
REAL ANALYSIS EXAMS

A.A 2012–13

GIUSEPPE DE MARCO

1. Analisi Reale per Matematica – Precompitino – 7 novembre 2012

Exercise 1. Let (X,M, µ) be a measure space.

(i) Recall that E ∈M is said to be of σ−finite measure if it can be covered by a sequence of sets in
M of finite measure. Prove that for E ∈M the following are equivalent:
(a) E has σ−finite measure.
(b) E can be written as a countable disjoint union of sets in M of finite measure.
(c) E can be written as the union of an increasing sequence of sets in M of finite measure.

(ii) Prove that if S = {E ∈ M : E has σ−finite measure} then S is a σ−ideal of M, that is, S is
closed under countable union and the formation of subsets (i.e., if E ∈ S, F ∈ M and F ⊆ E,
then F ∈ S).

(iii) Recall that an atom of infinite measure is a set A ∈ M such that µ(A) = ∞, and for every
E ∈ M with E ⊆ A we have either µ(E) = 0 or µ(A r E) = 0. Prove that if A is an atom of
infinite measure and E has σ−finite measure then µ(E ∩A) = 0.

The questions that follow are not related to the preceding ones

(iv) Let (cn)n∈N be an arbitrary sequence of real numbers, with c0 = 0, and let f0 ∈ L1
m(R). If we

define, for n ∈ N, fn(x) = 2n f0(4n(x− cn)), then the formula

f(x) =

∞∑
n=0

fn(x)

defines for m−a.e. x ∈ R a function f ∈ L1
m(R): give a careful explanation, quoting the relevant

theorems (m is Lebesgue measure).
(v) Prove that if g ∈ L1

m(R) then lim infx→∞ |g(x)| = 0; find a continuous g ∈ L1
m(R) such that

lim supx→∞ |g(x)| =∞ (and this limsup remains infinite even after modification of g on a set of
measure 0).

Solution. (i) (a) implies (b): if E =
⋃∞
k=0Ak, withAk ∈ M, with the usual trick we make the union

disjoint, setting B0 = A0 and Bk = Ak r
⋃k−1
j=0 Aj ; clearly µ(Bk) ≤ µ(Ak) < ∞, for every k ∈ N. (b)

implies (c): if E =
⋃
k∈NBk, with Bk ∈ M (disjoint or not) and µ(Bk) <∞, setting Am =

⋃m
k=1Bk we

have Am ↑ E and by subadditivity µ(Am) ≤
∑m
k=0 µ(Bk) <∞. (c) implies (a): trivial.

(ii) If (Em)m∈N is a sequence of sets of σ−finite measure, and Em =
⋃
n∈NAmn, with each Amn ∈M

of finite measure, we have ⋃
m∈N

Em =
⋃
m∈N

(⋃
n∈N

Amn

)
=

⋃
(m,n)∈N×N

Amn,

a countable union of sets of finite measure, since N× N is countable. Any measurable subset F of a set
E of σ−finite measure is of course of σ−finite measure: if E =

⋃
k∈NAk we have F =

⋃
k∈N F ∩Ak, and

µ(F ∩Ak) ≤ µ(Ak) <∞.
(iii) E ∩ A has σ−finite measure, being a subset of E, as just proved; since every subset of finite

measure of an atom of infinite measure has measure 0, E ∩A is countable union of sets of measure 0, and
has then measure 0.

(iv) We have:

‖fn‖1 =

ˆ
R

2n |f0(2n(x− cn))| dx = 2n
ˆ
R
|f0(t)| dt

4n
=

1

2n

ˆ
R
|f0(t)| dt =

‖f0‖1
2n

,

1
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so that the series
∑∞
n=0 ‖fn‖1 = 2‖f0‖1 is convergent. The theorem on normally convergent series says

that then the series of functions
∑∞
n=0 fn(x) converges a.e. an in L1

m(R) to an f ∈ L1
m(R). We also have´

R f(x) dx = 2
´
R f0(x) dx.

(v) If lim infx→∞ |g(x)| = α > 0, given β ∈ R with 0 < β < α there is a ∈ R such that |g(x)| > β
for every x ≥ a. Then |g| cannot have a finite integral:

´
R |g| ≥

´
R β χ[a,∞[ = ∞. To construct g as

required we may take f0 continuous with support in [0, 1], e.g, f0(x) = (1 − |2x − 1|) ∨ 0, and cn = n;
since fn(x) = 2n f0(4n(x− n)) has [n, n+ 1/4n] as support, the sum f =

∑∞
n=0 fn is continuous (on the

interval ] −m,m[ the function f coincides with
∑m
n=0 fn, a finite sum of continuous functions, hence a

continuous function, see the figure). It is clear that lim supx→∞ f(x) =∞, and that changing f on a set
of measure 0 cannot destroy this fact (for every a > 0 the essential supremum of f on [a,∞[ is ∞). We
set g = f .
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Figure 1. Plot of g = f (not on scale).

�

Exercise 2. Let α : R→ R be increasing; denote by µ = dα the Radon–Stieltjes measure associated to
α. A Borel measurable function f : R→ C is said to be locally in L1(µ) if for every compact subset K of
R we have f χK ∈ L1(µ). For such an f , assuming for simplicity that c ∈ R is such that α is continuous
at c, we define F : R→ C by

F (x) =

ˆ
]c,x]

f dµ

(
=

ˆ
[c,x]

f dµ

)
for x ≥ c, F (x) = −

ˆ
]x,c]

f dµ for x < c.

(i) Prove that F is right–continuous and has finite left limits at every point (use dominated con-
vergence: if x, xn ∈ I and xn ↓ x, resp xn ↑ x increasing strictly, then the sequence χn of
the characteristic functions of the intervals of extremes c, xn tends to . . . ). Compute the jump
F (x)− F (x−) and prove that if α is continuous at x then also F is continuous at x.

(ii) Prove that if f ≥ 0, then F is increasing, and as such defines a Radon–Stieltjes measure dF on
the Borel subsets of R. Prove that dF = f dµ.

