REAL ANALYSIS EXAMS A.A 2011–12

GIUSEPPE DE MARCO

Analisi Reale per Matematica-Precompitino 21 novembre 2011

EXERCISE 1. Let (X, \mathcal{M}, μ) be a measure space.

- (i) For $f \in L^+(X)$ define the integral of f, and making use of this definition prove that $\int_X f = 0$ only if $\mu(\{f \neq 0\}) = 0$.
- (ii) Prove that if $f, g \in L^1_{\mu}(X, \mathbb{R})$ then f = g a.e. if and only if $\int_E f = \int_E g$ for every $E \in \mathcal{M}$ (hint: consider $E = \{f < g\} \dots$).
- (iii) Prove that if $f, g \in L^1_\mu(X, \mathbb{C})$ then f = g a.e. if and only if $\int_E f = \int_E g$ for every $E \in \mathcal{M}$.
- (iv) Define Dynkin classes and state Dynkin's theorem.
- (v) Let $\mathcal{E} \subseteq \mathcal{M}$ be closed under intersection, assume that $\mathcal{M}(\mathcal{E}) = \mathcal{M}$, and that X is covered by a countable subset of \mathcal{E} . Assume that $f, g \in L^1(\mu)$ are such that $\int_E f = \int_E g$ for every $E \in \mathcal{E}$. Prove that f = g a.e.

Solution. (i) Definition: $\int_X f = \sup\{\int_X \varphi : 0 \le \varphi \le f, \varphi \text{ simple}\}$. If $\int_X f = 0$ then $\int_X \varphi = 0$ for every positive simple φ under f; in particular, if $E(n) = \{f > 1/n\}$ then $(1/n)\chi_{E(n)}$ is a simple function under f, so that $\int_X (1/n)\chi_{E(n)} = 0$, that is $(1/n)\mu(E(n)) = 0$, which implies $\mu(E(n)) = 0$; since

$$\{f \neq 0\} = \{f > 0\} = \bigcup_{n=1}^{\infty} E(n), \text{ we have } \mu(\{f > 0\}) = 0.$$

(ii) From $\int_E f = \int_E g$ we get $\int_E (g - f) = 0$; but we have g(x) - f(x) > 0 for every $x \in E$, so that $\int_E (g - f) = 0$ implies $\mu(E) = 0$. In the same way, if $F = \{f > g\}$ we get $\mu(F) = 0$, so that f = g a.e. in X.

(iii) $\int_E f = \int_E g$ is equivalent to $\int_E \operatorname{Re} f = \int_E \operatorname{Re} g$ and $\int_E \operatorname{Im} f = \int_E \operatorname{Im} g$. By (ii) this happens for every measurable E iff $\operatorname{Re} f = \operatorname{Re} g$ and $\operatorname{Im} f = \operatorname{Im} g$ a.e., that is f = g a.e.

(iv) See Lecture Notes, 3.4.1

(v) The proof mimics the proof of LN, 3.4.3. Given a set $E \in \mathcal{E}$ consider the set $\mathcal{E}_E = \{F \cap E : F \in \mathcal{E}\} (= \{G \subseteq E : G \in \mathcal{E}\})$, and the set $\mathcal{C}_E = \{A \in \mathcal{M} : A \subseteq E, \int_A f = \int_A g\}$. This set is a Dynkin class of parts of E, as is easy to check: closure under countable disjoint union is countable additivity of the integral: if $f \in L^1(\mu)$ and $(A(n))_{n \in \mathbb{N}}$ is a countable disjoint sequence of elements of \mathcal{M} , then $\sum_{n=0}^{\infty} f \chi_{E(n)}$ is a normally convergent series in $L^1(\mu)$, so $\int_{\bigcup_n A(n)} f \chi_{A(n)} = \sum_{n=0}^{\infty} \int_X f \chi_{A(n)} = \sum_{n=0}^{\infty} \int_{A(n)} f$; same for g. And since $\int_{E \smallsetminus A} f = \int_E f - \int_A f$ for every measurable subset A of E, and the same for g, we also have closure under complementation. Since this set \mathcal{C}_E contains \mathcal{E}_E , it contains the Dynkin class generated by it, and since \mathcal{E}_E is closed under intersection, by Dynkin's theorem \mathcal{C}_E contains the σ -algebra generated by \mathcal{E}_E , which is $\mathcal{M}_E = \{A \in \mathcal{M} : A \subseteq E\}$. Now X can be written as a countable union of members of \mathcal{E} , say $X = \bigcup_{k \in \mathbb{N}} E_k$; by the usual technique $(F_k = E_k \smallsetminus \left(\bigcup_{j=0}^{k-1} E_j\right))$ we can write X as a countable disjoint union of members F_k of $\mathcal{M}(\mathcal{E})$ with $F_k \subseteq E_k$; given $A \in \mathcal{M}(\mathcal{E})$ we have $A = \bigcup_{k=0}^{\infty} A \cap F_k$, a countable disjoint union, and $\int_{A \cap F_k} f = \int_{A \cap F_k} g$ for every k, since $A \cap F_k \in \mathcal{M}_{E_k}$.

REMARK. Of course, considering h = f - g, (i),(iii),(iv), (v) may be stated as $\int_E h = 0$ for every $E \in ...$ implies h = 0 a.e.. The statement:

. If $f,g \in L^+(X)$ are such that $\int_E f = \int_E g$ for every $E \in \mathcal{M}$, then f = g a.e.

is FALSE unless some additional hypothesis is made on μ : take an uncountable set X with the σ -algebra of countable or co-countable subsets, and the measure μ that is ∞ for co-countable, and 0 for countable sets: the constants 1 and 2 have integral 0 on countable and ∞ on co-countable sets, but are never equal. We can prove (but the proof is much more complicated than (ii) above, owing to possibly infinite integrals):

. If μ is semifinite, and $f, g \in L^+(X)$ are such that $\int_E f = \int_E g$ for every $E \in \mathcal{M}$, then f = g a.e.

Proof. Let $A = \{f < g\}$; it is enough to prove that $\mu(A) = 0$ (an analogous proof will work for $B = \{g < f\}$). Given $n \in \mathbb{N}$, let $E(n) = \{g \le n\} \cap A$. Then $\mu(E(n)) = 0$; in fact, if not, by semifiniteness we get $E \subseteq E(n)$ with $0 < \mu(E) < \infty$. Then $\int_E f = \int_E g \le \int_E n = n \, \mu(E) < \infty$; it follows that $\int_E (g - f) = 0$, but g(x) - f(x) > 0 for every $x \in E$, impossible if $\mu(E) > 0$. Then $\mu(E(n)) = 0$ for every n, so that $\mu(\{g < \infty\} \cap A) = 0$ (since $\{g < \infty\} = \bigcup_{n=1}^{\infty} \{g \le n\}$). If $\mu(\{g = \infty\} \cap A) > 0$ we still get a contradiction: notice that since $f(x) < \infty$ for every $x \in A$ we still have $\{g = \infty\} \cap A = \bigcup_{n=1}^{\infty} \{g = \infty\} \cap A \cap \{f \le n\}$; unless these sets have all measure zero we can get $E \subseteq \{g = \infty\} \cap A \cap \{f \le n\}$ with $0 < \mu(E) < \infty$; then $\int_E f \le n \, \mu(E) < \infty$, but $\int_E g = \infty$. Then $\mu(A) = \mu(A \cap \{g < \infty\}) + \mu(A \cap \{g = \infty\}) = 0$.

EXERCISE 2. (i) Let U be an open subset of \mathbb{R}^n . Prove that U is a countable union of compact intervals (or even compact cubes).

(ii) Prove that if X is an open subset of \mathbb{R}^n then the σ -algebra of Borel subsets of X is generated by the compact intervals contained in X.

From now on U and V are open subintervals of \mathbb{R} and $\phi : U \to V$ is a C^1 diffeomorphism (a C^1 bijective map with C^1 inverse).

(iii) We define on the σ -algebra \mathcal{B} of Borel subsets of U the set functions:

$$\mu(E) = \lambda(\phi(E)); \qquad \nu(E) = \int_E |\phi'(x)| \, d\lambda(x),$$

where of course $\lambda = \lambda_1$ is the one dimensional Lebesgue measure. Prove that μ and ν are measures, and that $\mu = \nu$ on \mathcal{B} .

(iv) The measure μ can be considered as an image measure, in which way? Using this fact prove that, for every $f \in L^1_{\lambda}(V, \mathbb{K})$ we have the *change of variable formula*:

$$\int_{V} f(y) \, dy = \int_{U} f(\phi(x)) \left| \phi'(x) \right| \, dx.$$

Solution. (i) Consider the set of all closed cubes $Q(c,r] = \{x \in \mathbb{R}^n : ||x - c||_{\infty} \leq r\}$ with centers $c \in \mathbb{Q}^n$ and half-sides $r \in \mathbb{Q}^>$ which are contained in U: this is a countable set of compact cubes, whose union is U. In fact, given $a \in U$, pick $c \in \mathbb{Q}^n$ such that $||a - c||_{\infty} < d = \operatorname{dist}(a, \mathbb{R}^n \setminus U)/3$, where $\operatorname{dist}(a, \mathbb{R}^n \setminus U) = \inf\{||a - y||_{\infty} : y \in \mathbb{R}^n \setminus U\}$. Picking a rational number r such that d < r < 2d we get $a \in Q(c, r] \subseteq U$.

(ii) The compact intervals are Borel sets, so they generate a σ -algebra contained in the Borel sets of X. But as shown in (i), every open set is a countable union of compact intervals, so the generators of the Borel σ -algebra are all contained in the σ -algebra generated by compact intervals, and so these σ -algebras coincide.

(iii) Answering now to part of (iii) we can observe that $\mu = \lambda \phi^{-1}$ is the image measure of the Lebesgue measure on V, by means of the map $\phi^{-1} : V \to U$ (see LN, 3.3.7.2). Anyway the direct verification that μ is a measure (thanks to the fact that ϕ is a homeomorphism) is trivial. We know that ν is a measure (the one with density $|\phi'|$ with respect to Lebesgue measure), owing to countable additivity of integrals of positive functions (LN, 3.3.5.2). Remember now that a diffeomorphism between intervals of \mathbb{R} has necessarily a derivative always strictly positive or strictly negative: it cannot vanish, and intervals are connected. If [a, b] is a compact subinterval of U we have $\phi([a, b]) = [\phi(a), \phi(b)]$ if ϕ is increasing $(\phi'(x) > 0)$, and $\phi([a, b]) = [\phi(b), \phi(a)]$ if ϕ is decreasing $(\phi'(x) < 0)$. And we have

$$\int_{[a,b]} |\phi'(x)| \, dx = \pm \int_a^b \phi'(x) \, dx = \pm (\phi(b) - \phi(a)),$$

where + holds if ϕ is increasing, - in the other case. Then μ and ν coincide and are finite on compact intervals, a class of sets closed under finite intersection which generates the σ -algebra \mathcal{B} , with U also a countable union of compact intervals; so the measures coincide on \mathcal{B} (we are using the uniqueness result in LN, 3.4.3).

(iv) We have seen that $\mu = \lambda \phi^{-1}$; then for $g \in L^+(\lambda \phi^{-1})$ we have

$$\int_U g(x) \, d\lambda \phi^{-1 \leftarrow}(x) = \int_V g \circ \phi^{-1}(y) \, d\lambda(y);$$

on the other hand, since $d\lambda \phi^{-1} \leftarrow = |\phi'| d\lambda$ we have also (see LN, 3.3.5.2):

$$\int_{U} g(x) \, d\lambda \phi^{-1 \leftarrow}(x) = \int_{U} g(x) \, |\phi'(x)| \, d\lambda(x),$$

so that, equating the right-hand sides of the two preceding equations:

$$\int_{V} g \circ \phi^{-1}(y) \, d\lambda(y) = \int_{U} g(x) \, |\phi'(x)| \, d\lambda(x)$$

for every $g \in L^+(U)$; and setting $f(y) = g \circ \phi^{-1}(y)$ we get $g(x) = f \circ \phi(x)$, and we conclude.

EXERCISE 3. Let (X, \mathcal{M}, μ) be a measure space.

- (i) State the dominated convergence theorem.
- (ii) Prove that if $f, g \in L^+$, then $(g f)^+ \leq g$.
- (iii) Let f_n in $L^+(X)$ converge a.e. to $f \in L^+(X)$, and assume that all integrals are finite and $\int_X f_n \to \int_X f < \infty$. Prove that then f_n converges to f in $L^1(\mu)$, i.e. $||f f_n||_1 \to 0$ (by (ii) we have $(f f_n)^+ \leq \ldots$, then apply (i) \ldots).
- (iv) We now assume that f_n in $L^+(X)$ converge a.e. to $f \in L^+(X)$, that $f_n \leq f$ for every n, and that all integrals are finite. Is it true that f_n converges to f in $L^1(\mu)$?

Solution. (i) See the Lecture Notes, 3.3.2. (ii) If $(g - f)^+(x) = 0$ the assertion is trivial, since $g(x) \ge 0$ for every $x \in X$. If $(g - f)^+(x) > 0$, then $(g - f)^+(x) = g(x) - f(x) > 0$; and since $f(x) \ge 0$ by the hypothesis $f \in L^+(X)$, we conclude that $(g - f)^+(x) = g(x) - f(x) \le g(x)$.

(iii) If all integrals are finite then all functions are in $L^1(\mu)$, being all positive. Then $(f - f_n)^+ \leq f$ is a sequence which converges to 0 a.e and is dominated by $f \in L^1(\mu)$. By dominated convergence we have $\lim_n \int_X (f - f_n)^+ = 0$. But then, since $(f - f_n)^- = (f - f_n)^+ - (f - f_n)$ we get

$$\lim_{n} \int_{X} (f - f_{n})^{-} = \lim_{n} \left(\int_{X} (f - f_{n})^{+} - \int_{X} (f - f_{n}) \right) = \lim_{n} \int_{X} (f - f_{n})^{+} - \int_{X} f + \lim_{n} \int_{X} f_{n} = 0;$$

hence also

$$\lim_{n} \int_{X} |f - f_{n}| = \lim_{n} \left(\int_{X} (f - f_{n})^{+} + \int_{X} (f - f_{n})^{-} \right) = 0.$$

(iv) Since all integrals, including that of f, are finite, we have that $f \in L^1(\mu)$; since $0 \le f_n \le f$, dominated convergence is applicable (one-sided limits, 3.3.17.6), hence we have convergence in $L^1(\mu)$.

REMARK. Of course (iii) can also be obtained from the generalized dominated convergence theorem; in fact, the proof suggested here follows essentially the same route as the proof of that result (LN, 3.3.17.7).

Analisi Reale per Matematica- Primo Compitino, 26 novembre 2011

EXERCISE 4. Let (X, \mathcal{M}, μ) be a measure space.

- (i) State Fatou's lemma.
- (ii) Using Fatou's lemma prove the monotone convergence theorem for functions in $L^+(X)$.
- (iii) Let $g: [0, \infty[\to [0, \infty[$ be continuous. Given a > 0 let

$$M_a = \{ f \in L^1(\mu) : \|g(|f|)\|_1 \le a \}.$$

Prove that M_a is closed in $L^1(\mu)$ (if $f_n \in M_a$ converges to f in $L^1(\mu)$, then some subsequence converges to f also ...).

Solution. (i) LN, 3.3.6.

(ii) If $f_n \in L^+(X)$ and $f_n \uparrow f$, Fatou's lemma says that $\int_X f \leq \liminf_n \int_X f_n$. But the sequence f_n is increasing, hence also the sequence $\int_X f_n$ is increasing, so that $\lim_n \int_X f_n = \sup_n \int_X f_n$ exists. Then the preceding assertion implies $\int_X f \leq \lim_n \int_X f_n$; and since $\int_X f_n \leq \int_X f$ for every n, we have also $\lim_n \int_X f_n \leq \int_X f$, and hence equality, $\lim_n \int_X f_n = \int_X f$.

(iii) If $f_n \in M_a$ converges to f in $L^1(\mu)$, then some subsequence converges to f also a.e.; let's assume that the entire sequence converges a.e. to f. Then $|f_n|$ converges a.e. to |f|, and by continuity of g on $[0, \infty[$ we have that $g(|f_n(x)|)$ converges to g(|f(x)|) if $|f_n(x)|$ converges to |f(x)|. Then Fatou's lemma says that

$$\int_X g \circ |f| \le \liminf_n \int_X g \circ |f_n| \le a,$$

so that $f \in M_a$, and M_a is closed in $L^1(\mu)$.

REMARK. (ii) Many have proved monotone convergence by applying Fatou's lemma to the sequence $f - f_n$ to get the inequality $\limsup_n \int_X f_n \leq \int_X f$; this not only makes the proof uselessly longer, it is strictly speaking an incomplete proof, because it excludes the case $\int_X f_n = \infty$.

EXERCISE 5. Let (X, \mathcal{M}, μ) be a measure space.

- (i) Prove that if $f \in L^1(\mu)$ then for every $\alpha > 0$ we have $||f||_1 \ge \int_{\{|f| \ge \alpha\}} |f|$, and prove that $\lim_{\alpha \to \infty} \int_{\{|f| \ge \alpha\}} |f| = 0$ (i.e. prove that for every sequence $\alpha_n \to \infty$ we have $\lim_n \int_{\{|f| \ge \alpha_n\}} |f| = 0$).
- (ii) If $f \in L^{\infty}(\mu)$, given $\varepsilon > 0$ there is $\delta > 0$ such that $\mu(E) \leq \delta$ implies $\left| \int_{E} f \right| \leq \varepsilon$ (trivial, 1 point). Prove that the same is true if $f \in L^{1}(\mu)$: given $\varepsilon > 0$ and $\alpha > 0$ write

$$\left|\int_{E} f\right| \leq \int_{E} |f| = \int_{E \cap \{|f| \geq \alpha\}} |f| + \int_{E \cap \{|f| < \alpha\}} |f|$$

and estimate separately the two terms.

