, for every finite subset $F \subseteq \Lambda$ we have, by (i), $\sum_{\lambda \in F} \mu\left(A_{\lambda}\right)=\mu\left(\bigcup_{\lambda \in F} A_{\lambda}\right) \leq \mu(E)$. We have proved that any subset of X of finite measure contains an at most countable set $\mathcal{A}(E)$ of pairwise almost disjoint atoms; since $X=\bigcup_{n \in \mathbb{N}} E_{n}$, where $\left(E_{n}\right)_{n \in \mathbb{N}}$ is an increasing sequence of sets of finite measure, we have that $\mathcal{A}(X)=\bigcup_{n \in \mathbb{N}} \mathcal{A}\left(E_{n}\right)$ is a countable union of countable sets, hence countable.

Exercise 31. Let (X, \mathcal{M}, μ) be a measure space, and let $f \in L(X)$ be a measurable function.
(i) Prove that

$$
\liminf _{p \rightarrow \infty}\|f\|_{p} \geq\|f\|_{\infty}
$$

(given $0<\alpha<\|f\|_{\infty}$ use Čebičeff's inequality for L^{p} to prove that $\liminf _{p \rightarrow \infty}\|f\|_{p} \geq \alpha$).
(ii) Assuming $f \in L^{p}(\mu)$ for some $p>0$ prove that $\limsup _{p \rightarrow \infty}\|f\|_{p} \leq\|f\|_{\infty}$.
(iii) Find a Lebesgue measurable function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\lim _{p \rightarrow \infty}\|f\|_{p}$ exists, but is not equal to $\|f\|_{\infty}$.
(iv) Compute the limit

$$
\lim _{n \rightarrow \infty}\left(\int_{0}^{\infty} \frac{d x}{\left(1+x^{2}\right)^{n}}\right)^{1 / n}
$$

and deduce from it the value of $\lim _{n \rightarrow \infty}\left((2 n)!/(n!)^{2}\right)^{1 / n}$ (use the Beta and Gamma functions to evaluate the preceding integral; do this last part only if you spare some time).

Solution. (i) and (ii): LN, 5.1.1. (iii) Take the constant 1: its p-norms are all infinite, but $\|1\|_{\infty}=1$.
(iv) Clearly all p-norms are finite, so that the limit is the L^{∞}-norm of $f(x)=1 /\left(1+x^{2}\right)$ in $[0, \infty[$, which is 1 . To compute the integrals: first use the change of variables $x^{2}=t$, which gives

$$
\int_{0}^{\infty} \frac{d x}{\left(1+x^{2}\right)^{n}}=\frac{1}{2} \int_{0}^{\infty} \frac{t^{-1 / 2}}{(1+t)^{n}} d t=\frac{1}{2} B(1 / 2, n-1 / 2)=\frac{1}{2} \frac{\Gamma(1 / 2) \Gamma(n-1 / 2)}{\Gamma(n)} .
$$

We have $\Gamma(1 / 2)=\pi^{1 / 2}$ and

$$
\Gamma(n-1 / 2)=\frac{(n-1 / 2) \Gamma(n-1 / 2)}{n-1 / 2}=\frac{\Gamma(n+1 / 2)}{n-1 / 2}=\frac{(2 n)!}{2^{2 n} n!} \pi^{1 / 2},
$$

so that

$$
\left(\int_{0}^{\infty} \frac{d x}{\left(1+x^{2}\right)^{n}}\right)^{1 / n}=\left(\frac{\pi}{2} \frac{(2 n)!}{2^{2 n} n!\Gamma(n)}\right)^{1 / n}=\frac{1}{4}\left(\frac{n \pi}{2}\right)^{1 / n}\left(\frac{(2 n)!}{(n!)^{2}}\right)^{1 / n}
$$

as $n \rightarrow \infty$ the left-hand side tends to 1 , and also $(n \pi / 2)^{1 / n}$ tends to 1 ; then the required limit is 4 .
Exercise 32. Define $F: \mathbb{R} \rightarrow \mathbb{R}$ by $F(x)=\operatorname{sgn} x e^{-|x|}$.
(i) Plot F.
(ii) Find the total variation function $T(x)=V F(]-\infty, x]$), the positive and negative variation $F_{ \pm}$ of F, and plot all these functions.
(iii) For the signed measure $\nu=\mu_{F}$ associated to F describe a Hahn decomposition, and describe the Lebesgue-Radon-Nikodym decomposition of $\nu^{ \pm}$with respect to Lebesgue measure m on \mathcal{B}_{1}.
Let now $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=|x|$.
(iv) Compute

$$
\int_{\mathbb{R}} f^{p} d|\nu|
$$

for every $p>0$
(v) Is it true that $f \in L^{\infty}(|\nu|)$?

Solution. (schematic) The plots are easy and we omit them. The total variation is $T(x)=e^{x}$ for $x<0$, $T(0)=2, T(x)=4-e^{-x}$ for $x>0$. The positive variation is $F_{+}(x)=0$ for $x<0, F_{+}(0)=1, F_{+}(x)=2$ for $x>0$; the negative is $F_{-}(x)=e^{x}$ for $x<0, F_{-}(x)=2-e^{-x}$ for $x \geq 0$. A Hahn decomposition is $P=\{0\}$ and $Q=\mathbb{R} \backslash\{0\}$. The singular part is $2 \delta_{0}$, the absolutely continuous part is $-e^{-|x|} d m$. We have

$$
\int_{\mathbb{R}}|f|^{p} d|\nu|=2|f(0)|^{p} \delta_{0}+\int_{\mathbb{R} \backslash\{0\}}|x|^{p} e^{-|x|} d m(x)=2 \int_{0}^{\infty} x^{p} e^{-x} d x=2 \Gamma(p+1) .
$$

Then $f \in L^{p}(|\nu|)$ for every $p>0$. Clearly f is not in $\left.L^{\infty}(\mid \nu)\right)$: for every $\alpha>0$ the set $\{x \in \mathbb{R}:|x|>\alpha\}$ is the union of the two half lines $]-\infty,-\alpha[\cup] \alpha, \infty[$, of $|\nu|-$ measure $2 \exp (-\alpha)>0$.