From now on we assume that α is continuous. Recall that if F,G are right–continuous increasing functions
F,G : I → R we have the formula of integration by parts:ˆ

]a,b]

F (x−) dG(x) +

ˆ
]a,b]

G(x) dF (x) = F (b)G(b)− F (a)G(a),

for every a, b ∈ I, with a < b, so that in particular, if F is as above, with f ≥ 0 locally in L1(µ) we have

(*)

ˆ b

a

G(x) f(x) dµ(x) = F (b)G(b)− F (a)G(a)−
ˆ
]a,b]

F (x) dG(x),

(iii) Prove that formula (*) holds for every f locally in L1(µ), of any sign and also complex–valued,
and not only for f ≥ 0.

Solution. (i) Assuming first x > c, let χn be the characteristic function of the interval ]c, xn]; if xn ↓ x
then χn ≤ χ[c,x0], and χn converges pointwise everywhere to χ]c,x].

If xn ↑ x (with xn strictly increasing) then χn ≤ χ[c,x], for every n, and χn converges pointwise
everywhere to χ]c,x[. In any case |f χn| ≤ |f |χK , with K compact (K = [c, x0] in the first case, K = [c, x]

in the second case); since this function is in L1(µ) we can apply dominate convergence to show that

lim
n→∞

F (xn) = lim
n→∞

ˆ
R
f χn dα =

ˆ
R

( lim
n→∞

f χn) dα =

ˆ
R
f ( lim

n→∞
χn) dα.
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If xn ↓ x, then as observed above we have limn→∞ χn = χ]c,x] so that

lim
n→∞

F (xn) =

ˆ
R
f ( lim

n→∞
χn) dα =

ˆ
]c,x]

f dα = F (x),

so that F is right–continuous at x. And if xn ↑ x with xn < x for every n, then

lim
n→∞

F (xn) =

ˆ
R
f ( lim

n→∞
χn) dα =

ˆ
]c,x[

f dα;

this proves that F (x−) =
´
]c,x[

f dα; then

F (x)− F (x−) =

ˆ
]c,x]

f dα−
ˆ
]c,x[

f dα =

ˆ
{x}

f dα = f(x) (α(x+)− α(x−));

in particular F is continuous wherever α is continuous. The proofs for x ≤ c are similar, we only have to
change some signs.

(ii) Clearly F is increasing : one easily sees that if x1 < x2, with x1, x2 ∈ R then

F (x2)− F (x1) =

ˆ
]x1,x2]

f dα ≥ 0 (by positivity of f).

Moreover, for every compact interval [a, b] we have

F (b)− F (a−) =

ˆ
[a,b]

f dα,

so that the measure dF and f dα coincide and are finite on compact intervals, and hence on every Borel
set, since the set of compact intervals is closed under intersection and generates the Borel σ−algebra.

(iii) For real f we write f = f+ − f−, and we have the formulae:ˆ b

a

G(x) f+(x) dµ(x) = F+(b)G(b)− F+(a)G(a)−
ˆ
]a,b]

F+(x) dG(x)

ˆ b

a

G(x) f−(x) dµ(x) = F−(b)G(b)− F−(a)G(a)−
ˆ
]a,b]

F (x) dG(x),

where of course F±(x) = sgn(x − c)
´
]c,x]

f± dα. Subtracting the second formula from the first we get

the result. Similarly, for complex f we use real and imaginary parts: the general formula, for a non
necessarily positive f , is due to its linearity in f and F . �

Exercise 3. Let f : R2 → C be defined by f(x, y) = e−xy
2

eix. For a > 0 let E(a) = [0, a] × [0,∞[,
E = [0,∞[2 the first quadrant.

(i) Prove that f ∈ L1(E(a)) and that f /∈ L1(E).
(ii) Reduce the integral of f on E(a) to one dimensional integrals; compute then the limit

lim
a→∞

ˆ
E(a)

f(x, y) dxdy

in terms of these integrals, and deduce from it the value of the generalized integrals:ˆ ∞
0

cos t√
t
dt;

ˆ ∞
0

sin t√
t
dt

(Fresnel’s integrals; they are not Lebesgue integrals, being non–absolutely convergent).

A careful application of the theorems of Tonelli and Fubini is required. It is useful to know thatˆ ∞
0

e−αy
2

dy =
1

2

√
π

α
(α > 0);

ˆ ∞
0

y2

1 + y4
dy =

ˆ ∞
0

dy

1 + y4
=

π

2
√

2
.

Solution. (i) The function f is continuous and hence Borel measurable. We have |f(x, y)| = e−xy
2

so
that ˆ

E(a)

|f(x, y)| dxdy =

ˆ x=a

x=0

(ˆ ∞
0

e−xy
2

dy

)
dx =

ˆ a

0

√
π

2
√
x
dx <∞ for every a > 0,

while ˆ
E

|f(x, y)| dxdy =

ˆ ∞
0

√
π

2
√
x
dx =∞;

(i) is proved: by Tonelli’s theorem we have f ∈ L1(E(a)) and f /∈ L1(E).
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(ii) Since f ∈ L1(E(a)) Fubini’s theorem applies and we get
ˆ
E(a)

f(x, y) dxdy =

ˆ x=a

x=0

(ˆ y=∞

y=0

e−xy
2

dy

)
eix dx =

√
π

2

ˆ a

0

eix√
x
dx;

=

ˆ y=∞

y=0

(ˆ x=a

x=0

e−(y
2−i)x dx

)
dy =

ˆ ∞
0

[
−e
−(y2−i)x

y2 − i

]x=a
x=0

dy =

ˆ ∞
0

1− e−(y2−i)a

y2 − i
dy =

ˆ ∞
0

dy

y2 − i
−
ˆ ∞
0

e−(y
2−i)a

y2 − i
dy.

Notice now that |e−(y2−i)a| = e−y
2a |eia| = e−y

2a and that 1/|y2 − i| ≤ 1; as a → +∞ the function

y 7→ e−(y
2−i)a converges to zero for every y > 0 (its module is e−y

2a), and for a ≥ 1 all integrands are

dominated by e−y
2

, which is in L1([0,∞[). Then

lim
a→∞

ˆ ∞
0

e−(y
2−i)a

y2 − i
dy = 0.