(iii) State and prove Čebičeff's inequality: $\mu(\{|f| \ge \alpha\}) \le \ldots$, and use it to prove that if f_n is a sequence in $L^1(\mu)$ converging to f in $L^1(\mu)$ then, for every $\alpha > 0$:

$$\lim_{n \to \infty} \mu(\{|f - f_n| \ge \alpha\}) = 0.$$

Solution. (i) Clearly $|f| \ge |f| \chi_{\alpha}$, if χ_{α} is the characteristic function of the set $\{|f| \ge \alpha\}$. Then

$$\int_{\{|f| \ge \alpha\}} |f| = \int_X |f| \, \chi_\alpha = \int_{\{|f| \ge \alpha\}} |f| \le \int_X |f| = \|f\|_1.$$

If $\alpha(n)$ tends to ∞ , then $|f| \chi_{\alpha(n)} \to 0$ everywhere, and $|f| \chi_{\alpha(n)} \leq |f|$ for every *n*, so that dominated convergence implies $\lim_{n} \int_{\{|f| \geq \alpha(n)\}} |f| = 0$.

(ii) Clearly we have

$$\left| \int_{E} f \right| \leq \int_{E} |f| \leq \int_{E} ||f||_{\infty} = ||f||_{\infty} \mu(E) \quad \text{for every } E \in \mathcal{M} \text{ of finite measure,}$$

so that given ε we simply take $\delta = \varepsilon / \|f\|_{\infty}$. Following the hint, we write

$$\left|\int_{E} f\right| \leq \int_{E \cap \{|f| \geq \alpha\}} |f| + \int_{E \cap \{|f| < \alpha\}} |f|;$$

given $\varepsilon > 0$ we first pick $\alpha > 0$ so that $\int_{\{|f| > \alpha\}} |f| \leq \varepsilon/2$. Then we have also

$$\int_{E \cap \{|f| \ge \alpha\}} |f| \le \int_{\{|f| \ge \alpha\}} |f| \le \varepsilon/2 \quad \text{for every } E \in \mathcal{M}$$

Keeping now α fixed we have, if $\mu(E) \leq \delta$

$$\int_{E \cap \{|f| < \alpha\}} |f| \le \alpha \, \mu(E \cap \{|f| < \alpha\}) \le \alpha \mu(E) \le \alpha \delta,$$

so that we need only to pick $\delta = \varepsilon/(2\alpha)$ to conclude.

(iii) The inequality is $\mu(\{|f| \ge \alpha\} \le (1/\alpha) \|f\|_1$, and the proof is immediate, the first part already done in (i):

$$\|f\|_1 = \int_X |f| \ge \int_{\{|f| \ge \alpha\}} |f| \ge \int_{\{|f| \ge \alpha\}} \alpha = \alpha \, \mu(\{|f| \ge \alpha\}).$$

Then we have

$$\mu(\{|f - f_n| \ge \alpha\}) \le \frac{1}{\alpha} \|f - f_n\|_1 \to 0 \text{ for } n \to \infty.$$

REMARK. (i) Many wanted to use monotone convergence, or the fact that $E \mapsto \int_E |f|$ is a measure; this is possible if $\alpha_n \uparrow \infty$. Now this can be assumed without loss of generality. In fact we have:

. Let $\varphi: D \to \mathbb{R}$ be a function, and assume that $c \in \mathbb{R}$ is an accumulation point for $D \cap] - \infty, c[$. Then $\lim_{x \to c^-} \varphi(x)$ exists and is ℓ if and only if $\lim_{n \to \infty} \varphi(x_n) = \ell$ for every increasing sequence $x_n \in D$ with $x_n \uparrow c$.

1

In fact we know that $\lim_{x\to c^-} \varphi(x)$ exists and is ℓ if and only if $\lim_{n\to\infty} \varphi(x_n) = \ell$ for every sequence $x_n \in D$ with $x_n \to c$; now every real valued sequence has a monotone subsequence, and if $x_n < c$ and $x_n \to c$ this subsequence must be increasing, since it has c as limit.

This fact, applied to $\varphi(\alpha) = \int_{\{|f| \ge \alpha\}} |f|$ shows that we can assume $\alpha_n \uparrow \infty$. But a proof ought to be given.

It is however impossible to prove (i) using Čebičeff's inequality, or vague arguments such as

$$\lim_{n} \int_{\{|f| \ge \alpha_n\}} |f| = \int_{\{|f| = \infty\}} |f|$$

stated without proof. In this respect also notice that, by definition, functions in $L^1(\mu)$ are finite valued, so that $\{|f| = \infty\}$ is empty for $f \in L^1(\mu)$, and not only of measure zero: this is a minor point, but is worth noticing.

EXERCISE 6. Let $F, G : \mathbb{R} \to \mathbb{R}$ be increasing and right continuous; recall that we have the formula of integration by parts, if $a, b \in \mathbb{R}$ and a < b then

(*)
$$\int_{]a,b]} F(x^{-}) \, dG(x) + \int_{]a,b]} G(x) \, dF(x) = F(b)G(b) - F(a)G(a).$$

In the sequel we assume also $F(-\infty) = G(-\infty) = 0$.

(i) Prove that

$$\int_{\mathbb{R}} F(x^{-}) \, dG(x) + \int_{\mathbb{R}} G(x) \, dF(x) = F(\infty)G(\infty)$$

(infinite values are possible),

- (a): directly using Tonelli's theorem
- (b): using formula (*) and passing to the limit with $a \downarrow \ldots$ and $b \uparrow \ldots$.
- (ii) Prove that if F and G do not have a common point of discontinuity then we may replace $F(x^{-})$ with F(x) in the preceding formula.
- (iii) Assuming F bounded and continuous prove that

$$\int_{\mathbb{R}} F(x) \, dF(x) = \frac{1}{2} \, (F(\infty))^2.$$

Now we take $F(x) = \chi_{[0,\infty[}$ the Heaviside step, and

$$G(x) = \begin{cases} e^x & x < 0\\ 3 - e^{-x} & x \ge 0 \end{cases}$$

(iv) Plot the graph of G and compute

$$\int_{\mathbb{R}} F(x^{-}) \, dG(x); \qquad \int_{\mathbb{R}} F(x) \, dG(x).$$

(v) Compute (dG - dF)([a, b]) for every $a, b \in \mathbb{R}$ with a < b. Prove that there is a function $\rho \in L^+_{\lambda}(\mathbb{R})$ such that $(dG - dF)(E) = \int_E \rho \, d\lambda$ for every Borel $E \subseteq \mathbb{R}$, and find it.

Solution. (i) (a) We compute $dF \otimes dG(T)$, where $T = \{(x, y) \in \mathbb{R}^2 : x \leq y\}$. Since all measures are σ -finite, and T is a Borel subset of \mathbb{R}^2 , hence measurable, Tonelli's theorem is applicable and gives $(T_x = \{y \in \mathbb{R} : (x, y) \in T\} =] - \infty, x])$

$$dF \otimes dG(T) = \int_{\mathbb{R}} \left(\int_{T_x} dG \right) dF(x) = \int_{\mathbb{R}} \left(\int_{]-\infty,x]} dG \right) dF(x) = \int_{\mathbb{R}} G(x) dF(x);$$

reversing the order of integration $(T^y = [x, +\infty[):$

$$dF \otimes dG(T) = \int_{\mathbb{R}} \left(\int_{T^y} dF \right) dG(y) = \int_{\mathbb{R}} (F(\infty) - F(x^-)) dG(x).$$

so that

$$\int_{\mathbb{R}} G(x) \, dF(x) = \int_{\mathbb{R}} (F(\infty) - F(x^{-})) dG(x).$$

Caution: we cannot say that $\int_{\mathbb{R}} (F(\infty) - F(x^-)) dG(x) = F(\infty) G(\infty) - \int_{\mathbb{R}} F(x^-) dG(x)$ because of possible infinities. Adding to both sides $\int_{\mathbb{R}} F(x^-) dG(x)$, which certainly exists since $x \mapsto F(x^-)$ is positive measurable, we get that

$$\int_{\mathbb{R}} F(x^{-}) dG(x) + \int_{\mathbb{R}} G(x) dF(x) = \int_{\mathbb{R}} F(x^{-}) dG(x) + \int_{\mathbb{R}} (F(\infty) - F(x^{-})) dG(x) = \int_{\mathbb{R}} F(\infty) dG(x) = F(\infty) G(\infty).$$

(b) Let $a_n \downarrow -\infty$ and $b_n \uparrow \infty$. Then $f_n(x) = F(x^-) \chi_{]a_n a, b_n]}$ and $g_n = G(x) \chi_{]a_n a, b_n]}$ are increasing sequences of positive functions such that $f_n(x) \uparrow F(x^-)$ and $g_n(x) \uparrow G(x)$, for every $x \in \mathbb{R}$. Then monotone convergence implies that

$$\int_{\mathbb{R}} f_n \, dG + \int_{\mathbb{R}} g_n \, dF \uparrow \int_{\mathbb{R}} F(x^-) \, dG(x) + \int_{\mathbb{R}} G(x) \, dF(x),$$

and since

$$\int_{\mathbb{R}} f_n \, dG + \int_{\mathbb{R}} g_n \, dF = \int_{]a_n, b_n]} F(x^-) \, dG(x) + \int_{]a_n, b_n]} G(x) \, dF(x) = F(b_n) \, G(b_n) \uparrow F(\infty) \, G(\infty)$$

we conclude.

(ii) Clear: discontinuities of F are a countable set of dG measure 0, so that F(x) and $F(x^{-})$ are dG-almost equal.

(iii) Is a trivial application of the second formula, given continuity of F.

FIGURE 1. Plot of G

(iv) Notice that $x \mapsto F(x^{-}) = \chi_{[0,\infty[}$. Then

$$\int_{\mathbb{R}} F(x^{-}) \, dG(x) = \int_{]0,\infty[} dG(x) = dG(]0,\infty[) = G(\infty) - G(0) = 3 - 2 = 1.$$

And

$$\int_{\mathbb{R}} F(x) \, dG(x) = \int_{[0,\infty[} dG = G(\infty) - G(0^{-}) = 3 - 1 = 2.$$

(v) We have

(dG - dF)([a, b]) = dG([a, b]) - dF([a, b]) = G(b) - G(a) - (F(b) - F(a)) = (G - F)(b) - (G - F)(a)for every pair $a, b \in \mathbb{R}$ with a < b. Observe that H = G - F is still an increasing function: we have

$$H(x) = \begin{cases} e^x & \text{for } x < 0\\ 2 - e^{-x} & \text{for } x \ge 0 \end{cases}$$

then dG - dF = dH is the Radon–Stieltjes measure associated to H. And we have

$$(dG - dF)(]a, b]) = H(b) - H(a) = \begin{cases} e^{-a} - e^{-b} & \text{for } 0 \le a < b\\ 2 - e^{-b} - e^{-a} & \text{for } a < 0 < b \\ e^{b} - e^{a} & \text{for } 0 < b \le 0 \end{cases}$$

It is clear that H is a C^1 function: it is continuous, and its derivative is e^x for x < 0, while $H'(x) = e^{-x}$ for x > 0, so that H'(0) = 1 also exists; we have that $H'(x) = e^{-|x|}$ for every $x \in \mathbb{R}$, so the density function is $\rho(x) = e^{-|x|}$.

FIGURE 2. Plot of H = G - F, a function of class C^1 .

REMARK. (i), part (a): A more elegant solution has been found by a student: write the first term of the formula to be proved as $\int_{\mathbb{R}} F(y^-) dG(y)$; then, since $F(y^-) = dF(] - \infty, y[) = \int_{]-\infty, y[} dF(x)$ we have

$$\int_{\mathbb{R}} F(y^{-}) dG(y) = \int_{\mathbb{R}} \left(\int_{]-\infty, y[} dF(x) \right) dG(y) = \int_{S} dF \otimes dG(x, y) \quad \text{where } S = \{(x, y) \in \mathbb{R}^{2} : x < y\}.$$

For the second term we get

$$\int_{\mathbb{R}} G(x) \, dF(x) = \int_{\mathbb{R}} \left(\int_{]-\infty, x]} dG(y) \right) \, dF(x) = \int_{T} dF \otimes dG(x, y) \quad \text{where } T = \{(x, y) \in \mathbb{R}^2 : y \le x\},$$

so that, observing that $\mathbb{R}^2 = S \cup T$, disjoint union of the two half-planes S, T

$$\int_{\mathbb{R}} F(x^{-}) dG(x) + \int_{\mathbb{R}} G(x) dF(x) = \int_{S} dF \otimes dG(x, y) + \int_{T} dF \otimes dG(x, y) = \int_{\mathbb{R}^{2}} dF \otimes dG(x, y) = (F(\infty) - F(-\infty)) (G(\infty) - G(-\infty)) = F(\infty) G(\infty).$$

1. Analisi Reale per Matematica-Secondo Precompitino 18 gennaio 2012

EXERCISE 7. (i) Define a signed measure $\nu : \mathcal{M} \to \mathbb{R}$. If $\nu(A)$ is not finite, and $B \supseteq A$, is $\nu(B)$ also not finite? and if $B \subseteq A$ is $\nu(B)$ also not finite? or what else can be said ?(of course $A, B \in \mathcal{M}$)

- (ii) Prove that a signed measure can assume only one of the values $\pm \infty$.
- (iii) Prove that if $A_0 \subseteq A_1 \subseteq \ldots$ is an increasing sequence in \mathcal{M} , and $A = \bigcup_{n=0}^{\infty} A_n$, then

$$\lim_{n \to \infty} \nu(A_n) = \nu(A).$$

Is there an analogous proposition for decreasing sequences? if so, state and prove it.

(iv) Assume that $\nu(X) \in \mathbb{R}$. Is it true that $\nu(\mathcal{M})$ has a maximum? and a minimum?

Solution. (i) Let (X, \mathcal{M}) be a measurable space. A signed measure is a function $\nu : \mathcal{M} \to [-\infty, \infty]$ such that $\nu(\emptyset) = 0$, and which is countably additive, that is, for every disjoint sequence $(A_n)_{n \in \mathbb{N}}$ of \mathcal{M} we have

$$\nu\left(\bigcup_{n=0}^{\infty}A_n\right) = \sum_{n=0}^{\infty}\nu(A_n).$$

If $B \supseteq A$ we have $\nu(B) = \nu(A) + \nu(B \smallsetminus A)$; if $\nu(A) = \pm \infty$, any meaningful addition $\nu(A) + c$, with $c \in \mathbb{R}$ has $\nu(A)$ as the resulting sum, so $\nu(B) = \nu(A)$. Similarly, if $B \subseteq A$ we have $\nu(A) = \nu(B) + \nu(A \smallsetminus B)$; $\nu(B)$ may be finite, but then we have $\nu(A \smallsetminus B) = \nu(A) = \pm \infty$.

(ii) Since $X \supseteq A$ and $X \in \mathcal{M}$, as seen above we have $\nu(X) = \nu(A)$ when $\nu(A) = \pm \infty$.

(iii) We can write $A = \bigcup_{n=1}^{\infty} (A_n - A_{n-1})$, disjoint union, so that by countable additivity we get, setting $A_{-1} = \emptyset$:

$$\nu(A) = \sum_{n=0}^{\infty} \nu(A_n \smallsetminus A_{n-1}) := \lim_{m \to \infty} \sum_{n=0}^{m} \nu(A_n \smallsetminus A_{n-1}) =$$

(by finite additivity, since $\bigcup_{n=0}^{m} (A_n \smallsetminus A_{n-1}) = A_m)$

$$\lim_{m \to \infty} \nu(A_m)$$

The statement for decreasing sequences requires the additional hypothesis that $\nu(A_m)$ be finite for some m (hence, by (i), also for all n > m):

• Let $A_0 \supseteq A_1 \supseteq A_2 \supseteq \ldots$ be a decreasing sequence in \mathcal{M} , with intersection A. If for some $m \in \mathbb{N}$ the measure $\nu(A_m)$ is finite, we have $\nu(A) = \lim_{n \to \infty} \nu(A_n)$.

Proof. It is not restrictive to assume $\nu(A_0)$ finite, re-indexing if necessary. Then, by (i), every A_n and A have finite ν -measure; the sequence $A_0 \setminus A_n$ is increasing and has $B = A_0 \setminus A$ as its union, so that, by the result on increasing sequences we get $\nu(A_0 \setminus A) = \lim_{n \to \infty} \nu(A_0 \setminus A_n)$. Since every set involved has finite ν -measure we get $\nu(A_0 \setminus A) = \nu(A_0) - \nu(A)$ and $\nu(A_0 \setminus A_n) = \nu(A_0) - \nu(A_n)$; then we have:

$$\nu(A_0) - \nu(A) = \lim_{n \to \infty} (\nu(A_0) - \nu(A_n)) = \nu(A_0) - \lim_{n \to \infty} \nu(A_n) \Longrightarrow \nu(A) = \lim_{n \to \infty} \nu(A_n).$$

(iv) If $\nu(X)$ is finite, by (i) every $A \in \mathcal{M}$ has finite ν -measure. If we consider a Hahn decomposition for ν , let's say $X = P \cup Q$, with P positive and Q negative, $\nu(P)$ and $\nu(Q)$ are both finite and they are respectively $\max \nu(\mathcal{M})$ and $\min \nu(\mathcal{M})$: $\nu(A) = \nu(A \cap P) + \nu(A \cap Q) \leq \nu(A \cap P) \leq \nu(P)$ (because $\nu(A \cap Q) \leq 0$ and $\nu(P \setminus A) \geq 0$; and also $\nu(A) = \nu(A \cap P) + \nu(A \cap Q) \geq \nu(A \cap Q) \geq \nu(Q)$ (because $\nu(A \cap P) \ge 0$, and $\nu(Q \smallsetminus A) \le 0$).

EXERCISE 8. (12) Let (X, \mathcal{M}, μ) be a measure space.