Since ˆ
E(a)

f(x, y) dxdy =

√
π

2

ˆ a

0

eix√
x
dx =

ˆ ∞
0

dy

y2 − i
−
ˆ ∞
0

e−(y
2+i)a

y2 − i
dy,

taking limits as a→ +∞ we get
√
π

2

ˆ ↑∞
0

eix√
x
dx =

ˆ ∞
0

dy

y2 − i
=

(ˆ ∞
0

y2

1 + y4
dy + i

ˆ ∞
0

dy

1 + y4

)
=

π

2
√

2
(1 + i),

and equating real and imaginary parts:
ˆ ↑∞
0

cosx√
x
dx =

√
π

2
;

ˆ ↑∞
0

sinx√
x
dx =

√
π

2
.

�

2. Analisi Reale per Matematica – Primo Compitino – 17 novembre 2012

Exercise 4. Let (X,M, µ) be a measure space, and let un, fn, vn be sequences in L1
µ(X,R), pointwise

converging a.e. to u, f, v, respectively; assume that u, v ∈ L1(µ) and

un(x) ≤ fn(x) ≤ vn(x) for every n ∈ N and a.e. x ∈ X; lim
n→∞

ˆ
X

un =

ˆ
X

u; lim
n→∞

ˆ
X

vn =

ˆ
X

v.

(i) Prove that in these hypotheses also f ∈ L1
µ(X,R) and limn→∞

´
X
fn =

´
X
f ; use only Fatou’s

lemma for the proof, and not the dominated convergence theorem.
(ii) State the dominated convergence theorem.
(iii) The generalized dominated convergence theorem says that if fn, gn are sequences in L1(µ), point-

wise converging to f and g respectively, |fn| ≤ gn and
´
X
gn →

´
X
g < ∞, then f ∈ L1(µ) and´

X
fn →

´
X
f . Prove this theorem using the previous result (i) on the three sequences.

Solution. (i) Clearly u(x) ≤ f(x) ≤ v(x) for a.e. x ∈ X. Since u, v ∈ L1(µ) by hypothesis we have also
f ∈ L1(µ) (e.g. because −v ≤ −f ≤ −u, so that |f | = f ∨ (−f) ≤ v ∨ (−u), and the ∨ of two functions
in L1(µ) is in L1(µ); at any rate, it is clear that |f | ≤ |u| + |v|, and this function is in L1(µ) because u
and v are in L1(µ) by hypothesis).

Apply Fatou’s lemma to fn − un ≥ 0, obtainingˆ
X

lim inf
n→∞

(fn − un) ≤ lim inf
n→∞

ˆ
X

(fn − un) = lim inf
n→∞

(ˆ
X

fn −
ˆ
X

un

)
=

lim inf
n→∞

ˆ
X

fn − lim
n→∞

ˆ
X

un = lim inf
n→∞

ˆ
X

fn −
ˆ
X

u;

the left hand side is
´
X

(f − u) =
´
X
f −

´
X
u, so that we getˆ

X

f −
ˆ
X

u ≤ lim inf
n→∞

ˆ
X

fn −
ˆ
X

u ⇐⇒
ˆ
X

f ≤ lim inf
n→∞

ˆ
X

fn.
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Now apply Fatou’s lemma to the sequence vn − fn ≥ 0, obtainingˆ
X

lim inf
n→∞

(vn − fn) ≤ lim inf
n→∞

ˆ
X

(vn − fn) = lim inf
n→∞

(ˆ
X

vn −
ˆ
X

fn

)
=

lim
n→∞

ˆ
X

vn + lim inf
n→∞

(
−
ˆ
X

fn

)
=

ˆ
X

v − lim sup
n→∞

ˆ
X

fn;

the left hand side is
´
X

(v − f) =
´
X
v −

´
X
f , so that we get

ˆ
X

v −
ˆ
X

f ≤
ˆ
X

v − lim sup
n→∞

ˆ
X

fn ⇐⇒ lim sup
n→∞

ˆ
X

fn ≤
ˆ
X

f,

which combined with the previous result yields
´
X
f = limn→∞

´
X
fn; (i) has been proved.

(ii) See the Lecture Notes.
(iii) |fn| ≤ gn is equivalent to −gn ≤ fn ≤ gn if fn is a real valued function; we simply set un = −gn

and vn = gn, and the hypotheses are all verified: clearly
´
X
un = −

´
X
gn → −

´
X
g, etc. For fn complex

valued, use real and imaginary parts. �

Remark. Fatou’s lemma applies only to sequences of positive functions! Many applied the lemma
directly to the sequences un ≤ fn ≤ vn, a very serious blunder.

Moreover, some incorrectly presumed the following: if gn ∈ L1
µ(X,R) is a sequence converging a.e.

to g ∈ L1
µ(X,R), and

´
X
gn →

´
X
g, then

´
X
|gn| →

´
X
|g|, or

´
X
g±n →

´
X
g±, or even more, gn

converges to g in L1
µ(X,R). This is in general not true when gn may change sign. Let X = [0, 1] with

Lebesgue measure m, and let gn = n2 (χ]0,1/(2n)] − χ]1/(2n),1/n]). Then gn ∈ L1(m), limn→∞ gn(x) = 0

for every x ∈ [0, 1], so that the limit function 0 is in L1(m); moreover
´
[0,1]

gn = 0 for every n, so that

limn→∞
´
[0,1]

gn =
´
[0,1]

g = 0; but g+n = n2 χ]0,1/(2n)] and g−n = n2 χ]1/(2n),1/n] are such that

ˆ
[0,1]

g+n =

ˆ
[0,1]

g−n =
n

2
→∞,

whereas, of course, limn→∞ g+n (x) = limn→∞ g−n (x) = 0 for every x ∈ [0, 1].

Exercise 5. Let µ be a positive finite measure on the Borel subsets of R, 0 < µ(R) = a < ∞; we also
suppose that µ(] −∞, 0[) = 0. Let F (x) = µ(] −∞, x]) be the right continuous distribution function of
µ, with initial point −∞.

(i) Under what condition on µ is F (0) = 0?
(ii) Denoting by m the one–dimensional Lebesgue measure, compute µ⊗m(T ), where

T = {(x, y) ∈ R2 : 0 ≤ y ≤ x},

and deduce from it the formulaˆ
[0,∞[

x dµ(x) =

ˆ ∞
0

(F (∞)− F (x)) dx (dx = dm(x)).

Is it true that the identity function f(x) = x belongs to L1(µ) if and only if x 7→ (F (∞)−F (x))
belongs to L1

m([0,∞[)?
(iii) Prove that the formula

ϕ(x) =

ˆ
[0,∞[

cos(xt) dµ(t) defines a continuous function ϕ : R→ R.

(iv) Assume that F (t) = F (∞) +O(1/t2) for t→∞. Prove that then the function ϕ defined in (iii)
belongs to C1(R).

Solution. (i) Clearly F (x) = 0 for every x < 0, so that F (0−) = 0; then the jump of F at 0, namely
F (0)− F (0−) = µ({0}) coincides with F (0): F (0) = 0 iff µ({0}) = 0.

(ii) T is closed in R2, hence Lebesgue measurable; both measures are σ−finite, µ even finite; then, if
T y = {x ∈ R : (x, y) ∈ T} = [y,∞[ if y ≥ 0, and otherwise T y = ∅:

µ⊗m(T ) =

ˆ
[0,∞]

µ(T y) dm(y) =

ˆ
[0,∞[

(F (∞)− F (y−)) dm(y);
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The set of discontinuities of the monotone function F is at most countable, hence of Lebesgue measure
0, so that F (y−) = F (y) for m a.e. y ∈ R, andˆ

[0,∞[

(F (∞)− F (y−)) dm(y) =

ˆ
[0,∞[

(F (∞)− F (y)) dm(y).

Now we integrate exchanging the variables; for every x ∈ R we consider the x−section of T , Tx = {y ∈
R : (x, y) ∈ T} = [0, x] if x ≥ 0, otherwise Tx = ∅. We get

µ⊗m(T ) =

ˆ
[0,∞]

m(Tx) dµ(x) =

ˆ
[0,∞[

x dµ(x).

We have proved, as requested, that

µ⊗m(T ) =

ˆ
[0,∞[

(F (∞)− F (y)) dm(y) =

ˆ
[0,∞[

x dµ(x).

Since µ(]−∞, 0[) = 0, f(x) = x coincides µ−a.e. with f+(x) = |f(x)| = |x| on R, so thatˆ
[0,∞]

x dµ(x) =

ˆ
R
|x| dµ(x),

and the formula just proved implies that ‖f‖1 =
´∞
0

(F (∞)−F (y)) dm(y); the answer is yes (notice also
that F (∞)− F (y) ≥ 0, because F is increasing).

(iii) The function x 7→ cos(xt) is continuous for every t, and | cos(xt)| ≤ 1, with the constant 1 ∈ L1(µ)
since µ(R) < ∞. The theorem on continuity of parameter depending integrals then applies, and proves
continuity of ϕ.

(iv) We have

∂

∂x
(cos(xt)) = −t sin(xt), so that

∣∣∣∣ ∂∂x (cos(xt))

∣∣∣∣ = |t| | sin(xt)| ≤ |t|.

If t 7→ |t| is in L1(µ), the theorem on differentiation of parameter depending integrals says that ϕ′(x)
exists for every x ∈ R, and

ϕ′(x) =

ˆ
R

(−t sin(xt)) dµ(t);

and then the continuity part of the theorem implies that this function ϕ′ is continuous. In (ii) we have
seen that the identity function of R is in L1(µ) if and only if t 7→ F (∞) − F (t) belongs to L1

m([0,∞[).
The hypothesis says that there is a constant k > 0 and b > 0 such that 0 ≤ F (∞) − F (t) ≤ k/t2 for
t ≥ b; on [0, b] the function is of course bounded. Then t 7→ F (∞) − F (t) belongs to L1

m([0,∞[). Thus
ϕ ∈ C1(R), and the derivative is obtained by differentiating under the integral sign. �

Exercise 6. Let (X,M, µ) be a measure space. We say that a sequence fn of measurable functions
converges to 0 in measure if for every t > 0 we have limn→∞ µ({|fn| > t}) = 0.

(i) Using Čebičeff inequality prove that if ‖fn‖1 → 0, then fn converges to 0 in measure.
(ii) With X = [0, 1] and µ Lebesgue measure, let fn = nχ]0,1/n]. Is it true that fn converges to 0 in

measure? and in L1(µ) also?
(iii) Assume now that fn is a uniformly bounded sequence of measurable functions on X (that is,

there is a constant M > 0 such that ‖fn‖∞ ≤ M for every n ∈ N), and that µ(X) < ∞. Prove
that if fn converges to 0 in measure then it converges to 0 in L1(µ) (given ε > 0 writeˆ

X

|fn| =
ˆ
{|fn|>ε}

|fn|+
ˆ
{|fn|≤ε}

|fn|

and estimate separately the two terms).
(iv) A sequence fn of real–valued measurable functions converges to 0 in measure if and only if the

sequence arctan fn converges to 0 in measure.
(v) On a finite measure space a sequence fn of real–valued measurable functions converges to 0 in

measure if and only if the sequence arctan fn converges to 0 in L1(µ).

Solution. (i) For every t > 0 and every n ∈ N we have µ({fn > t}) ≤ (1/t)
´
X
|fn| = (1/t) ‖fn‖1; letting

n→∞ in this inequality we get limn→∞ µ({fn > t}) = 0.
(ii) Given t > 0 we have that {|fn| > t} = {fn > t} =]0, 1/n] for n > t (and {fn > t} = ∅ for n ≤ t)

so that µ({|fn| > t} = 1/n tends to 0 as n→∞, and fn converges to 0 in measure. On the other hand
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‖fn‖1 =
´
[0,1]

fn dm = nm(]0, 1/n]) = 1 for every n, so that fn does not converge in L1
m([0, 1]) (to 0, or

to any other function).
(iii) Accepting the hint we writeˆ

X

|fn| =
ˆ
|fn|>ε

|fn|+
ˆ
{|fn|≤ε}

|fn| ≤
ˆ
|fn|>ε

M +

ˆ
{|fn|≤ε}

ε ≤(*)

≤M µ({|fn| > ε}) + ε µ({|fn| ≤ ε}) ≤M µ({|fn| > ε}) + ε µ(X);

by hypothesis limn→∞ µ({|fn| > ε}) = 0, so that we may pick nε ∈ N such that if n ≥ nε then
µ({|fn| > ε}) ≤ ε/M ; then