- (i) [1] Assume that $g: X \to \mathbb{C}$ is measurable and such that $\|g\|_q < \infty$ for some q > 0. Then $\lim_{p\to\infty} \|g\|_p = \dots$ (no proof required, simply state the result).
- (ii) [7] Let $f \in L^+(X)$ be such that $\int_X f^n$ is finite for $n \in \mathbb{N}$ large, and

$$\lim_{n \to \infty} \int_X f^n = a \in \mathbb{R}.$$

Prove that then $f \in L^{\infty}(\mu)$, find the possible values of $||f||_{\infty}$, and prove that $f^n(x)$ converges a.e. in X to a function g to be described. Is this convergence also in $L^{1}(\mu)$?

- (iii) [1] In \mathbb{R} with Lebesgue measure give an example of an f for which the preceding limit is a given a > 0.
- (iv) [3] In (ii) we remove the assumption that $f \ge 0$, we assume f real-valued but of arbitrary sign, leaving the other hypotheses intact. What can you say about f and the sequence f^n ?

Solution. (i) $\lim_{p\to\infty} \|g\|_p = \|g\|_{\infty}$.

(ii) If $c_n = ||f||_n$, we gave that $c_n < \infty$ for large n, so that $c_n \to ||f||_\infty$. But by hypothesis c_n^n has a finite limit $a \in \mathbb{R}$. This implies that either $||f||_{\infty} = 0$ or $||f||_{\infty} = 1$. In fact, if $||f||_{\infty} > 1$, and $1 < \alpha < ||f||_{\infty}$, then $\alpha < c_n$ for n large, and then $\alpha^n < c_n^n$ for n large, implying that $c_n^n \to \infty$, against the hypothesis. Then $||f||_{\infty} \leq 1$. Then we have $0 \leq f(x) \leq 1$ for a.e. $x \in X$, implying that for a.e. $x \in X$ we have either $f^n(x) \to 0$ (if f(x) < 1) or $f^n(x) = f(x) = 1$ for all n. In other words

 $f^n(x)$ converges pointwise a.e. in X to χ_C , where $C = \{f = 1\}$.

Morever the sequence is decreasing, $f^0 \ge f^1 \ge f^2 \ge f^3 \ge \ldots$; if $m \in \mathbb{N}$ is such that $f^m \in L^1(\mu)$ then dominated convergence (or decreasing monotone convergence) says that f^n converges to its pointwise limit χ_C also in $L^1(\mu)$. In particular we have

$$a = \lim_{n} \int_{X} f^{n} = \int_{X} \chi_{C} = \mu(C) = \mu(f^{\leftarrow}\{1\});$$

Notice that if $||f||_{\infty} < 1$ then $\mu(C) = 0$ and hence a = 0.

(iii) Simply take for f the characteristic function of any set of measure a, e.g, $\chi_{[0,a]}$. The sequence f^n

is constantly f, then also $\int_X f^n = a$ is constant. (iv) We have that $f^{2n} = (f^2)^n$ verifies the hypotheses of (i), then $||f^2||_{\infty} \leq 1$, hence also $||f||_{\infty} \leq 1$, and f^{2n} converges decreasing and in $L^1(\mu)$ to the characteristic function of $\{f^2 = 1\} = \{f = 1\} \cup \{f = -1\}$. If this set has measure 0 then $||f||_{\infty} < 1$, and the entire sequence f^n converges to 0, pointwise and in $L^1(\mu)$. Otherwise this set has a positive measure $a = \lim_{k\to\infty} \int_X f^{2k}$. We claim that the limit $\lim_n \int_X f^n$ exists and is a iff $\mu(\{f = -1\}) = 0$. In fact, if $f = f^+ - f^-$ we have, for $k \ge 1$:

$$f^{2k} = (f^+)^{2k} + (f^-)^{2k}; \quad f^{2k-1} = (f^+)^{2k-1} - (f^-)^{2k-1};$$

now the sequences $(f^+)^n$ and $(f^-)^n$ are exactly in the situation of f in the hypotheses in (i): that is, they are in $L^1(\mu)$ for n large enough and converge decreasing to $\chi_{\{f=1\}}$ and $\chi_{\{f=-1\}}$ respectively; then

REAL ANALYSIS EXAMS

$$\lim_{k} \int_{X} f^{2k-1} = \lim_{k} \left(\int_{X} (f^{+})^{2k-1} - \int_{X} (f^{-})^{2k-1} \right) = \lim_{k} \int_{X} (f^{+})^{2k-1} - \lim_{k} \int_{X} (f^{-})^{2k-1} = \mu(\{f = 1\}) - \mu(\{f = -1\});$$

A.A 2011-12

and analogously

$$\lim_{k} \int_{X} f^{2k} = \lim_{k} \int_{X} (f^{+})^{2k} + \lim_{k} \int_{X} (f^{-})^{2k} = \mu(\{f = 1\}) + \mu(\{f = -1\})$$

and the two limits coincide if and only if $\mu(\{f = -1\}) = 0$.

Summing up: the limit $\lim_n \int_X f^n$ exists finite for f real measurable of arbitrary sign if and only if $|f(x)| \leq 1$ for a.e $x \in X$, $f^n \in L^1(\mu)$ for n large, and moreover $\mu(\{f = -1\}) = 0$; the limit a is $\mu(\{f = 1\})$, the limit function is a.e. $\chi_{\{f=1\}}$, and convergence to this function is also in $L^1(\mu)$.

EXERCISE 9. Let $F : \mathbb{R} \to \mathbb{R}$ be defined as follows:

$$F(x) = \begin{cases} -e^x & \text{if } x < 0\\ \sqrt{1 - x^2} & \text{if } 0 \le x < 1\\ 1 - e^{-x} & \text{if } 1 \le x \end{cases}$$

- (i) Find $T(x) = VF(] \infty, x]$ and plot it.
- (ii) Plot $T^{\pm}(x) = (T(x) \pm F(x))/2$.
- (iii) Find a Hahn decomposition for the measure $\mu = dF$.
- (iv) Find the absolutely continuous and the singular parts of $\mu = dF$.
- (iv) Let G(x) = x be the identity of \mathbb{R} . For every integer k > 0 compute the integral

$$\int_{]-k,k]} G(x) \, dF(x),$$

both directly and with the partial integration formula:

$$\int_{]a,b]} G(x^{-}) \, dF(x) = G(b)F(b) - G(a)F(a) - \int_{]a,b]} F(x) \, dG(x).$$

(v) Find

$$\int_{\mathbb{R}} G(x) \, dF(x).$$

Solution. We plot also a graph of F:

FIGURE 3. Graph of F.

(i) Since F is decreasing in $] - \infty, 0[$ we have $T(x) = e^x$ in this interval. The jump of F at 0 is 2, so $T(0) = T(0^-) + 2 = 3$. Again F is decreasing in [0, 1[so that $VF([0, x] = F(0) - F(x) = 1 - \sqrt{1 - x^2}$ in this interval, hence $T(x) = T(0) + 1 - \sqrt{1 - x^2} = 4 - \sqrt{1 - x^2}$ for $x \in [0, 1[$. Next we get $T(1) = T(1^-) + 1 - 1/e = 5 - 1/e$ (the jump at 1 is 1 - 1/e). Finally $VF([1, x]) = 1 - e^{-x} - (1 - 1/e) = 1/e - e^{-x}$, so that $T(x) = 5 - e^{-x}$ for $x \ge 1$.

(ii) We get

$$T^{+}(x) = \begin{cases} 0 & \text{if } x < 0\\ 2 & \text{if } 0 \le x < 1 ; \\ 3 - e^{-x} & \text{if } 1 \le x \end{cases} \quad T^{-}(x) = \begin{cases} e^{x} & \text{if } x < 0\\ 2 - \sqrt{1 - x^{2}} & \text{if } 0 \le x < 1 \\ 2 & \text{if } 1 \le x \end{cases}$$

(iii) A positive set for μ is $P = \{0\} \cup \{1\} \cup [0, \infty[$, its complement is a negative set.

FIGURE 4. Graph of T.

FIGURE 5. From left to right: graphs of T^+ , T^- .

(iv) The absolutely continuous part is of course F'(x) dx, where F' is the derivative of F, which clearly exists in $\mathbb{R} \setminus \{0, 1\}$ and is

$$F'(x) = \begin{cases} -e^x & \text{if } x < 0\\ -x/\sqrt{1-x^2} & \text{if } 0 \le x < 1\\ e^{-x} & \text{if } 1 \le x \end{cases}$$

The singular part is $2 \delta_0 + (1 - 1/e) \delta_1$.

(v) We have directly, using the Radon–Nikodym decomposition

$$\int_{]-k,k]} G(x) \, dF(x) = \int_{-k}^{k} G(x) \, F'(x) \, dx + \int_{]-k,k]} G(x) \, d(2 \, \delta_0 + (1 - 1/e) \, \delta_1) = \int_{-k}^{0} x(-e^x) \, dx + \int_{0}^{1} x \, \frac{-x}{\sqrt{1 - x^2}} \, dx + \int_{1}^{k} x \, e^{-x} \, dx + 1 - e^{-1} = 0$$

(in the first integral we put t = -x, in the last t = x)

$$\int_0^k t \, e^{-t} \, dt + \int_0^1 \frac{1 - x^2 - 1}{\sqrt{1 - x^2}} \, dx + \int_1^k t e^{-t} \, dt + 1 - 1/e = 1 - 1/e + \int_0^1 t \, e^{-t} \, dt + 2 \int_1^k t \, e^{-t} \, dt + \int_0^1 \sqrt{1 - x^2} \, dx - \int_0^1 \frac{dx}{\sqrt{1 - x^2}} = 1 - 1/e + \int_0^1 t \, e^{-t} \, dt + 2 \int_0^1 t \, e^{-t} \, dt + 2 \int_0^1 t \, e^{-t} \, dt + \int_0^1 \sqrt{1 - x^2} \, dx - \int_0^1 \frac{dx}{\sqrt{1 - x^2}} = 1 - 1/e + \int_0^1 t \, e^{-t} \, dt + 2 \int_0^1 t \, e^{-t} \, dt + 2 \int_0^1 t \, e^{-t} \, dt + 2 \int_0^1 t \, e^{-t} \, dt + \int_0^1 \sqrt{1 - x^2} \, dx - \int_0^1 \frac{dx}{\sqrt{1 - x^2}} = 1 - 1/e + \int_0^1 t \, e^{-t} \, dt + 2 \int_0^1 t \, dt + 2 \int_$$

(una primitiva di $t\,e^{-t}$
è $-(1+t)\,e^{-t})$

$$1 - 1/e + \left[-(1+t)e^{-t} \right]_0^1 + 2\left[-(1+t)e^{-t} \right]_1^k + \frac{\pi}{4} - \frac{\pi}{2} =$$

$$1 - e^{-1} - 2(1+k)e^{-k} + 2e^{-1} + 1 + \frac{\pi}{4} = 2 + \frac{1}{e} - 2(1+k)e^{-k} - \frac{\pi}{4}.$$

With the partial integration formula we get, calling for simplicity I(k) the required integral

$$I(k) = k F(k) - (-k) F(-k) - \int_{-k}^{k} F(x) dx = k \left(1 - e^{-k} - e^{-k}\right) - \frac{1}{2} \int_{-k}^{k} F(x) dx = k \left(1 - e^{-k} - e^{-k}\right) - \frac{1}{2} \int_{-k}^{k} F(x) dx = k \left(1 - e^{-k} - e^{-k}\right) - \frac{1}{2} \int_{-k}^{k} F(x) dx = k \left(1 - e^{-k} - e^{-k}\right) - \frac{1}{2} \int_{-k}^{k} F(x) dx = k \left(1 - e^{-k} - e^{-k}\right) - \frac{1}{2} \int_{-k}^{k} F(x) dx = k \left(1 - e^{-k} - e^{-k}\right) - \frac{1}{2} \int_{-k}^{k} F(x) dx = k \left(1 - e^{-k} - e^{-k}\right) - \frac{1}{2} \int_{-k}^{k} F(x) dx = k \left(1 - e^{-k} - e^{-k}\right) - \frac{1}{2} \int_{-k}^{k} F(x) dx = k \left(1 - e^{-k} - e^{-k}\right) - \frac{1}{2} \int_{-k}^{k} F(x) dx = k \left(1 - e^{-k} - e^{-k}\right) - \frac{1}{2} \int_{-k}^{k} F(x) dx = k \left(1 - e^{-k} - e^{-k}\right) - \frac{1}{2} \int_{-k}^{k} F(x) dx = k \left(1 - e^{-k} - e^{-k}\right) - \frac{1}{2} \int_{-k}^{k} F(x) dx = k \left(1 - e^{-k} - e^{-k}\right) - \frac{1}{2} \int_{-k}^{k} F(x) dx = k \left(1 - e^{-k} - e^{-k}\right) - \frac{1}{2} \int_{-k}^{k} F(x) dx = k \left(1 - e^{-k} - e^{-k}\right) - \frac{1}{2} \int_{-k}^{k} F(x) dx = k \left(1 - e^{-k} - e^{-k}\right) - \frac{1}{2} \int_{-k}^{k} F(x) dx = k \left(1 - e^{-k} - e^{-k}\right) - \frac{1}{2} \int_{-k}^{k} F(x) dx = k \left(1 - e^{-k} - e^{-k}\right) - \frac{1}{2} \int_{-k}^{k} F(x) dx = k \left(1 - e^{-k} - e^{-k}\right) - \frac{1}{2} \int_{-k}^{k} F(x) dx = k \left(1 - e^{-k} - e^{-k}\right) - \frac{1}{2} \int_{-k}^{k} F(x) dx = k \left(1 - e^{-k} - e^{-k}\right) - \frac{1}{2} \int_{-k}^{k} F(x) dx = k \left(1 - e^{-k} - e^{-k}\right) - \frac{1}{2} \int_{-k}^{k} F(x) dx = k \left(1 - e^{-k} - e^{-k}\right) - \frac{1}{2} \int_{-k}^{k} F(x) dx = k \left(1 - e^{-k} - e^{-k}\right) - \frac{1}{2} \int_{-k}^{k} F(x) dx = k \left(1 - e^{-k} - e^{-k}\right) - \frac{1}{2} \int_{-k}^{k} F(x) dx = k \left(1 - e^{-k} - e^{-k}\right) - \frac{1}{2} \int_{-k}^{k} F(x) dx = k \left(1 - e^{-k} - e^{-k}\right) - \frac{1}{2} \int_{-k}^{k} F(x) dx = k \left(1 - e^{-k} - e^{-k}\right) - \frac{1}{2} \int_{-k}^{k} F(x) dx = k \left(1 - e^{-k} - e^{-k}\right) - \frac{1}{2} \int_{-k}^{k} F(x) dx = k \left(1 - e^{-k} - e^{-k}\right) - \frac{1}{2} \int_{-k}^{k} F(x) dx = k \left(1 - e^{-k} - e^{-k}\right) - \frac{1}{2} \int_{-k}^{k} F(x) dx = k \left(1 - e^{-k} - e^{-k}\right) - \frac{1}{2} \int_{-k}^{k} F(x) dx = k \left(1 - e^{-k} - e^{-k}\right) - \frac{1}{2} \int_{-k}^{k} F(x) dx = k \left(1 - e^{-k} - e^{-k}\right) - \frac{1}{2} \int_{-k}^{k} F(x) dx = k \left(1 - e^{-k} - e^{-k}\right) - \frac{1}{2} \int_{-k}^{k} F(x) dx =$$

REAL ANALYSIS EXAMS

$$-\int_{-k}^{0} (-e^x) dx - \int_{0}^{1} \sqrt{1 - x^2} dx - \int_{1}^{k} (1 - e^{-x}) dx = k \left(1 - 2e^{-k}\right) + \left[e^x\right]_{-k}^{0} - \frac{\pi}{4} - \left[x + e^{-x}\right]_{1}^{k} = k \left(1 - 2e^{-k}\right) + 1 - e^{-k} - \frac{\pi}{4} - k - e^{-k} + 1 + \frac{1}{e} = 2 + \frac{1}{e} - 2(1 + k)e^{-k} - \frac{\pi}{4}.$$

(vi) We have that $G_k = G \chi_{]-k,k]}$ converges to G on \mathbb{R} . And $G \in L^1(\mu)$, because $x e^{-|x|} \in L^1(m)$ (more on this below). Then by dominated convergence we can we just take the limit:

$$\int_{\mathbb{R}} G(x) \, dF(x) = \lim_{k \to \infty} \int_{]-k,k]} G(x) \, dF(x) = 2 + \frac{1}{e} - \frac{\pi}{4}$$

The function G is a continuous function, hence Borel measurable and bounded on compact subsets of \mathbb{R} ; the measure μ is finite on compact, hence for every compact subset K of \mathbb{R} we have that $G \in L^1_{\mu}(K)$. We need to prove that $G \in L^1_{\mu}(\mathbb{R} \setminus [-a, a])$, where a > 0, say a = 2. On the open set $]-\infty, -a[\cup]a, \infty[$ the measure $|\mu| = dT$ is absolutely continuous, with $d|\mu|(x) = e^{-|x|} dx$, as is easy to see. Then $G \in L^1(|\mu|)$ if and only if $|x| e^{-|x|} \in L^1_m(]-\infty, -a[\cup]a, \infty[$), where m is Lebesgue measure. And this is immediate. \Box

Analisi Reale per Matematica- Secondo compitino-28 gennaio 2012

EXERCISE 10. Let (X, \mathcal{M}) be a measurable space, and let $\nu : \mathcal{M} \to \mathbb{\tilde{R}}$ be a signed measure; as usual ν^{\pm} and $|\nu|$ are the positive/negative parts and the total variation of ν .

- (i) Define the notion of positive/negative set for ν , and prove that positive sets form a σ -ideal of \mathcal{M} (closed under countable union and formation of subsets).
- (ii) Assume that $A \in \mathcal{M}$ contains no negative subset of strictly negative measure. Is it true that then A is a positive subset?
- (iii) For $A \in \mathcal{M}$ we have $\nu(A) \in \mathbb{R} \iff |\nu|(A) < \infty$. True or false? Is the fact that X is covered by a sequence of sets in \mathcal{M} of finite ν -measure equivalent to σ -finiteness of $|\nu|$?
- (iv) Assume that $\mu : \mathcal{M} \to \mathbb{R}$ is another signed measure. Define mutual singularity of μ and ν . Is it equivalent to mutual singularity of $|\mu|$ and $|\nu|$?
- (v) Let $\lambda : \mathcal{M} \to \mathbb{R}$ be a third signed measure; assume that $\lambda \ll |\mu|$ and $\lambda \ll |\nu|$, and that $\mu \perp \nu$. Is it true that $\lambda = 0$?

Solution. (i) $A \in \mathcal{M}$ is said to be positive/negative for ν if for every $B \in \mathcal{M}$ contained in A we have $\nu(B) \geq 0/\nu(B) \leq 0$. Given this definition, trivially the set \mathcal{P} of positive sets is closed under the formation of measurable subsets. And if $(A_n)_{n \in \mathbb{N}}$ is a sequence of positive sets, making the union A of these sets a disjoint union of sets $(B_n)_{n \in \mathbb{N}}$ with the usual trick, $B_n = A_n \setminus \bigcup_{k=0}^{n-1} A_k$, each B_n is positive, being a subset of the positive set A_n , and if $B \subseteq A$ then $B = \bigcup_{n=0}^{\infty} (B \cap B_n)$, a disjoint union, so that

$$\nu(B) = \sum_{n=0}^{\infty} \nu(B \cap B_n) \ge 0 \text{ because } \nu(B \cap B_n) \ge 0 \text{ for every } n \in \mathbb{N}$$

(ii) Let $P \cup Q$ be a Hahn decomposition for ν ; consider $A \cap Q$; then we have $\nu(A \cap Q)(= -\nu^{-}(A \cap Q)) = 0$, since otherwise $A \cap Q$ would be a negative set of strictly negative measure contained in A. Then $A = (A \cap P) \cup (A \cap Q)$, the union of the positive set $A \cap P$ and the null set $A \cap Q$, is a positive set.

REMARK. We have proved a lemma, preparatory to the Hahn decomposition theorem, which says that if $\infty \notin \nu(\mathcal{M})$ then a set which does not contain positive sets of strictly positive measure is a negative set. One can apply this result in the opposite direction, but we need to know that $-\infty$ is not a value assumed by ν . It is simpler to apply the Hahn decomposition: strictly speaking there is a circularity of arguments in the case $-\infty \notin \nu(\mathcal{M})$, which needs however not concern us.

(iii) We know that if $\nu(A) \in \mathbb{R}$ then every measurable subset of A has finite measure, in particular $\nu(A \cap P)$ and $\nu(A \cap Q)$ are finite, so that $\nu^{\pm}(A)$ are both finite, hence $|\nu|(A) = \nu^{+}(A) + \nu^{-}(A) < \infty$; since $|\nu(A)| \leq |\nu|(A)$ the converse is trivial. This of course immediately implies that the answer to the second question is yes.

(iv) We say that μ and ν are mutually singular if there is a partition $X = M \cup N, M, N \in \mathcal{M}$, with N null for μ and M null for ν . Since a set null for a signed measure is clearly null also for its total variation as we show immediately after, the two conditions are clearly equivalent.

If *M* is null for ν then it is also null for $|\nu|$; in fact (always assuming that $P \cup Q$ is a Hahn decomposition for ν) we have $\nu^+(M) = \nu(M \cap P) = 0$ and $-\nu^-(M) = -\nu(M \cap Q) = 0$, so that $\nu^{\pm}(M) = 0$, hence also $|\nu|(M) = 0$.

(v) Clearly true: $|\mu|(N) = 0$ implies that N is null for λ , and $|\nu|(M) = 0$ implies that M is null for λ . Then $X = M \cup N$ is null for λ .

EXERCISE 11. Let $f, g : \mathbb{R}^n \to \mathbb{K}$ be Borel measurable functions, with $f \in L^1(\mathbb{R}^n)$ and $g \in L^{\infty}(\mathbb{R}^n)$ (we consider Lebesgue measure on all spaces \mathbb{R}^n).

(i) Prove that the formula

(*)
$$f * g(x) = \int_{\mathbb{R}^n} f(x - y) g(y) \, dy$$

defines a function $f * g : \mathbb{R}^n \to \mathbb{K}$, and prove that $||f * g||_{\infty} \leq ||f||_1 ||g||_{\infty}$. Prove also that

$$f * g(x) = g * f(x) = \int_{\mathbb{R}^n} f(t) g(x-t) dt.$$

- (ii) Assume that $g \in C^1(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$ and that also all derivatives $\partial_k g$ belong to $L^{\infty}(\mathbb{R}^n)$, for $k = 1, \ldots, n$. Prove that then $f * g \in C^1(\mathbb{R}^n)$ and that $\partial_k (f * g) = f * (\partial_k g)$.
- We now assume $f \in L^p(\mathbb{R}^n)$ and $g \in L^q(\mathbb{R}^n)$, with p, q > 1 conjugate exponents, i.e. 1/p + 1/q = 1.
 - (iii) Prove that formula (*) defines a function $f * g : \mathbb{R}^n \to \mathbb{C}$, and prove that $||f * g||_{\infty} \le ||f||_p ||g||_q$. (use Hölder's inequality ...).

Finally assume that $f, g \in L^1(\mathbb{R}^n)$.

(iv) Prove that the formula (*) now defines a.e. on \mathbb{R}^n a function f * g that is Borel measurable, belongs to $L^1(\mathbb{R}^n)$, and $||f * g||_1 \leq ||f||_1 ||g||_1$ (consider $F : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{K}$ given by F(x, y) = f(x - y) g(y) and apply Fubini–Tonelli's theorem ...).

Solution. (i) Trivially we have

$$|f * g(x)| = \left| \int_{\mathbb{R}^n} (x - y) g(y) \, dy \right| \le \int_{\mathbb{R}^n} |f(x - y) g(y)| \, dy \le \int_{\mathbb{R}^n} |f(x - y)| \, \|g\|_{\infty} \, dy;$$

Now the change of variables t = x - y says that

$$\int_{\mathbb{R}^n} |f(x-y)| \, dy = \int_{\mathbb{R}^n} |f(t)| \, dt = \|f\|_1$$

(remember that we are in \mathbb{R}^n , so the coordinate change is $t_k = x_k - y_k \iff y_k = x_k - t_k \ 1 \le k \le n$, an affine self diffeomorphism of \mathbb{R}^n , with jacobian matrix -1_n , opposite of the identity matrix, hence determinant $(-1)^n$, with absolute value 1). Then

$$|f * g(x)| \le \int_{\mathbb{R}^n} |f(x - y)| \, \|g\|_{\infty} \, dy = \|f\|_1 \, \|g\|_{\infty} \Longrightarrow \|f * g\|_{\infty} \le \|f\|_1 \, \|g\|_{\infty}.$$

The change of variables t = x - y above considered says also that

$$\int_{\mathbb{R}^n} f(x-y) g(y) \, dy = \int_{\mathbb{R}^n} f(t) g(x-t) \, dt.$$

(ii) We use the second expression for f * g:

$$f * g(x) = \int_{\mathbb{R}^n} f(y) g(x - y) \, dy;$$

we have

$$\frac{\partial}{\partial x_k}(f(y)\,g(x-y)) = f(y)\,\partial_k g(x-y);$$

moreover $|f(y) \partial_k g(x-y)| \leq ||\partial_k g||_{\infty} |f(y)|$; since $y \mapsto ||\partial_k g||_{\infty} |f(y)|$ is in $L^1(\mathbb{R}^n)$ the theorem of differentiation under the integral sign applies to say that

$$\partial_k(f*g) = \int_{\mathbb{R}^n} f(y) \,\partial_k g(x-y) \,dy = (f*(\partial_k g))(x);$$

and the theorem on continuity of parameter depending integrals says that these derivatives are continuous.

(iii) We have. for every $x \in \mathbb{R}^n$:

$$|f * g(x)| = \left| \int_{\mathbb{R}^n} f(x - y) g(y) \, dy \right| \le \int_{\mathbb{R}^n} |f(x - y) g(y)| \, dy \le C$$

$$\leq \left(\int_{\mathbb{R}^n} |f(x-y)|^p \, dy\right)^{1/p} \, \left(\int_{\mathbb{R}^n} |g(y)|^q \, dy\right)^{1/q} = \|f\|_p \, \|g\|_q,$$

(the usual change of variables t = x - y says that $\int_{\mathbb{R}^n} |f(x - y)|^p dy = ||f||_p^p$) which immediately implies the thesis.

(iv) Let us prove that F belongs to $L^1(\mathbb{R}^n \times \mathbb{R}^n)$. Clearly F is Borel measurable, since so are f and g. And the iterated integral:

$$\int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} |f(x-y)| \, |g(y)| \, dx \right) = \int_{\mathbb{R}^n} |g(y)| \, \left(\int_{\mathbb{R}^n} |f(x-y)| \, dx \right) \, dy = \int_{\mathbb{R}^n} |g(y)| \, \|f\|_1 \, dy = \|f\|_1 \, \|g\|_1,$$

is finite. By Tonelli's theorem $F \in L^1(\mathbb{R}^n \times \mathbb{R}^n)$. Then Fubini's theorem says that for a.e $x \in \mathbb{R}^n$ the integral

$$f * g(x) = \int_{\mathbb{R}^n} f(x - y) g(y) \, dy$$

is finite, the resulting a.e. defined function is Borel measurable, and moreover, since

$$|f * g(x)| = \left| \int_{\mathbb{R}^n} f(x - y) g(y) \, dy \right| \le \int_{\mathbb{R}^n} |f(x - y) g(y)| \, dy$$

we have

$$\|f * g\|_{1} = \int_{\mathbb{R}^{n}} |f * g(x)| \, dx \le \int_{\mathbb{R}^{n}} \left(\int_{\mathbb{R}^{n}} |f(x - y) g(y)| \, dy \right) \, dx;$$

and since $|F|: (x, y) \mapsto |f(x-y)g(y)|$ belongs to $L^1(\mathbb{R}^n \times \mathbb{R}^n)$ this iterated integral is the double integral over $\mathbb{R}^n \times \mathbb{R}^n$ of |F|, just computed above, with value $||f||_1 ||g||_1$.

EXERCISE 12. Let $F : \mathbb{R} \to \mathbb{R}$ be defined as follows:

$$F(x) = \begin{cases} e^{x+1} & \text{if } x < -1 \\ -x & \text{if } -1 \le x < 1 \\ e^{-(x-1)} & \text{if } 1 \le x \end{cases}$$

- (i) Plot the graph of F; find $T(x) = VF(] \infty, x]$ and plot it.
- (ii) Plot $T^{\pm}(x) = (T(x) \pm F(x))/2$. What are $\mu^+(\mathbb{R})$ and $\mu^-(\mathbb{R})$?
- (iii) Find a Hahn decomposition for the measure $\mu = dF$.
- (iv) Find the absolutely continuous and the singular parts of $\mu = dF$.
- (iv) Let $G(x) = \cos(\alpha x)$, where $\alpha > 0$ is a constant. For every a > 1 compute the integral

$$\int_{]-a,a]} G(x) \, dF(x) = \int_{]-a,a]} G(x) \, d\mu^+ - \int_{]-a,a]} G(x) \, d\mu^-,$$

(compute both integrals) , and also by the partial integration formula

$$\int_{]a,b]} G(x^{-}) \, dF(x) = G(b)F(b) - G(a)F(a) - \int_{]a,b]} F(x) \, dG(x).$$

(v) Prove that $G \in L^1(\mu)$ and find

$$\int_{\mathbb{R}} G(x) \, dF(x).$$

Solution. (i) Graph of F is easy; note that there is only one jump at 1, $F(1^+) - F(1^-) = 2$.

FIGURE 6. Plot of F.

We have (notice that F is increasing in $]-\infty,-1]$, and that $T(-\infty) = 0$ so that T(x) = F(x) in this interval; T is decreasing in [-1,1[so that VF([-1,x]) = F(-1) - F(x) = 1 + x for $x \in [-1,1[$, and $T(1) = T(1^-) + (F(1^+) - F(1^-))$, etc.):

$$T(x) = \begin{cases} e^{x+1} & \text{for } x < -1\\ 2+x & \text{for } -1 \le x < 1\\ 6-e^{-(x-1)} & \text{for } 1 \le x \end{cases}$$

consequently

FIGURE 8. Plot of T^{\pm}

Since $T^{\pm}(\infty) - T^{\pm}(-\infty) = 3 - 0$ we have $\mu^{\pm}(\mathbb{R}) = 3$, hence $|\mu|(\mathbb{R}) = 6$. (iii) A Hahn decomposition is $P =] - \infty, -1] \cup \{1\}, Q = [-1, 1[\cup]1, \infty[$. (iv) The derivative F'(x) exists for every $x \in \mathbb{R} \setminus \{-1, 1\}$ and we have

$$F'(x) = \begin{cases} e^{x+1} & \text{for } x < -1 \\ -1 & \text{for } -1 \le x < 1 \\ -e^{-(x-1)} & \text{for } 1 \le x \end{cases}$$

The singular part is clearly $2\delta_1$ so that $dF = F' dm + 2\delta_1$.

(v) Clearly $d\mu^+ = \chi_{-\infty,-1} e^{x+1} dx + 2\delta_1$ so that

$$\int_{]-a,a]} G(x) \, d\mu^+(x) = \int_{-a}^{-1} \cos(\alpha x) \, e^{x+1} \, dx + 2 \, G(1) = 2 \cos \alpha + e \int_{1}^{a} \cos(\alpha t) \, e^{-t} \, dt;$$

A primitive of $e^{-t} \cos(\alpha t)$ is $e^{-t} (\alpha \sin(\alpha t) - \cos(\alpha t))/(1 + \alpha^2)$ so that

(*)
$$\int_{1}^{a} \cos(\alpha t) e^{-t} dt = \left[\frac{e^{-t}}{1+\alpha^{2}}(\alpha \sin(\alpha t) - \cos(\alpha t))\right]_{t=1}^{t=a} = \frac{e^{-a}}{1+\alpha^{2}}(\alpha \sin(\alpha a) - \cos(\alpha a)) - \frac{e^{-1}}{1+\alpha^{2}}(\alpha \sin(\alpha) - \cos(\alpha)),$$

and

$$\int_{]-a,a]} G(x) \, d\mu^+(x) = \frac{e^{1-a}}{1+\alpha^2} (\alpha \, \sin(\alpha a) - \cos(\alpha a)) - \frac{1}{1+\alpha^2} (\alpha \, \sin(\alpha) - \cos(\alpha)) + 2\cos\alpha.$$

We have next, since $d\mu^- = (\chi_{]-1,1[} + e^{-(x-1)}\chi_{]1,\infty[}) dx$:

$$\int_{]-a,a]} G(x) \, d\mu^{-} = \int_{-1}^{1} \cos(\alpha x) \, dx + \int_{1}^{a} \cos(\alpha x) \, e^{-(x-1)} \, dx = 2 \frac{\sin \alpha}{\alpha} + \int_{1}^{a} \cos(\alpha x) \, e^{-(x-1)} \, dx;$$

the last integral has already been computed (see (*)). Taking the difference:

$$\int_{]-a,a]} G(x) \, dF(x) = \int_{]-a,a]} G(x) \, d\mu^+ - \int_{]-a,a]} G(x) \, d\mu^- = 2\cos\alpha - 2\frac{\sin\alpha}{\alpha}.$$

By partial integration:

$$\int_{]-a,a]} G(x) \, dF = G(a)F(a) - G(-a)F(-a) - \int_{]-a,a]} F(x) \, \alpha \, \sin(\alpha x) \, dx = \int_{-a}^{-1} e^{x+1} \, \alpha \, \sin(\alpha x) \, dx + \int_{-1}^{1} (-x)\alpha \, \sin(\alpha x) \, dx + \int_{1}^{a} e^{1-x} \, \alpha \, \sin(\alpha x) \, dx;$$

the first integral and the third cancel; we are left with:

$$\int_{-1}^{1} (-x) \alpha \sin(\alpha x) \, dx = 2 \int_{0}^{1} x (-\alpha \, \sin(\alpha x)) \, dx = 2 \left[x \, \cos(\alpha x) \right]_{0}^{1} - 2 \int_{0}^{1} \cos(\alpha x) \, dx = 2 \cos \alpha - 2 \frac{\sin \alpha}{\alpha}.$$

(vi) The entire space has finite measure, $|\mu|(\mathbb{R}) = 6$. Every bounded measurable function is then in $L^1(\mu) = L^1(|\mu|)$, in particular $G \in L^1(\mu)$. Clearly we have

$$\int_{\mathbb{R}} G \, dF = \int_{[-1,1]} G \, dF = 2\cos\alpha - 2\frac{\sin\alpha}{\alpha}$$

(the integrals over $] - \infty, -1[$ and $]1, \infty[$ are finite, and cancel with each other).

Analisi Reale-Primo appello-7 febbraio 2012

EXERCISE 13. Let (X, \mathcal{M}, μ) be a measure space, and let $L^+ = L^+(X, \mathcal{M})$ denote the set of all \mathcal{M} -measurable functions from X to $[0, \infty]$ (as usual).

- (i) Prove that if $f \in L^+$ and $\int_X f < \infty$, then $\mu(\{f = \infty\}) = 0$. If $\int_X f = 0$, what can we say about $\{f > 0\}$?
- (ii) State Fatou's lemma.

From now on f_n is a sequence in L^+ that converges pointwise everywhere to $f \in L^+$.