‖fn‖1 =

ˆ
X

|fn| ≤ (1 + µ(X)) ε for n ≥ nε;

the proof of (iii) is completed.
(iv) Since arctan is odd we have | arctan fn| = arctan(|fn|) for every real valued function fn. Then,

if 0 < t < π/2 we have {| arctan fn| > t} = {arctan |fn| > t} = {|fn| > tan t} (if t ≥ π/2 we
have {| arctan fn| > t} = ∅). From this the result is immediate: if |fn| tends to 0 in measure then
limn→∞ µ({|fn| > tan t}) = 0 for every t ∈]0, π/2[, implying that arctan fn tends to 0 in measure. And
if arctan fn tends to 0 in measure then for every t > 0 we have limn→∞ µ({arctan |fn| > arctan t}) = 0,
proving that |fn| tends to 0 in measure, since {|fn| > t} = {| arctan(fn)| > arctan t}

(v) Simply combine (i), (iii) and (iv): if fn tends to 0 in measure then arctan fn also tends to 0 in
measure, by (iv); since µ(X) < ∞, and | arctan fn(x)| ≤ π/2 for every n ∈ N and every x ∈ X (iii)
implies that arctan fn tends to 0 in L1(µ). And if this happens, then arctan fn tends to 0 in measure, by
(i), and by (iv) then also fn tends to 0 in measure.

Remark. In (ii) many write
´
[0,1]

fn = nµ(]0, 1/n]) (correctly); then instead of saying that µ(]0, 1/n]) =

1/n an hence that the integral is always 1, for every n, make complicated computations ending with the
conclusion that limn→∞

´
[0,1]

fn = 0!

In the proof of (iii) many argue in the following way: passing to the limit as n tends to ∞ in (*) one
gets limn→∞

´
X
|fn| ≤ ε µ(X), hence the limit is 0 because ”one can take ε tending to 0”. This way of

arguing is of course incorrect, we cannot write limn→∞
´
X
|fn| if we do not yet know that the limit exists.

A correct way of reasoning along these lines is: in the inequalityˆ
X

|fn| ≤M µ({|fn| > ε}) + ε µ(X)

take the lim sup on both sides as n→∞, obtaining (since limn→∞ µ({|fn| > ε}) = 0)

lim sup
n→∞

ˆ
X

|fn| ≤ lim sup
n→∞

(M µ({|fn| > ε}) + ε µ(X)) = ε µ(X).

Since ε > 0 is arbitrary, this implies lim supn→∞
´
X
|fn| = 0, hence also limn→∞

´
X
|fn| = 0, since´

X
|fn| ≥ 0.

�

Analisi Reale per Matematica – Secondo precompitino – 21 gennaio 2013

Exercise 7. (10) Let Bn be the σ−algebra of Borel subsets of Rn, and let µ : Bn → [0,∞] be a Radon
measure. We consider the set V = {V ⊆ Rn : V open, µ(V ) = 0} and set A =

⋃
V ∈V V .

(i) [3] Prove that µ(A) = 0 (caution: in general V is not countable. However, Rn has a countable
base for its topology . . . ).

The closed set S = Supp(µ) = Rn r A is the support (topological support if emphasis is needed) of the
measure µ: S is the smallest closed set that supports µ, in the sense that Rn r S is null for µ.

(ii) [1] What is the support of Lebesgue measure on Rn?
(iii) [2] Let D ⊆ Rn be a countable set, let ρ : D →]0,∞[ be summable (i.e.

∑
x∈D ρ(x) <∞) and let

ν : Bn → [0,∞[ be defined by ν(A) =
∑
x∈A∩D ρ(x). What is Supp(ν)? (remember that it has

to be a closed set, with complement of null measure . . . ).
(iv) [1] Give an example of two mutually singular measures, both having as topological support all

the space Rn.
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(v) [3] Let f ∈ L1
loc(Rn) be positive, and define µ(E) :=

´
E
f dm for every Borel set E. As usual we

set

Arf(x) =

 
B(x,r]

f dm for every x ∈ Rn and r > 0.

Prove that if lim supr→0+Arf(x) > 0 then x ∈ Supp(µ). Conversely, assuming x ∈ Supp(µ) does
it follow that lim supr→0+Arf(x) > 0?

Solution. (i) Given a countable base C for the topology of Rn (e.g. all open cubes with center in Qn and
rational side length) we have V =

⋃
{C ∈ C : C ⊆ V } for every open set V , so that

A =
⋃
V ∈V

V =
⋃
V ∈V

⋃
{C ∈ C : C ⊆ V };

now C ⊆ V and µ(V ) = 0 implies µ(C) = 0, and C ∈ C, µ(C) = 0 implies C ∈ V. It follows that the set

{C ∈ C : C ⊆ V, for some V ∈ V},

coincides with the set {C ∈ C : µ(C) = 0} = C ∩ V. Then

A =
⋃
{C ∈ C : µ(C) = 0},

and hence µ(A) = 0 by countable subadditivity, because this last is a countable union.
(ii) Every non–empty open subset of Rn has strictly positive Lebesgue measure, as often remarked.

Then the support of Lebesgue measure is all of Rn.
(iii) An open subset of Rn has ν−measure 0 if and only if it is disjoint from D. Then A is the union of

all open subsets of Rn disjoint from D, and its complement, support of ν, is D̄, the closure of D in Rn.
(iv) We may take Lebesgue measure m and ν as above, ν, with D = Qn dense in Rn, so that

Supp(ν) = Rn, too. Since m(Qn) = 0 and ν(Rn rQn) = 0 the measures are mutually singular.
(v) If the limsup is strictly positive then we have

Arf(x) =
µ(B(x, r])

m(B(x, r])
> 0 for every r > 0,

in particular µ(B(x, r]) > 0 for every r > 0. Then x belongs to the support of µ, since µ(B(x, r]) =
µ(B(x, r[) > 0 for every r > 0. But x ∈ Supp(µ) is exactly equivalent to µ(B(x, r[) > 0 for every r > 0
and does not imply lim supArf(x) > 0: take e.g f(x) = |x| on R1 and x = 0; we have Supp(µ) = R,
since every open non empty interval has clearly strictly positive measure; and since f is continuous

lim
r→0+

Arf(0) = f(0) = |0| = 0.