- (iii) Assume that $\{f = \infty\}$ has strictly positive measure. Then $\lim_{n \to \infty} \int_X f_n = \infty$: true or false?
- (iv) Suppose that there exists $g \in L^+$, with finite integral, such that $f_n(x) \leq g(x)$ for every $x \in X$. Then $\int_X f = \lim_{n \to \infty} \int_X f_n$.
- (iv) Assume now that there is a constant $a \in [0, \infty[$ such that, for every $n \in \mathbb{N}$

$$\int_X f_0 \vee \cdots \vee f_n \leq a; \quad \text{prove that then } \lim_{n \to \infty} \int_X f_n = \int_X f.$$

Solution. (i) if $E = \{f = \infty\}$, then for every n > 0 we have $n \chi_E \leq f$ so that $n \mu(E) = \int_X n \chi_E \leq \int_X f$, which clearly implies $\mu(E) = 0$ (otherwise we may choose $n > \int_X f/\mu(E)$). If the integral of a positive f is zero, then $\mu(\{f > 0\}) = 0$: in fact nf is an increasing sequence of functions in L^+ , all with zero integral, whose pointwise limit is the function constantly ∞ on $\{f > 0\}$; by monotone convergence this pointwise limit has integral 0, hence finite, and so its infinity set has zero measure. Otherwise, every measurable positive simple function dominated by f has integral 0, hence $\{f > 1/n\}$ has measure 0 for all $n \geq 1$, hence $\{f > 0\} = \bigcup_{n \geq 1} \{f > 1/n\}$ has measure 0.

(ii) See the Lecture Notes.

(iii) By Fatou's lemma we get (recalling that $\liminf_{n\to\infty} f_n(x) = \lim_{n\to\infty} f_n(x) = f(x)$):

$$\int_X f \le \liminf_{n \to \infty} \int_X f_n;$$

since $\{f = \infty\}$ has strictly positive measure we have $\int_X f = \infty$; then $\infty \leq \liminf_{n \to \infty} \int_X f_n$, clearly equivalent to $\lim_{n \to \infty} \int_X f_n = \infty$.

(iv) This is essentially the dominated convergence theorem; the only difference is that f_n and g might be infinite valued, so we simply set all the f_n , f and g to be 0 on the set $\{g = \infty\}$, which has measure 0 by (i): no integral has been modified, and all functions are now in $L^1(\mu)$.

(v) Setting $g_n = f_0 \vee \cdots \vee f_n$, g_n is an increasing sequence of functions in L^+ , with integrals all dominated by a; then $g_n \uparrow g$, and $\int_X g \leq a < \infty$, by the monotone convergence theorem. We are now in the hypotheses of (iv), since clearly $f_n \leq g_n \leq g$ for every n.

EXERCISE 14. Let (X, \mathcal{M}, μ) be a measure space. Given q, with $1 < q < \infty$ and a > 0 consider $a \overline{B} = \{f \in L^q(\mu) : \|f\|_q \leq a\}$ (the closed ball of center 0 and radius a > 0 in $L^q(\mu)$).

- (i) Prove that if the sequence $f_n \in a \bar{B}$ converges pointwise a.e. to f, then $f \in a \bar{B}$ (Fatou's lemma ...)
- (ii) Let $E \in \mathcal{M}$ be a subset of X of finite measure. Prove that for every $p \in [1, q]$ and every $f \in a\overline{B}$ we have:

$$\left(\int_E |f|^p \, d\mu\right)^{1/p} \le \mu(E)^{\alpha(p,q)} \, a,$$

where the exponent $\alpha(p,q)$ is to be found (hint: consider $|f|^p$ and 1, with convenient conjugate exponents ...).

(iii) Deduce from (ii) that for every $\varepsilon > 0$ there is $\delta = \delta(\varepsilon) > 0$ such that for every $E \in \mathcal{M}$ with $\mu(E) \leq \delta$, every $f \in a \overline{B}$ and every $p \in [1, q]$ we have

$$\left(\int_E |f|^p \, d\mu\right)^{1/p} \le \varepsilon$$

From now on X is assumed of finite measure, $\mu(X) < \infty$.

(iv) State the Severini–Egoroff's theorem on almost uniform convergence. Assume that the sequence $f_n \in a \bar{B}$ converges pointwise a.e. to f. Using this theorem and (iii) prove that f_n converges to f in $L^p(\mu)$, for every $p \in [1, q[$.

Solution. (i) If f_n converges a.e. to f, then $|f_n|^q$ converges a.e. to $|f|^q$, and Fatou's lemma says that:

$$\int_X |f|^q \left(= \int_X \liminf_{n \to \infty} |f_n|^q \right) \le \liminf_{n \to \infty} \int_X |f_n|^q \le a^q.$$

(ii) We use q/p and (q/p)/(q/p-1) = q/(q-p) as conjugate exponents, and consider E as the ambient space, obtaining

$$\int_{E} |f|^{p} \le \left(\int_{E} |f|^{q}\right)^{p/q} \left(\int_{E} 1^{q/(q-p)}\right)^{(q-p)/q} = \mu(E)^{1-p/q} \left(\int_{E} |f|^{q}\right)^{p/q} \le \mu(E)^{1-p/q} \left(\int_{X} |f|^{q}\right)^{p/q};$$

taking p^{th} -roots of both sides we get

$$\left(\int_E |f|^p \, d\mu\right)^{1/p} \le \mu(E)^{1/p - 1/q} \, \|f\|_q \le \mu(E)^{1/p - 1/q} \, a.$$

(iii) Immediate: since $\delta^{1/p-1/q} a$ has to be smaller than ε we get $\delta \leq (\varepsilon/a)^{pq/(q-p)}$; any such δ will do.

(iv) For the statement we refer to the Lecture Notes. Next, by (i) we have $f \in a \overline{B}$; considering $f - f_n$ in place of f we can assume that f = 0, and we have to prove that $||f_n||_p$ has limit 0. Given $\varepsilon > 0$ we

find
$$\delta$$
 such that $\mu(E) \leq \delta$ implies $\left(\int_E |f_n|^p\right)^{1/p} \leq \varepsilon$ for every $n \in \mathbb{N}$; since the convergence to 0 is almost uniform we can find a set E such that $\mu(E) \leq \delta$ and on $X \setminus E$ the sequence converges uniformly to 0. Then, if $||f_n||_{X \setminus E} = \sup\{|f_n(x)| : x \in X \setminus E\}$:

$$\int_{X} |f_n|^p = \int_{E} |f_n|^p + \int_{X \smallsetminus E} |f_n|^p \le \varepsilon^p + \|f_n\|_{X \smallsetminus E}^p \,\mu(X \smallsetminus E) \le \varepsilon^p + \|f_n\|_{X \smallsetminus E}^p \,\mu(X);$$

$$\lim_{x \to \infty} \|f_n\|_{X \searrow E}^p = 0, \text{ we conclude.}$$

A.A 2011-12

since $\lim_{n\to\infty} ||f_n||_{X\smallsetminus E}^p = 0$, we conclude.

EXERCISE 15. Assume that $f \in L^p(\mathbb{R}^n)$, with $1 \leq p < \infty$.

(i) Prove that

find

$$\lim_{r \to \infty} \int_{|x| > r} |f|^p \, dm = 0.$$

We now define $F : \mathbb{R}^n \to \mathbb{K}$ by

$$F(x) = \int_{B(x,1[} f(y) \, dy \quad \text{where, as usual, } B(x,1[=\{y \in \mathbb{R}^n : |y-x| < 1\}.$$

- (ii) Prove that the preceding formula effectively defines a function $F: \mathbb{R}^n \to \mathbb{K}$; prove that F is continuous and bounded, and find an estimate for $||F||_{\infty}$ involving $||f||_{p}$.
- (iii) Prove that $\lim_{x\to\infty} F(x) = 0$ (use (i)).

Solution. (i) By definition of $L^p(\mathbb{R}^n)$ we have $|f|^p \in L^1(\mathbb{R}^n)$; clearly $|f|^p \chi_{\mathbb{R}^n \sim rB}$ tends to 0 as $r \to \infty$, and is dominated by $|f|^p$, so that the limit of integrals $\lim_{r\to\infty} \int_{|x|>r} |f|^p dm = 0$ by dominated convergence.

(ii) If p = 1 there is nothing to prove. If p > 1 the usual estimates for L^p spaces on sets of finite measure give (we apply Hölder's inequality to |f| and 1 of B(x, 1], with conjugate exponents p and q = p/(p-1)):

which immediately implies

$$||F||_{\infty} \le v_n^{1/q} ||f||_p$$

In other words, we have proved the well known fact that if $f \in L^p(\mathbb{R}^n)$ then $f \in L^1_{loc}(\mathbb{R}^n)$. We know that if x_j tends to x in \mathbb{R}^n then $\chi_{B(x_j,1[}$ tends a.e. to $\chi_{B(x,1[}$, and the sequence is dominated by $\chi_{B(x,1+R]}$ with $R = \max_{j} \{ |x - x_j| \}$. Then F is continuous, by the dominated convergence theorem.

(iii) By (i), given $\varepsilon > 0$ there is $r(\varepsilon)$ such that $\int_{\{|x| > r(\varepsilon)\}} |f|^p \leq \varepsilon^p$. If $|x| \geq r(\varepsilon) + 1$ we have that $B(x,1] \subseteq \{|x| \ge r(\varepsilon)\}$ so that, for these x:

$$|F(x)| \le \left(\int_{B(x,1[} |f(y)|^p\right)^{1/p} \left(m(B(x,1[)^{1/q} \le v_n^{1/q} \left(\int_{\{|x|\ge r(\varepsilon)\}} |f|^p\right)^{1/p} \le v_n^{1/p} \varepsilon.\right)$$

EXERCISE 16. For every $n = 1, 2, 3, \ldots$ and every $x \in \mathbb{R}$ define $F_n(x) = \int_0^x nt^{n-1} \chi_{[0,1]}(t) dt$.

(i) Plot some F_n and the limit function $F(x) = \lim_{n \to \infty} F_n(x)$. What is the measure $\mu = \mu_F$? (ii) Setting $\mu_n = \mu_{F_n}$, compute

$$\lim_{n \to \infty} \mu_n(] - \infty, a]) \ (0 < a < 1); \quad \lim_{n \to \infty} \mu_n([0, 1[); \quad \lim_{n \to \infty} \mu_n([0, 1]).$$

(iii) Assume that $f: \mathbb{R} \to \mathbb{R}$ is bounded and Borel measurable. Prove that $f \in L^1(\mu_n)$ for every n, and moreover, if f is also left–continuous at 1 then:

$$\lim_{n \to \infty} \int_{\mathbb{R}} f \, d\mu_n = f(1) \left(= \int_{\mathbb{R}} f \, d\mu \right)$$

(prove first that if f(1) = 0 then the limit is 0; split the integral in $\int_{]-\infty,a]} + \int_{]a,1]}$ and use (ii)).

Solution. (i) We have $F_n(x) = 0$ for x < 0; $F_n(x) = x^n$ for $0 \le x < 1$ and F(x) = 1 for $x \ge 1$. Then F(x) = 0 for x < 1, and F(x) = 1 for $1 \le x$; F is the characteristic function of $[1, \infty)$, and hence $\mu = \delta_1$, unit mass at 1. Notice that all these measures are supported by [0, 1].

(ii) Clearly, if 0 < a < 1

$$\mu_n(]-\infty,a]) = a^n - 0 = a^n \quad \text{so that} \quad \lim_{n \to \infty} \mu_n(]-\infty,a]) = 0;$$

FIGURE 9. Plots of some F_n .

and we have $\mu_n([0,1]) = \mu_n([0,1]) = 1$, so that the limit is 1.

(iii) Since $(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \mu_n)$ is a finite measure space for every n, all bounded measurable functions are in $L^{1}(\mu_{n})$ for every n. Next, if f is left continuous and 0 at 1, given $\varepsilon > 0$ find $a \in [0, 1]$ such that $|f(x)| \leq \varepsilon$ if $x \in [a, 1]$ so that

$$\begin{aligned} \left| \int_{\mathbb{R}} f \, d\mu_n \right| &= \left| \int_{[0,1]} f \, d\mu_n \right| = \left| \int_{[0,a[} f \, d\mu_n + \int_{[a,1]} f \, d\mu_n \right| \le \int_{[0,a[} |f| \, d\mu_n + \int_{[a,1]} |f| \, d\mu_n \le \\ &\le \|f\|_{\infty} \int_{[0,a]} d\mu_n + \int_{[a,1]} \varepsilon \, d\mu_n = \|f\|_{\infty} \, a^n + \varepsilon \, (1-a^n), \end{aligned}$$

since this expression has limit ε as $n \to \infty$, we conclude that

$$\lim_{n \to \infty} \left| \int_{\mathbb{R}} f \, d\mu_n \right| = 0,$$

for f bounded left continuous and zero at 1. For f bounded left continuous at 1 we simply write f = f - f(1) + f(1) and note that $\int_{\mathbb{R}} f(1) d\mu_n = f(1)$ for every n, while by what just proved we have

$$\lim_{n \to \infty} \int_{\mathbb{R}} (f - f(1)) \, d\mu_n = 0$$

Analisi Reale- Secondo Appello-28-02-2012

EXERCISE 17. (10) Let (X, \mathcal{M}, μ) be a measure space

- (i) [2] Assume that $f, g: X \to \mathbb{R}$ are measurable, that $E \in \mathcal{M}$, that f(x) < g(x) for every $x \in E$, and that $f, g \in L^1_{\mu}(E)$. Prove that if $\int_E f < \int_E g$ iff $\mu(E) > 0$.
- (ii) [2] Let $E \in \mathcal{M}$ be such that $0 < \mu(E) < \infty$, and let $f \in L^1(\mu)$ be real valued. Prove that there exists $x \in E$ such that

$$f(x) \leq \int_E f \, d\mu := \frac{1}{\mu(E)} \int_E f \, d\mu;$$

more precisely, prove that the set $\{x \in E : f(x) \leq \oint_E f d\mu\}$ has strictly positive measure.

This expresses the intuitively obvious fact that not all values of f on E can be larger than its average on E: not everybody can be above the mean!

- (iii) [2] Let now $f, g \in L^1(\mu)$ be real functions. Prove that $f(x) \leq g(x)$ for a.e. $x \in X$ if and only if $\int_{E} f \leq \int_{E} g \text{ for every } E \in \mathcal{M} \text{ (consider } E = \{f > g\} \dots).$ (iv) [4] For $f, g, h \in L^{+}(X, \mathcal{M})$ assume that $f^{2}(x) \leq g(x) h(x)$ for a.e. $x \in X$. Prove that then, for
- every $E \in \mathcal{M}$ we have

(*)
$$\left(\int_{E} f\right)^{2} \leq \left(\int_{E} g\right) \left(\int_{E} h\right)$$

($f^2 \leq gh$ is equivalent to $f \leq g^{1/2} h^{1/2}$; apply a convenient inequality ...).

Solution. (i) We have

$$\int_{E} f < \int_{E} g \iff \int_{E} (g - f) > 0 \iff \int_{X} (g - f) \chi_{E} > 0$$

by hypothesis (g - f)(x) = g(x) - f(x) > 0 for every $x \in E$, so that $\operatorname{Coz}((g - f)\chi_E = E)$; we know that a positive measurable function has integral 0 if and only if its cozero set has measure 0, so we conclude.

(ii) Setting for simplicity $c = \int_E f$, if there is no $x \in E$ such that $f(x) \leq c$, then c < f(x) for every $x \in E$. Since $\mu(E) < \infty$, the constant c is in $L^1_{\mu}(E)$, so that (i) is applicable and gives that

A.A 2011-12

$$\int_E c < \int_E f \iff c \, \mu(E) < \int_E f \iff c < \oint_E f = c,$$

a contradiction. Since we can alter f on any subset of E of zero measure without altering the average c, the set $\{x \in E : f(x) \leq c\}$ must be of strictly positive measure.

(iii) If $f \leq g$ a.e. then $\int_E f \leq \int_E g$, by isotony of the integral, as is well-known. And if it is not true that $f(x) \leq g(x)$ for a.e. $x \in X$, then if $E = \{f - g > 0\}$ has strictly positive measure; by (i)

$$\int_E f > \int_E g,$$

contradicting the hypothesis.

(iv) Integrating over E the inequality $f \leq g^{1/2} \, h^{1/2}$ we get

$$\int_{E} f \le \int_{E} g^{1/2} h^{1/2};$$

By Cauchy–Schwarz inequality for integrals we have

$$\int_{E} g^{1/2} h^{1/2} \leq \left(\int_{E} g \right)^{1/2} \left(\int_{E} h \right)^{1/2},$$
$$\int_{E} f \leq \left(\int_{E} g \right)^{1/2} \left(\int_{E} h \right)^{1/2},$$

so that

EXERCISE 18. (12)

- (i) [2] State the Radon–Nikodym theorem.
- (ii) [4] Let (X, \mathcal{M}) be a measurable space, and let $\mu, \nu : \mathcal{M} \to [0, \infty]$ be positive measures, both σ -finite. Prove that the following are equivalent:
 - (a) We have $\nu \ll \mu$ and $\mu \ll \nu$.
 - (b) μ and ν have the same null sets.
 - (c) There is $\rho \in L^+(X, \mathcal{M})$ such that $\rho(x) > 0$ for every $x \in X$ and

$$\nu(E) = \int_E \rho \, d\mu \quad \text{for every} \quad E \in \mathcal{M}.$$

Let now (X, \mathcal{M}, μ) be a measure space.

- (iii) [4] Assume that there exists $f \in L^1(\mu)$ such that $f(x) \neq 0$ for every $x \in X$. Prove that then X has σ -finite measure. Conversely, if X has σ -finite measure then there is $f \in L^1(\mu)$ such that f(x) > 0 for every $x \in X$, and $\int_X f d\mu = 1$.
- (iv) [2] Prove that if (X, \mathcal{M}, μ) is σ -finite there exists a measure $\nu : \mathcal{M} \to [0, \infty[$ such that $\nu(X) = 1$, $\nu \ll \mu$ and $\mu \ll \nu$.

Solution. (i) OK

(ii):(a) \iff (b) is by definition of absolute continuity. And by Radon–Nikodym theorem, since all measures are σ -finite we have that (a), more precisely the hypothesis $\nu \ll \mu$, implies the existence of $\rho \in L^+(X, \mathcal{M})$ such that

$$\nu(E) = \int_E \rho \, d\mu \quad \text{for every} \quad E \in \mathcal{M}.$$

But since $\nu(E) = 0$ implies also $\mu(E) = 0$, the set $Z = \{\rho = 0\}$, having ν -measure 0, has also μ -measure 0; we can the alter ρ on this set, e.g. set $\rho(x) = 1$ for $x \in Z$, and make $\rho(x) > 0$ everywhere.

(iii) Any $f \in L^1(\mu)$ has the cozero set of σ -finite measure ($\operatorname{Coz}(f) = \bigcup_{n>1} \{|f| > 1/n\}$, and $\mu(\{|f| > 1/n\}) \leq n \int_X |f|$). And if a measurable set $A \in \mathcal{M}$ has σ -finite measure then it is the cozero set of a positive measurable function with integral 1; simply write A as a disjoint union of a sequence of sets of finite nonzero measure, $A = \bigcup_{n=0}^{\infty} A_n$, and consider $f: X \to \mathbb{R}$ defined by

$$f = \sum_{n=0}^{\infty} \frac{1}{2^n \,\mu(A_n)} \,\chi_{A_n}.$$

(iv) is now obvious: take $d\nu = \rho \, d\mu$ where $\rho \in L^1(\mu)$ is everywhere positive with integral 1; ρ exists by (iii), by (i) we have $\mu \ll \nu$.

EXERCISE 19. (11) Let (X, \mathcal{M}, μ) be a measure space.

(i) [2] Compute

$$\lim_{t \to \infty} n \log(1 + (t/n)^{\alpha})$$

for t > 0 and $\alpha > 0$. Hint:

$$n \log(1 + (t/n)^{\alpha}) = n(t/n)^{\alpha} \frac{\log(1 + (t/n)^{\alpha})}{(t/n)^{\alpha}};$$
 remember that $\lim_{u \to 0} \frac{\log(1 + u)}{u} = ...$

What is the limit for t = 0?

Let now f be a positive function in $L^1(\mu)$, and assume that $c = \int_X f > 0$. We want to compute

(*)
$$\lim_{n \to \infty} \int_X f_n \, d\mu$$

for various values of $\alpha > 0$, here $f_n(x)(=f_{\alpha,n}(x)) = n \log(1 + (f(x)/n)^{\alpha})$ for n = 1, 2, 3, ... and $x \in X$.

- (ii) [1] Compute $g(x) = (g_{\alpha}(x) =) \lim_{n \to \infty} f_n(x)$ (distinguish the cases $0 < \alpha < 1, \alpha = 1, \alpha > 1$).
- (iii) [3] Suppose that $0 < \alpha < 1$. Prove that in this case Fatou's lemma is applicable and gives (*).
- (iv) [2] Prove that $\log(1+t^{\alpha}) < \alpha t$ for every $\alpha \ge 1$, t > 0 (consider $\alpha t \log(1+t^{\alpha})$ and differentiate ...).
- (v) [3] Compute the limit (*) for $\alpha = 1$ and for $\alpha > 1$.

Solution. (i) Recall that $\lim_{u\to 0} \log(1+u)/u = 1$; then:

$$\lim_{n \to \infty} n \, \log(1 + (t/n)^{\alpha}) = \lim_{n \to \infty} n \, (t/n)^{\alpha} \frac{\log(1 + (t/n)^{\alpha})}{(t/n)^{\alpha}} = \lim_{n \to \infty} n^{1-\alpha} \, t^{\alpha} \frac{\log(1 + (t/n)^{\alpha})}{(t/n)^{\alpha}};$$

since $\lim_{n\to\infty} \log(1+(t/n)^{\alpha})/(t/n)^{\alpha} = 1$ we get

$$\lim_{n \to \infty} n \, \log(1 + (t/n)^{\alpha}) = \begin{cases} \infty & \text{for } 0 < \alpha < 1 \\ t & \text{for } \alpha = 1 \\ 0 & \text{for } \alpha > 1 \end{cases}$$

For t = 0 all the terms are 0, so the limit is 0.

(ii) By (i) we have, for $0 < \alpha < 1$ that $g(x) = \liminf_{n \to \infty} f_n(x) = \lim_{n \to \infty} f_n(x) = \infty$ if f(x) > 0, and 0 if f(x) = 0. Then $g_\alpha = \infty \chi_{\text{Coz}(f)}$, for $0 < \alpha < 1$. For $\alpha = 1$ we have $g_1 = f$. For $\alpha > 1$ we have $g_\alpha = 0$.

(iii) By Fatou's lemma (notice that all functions f_n are positive, since $1 + (f(x)/n)^{\alpha} \ge 1$)

$$\int_X g \le \liminf_{n \to \infty} \int_X f_n$$

Since $\int_X f > 0$ by hypothesis, we have that $\mu(\operatorname{Coz}(f)) > 0$, and hence $\int_X g = \infty$, so that $\liminf_{n \to \infty} \int_X f_n = \infty$, which implies $\lim_{n \to \infty} \int_X f_n = \infty$.

(iv) Differentiating we get

$$\alpha - \frac{\alpha \, t^{\alpha - 1}}{1 + t^\alpha} > 0 \iff 1 > \frac{t^{\alpha - 1}}{1 + t^\alpha}$$

clearly true if t > 0 and $\alpha \ge 1$ because $0 < t^{\alpha-1} \le t^{\alpha} < 1 + t^{\alpha}$ if $t \ge 1$, while if 0 < t < 1 then $t^{\alpha-1} \le 1 < 1 + t^{\alpha}$. Then the function $\alpha t - \log(1 + t^{\alpha})$ is zero at 0, continuous in $[0, \infty[$, and strictly increasing on $]0, \infty[$, so that $\alpha t - \log(1 + t^{\alpha}) > 0$ for t > 0 (if $\alpha \ge 1$).

(v) By (iii) we have $0 \le f_n(x) \le n(\alpha(f(x)/n)) = \alpha f(x)$, so that dominated convergence may be applied. For $\alpha = 1$ we have, by (ii):

$$f(x) = \lim_{n \to \infty} f_n(x),$$

so that $\lim_{n\to\infty} \int_X f_n = \int_X f = c$. For $\alpha > 1$ we have $\lim_{n\to\infty} f_n(x) = 0$, so that the required limit is 0.

EXERCISE 20. (12) Let $\mu : \mathcal{B}_1 \to [0, \infty]$ be defined by $\mu = (e-1) \sum_{n=1}^{\infty} e^{-n} \delta_n$, where δ_n is the unit mass at n, and \mathcal{B}_1 is the σ -algebra of Borel subsets of \mathbb{R} .

(i) [2] Find $\mu(\mathbb{R})$ and the smallest closed set that supports μ . Is μ singular with respect to Lebesgue measure $m = \lambda_1$?

A.A 2011-12

Let now ν be the Radon measure defined on \mathcal{B}_1 by $d\nu = \chi_{]-\infty,0]}(x) dx/(x-1)^3$, and consider the measure $\lambda = \nu + \mu$ on \mathcal{B}_1 .

- (iii) [2] Find the absolutely continuous and the singular part of λ (with respect to Lebesgue measure m), find λ^{\pm} , and also a Hahn decomposition for λ .
- (iv) [2] Find a formula for the total variation function $T(x) = |\lambda|(1 \infty, x])$, and plot T.
- (v) [3] Given f(x) = x, determine the set of p > 0 such that $f \in L^p(|\lambda|)$. Compute the integral

$$\int_{\mathbb{R}} x \, d\lambda(x)$$

if this integral exists (it may be useful to know that $\sum_{n=1}^{\infty} n z^{n-1} = 1/(1-z)^2$ for |z| < 1).

Solution. (i) We have

$$\mu(\mathbb{R}) = (e-1)\sum_{n=1}^{\infty} e^{-n} = (e-1)\frac{1/e}{1-1/e} = 1.$$

Plainly $\mu(\mathbb{R} \setminus \mathbb{N}^{>}) = 0$, and every larger set has strictly positive measure. Since $\mathbb{N}^{>}$ is closed, it is the required set. Since $m(\mathbb{N}^{>}) = 0$, we have $\mu \perp m$.

(ii) We clearly have F(x) = 0 for x < 1. If $x \ge 1$, we have F(x) = F([x]), and

$$F([x]) = (e-1)\sum_{n=1}^{[x]} e^{-n} = (e-1)\frac{1}{e}\frac{1-e^{-[x]}}{1-1/e} = 1-e^{-[x]}.$$

The plot is easily done.

FIGURE 10. Plot of F (not on scale).

(iii) By its very definition ν is absolutely continuous with respect to m, and μ is singular, so that ν is the absolutely continuous part and μ the singular part. Next, ν is negative (notice that $\chi_{]-\infty,0]}(x)/(x-1)^3 \leq 0$ for every $x \in \mathbb{R}$), so that $\lambda^- = -\nu$ and $\lambda^+ = \mu$ (since also $\nu \perp \mu$). A Hahn decomposition for λ is for instance $\mathbb{N}^> \cup (\mathbb{R} \setminus \mathbb{N}^>)$, the first set positive, the second negative.

(iii) For x < 1 we have

$$T(x) = |\lambda|(] - \infty, x]) = -\nu(] - \infty, x]) = -\int_{]-\infty, x]} \chi_{]-\infty, 0]}(t) \frac{dt}{(t-1)^3};$$

assuming $x \leq 0$ this integral is

$$\int_{-\infty}^{x} \frac{-dt}{(t-1)^3} = \frac{1}{2} \left[\frac{1}{(t-1)^2} \right]_{-\infty}^{x} = \frac{1}{2(x-1)^2};$$

then T(0) = 1/2 and T(x) = 1/2 for $x \in [0, 1[$. For $x \ge 1$ we have T(x) = 1/2 + F(x). (iv) We have that $L^p(|\lambda|) = L^p(\lambda^+) \cap L^p(\lambda^-) = L^p(\mu) \cap L^p(-\nu)$. Thus $f \in L^p(|\lambda|)$ iff

$$\int_{-\infty}^{0} \frac{|x|^p}{(1-x^3)} \, dx; \qquad \sum_{n=1}^{\infty} n^p \, e^{-n}$$

FIGURE 11. Plot of T (not on scale).

are both finite. The second series converges for every $p \in \mathbb{R}$ (e.g. by the root test), while the integral is finite if and only if $3 - p > 1 \iff p < 2$: in fact the function is continuous and hence locally summable on $]-\infty,0]$, and at $-\infty$ it is asymptotic to $1/|x|^{3-p}$. So the answer is: for 0 . The integral is

$$\int_{-\infty}^{0} \frac{x}{(x-1)^3} dx + \sum_{n=1}^{\infty} ne^{-n} = \left[\frac{-x}{2(x-1)^2}\right]_{x=-\infty}^{x=0} + \frac{1}{2} \int_{-\infty}^{0} \frac{dx}{(x-1)^2} + \frac{1}{e} \sum_{n=1}^{\infty} n \frac{1}{e^{n-1}}$$
$$\frac{1}{2} \left[\frac{-1}{x-1}\right]_{-\infty}^{0} + \frac{1}{e} \frac{1}{(1-1/e)^2} = \frac{1}{2} + \frac{e}{(e-1)^2}.$$

Analisi Reale per Matematica – Appello di ricupero – 18 luglio 2012

EXERCISE 21. Let (X, \mathcal{M}, μ) be a measure space.

(i) Let $g_n \in L^+$ be a sequence of measurable positive functions; assume that $\int_X g_n < \infty$ for every $n \in \mathbb{N}$. Consider the following statements: (a) The series of functions $\sum_{n=0}^{\infty} g_n(x)$ converges to a finite sum for a.e. $x \in X$. (b) The series $\sum_{n \in \mathbb{N}} \int_X g_n$ of the integrals is convergent, that is $\sum_{n \in \mathbb{N}} \int_X g_n < \infty$. Are these statements equivalent? or does (b) imply (a)? or conversely does (a) imply (b)? Give

- proofs, or counterexamples.
- (ii) Given any function $g \in L^+(\mathbb{R})$, with $\int_{\mathbb{R}} g = a > 0$ (the measure is Lebesgue measure), and a sequence $c_n \in \mathbb{R}$, prove that the formula

$$f(x) = \sum_{n=0}^{\infty} g(2^n(x - c_n))$$

defines for a.e. $x \in \mathbb{R}$ a function $f \in L^1(\mathbb{R})$. What is the integral of f?

(iii) Let the function g in (ii) be $\log^+(1/|x|) = \max\{-\log|x|, 0\}$, with g(0) = 0, and let $n \mapsto c_n$ be a bijection of \mathbb{N} onto the set of rational numbers. Plot g, and prove that for every $\alpha > 0$ and every non-empty open interval I of \mathbb{R} the set $\{x \in I : f(x) > \alpha\}$ has strictly positive measure.

Solution. (i) It is true that (b) implies (a), but not the converse. If $h_m = \sum_{n=0}^m g_n$, then $h_m \in L^+$, and the sequence h_m is increasing to a limit h with $h(x) = \sum_{n=0}^{\infty} g_n(x)$; by the monotone convergence theorem we have

$$\int_X h = \lim_{m \to \infty} \int_X h_m = \lim_{m \to \infty} \sum_{n=0}^m \int_X g_n = \sum_{n=0}^\infty \int_X g_n < \infty \quad (by (b));$$

then $\int_X h < \infty$ implies that $E = \{h = \infty\}$ has measure 0; and E is exactly the set of all $x \in X$ such that $\sum_{n=0}^{\infty} g_n(x) = \infty$. Pointwise convergence everywhere of the series does not ensure convergence of the series of integrals: take e.g. $g_n(x) = g(x - n)$, where $g = \chi_{[0,1]}$.

(ii) The change of variable $t = 2^n(x - c_n) \iff x = t/2^n + c_n$ reduces the integral to

$$\int_{\mathbb{R}} g(2^n(x-c_n)) \, dx = \int_{\mathbb{R}} g(t) \, \frac{dt}{2^n} = \frac{a}{2^n},$$

$$\sum_{n=0}^{\infty} \int_{\mathbb{R}} g(2^n (x - c_n)) \, dx = \sum_{n=0}^{\infty} \frac{a}{2^n} = 2a,$$

and by (i) the series the converges pointwise a.e. to a measurable positive function f with $\int_{\mathbb{R}} f(x) dx = 2a$. (iii) The plot is easy.

FIGURE 12. Plot of g

If I is non-empty open interval, by density of \mathbb{Q} there are infinitely many $n \in \mathbb{N}$ such that $c_n \in I$, and if n is such that $2^{-n} < m(I)$ (m Lebesgue measure) then either the right or the left half of the interval $]c_n - 1/2^n, c_n + 1/2^n[$ are contained in I. Since the series has positive terms, $f(x) > \alpha$ is ensured if $g(2^n(x-c_n)) > \alpha$ for at least one n; and

$$g(2^{n}(x-c_{n})) > \alpha \iff 2^{n}|x-c_{n}| < e^{-\alpha} \iff c_{n} - e^{-\alpha}/2^{n} < x < c_{n} + e^{-\alpha}/2^{n},$$

so that the set $\{f > \alpha\} \cap I$ has measure not less than $e^{-\alpha}/2^n$.

EXERCISE 22. Let (X, \mathcal{M}, μ) be a measure space.

- (i) Let $S \subseteq M$ be closed under union (that is, $A, B \in S$ imply $A \cup B \in S$). Let $s = \sup\{\mu(A) : A \in S\}$
- \mathcal{S} }. Prove that there exists an increasing sequence $A_0 \subseteq A_1 \subseteq \ldots$ of elements of \mathcal{S} such that $\mu(\bigcup_{n \in \mathbb{N}} A_n) = s$. Prove that if \mathcal{S} is closed under countable union then $s = \max\{\mu(A) : A \in \mathcal{S}\}$.

Given $E \in \mathcal{M}$ let $\mathcal{S}(E) = \{A \in \mathcal{M} : A \subseteq E, \mu(A) < \infty\}$, and set $\mu_0(E) = \sup\{\mu(A) : A \in \mathcal{S}(E)\}$.

- (ii) Prove that $\mathcal{S}(E)$ is closed under union, and that the following are equivalent:
 - (a) $\mu_0(E) = \max\{\mu(A) : A \in \mathcal{S}(E)\}.$
 - (b) $\mu_0(E) < \infty$.
 - (c) $\mathcal{S}(E)$ is closed under countable union.

Let's call *atom* in a measure space (X, \mathcal{M}, μ) any $A \in \mathcal{M}$ such that $0 < \mu(A) \leq \infty$, and for every $B \subseteq A$, $B \in \mathcal{M}$, we have either $\mu(B) = 0$ or $\mu(B) = \mu(A)$. Prove that if for some $E \in \mathcal{M}$ we have $\mu_0(E) < \mu(E)$ then E contains an atom of infinite measure.

Solution. (i) There is of course a sequence $S_n \in \mathcal{S}$ such that $\sup_n \mu(S_n) = s$. Set $A_n = S_0 \cup \cdots \cup S_n$. Then $A_n \in \mathcal{S}$ because \mathcal{S} is closed under union, and clearly A_n is increasing. We have $\mu(S_n) \leq \mu(A_n)$, and $\mu(A_n) \leq s$ because $A_n \in \mathcal{S}$. Then

$$s = \sup_{n} \mu(S_n) \le \lim_{n \to \infty} \mu(A_n) \le s$$
 so that $s = \lim_{n \to \infty} \mu(A_n) = \mu\left(\bigcup_{n \in \mathbb{N}} A_n\right)$.

Trivially we then have $s = \max\{\mu(A) : A \in S\}$ if $\bigcup_{n \in \mathbb{N}} A_n \in S$.

(ii) Subadditivity implies immediately that $\mathcal{S}(E)$ is closed under \cup : $\mu(A \cup B) \leq \mu(A) + \mu(B) < \infty$ if both $\mu(A)$ and $\mu(B)$ are finite. Let us next show that (a) implies (b) implies (c) implies (a):

(a) implies (b) Since $\mathcal{S}(E)$ is closed under union, there is an increasing sequence $A_0 \subseteq A_1 \subseteq \ldots$ of elements of \mathcal{S} such that $\mu(\bigcup_{n\in\mathbb{N}}A_n) = s$; then $s = \mu_0(E) = \mu(\bigcup_{n\in\mathbb{N}}A_n)$; if $\mu_0(E) < \infty$ then $\bigcup_{n\in\mathbb{N}}A_n \in \mathcal{S}(E)$, and $s = \max\{\mu(A) : A \in \mathcal{S}(E)\}$.