�

Exercise 8. (10) For 1 ≤ p ≤ ∞ and Ω an open subset of Rn we denote by Lploc(Ω) the set of all
measurable functions f : Ω→ K such that f χK ∈ Lp(Ω) for every compact subset K of Ω.

(i) [4] Prove that Lploc(Ω) is a vector subspace of the space of all measurable functions from Ω to K,
containing all bounded measurable functions and in particular all constants, and that if p < q
then Lploc(Ω) % Lqloc(Ω) (for this last, you may assume n = 1).

(ii) [6] Given 1 ≤ p <∞ and f ∈ Lploc(Ω) we say that x ∈ Ω is a Lebesgue point for f , as a function
of Lploc(Ω) if

lim
r→0+

 
B(x,r]

|f(y)− f(x)|p dy = 0.

By imitating, mutatis mutandis, the proof given for L1
loc prove that almost all points of Ω are

Lebesgue points for f as a function of Lploc.

Solution. (i) Since m(K) <∞, spaces Lpm(K) decrease as p increases, and Lp(K) ⊇ L∞(K) for every p.
If c ∈ Ω we know that the function fα(x) = 1/|x − c|α is summable in a nbhd of c iff α < n; then fα is
in Lploc(Ω) iff αp < n ⇐⇒ α < n/p; if n/q < α < n/p then fα ∈ Lploc(Ω) r Lqloc(Ω).

(ii) For every c ∈ K and f ∈ Lploc(Ω) the function x 7→ |f(x) − c|p is in L1
loc(Ω), so that, by the

differentiation theorem:

lim
r→0+

Ar|f − c|p = |f(x)− c|p for every x ∈ Rn r E(c), where m(E(c)) = 0.
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Let D be a countable dense subset of K, and let E =
⋃
c∈D E(c). Then m(E) = 0. Let’s prove that

limr→0+
ffl
B(x,r]

|f(y) − f(x)|p dy = 0 for every x ∈ Ω r E. Given x ∈ Ω r E and ε > 0 pick c ∈ D such

that |f(x)− c|p ≤ ε; then

lim sup
r→0+

 
B(x,r]

|f(y)− f(x)|p dy ≤ lim sup
r→0+

( 
B(x,r]

(|f(y)− c|+ |c− f(x)|)p dy

)
=

lim sup
r→0+

(
2p−1

 
B(x,r]

|f(y)− c|p dy + 2p−1 |c− f(x)|p
)

=

2p−1 lim sup
r→0+

 
B(x,r]

|f(y)− c|p dy + 2p−1 |f(x)− c|p ≤

≤ 2p−1 2|f(x)− c|p ≤ 2p ε.

�

Exercise 9. (16) Let f : R→ R be defined by f(x) = e−x
2

if x < 0; f(x) = (1−cos(πx))/2 if 0 ≤ x < 1;
f(x) = e−(x−1) if x ≥ 1.

(i) [3] Plot f . Describe the function T (x) = V]−∞,x]f , plot it, and write f as the difference of two
increasing functions.

(ii) [1] Find a Hahn decomposition of the signed measure µ.
(iii) [4] State the Lebesgue–Radon–Nikodym theorem, and find the decomposition for µ into absolutely

continuous and singular part with respect to Lebesgue measure m.
(iv) [4] Given u(x) = x, compute all four integralsˆ

R
u± dµ± and also

ˆ
R
u dµ.

(v) [4] Define now g : R → R as f(x) above if x /∈ [0, 1[, and for 0 ≤ x < 1 set g(x) = ψ(x), where
ψ : [0, 1]→ R is the Cantor function with δn = (2/3)n. How does the answer to (iii) change, with
ν = dg? can you still compute (with u(x) = x, as in (iv))ˆ

R
u dν?

(you may use the fact that
´ 1

0
ψ(x) dx = 1/2).

Solution. (i) The plot of f is easy:

-1 1

1

Figure 2. Plot of the function f .

Since x 7→ f(x) has limit 0 at −∞ and is increasing in −∞, 0[ we have T (x) = f(x) = e−x
2

for x < 0.
Since f is right–continuous T is also right–continuous; moreover T (0) = T (0+) = T (0−) + 1 = 2, where
1 is the absolute value of the jump of f at 0. For x ∈ [0, 1[ we have T (x) = T (0) + f(x) − f(0) =
2 + (1− cos(πx))/2. Finally on [1,∞[ f is decreasing so that T (x) = T (2) + f(2)− f(x) = 4− e−(x−1).
Here is the plot of T :

Write A(x) = (T (x) + f(x))/2; we have A(x) = e−x
2

for x < 0, A(x) = 1 + (1 − cos(πx))/2 for
0 ≤ x ≤ 1 and A(x) = 2 for x ≥ 1, while B(x) = (T (x)− f(x))/2 is 0 for x < 0, is 1 for 0 ≤ x ≤ 1, and
is 3− e−(x−1) for x ≥ 1.

Of course µ+ = µA and µ− = µB . (ii) A Hahn decomposition is P =] −∞, 0[∪]0, 1[, positive, with
complement Q = {0} ∪ [1,∞[, negative.

(iii) For the statement of Radon–Nikodym theorem see the Lecture Notes. The singular part of µ is
−δ0, the regular part is f ′ dm, where f ′ is the classical derivative of f where it exists, that is in Rr{0, 1}:

f ′(x) = −2x e−x
2

x < 0; f ′(x) =
π

2
sin(πx) 0 < x < 1; f ′(x) = −e−(x−1) x > 1.
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-1 1

1

2

3

4

Figure 3. Plot of the function T .

1

1

2

-1 1

1

2

Figure 4. Plot of the functions A,B.

(iv) Since
´
R u dδ0 = u(0) = 0 there is no contribution to the integrals from the singular part. Of

course u+(x) = x for x ≥ 0, and u+(x) = 0 for x ≤ 0, while u−(x) = 0 for x > 0 and u−(x) = −x for
x ≤ 0. Thenˆ

R
u+ dµ+ =

ˆ 1

0

x (f ′(x)) dx = [x f(x)]
x=1
x=0

ˆ 1

0

f(x) dx = f(1)−
ˆ 1

0

1− cos(πx)

2
dx = 1− 1

2
=

1

2
.

ˆ
R
u+ dµ− = −

ˆ ∞
1

x (f ′(x)) dx = − [x f(x)]
x=∞
x=0 +

ˆ ∞
1

f(x) dx = −[0− f(1)] + 1 = 2.

ˆ
R
u− dµ+ =

ˆ 0

−∞
(−x) f ′(x) dx =

[
(−x) e−x

2
]x=0

x=−∞
−
ˆ 0

−∞
(−1)e−x

2

dx = 0 +

√
π

2
=

√
π

2
.

and, finally ˆ
R
u− dµ− = 0.

Then ˆ
R
u dµ =

ˆ
R
u+ dµ+ −

ˆ
R
u+ dµ− −

ˆ
R
u− dµ+ +

ˆ
R
u− dµ− =

1

2
− 2−

√
π

2
= −3

2
−
√
π

2
.

(v) The singular part is now −δ0 + dψ, where dψ is the Radon measure of the Cantor function. The
only integral that may change is

´
R u

+ dµ+, which is now
´
[0,1]

x dψ. Using again integration by parts we
get ˆ

[0,1]

x dψ = [xψ(x)]
x=1
x=0 −

ˆ
[0,1]

ψ(x) dx = 1− 1

2
=

1

2

(unchanged!). �

Analisi Reale per Matematica – Secondo compitino – 26 gennaio 2013

Exercise 10. Let f : R→ R be defined by f(x) = 1/(1−x)3 if x < 0; f(x) = (x+ψ(x))/2 if 0 ≤ x < 1,
where ψ is the Cantor function with δn = (2/3)n ; f(x) = 1− 1/x3 if x ≥ 1.

(i) Plot f . Describe the function T (x) = V f(]−∞, x]), plot it, and write f as the difference of two
increasing functions A, B; plot A and B.

(ii) State a theorem which implies that any signed measure can be written as the difference of two
positive measures, and find a Hahn decomposition of the signed measure µ = df .

(iii) Find the decomposition for µ into absolutely continuous and singular part with respect to
Lebesgue measure m.
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(iv) Determine the set of p > 0 such that u(x) = |x| belong to Lp(|µ|). Computeˆ
R
u d|µ|.

Solution. (i) The plot is very easy

-1 1

1

Figure 5. Plot of f .

Notice that f is right–continuous, so that T is also right continuous; we have T (x) = g(x) = 1/(1−x)3

for x < 0, T (0) = 2, T (x) = 2 + f(x) = 2 + (x + ψ(x))/2 for x ∈ [0, 1[, T (1) = 4, T (x) = 5 − 1/x3 for
x ≥ 1.

-1 1

1

2

3

4

5

Figure 6. Plot of T .

We have A(x) = (T (x) + f(x))/2, and A(x) = f(x) = 1/(1 − x)3 for x < 0, A(x) = 1 + f(x) for
0 ≤ x, 1, A(x) = 3− 1/x3 for x ≥ 1. For B(x) = (T (x)− f(x))/2 we have B(x) = 0 for x < 0; B(x) = 1
for x ∈ [0, 1[, B(x) = 2 for x ∈ [1,∞[.

(ii) For the statement see Lecture Notes, 6.1.3, the Hahn decomposition theorem. A Hahn decompo-
sition in our case is P = Rr {0, 1}, Q = {0, 1}.

(iii) The absolutely continuous part is f ′(x) dm where

f ′(x) =
3

(1− x)4
if x < 0; f ′(x) =

1

2
if 0 < x < 1; f ′(x) =

3

x4
if x > 1.
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-1 1

1

2

3

-1 1

1

2

Figure 7. Plot of the functions A,B.

the singular part is
dψ

2
− δ0 − δ1;

remember that ψ′(x) = 0 a.e. in R. (iv) The measure |µ| is

|µ| = f ′ dm+
dψ

2
+ δ0 + δ1.

We have u ∈ Lp(|µ|) if and only if up ∈ L1 of each of these four measures. Clearly up ∈ L1(δ0) (with
integral 0) and up ∈ L1(δ1) (with integral 1) for every p > 0; moreover up ∈ L1(dψ) for every p, since
up is bounded on [0, 1], a set of dψ measure 1 containing the support of dψ. We have to find the set of
p > 0 such that up ∈ L1(f ′ dm), the absolutely continuous part of |µ|. This is equivalent to finding the
set of all p > 0 such that the integralsˆ 1

0

xp
dx

2
;

ˆ 0

−∞
|x|p 3dx

(1− x)4
;

ˆ ∞
1

xp
3dx

x4

are all finite. The first integral is finite for every p > 0; the second and third are finite iff 4− p > 1 ⇐⇒
p < 3 (as x→ ±∞ the integrand is asymptotic to 1/|x|4−p). So u ∈ Lp(|µ|) if 0 < p < 3. For the integral:

ˆ
R
u d(δ0 + δ1) = u(0) + u(1) = 1;

ˆ 1

0

x
dx

2
=

1

4
;

ˆ 0

−∞
|x| 3dx

(1− x)4
= (setting 1− x = t) =

ˆ ∞
1

3(1− t) dt
t4

;

and ˆ ∞
1

x
3dx

x4
;

summing the last three integrals we get the contribution to the integral of the absolutely continuous part,
that is

1

4
+ 3

ˆ ∞
1

dx

x4
=

1

4
+ 1 =

5

4
.

It remains to compute the integral
´
[0,1]

x dψ/2; integrating by parts we get

ˆ 1

0

x dψ = [xψ(x)]
1
0 −

ˆ 1

0

ψ(x) dx = 1− 1

2
=

1

2
.

Then ˆ
R
u d|µ| = 1 +

1

4
+

5

4
=

5

2
.

�

Exercise 11. Let (X,M, µ) be a measure space, and let F = F(µ) be the ideal of sets of finite measure,
F = {A ∈M : µ(A) <∞}; recall that F is a metric space under the metric

ρ(E,F ) = µ(E M F ) = ‖χE − χF ‖1,
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provided that we identify sets E, F with zero distance, i.e. such that µ(E M F ) = 0. If f : X → K is
measurable and f χE ∈ L1(µ) for every E ∈ F , we can define a set function ν = νf : F → K by

ν(E) :=

ˆ
E

f dµ.