(b) implies (c) Since $\mathcal{S}(E)$ is closed under finite union, we only have to prove that the union of an increasing sequence in $\mathcal{S}(E)$ belongs to $\mathcal{S}(E)$. If $A_0 \subseteq A_1 \subseteq \ldots$ is such a sequence we have $\mu(A_n) \leq \mu_0(E)$ for every n; if $A = \bigcup_{n \in \mathbb{N}} A_n$ we then get $\mu(A) = \lim_{n \to \infty} \mu(A_n) \leq \mu_0(E)$, so that $\mu(A) \leq \mu_0(E) < \infty$; thus $A \in \mathcal{S}(E)$.

(c) implies (a) is immediate by (i).

Last question: if $\mu_0(E) < \mu(E)$ then certainly $\mu_0(E) < \infty$; if $\mu(E)$ is finite, then trivially $\mu_0(E) = \mu(E)$ so that the hypothesis implies $\mu_0(E)$ finite and $\mu(E) = \infty$; by (ii) there is $A \subseteq E$ such that $\mu(A) = \mu_0(E) = \max\{\mu(B) : B \in \mathcal{S}(E)\}$ Then $E \smallsetminus A$ is the required atom; it clearly has infinite measure, and if $B \subseteq E \smallsetminus A$ has finite measure then $A \cup B \in \mathcal{S}(E)$ and $\mu(A) = \mu(A) + \mu(B)$ implies $\mu(B) = 0$ (otherwise $\mu(A \cup B) > \mu(A) = \mu_0(E)$, a contradiction)

EXERCISE 23. Let (X, \mathcal{M}, μ) be a measure space.

(i) If $0 , for every <math>f \in L(X)$ we have

$$||f||_q \le ||f||_p^{p/q} ||f||_{\infty}^{1-p/q};$$

Prove it, and say when equality holds, assuming the right-hand side finite and nonzero.

On every set X the spaces $\ell^p = \ell^p(X, \mathbb{K})$ are defined, and also $||f||_p$ is defined for every $f: X \to \mathbb{K}$.

- (ii) Explain how these spaces can be defined within the general theory of L^p spaces (that is, they are $L^p(X, \mathcal{M}, \mu)$ for some σ algebra \mathcal{M} on X and some measure μ). Prove that $||f||_{\infty} \leq ||f||_p$ for every p > 0, and determine the functions f for which equality holds. Prove that if $0 then <math>||f||_q \leq ||f||_p$.
- (iii) Prove that if $\ell^p(X) = \ell^q(X)$ for p, q > 0 and p < q, then X is finite (remember that $\sum_{n=1}^{\infty} 1/(n+1)^{\alpha}$ is in $\ell^p(\mathbb{N})$ iff $p\alpha \dots$).

Solution. (i) For a.e. $x \in X$ we have

(*)
$$|f(x)|^{q} = |f(x)|^{p} |f(x)|^{q-p} \le |f(x)|^{p} ||f||_{\infty}^{q-p} \quad \text{integrating} \\ \int_{X} |f|^{q} \le \int_{X} |f|^{p} ||f||_{\infty}^{q-p} = \left(\int_{X} |f|^{p}\right) ||f||_{\infty}^{q-p};$$

taking q-th roots of both sides:

$$||f||_q \le ||f||_p^{p/q} ||f||_{\infty}^{1-p/q}.$$

To avoid trivialities we consider the case in which the right-hand side is finite and nonzero. When integrating in (*), the inequality becomes an equality if and only if the set

 $\{x \in X : |f(x)|^q < |f(x)|^p ||f||_{\infty}^{q-p}\}$ has measure 0;

this set is clearly contained in the cozero set $\{|f| > 0\}$ of f, and coincides with

 $\{x \in X : |f(x)| > 0, |f(x)|^{q-p} < \|f\|_{\infty}^{q-p}\},\$

and clearly it has measure 0 if and only if |f(x)| is constantly a.e. equal to its esssupnorm on $\{|f| > 0\}$, in other words $|f| = ||f||_{\infty} \chi_{\text{Coz}(f)}$; and for the right-hand side to be finite we need $||f||_{\infty} < \infty$ and $\mu(\text{Coz}(f)) < \infty$. To sum up: the inequality is an equality with finite nonzero sides if and only if |f| is of the form $r \chi_E$, with r > 0 and $0 < \mu(E) < \infty$.

(ii) We know that $\ell^p(X) = L^p(X, \mathcal{M}, \mu)$ if $\mathcal{M} = \mathcal{P}(X)$, the power set of X, and μ the counting measure on $\mathcal{P}(X)$. It is trivial to see that $||f||_{\infty} \leq ||f||_p$ for every p with 0 : for every $<math>c \in X$ one has $|f(c)|^p \leq \sum_{x \in X} |f(x)|^p = ||f||_p^p$, so that $|f(c)| \leq ||f||_p$ for every $c \in X$, and then $||f||_{\infty} = \sup\{|f(c)| : c \in X\} \leq ||f||_p$. Equality holds when $||f||_{\infty} = \infty$ or when f = 0; excluding these cases $||f||_p$ has to be finite; then $||f||_{\infty} = \max\{|f(x)| : x \in X\}$; if $||f||_{\infty} = |f(c)| > 0$, then we must have f(x) = 0 for all $x \in X \setminus \{c\}$; if not we have $||f||_{\infty}^p = |f(c)|^p < |f(c)|^p + |f(x)|^p \leq ||f||_p^p$ when $f(x) \neq 0$. Then equality holds in non-trivial cases iff the cozero set of f is a singleton. Finally, from (i) we get $||f||_q \leq ||f||_p^{p/q} ||f||_{\infty}^{1-p/q}$ if $0 ; and since <math>||f||_{\infty} \leq ||f||_p$ we conclude that $||f||_q \leq ||f||_p^{p/q} ||f||_p^{1-p/q} = ||f||_p$.

(iii) If X is infinite, then X contains a countably infinite subset $N = \{x_0, x_1, x_2, ...\}$. Given $\alpha > 0$ we consider the function $f = f_{\alpha} : X \to \mathbb{R}$ given by f(x) = 0 if $x \in X \setminus N$, and $f(x_n) = 1/(n+1)^{\alpha}$. Clearly $f \in \ell^p(X)$ iff $p\alpha > 1$; the conclusion is immediate.

EXERCISE 24. Define $\alpha : \mathbb{R} \to \mathbb{R}$ by $\alpha(x) = 1/(1-x)$ for x < 0, $\alpha(0) = 0$, $\alpha(x) = e^{-[1/x]}$ for x > 0 (as usual, [t] is the integer part of t, for every $t \in \mathbb{R}$).

- (i) Find all points of discontinuity of α , the jump of α at these points, and determine left or right continuity of α at these points.
- (ii) Plot α and the total variation function $T(x) = V\alpha(] \infty, x]$; compute $\mu(\mathbb{R})$, where μ is the total variation measure $|\lambda_{\alpha}|$ of the measure λ_{α} determined by α . Find the largest open set null for λ_{α} .
- (iii) For λ_{α} find a Hahn decomposition, and describe the absolutely continuous and singular part with respect to Lebesgue measure m on \mathcal{B}_1 .
- (v) Given $f(x) = x^+ = \max\{x, 0\}$, determine the set of all p > 0 such that $f \in L^p(\mu)$. Is it true that $f \in L^{\infty}(\mu)$?

Solution. (i) Clearly α is continuous on $] - \infty, 0[$. For x > 1 we have [1/x] = 0 so that $\alpha(x) = 1$ for x > 1. We have $[1/x] = n \in \mathbb{N}$ iff $n \leq 1/x < n+1$, that is iff $1/(n+1) < x \leq 1/n$. Then on the left-open interval]1/(n+1), 1/n] the function α has the constant value e^{-n} ; α is discontinuous at all points $1, 1/2, 1/3, \ldots$, and at these points it is left continuous, with $\alpha(1/n) = e^{-n} = \lim_{x \to (1/n)^+} \alpha(x)$ and $e^{-(n-1)}$; the jump at 1/n is then $\sigma_{\alpha}(1/n) = e^{-(n-1)} - e^{-n} = e^{-n}(e-1)$. Another point of discontinuity is 0, with $\lim_{x\to 0^-} \alpha(x) = 1$, and $\lim_{x\to 0^+} \alpha(x) = 0 = \alpha(0)$; at 0 we have right continuity, and $\sigma_{\alpha}(0) = -1$.

FIGURE 13. Plot of α

FIGURE 14. Plot of T

(ii) With the previous information the plot of α is easy. For T: since α is increasing on $] -\infty, 0[$ and 0 at $-\infty$, for x < 0 we get $T(x) = \alpha(x) = 1/(1-x)$, while T(0) = 2; next we get $T(x) = 2 + \beta(x)$. where β : $]0, \infty[\rightarrow \mathbb{R}$ is the right–continuous modification of α ; $T(+\infty) = 3 = \mu(\mathbb{R})$. Sets null for λ_{α} are those of $|\lambda_{\alpha}|$ –measure 0; it is quite clear that the largest open set of μ –measure 0 is $]0, \infty[\smallsetminus \{1/n : n \ge 1\}$ (any larger open set will either contain a point 1/n, with measure $\mu(\{1/n\}) = e^{-n}(e-1)$, or 0, with measure $\mu(\{0\}) = 1$, or an open interval I of $] -\infty, 0[$, with measure $\alpha(\sup I) - \alpha(\inf I) > 0$).

(iii) The function α is increasing on $] - \infty, 0]$ and on $]0, \infty[$, so that both these are positive sets; and $\{0\}$ is a negative set. Thus a Hahn decomposition is $P = \mathbb{R}^*$, $N = \{0\}$. The absolutely continuous part is $(\chi_{]-\infty,0[}/(1-x)^2) dm$ (or the measure associated to the monotone function $x \mapsto 1/(1-x)$ for x < 0, $x \mapsto 1$ for $x \ge 0$); the singular part is the measure $-\delta_0 + \sum_{n=1}^{\infty} e^{-n}(e-1) \delta_{1/n}$.

(iv) Clearly the integral of f^p is

$$\int_{\mathbb{R}} f^{p}(x) \ d\mu(x) = \sum_{n=1}^{\infty} \frac{1}{n^{p}} e^{-n}(e-1);$$

this sum is clearly finite for every p > 0. Then $f \in L^p(\mu)$ for every p > 0. And it is easy to see that $f \in L^{\infty}(\mu)$: the set $\{f > 1\} =]1, \infty[$ has clearly μ -measure 0 (it is also easy to see that $||f||_{\infty} = 1$). \Box

Analisi Reale per Matematica – Appello di ricupero – 4 settembre 2012

EXERCISE 25. Let (X, \mathcal{M}, μ) be a measure space; as usual we denote by $L^+(X) = L^+_{\mathcal{M}}(X)$ the set of all measurable functions with values in $[0, \infty]$.

- (i) Given $f \in L^+(X)$ which of the following two statements is correct?
 - (a) If $\int_X f$ is finite, then $f \in L^1(\mu)$.
 - (b) If $\int_X f$ is finite, then f coincides a.e. with a function $g \in L^1(\mu)$.
- (ii) In $X = \mathbb{R}$ with Lebesgue measure consider the sequence $f_n = \chi_{[n,\infty[}$. Notice that f_n is a decreasing sequence in $L^+(\mathbb{R})$, and find the limit f; is it true that $\int_{\mathbb{R}} f = \lim_{n \to \infty} \int_{\mathbb{R}} f_n$?
- (iii) State Fatou's lemma. Next, state and prove the analogous of Fatou's lemma for lim sup (with the necessary modifications).

Solution. (i) The correct statement is (b). Functions in $L^+(X)$ may assume the value $+\infty$; we know (LN, 3.3.5, corollary) that if the integral is finite then $\{f = \infty\}$ is measurable with zero measure.

(ii) The limit function f is identically 0, with zero integral, whereas $\int_{\mathbb{R}} f_n = \infty$ for every n, so that also $\lim_n \int_{\mathbb{R}} f_n = \infty$

(iii) For Fatou's lemma see LN, 3.3.6. We were reminded, from (ii) that for a decreasing sequence of functions to have passage to the limit under the integral sign an hypothesis of finiteness of the integral has to be added. Then we can state:

. Let f_n be a sequence of functions in $L^+(X)$. Assume that for some $m \in \mathbb{N}$ the integral of $f_m^* = \bigvee_{n \ge m} f_n$ is finite. Then

$$\int_X \limsup_n f_n \ge \limsup_n \int_X f_n$$

Proof. The sequence f_k^* is decreasing, converges pointwise to $f^* = \limsup_n f_n$ and $\int_X f_k^*$ is finite as soon as $k \ge m$; then $\int_X f^* = \lim_{k\to\infty} \int_X f_k^*$ (LN, 3.3.6.2; alternatively, dominated convergence); since $f_k^* \ge f_l$ for $l \ge k$ we have $\int_X f_k^* \ge \int_X f_l$ for every $l \ge k$, hence also $\int_X f_k^* \ge \sup_{l\ge k} \int_X f_l$; passing to the limit in this inequality as $k \to \infty$ we get

$$\int_X f^* \left(= \int_X \limsup_n f_n \right) \ge \limsup_k \int_X f_k,$$

as required.

REMARK. The hypothesis that f_m^* has finite integral for some m is equivalent to the hypothesis that some function in $L^1(\mu)$ dominates a.e. all functions f_k for $k \ge m$: combined with Fatou's lemma for lim inf the above in fact gives the dominated convergence theorem (another proof of)

EXERCISE 26. Let (X, \mathcal{M}) be a measurable space and let $\mu, \nu : \mathcal{M} \to [0, \infty]$ be positive measures on it.

(i) Define absolute continuity of ν with respect to μ , $\nu \ll \mu$. The $\varepsilon - \delta$ notion of absolute continuity is the following:

Definition. The measure ν is said to be $\varepsilon - \delta$ absolutely continuous with respect to μ if for every $\varepsilon > 0$ there is $\delta = \delta_{\varepsilon} > 0$ such that $(|\nu(E)| =)\nu(E) \leq \varepsilon$ for every $E \in \mathcal{M}$ with $\mu(E) \leq \delta$.

- (ii) Prove that $\varepsilon \delta$ absolute continuity implies absolute continuity.
- (iii) With $X = \mathbb{R}$ and $\mathcal{M} = \mathcal{B}(\mathbb{R})$, Borel σ -algebra of \mathbb{R} , let $\mu = m$ =Lebesgue measure, and $d\nu =$ $x^2 dm$. Prove that $\nu \ll m$, but that ν is not $\varepsilon - \delta$ absolutely continuous with respect to m.
- (iv) On a measure space (X, \mathcal{M}, μ) let ρ be a positive function in $L^{\infty}(\mu)$, and let $d\nu = \rho d\mu$. Prove that ν is $\varepsilon - \delta$ absolutely continuous with respect to μ .
- (v) Prove that if ν is a finite measure, and $\nu \ll \mu$ then ν is also $\varepsilon \delta$ absolutely continuous with respect to μ .

Solution. (i) For every $E \in \mathcal{M}$, if $\mu(E) = 0$ then also $\nu(E) = 0$. (ii) If $\mu(E) = 0$, then $\mu(E) < \delta$ for every $\delta > 0$ so that $\nu(E) \leq \varepsilon$ for every $\varepsilon > 0$, hence $\nu(E) = 0$.

(iii) We compute $\nu([a, a + \delta])$:

$$\nu([a, a+\delta]) = \int_{a}^{a+\delta} x^2 \, dm = \left[\frac{x^3}{3}\right]_{x=a}^{x=a+\delta} = \frac{(a+\delta)^3 - a^3}{3} = \frac{a^3}{3}((1+\delta/a)^3 - 1).$$

For $a \to +\infty$ we have $\nu([a, a + \delta]) \to \infty$, and the $\varepsilon - \delta$ condition cannot hold.

(iv) Trivial: for every $E \in \mathcal{M}$ of finite μ -measure we have

$$\nu(E) = \int_{E} \rho \, d\mu = \int_{E} g \, d\mu \le \int_{E} \|\rho\|_{\infty} \, d\mu = \|\rho\|_{\infty} \, \mu(E),$$

A.A 2011–12

so that, given $\varepsilon > 0$ we take $\delta = \varepsilon / \|\rho\|_{\infty}$ and we get $\nu(E) \le \varepsilon$ if $\mu(E) \le \delta$.

(v) See LN,6.2.5.3: when ν is finite then $\nu \ll \mu$ implies that ν verifies also the $\varepsilon - \delta$ condition.

EXERCISE 27. Let (X, \mathcal{M}, μ) be a finite measure space, $\mu(X) < \infty$. Assume that 0

(i) Prove that there exists a constant C(p,q) > 0 such that for every measurable $f: X \to \mathbb{C}$ we have

$$||f||_p \le C(p,q) ||f||_q;$$

and find such a constant.

- (ii) We have $L^p(\mu) \supseteq L^q(\mu)$, and convergence of a sequence in $L^q(\mu)$ implies convergence of the sequence in $L^p(\mu)$, to the same limit; prove these statements.
- (iii) Prove that $L^p([0,1]) \supseteq L^q([0,1])$, and that $L^{\infty}([0,1]) \subseteq \bigcap_{0 ; the measure is Lebesgue measure.$

Solution. (i) Remember (LN, 5.1.8) that we have

$$||f||_p \le \mu(X)^{1/p - 1/q} \, ||f||_q,$$

for every measurable $f \in L(X)$. In fact, assuming first $q < \infty$, and applying Hölder's inequality to the pair of functions $|f|^p$, 1 with conjugate exponents q/p, q/(q-p) we get:

$$\int_{X} |f|^{p} = \int_{X} |f|^{p} \, 1 \le \left(\int_{X} |f|^{q}\right)^{p/q} \left(\int_{X} 1^{q/(q-p)}\right)^{(q-p)/q} = \mu(X)^{1-p/q} \, \|f\|_{q}^{p},$$

so we need only to take p-th roots of both sides. For $q = \infty$ the inequality is immediate.

(ii) Is now trivial: $f \in L^q(\mu)$ means that f is measurable and that $||f||_q < \infty$; the preceding inequality says that then also $||f||_p < \infty$, so that $f \in L^p(\mu)$. Similarly, $f_n \to f$ in $L^q(\mu)$ means that $||f - f_n||_q \to 0$; since for p < q

$$||f - f_n||_p \le \mu(X)^{1/p - 1/q} ||f - f_n||_q$$

this implies $||f - f_n||_p \to 0$ and hence $f_n \to f$ also in $L^p(\mu)$.

(iii) The function $f_{\alpha}(x) = 1/x^{\alpha}$ is in $L^p([0,1])$ iff $p\alpha < 1$; if $p\alpha < 1$ but $q\alpha > 1$, that is for $\alpha \in]1/q, 1/p[$ then $f_{\alpha} \in L^p \smallsetminus L^q$. And $\log x$ is in $\bigcap_{0 .$

EXERCISE 28. Define $F : \mathbb{R} \to \mathbb{R}$ by $F(x) = -e^{-|x|}$ for x < 0, $F(x) = \sqrt{(2x - x^2)^+}$ for $x \ge 0$ (as usual, $(2x - x^2)^+ = \max\{2x - x^2, 0\}$ is the positive part of $2x - x^2$, for every $x \in \mathbb{R}$).

- (i) Plot F.
- (ii) Find the total variation function $T(x) = VF(] \infty, x]$, the positive and negative variation F_{\pm} of F, and plot all these functions.
- (iii) For the signed measure $\nu = \mu_F$ associated to F describe a Hahn decomposition, and describe the Lebesgue–Radon–Nikodym decomposition of ν^{\pm} with respect to Lebesgue measure m on \mathcal{B}_1 .

Let now $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^+ = \max\{x, 0\}.$

(iv) Compute

$$\int_{\mathbb{R}} f \, d|\nu|.$$

(v) Prove that $f \in L^{\infty}(|\nu|)$ and compute $||f||_{\infty}$ in this space.

Solution. (i) Easy:

(ii) We have $T(x) = e^x$ for x < 0; T(0) = 2; $T(x) = 2 + \sqrt{2x - x^2}$ for $0 \le x < 1$; $T(x) = 4 - \sqrt{2x - x^2}$ for $1 \le x < 2$; T(x) = 4 for $x \ge 2$. And we have $F_{\pm}(x) = (T(x) \pm F(x))/2$ so that

$$\begin{aligned} F_+(x) &= 0 \quad (x < 0); \ F_+(x) = 1 + \sqrt{2x - x^2} \quad (0 \le x < 1); \ F_+(x) = 2 \quad (1 \le x). \\ F_-(x) &= e^x \quad (x < 0); \ F_-(x) = 1 \quad 0 \le x < 1; \ F_-(x) = 2 - \sqrt{(x - 2x^2)^+} \quad 1 \le x \end{aligned}$$

(in particular, $F_{-}(x) = 2$ if $2 \le x$).

(iii) We can take P = [0, 1[and $Q = \mathbb{R} \setminus P$. Also

$$d\nu^{+} = \delta_{0} + \frac{1-x}{\sqrt{2x-x^{2}}}\chi_{]0,1[}(x)\,dx; \quad d\nu^{-} = e^{x}\,\chi_{[-\infty,0[}(x)\,dx + \frac{x-1}{\sqrt{2x-x^{2}}}\chi_{]1,2[}(x)\,dx.$$

(iv) We have

$$\int_{\mathbb{R}} f \, d|\nu| = \int_{\mathbb{R}} f \, d\nu^+ + \int_{\mathbb{R}} f \, d\nu^- = \int_0^1 x \, \frac{1-x}{\sqrt{2x-x^2}} \, dx + \int_1^2 x \, \frac{x-1}{\sqrt{2x-x^2}} \, dx = \int_0^1 x \, \frac{1-x}{\sqrt{2x-x^2}} \, dx$$

FIGURE 15. Plots of F (left) and T (right).

(the plots of F_{\pm} are omitted).

Analisi Reale per Matematica – Appello di ricupero – 19 settembre 2012

EXERCISE 29. Let (X, \mathcal{M}, μ) be a measure space; for simplicity we consider only real valued functions on X, in particular here $L^{1}(\mu)$ consists of real-valued functions only.

(i) Define (real valued) measurable simple functions, and prove that such a function f is in $L^{1}(\mu)$ if and only if its cozero-set $\{f \neq 0\}$ has finite measure.

We call $S(\mu)$ the set of all simple functions which belong to $L^1(\mu)$.

(ii) Prove that a positive measurable function $f: X \to [0, \infty[$ is in $L^1(\mu)$ if and only if it is the limit in $L^1(\mu)$ of an increasing sequence of positive simple functions in $L^1(\mu)$, and deduce from this that $S(\mu)$ is dense in $L^1(\mu)$.

Assume now that (X, \mathcal{M}, μ) is the Carathèodory extension of a premeasure (still called μ) defined on an algebra \mathcal{A} of parts of X.

(iii) Prove that if $E \in \mathcal{M}$ and $\mu(E) < \infty$ then for every $\varepsilon > 0$ there is $A \in \mathcal{A}$ such that $\mu(A \triangle E) \le \varepsilon$; deduce from this fact that the subspace of \mathcal{A} -simple functions in $S(\mu)$ is still dense in $L^1(\mu)$.

Solution. (i) A simple function is a function with finite range; real-valued measurable simple functions are then functions f of the form $f = \sum_{k=1}^{m} \alpha_k \chi_{E(k)}$, where $\{E(k) : k = 1, \ldots, m\}$ is a finite partition of X into members of \mathcal{M} , and $\{\alpha_1, \ldots, \alpha_m\}$ is set of m different real numbers (we are here talking of the standard representation). The absolute value of such a function is then $|f| = \sum_{k=1}^{m} |\alpha_k| \chi_{E(k)}$, and by definition the integral of such a function is $\int_X |f| = \sum_{k=1}^m |\alpha_k| \mu(E(k))$; this is a finite value if and only if $\mu(E(k)) = \infty$ implies $|\alpha_k| = 0$, that is, on a set of infinite measure the simple function must be identically zero. The cozero-set of f is $\{|f| > 0\}$ and is $\bigcup \{E(k) : |\alpha_k| > 0\}$; so $f \in L^1(\mu) \iff |f| \in L^1(\mu) \iff \mu(\{|f| > 0\}) < \infty$ has been proved.

(ii) Recall that every positive measurable function f is the pointwise limit of an increasing sequence of positive measurable simple functions φ_n (LN, 3.2.3). If $f \in L^1(\mu)$ then clearly $\varphi_n \in L^1(\mu)$, and by monotone convergence $\int_X f = \lim \int_x \varphi_n$, which implies

$$||f - \varphi_n||_1 = \int_X (f - \varphi_n) = \int_X f - \int_X \varphi_n \to 0 \quad \text{for} \quad n \to \infty.$$

Clearly any L^1 limit of a sequence of functions in L^1 is in L^1 . Given a real $f \in L^1(\mu)$ we simply split f as $f = f^+ - f^-$; if φ_n, ψ_n are sequences of simple functions converging in $L^1(\mu)$ to f^{\pm} respectively, then $\varphi_n - \psi_n$ converges to f in $L^1(\mu)$.

REAL ANALYSIS EXAMS

(iii) The first part is LN, 2.3.4. Given a simple function in $L^1(\mu)$, $f = \sum_{k=1}^m \alpha_k \chi_{E(k)}$ (where now the value 0 of f, if present, is omitted so that $\alpha_k \neq 0$ and $\mu(E(k)) < \infty$ for every $k \in \{1, \ldots, m\}$) and $\varepsilon > 0$ we can pick for every $k \in \{1, \ldots, m\}$ a set $A(k) \in \mathcal{A}$ such that $\mu(E(k) \bigtriangleup A(k)) \leq \varepsilon/\alpha$, where $\alpha = \sum_{k=1}^m |\alpha_k|$. If $g = \sum_{k=1}^m \alpha_k \chi_{A(k)}$ then g is \mathcal{A} -simple, belongs to $L^1(\mu)$, and

$$\|f - g\|_{1} = \int_{X} |f - g| = \int_{X} \left| \sum_{k=1}^{m} \alpha_{k} \chi_{E(k)} - \sum_{k=1}^{m} \alpha_{k} \chi_{A(k)} \right| \le \int_{X} \sum_{k=1}^{m} |\alpha_{k}| |\chi_{E(k)} - \chi_{A(k)}| = \sum_{k=1}^{m} |\alpha_{k}| \mu(E(k) \bigtriangleup A(k)) \le \varepsilon,$$

Then the closure of the set of \mathcal{A} -simple functions in $L^1(\mu)$ contains $S(\mu)$, which is dense in $L^1(\mu)$; then this closure is all of $L^1(\mu)$.

REMARK. A more direct proof of the above is in LN, 3.3.15.

EXERCISE 30. Let (X, \mathcal{M}, μ) be a measure space.

(i) What does it mean that $E \in \mathcal{M}$ is of σ -finite measure? when is the measure space called σ -finite?

An *atom* in the measure space (X, \mathcal{M}, μ) is a set $A \in \mathcal{M}$ with $\mu(A) > 0$ such that for every $E \in \mathcal{M}$ contained in A we either have $\mu(E) = 0$ or $\mu(A \setminus E) = 0$.

- (ii) If $A, B \in \mathcal{M}$ are atoms, then either $\mu(A \cap B) = 0$, or $\mu(A \cap B) = \mu(A) = \mu(B)$.
- (iii) Prove that in a σ -finite measure space an atom has finite measure.

Two sets $A, B \in \mathcal{M}$ are said to be almost disjoint if $\mu(A \cap B) = 0$.

(iv) Let $(A_n)_{n\in\mathbb{N}}$ be a sequence of pairwise almost disjoint sets in \mathcal{M} , and let $A = \bigcup_{n\in\mathbb{N}} A_n$. Prove that

$$\mu(A) = \sum_{n=0}^{\infty} \mu(A_n).$$

(v) Prove that in a σ -finite measure space a family of pairwise almost disjoint atoms is at most countable.

Solution. (i) Lecture notes, 2.2.8. (ii) If $\mu(A \cap B) > 0$, then $\mu(A \setminus (A \cap B)) = \mu(B \setminus (A \cap B)) = 0$ because A and B are atoms. Then $\mu(A) = \mu(A \cap B) + \mu(A \setminus (A \cap B)) = \mu(A \cap B)$ and $\mu(B) = \mu(A \cap B) + \mu(B \setminus (A \cap B)) = \mu(A \cap B)$ by finite additivity; by transitivity $\mu(A) = \mu(B)(=\mu(A \cap B))$. (iii) We can reproduce the argument given above that σ -finiteness implies semifiniteness; at any rate, if $A_n \in \mathcal{M}$ is an increasing sequence of sets of finite measure with union X, and A is an atom, we also have $A \cap A_n \uparrow A$, so that if $\mu(A \cap A_n) = 0$ for every n we get $\mu(A) = 0$, a contradiction; then $\mu(A \cap A_n) > 0$ for some n, which implies $\mu(A \setminus A_n) = 0$, and $\mu(A) = \mu(A \cap A_n) + \mu(A \setminus A_n) = \mu(A \cap A_n) < \infty$.

(iv)Let's apply the usual trick for making a disjoint union, $B_k = A_k \setminus \left(\bigcup_{j=0}^{k-1} A_j\right)$. We have $B_k \subseteq A_k$, and if the A_k 's are pairwise almost disjoint then $\mu(B_k) = \mu(A_k)$: in fact $A_k \setminus B_k = A_k \cap \left(\bigcup_{j=0}^{k-1} A_j\right) = \bigcup_{j=0}^{k-1} A_k \cap A_j$ is a finite union of sets of measure zero, and has then measure zero.

(v) Assume that $E \subseteq X$ has finite measure, and let $(A_{\lambda})_{\lambda \in \Lambda}$ be a family of almost disjoint atoms contained in E; we prove that $\sum_{\lambda \in \Lambda} \mu(A_{\lambda})$ (:= sup{ $\sum_{\lambda \in F} \mu(A_{\lambda}) : F$ a finite subset of Λ }) $\leq \mu(E)$; this implies that Λ is countable (Lecture Notes, lemma 1.2.4). In fact, for every finite subset $F \subseteq \Lambda$ we have, by (i), $\sum_{\lambda \in F} \mu(A_{\lambda}) = \mu (\bigcup_{\lambda \in F} A_{\lambda}) \leq \mu(E)$. We have proved that any subset of X of finite measure contains an at most countable set $\mathcal{A}(E)$ of pairwise almost disjoint atoms; since $X = \bigcup_{n \in \mathbb{N}} E_n$, where $(E_n)_{n \in \mathbb{N}}$ is an increasing sequence of sets of finite measure, we have that $\mathcal{A}(X) = \bigcup_{n \in \mathbb{N}} \mathcal{A}(E_n)$ is a countable union of countable sets, hence countable.

EXERCISE 31. Let (X, \mathcal{M}, μ) be a measure space, and let $f \in L(X)$ be a measurable function.

(i) Prove that

$$\liminf \|f\|_p \ge \|f\|_\infty$$

(given $0 < \alpha < ||f||_{\infty}$ use Čebičeff's inequality for L^p to prove that $\liminf_{p \to \infty} ||f||_p \ge \alpha$). (ii) Assuming $f \in L^p(\mu)$ for some p > 0 prove that $\limsup_{p \to \infty} ||f||_p \le ||f||_{\infty}$.

- (iii) Find a Lebesgue measurable function $f : \mathbb{R} \to \mathbb{R}$ such that $\lim_{p \to \infty} ||f||_p$ exists, but is not equal to $||f||_{\infty}$.
- (iv) Compute the limit

$$\lim_{n \to \infty} \left(\int_0^\infty \frac{dx}{(1+x^2)^n} \right)^{1/n}$$

and deduce from it the value of $\lim_{n\to\infty} ((2n)!/(n!)^2)^{1/n}$ (use the Beta and Gamma functions to evaluate the preceding integral; do this last part only if you spare some time).

Solution. (i) and (ii): LN, 5.1.1. (iii) Take the constant 1: its *p*-norms are all infinite, but $||1||_{\infty} = 1$. (iv) Clearly all *p*-norms are finite, so that the limit is the L^{∞} -norm of $f(x) = 1/(1+x^2)$ in $[0, \infty[$, which is 1. To compute the integrals: first use the change of variables $x^2 = t$, which gives

$$\int_0^\infty \frac{dx}{(1+x^2)^n} = \frac{1}{2} \int_0^\infty \frac{t^{-1/2}}{(1+t)^n} \, dt = \frac{1}{2} B(1/2, n-1/2) = \frac{1}{2} \frac{\Gamma(1/2) \Gamma(n-1/2)}{\Gamma(n)}.$$

We have $\Gamma(1/2) = \pi^{1/2}$ and

$$\Gamma(n-1/2) = \frac{(n-1/2)\,\Gamma(n-1/2)}{n-1/2} = \frac{\Gamma(n+1/2)}{n-1/2} = \frac{(2n)!}{2^{2n}n!}\,\pi^{1/2},$$

so that

$$\left(\int_0^\infty \frac{dx}{(1+x^2)^n}\right)^{1/n} = \left(\frac{\pi}{2} \frac{(2n)!}{2^{2n}n!\Gamma(n)}\right)^{1/n} = \frac{1}{4} \left(\frac{n\pi}{2}\right)^{1/n} \left(\frac{(2n)!}{(n!)^2}\right)^{1/n};$$

as $n \to \infty$ the left-hand side tends to 1, and also $(n \pi/2)^{1/n}$ tends to 1; then the required limit is 4.

- EXERCISE 32. Define $F : \mathbb{R} \to \mathbb{R}$ by $F(x) = \operatorname{sgn} x e^{-|x|}$.
 - (i) Plot F.
 - (ii) Find the total variation function $T(x) = VF(] \infty, x]$, the positive and negative variation F_{\pm} of F, and plot all these functions.
 - (iii) For the signed measure $\nu = \mu_F$ associated to F describe a Hahn decomposition, and describe the Lebesgue–Radon–Nikodym decomposition of ν^{\pm} with respect to Lebesgue measure m on \mathcal{B}_1 .

Let now $f : \mathbb{R} \to \mathbb{R}$ be defined by f(x) = |x|.

(iv) Compute

$$\int_{\mathbb{R}} f^p \, d|\nu|,$$

for every p > 0(v) Is it true that $f \in L^{\infty}(|\nu|)$?

Solution. (schematic) The plots are easy and we omit them. The total variation is $T(x) = e^x$ for x < 0, T(0) = 2, $T(x) = 4 - e^{-x}$ for x > 0. The positive variation is $F_+(x) = 0$ for x < 0, $F_+(0) = 1$, $F_+(x) = 2$ for x > 0; the negative is $F_-(x) = e^x$ for x < 0, $F_-(x) = 2 - e^{-x}$ for $x \ge 0$. A Hahn decomposition is $P = \{0\}$ and $Q = \mathbb{R} \setminus \{0\}$. The singular part is $2\delta_0$, the absolutely continuous part is $-e^{-|x|} dm$. We have

$$\int_{\mathbb{R}} |f|^p \, d|\nu| = 2|f(0)|^p \, \delta_0 + \int_{\mathbb{R}\smallsetminus\{0\}} |x|^p \, e^{-|x|} \, dm(x) = 2 \int_0^\infty x^p \, e^{-x} \, dx = 2\Gamma(p+1).$$

Then $f \in L^p(|\nu|)$ for every p > 0. Clearly f is not in $L^{\infty}(|\nu|)$: for every $\alpha > 0$ the set $\{x \in \mathbb{R} : |x| > \alpha\}$ is the union of the two half lines $] - \infty, -\alpha[\cup]\alpha, \infty[$, of $|\nu|$ -measure $2 \exp(-\alpha) > 0$.