(i) Prove that ν is countably additive, and that for E, F ∈ F we have

|ν(E)− ν(F )| = |ν(E r F )− ν(F r E)| ≤
ˆ
EMF
|f | dµ.

(ii) Given f ∈ L∞(µ), prove that ν can be defined and that |ν(E)| ≤ k µ(E) for some k > 0 and
deduce that ν is Lipschitz continuous from F to K.

(iii) Assume now that f ∈ Lp(µ) for some p, 1 < p <∞. Prove that ν can be defined, and that there
is k > 0 such that

|ν(E)| ≤ k (µ(E))1/q for every E ∈ F ;

(here q = p/(p−1) is the exponent conjugate to p). Deduce that ν is still a uniformly continuous
function from F to K.

(iv) Finally assume f ∈ L1(µ). In this case the formula ν(E) =
´
E
f dµ defines ν on all of M. Prove

that on F of this function is still uniformly continuous.

A function f : I → K, where I is an interval of R is said to satisfy a Hölder condition of exponent α
(where 0 < α < 1) if there is a constant k > 0 such that |f(x2)−f(x1)| ≤ k |x2−x1|α for every x1, x2 ∈ I.

(v) Prove that if f : [0, 1]→ K is absolutely continuous and f ′ ∈ Lpm([0, 1]), p > 1 then f satisfies a
Hölder condition of exponent 1/q = (p− 1)/p.

(vi) Assume that f : [0, 1] → R is absolutely continuous, f(0) = 0 and f ′(x) = 1/(x (1 + log2 x)) for
x > 0. Find f , and prove that f does not satisfy a Hölder condition, for no exponent α > 0.

Solution. (i) We have to prove that if (En)n∈N is a disjoint sequence of sets of finite measure, with union
E =

⋃
n∈NEn still of finite measure, then ν(E) =

∑∞
n=0 ν(En). Setting fn = f χEn

and g = f χE , this
is equivalent to say that ˆ

X

g dµ =

∞∑
n=0

ˆ
X

fn dµ,

and this is an immediate consequence of the theorem on normally convergent series: since the fn are
pairwise disjoint, we have |g| =

∑∞
n=0 |fn| (pointwise), so that by the theorem on series with positive

terms we have ˆ
X

|g| dµ =

∞∑
n=0

ˆ
X

|fn| dµ, equivalently ‖g‖1 =

∞∑
n=0

‖fn‖1

which implies, as well–known, using the dominated convergence theorem, that the integral of the sum is
the sum of the series of integrals, exactly what required .

Trivially we have, for every E ∈ F :

|ν(E)| =
∣∣∣∣ˆ
E

f dµ

∣∣∣∣ ≤ ˆ
E

|f | dµ.

By additivity, for E,F ∈ F we have:

|ν(E)− ν(F )| =|(ν(E r F ) + ν(E ∩ F ))− (ν(F r E) + ν(E ∩ F ))| = |ν(E r F )− ν(F r E)| ≤

≤ |ν(E r F )|+ |ν(F r E)| ≤
ˆ
ErF

|f | dµ+

ˆ
FrE

|f | dµ =

ˆ
EMF
|f | dµ

(ii) If f ∈ L∞(µ) clearly f χE ∈ L1(µ) for every E ∈ F , so that ν is defined, and by (i)

|ν(E)− ν(F )| ≤
ˆ
EMF
|f | dµ ≤ ‖f‖∞ µ(E M F ) = k ρ(E,F ),

so that ν is Lipschitz continuous,with k = ‖f‖∞.
(iii) Using Hölder inequality applied to |f|E | and the constant 1 on E ∈ F we have, for E ∈ F :

|ν(E)| ≤
ˆ
E

|f | dµ ≤
(ˆ

E

|f |p dµ
)1/p (ˆ

E

1q dµ

)1/q

≤
(ˆ

X

|f |p dµ
)1/p

(µ(E))1/q = ‖f‖p (µ(E))1/q;
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and arguing as above we get, for E,F ∈ F :

|ν(E)− ν(F )| ≤
ˆ
ErF

|f | dµ+

ˆ
FrE

|f | dµ =

ˆ
EMF
|f | dµ,

and, with k = ‖f‖p ˆ
EMF
|f | dµ ≤ ‖f‖p (µ(E M F ))1/q = k (ρ(E,F ))1/q.

This of course immediately implies uniform continuity of ν: given ε > 0 take δ = (ε/k)q.
(iv) In this case ν : M → K is a finite measure, absolutely continuous with respect to µ, and hence

also (ε, δ)−absolutely continuous; and this is exactly the needed uniform continuity; by the preceding
argument in fact we have

|ν(E)− ν(F )| ≤
ˆ
EMF
|f | dµ = |ν|(E M F );

now given ε > 0 we find δ > 0 such that µ(G) ≤ δ implies |ν|(G) ≤ ε, we are done (setting G = E M F ).
Recall the proof of (ε, δ)−absolute continuity, by contradiction: if there is ε > 0 such that for every
n ∈ N we find Fn ∈M with µ(Fn) ≤ 2−(n+1) and |ν|(Fn) > ε, then setting F = lim supn→∞ Fn we have
µ(F ) = 0 and |ν|(F ) ≥ ε, a contradiction (Lecture Notes, 6.2.5.3,4).

(v) Since f is absolutely continuous we have f(x2)− f(x1) =
´
[x1,x2]

f ′(x) dx so that

|f(x2)− f(x1)| =

∣∣∣∣∣
ˆ
[x1,x2]

f ′(x) dx

∣∣∣∣∣ ≤
ˆ
[x1,x2]

|f ′(x)| dx;

and using the proof above given for (ii), with E = [x1, x2] we get

ˆ
[x1,x2]

|f ′(x)| dx ≤ k |x2 − x1|1/q k = ‖f ′‖p =

(ˆ
[x1,x2]

|f ′(x)|p dx

)1/p

.

(vi) If f satisfies a Hölder condition then f(x)/xα ought to be bounded for some α > 0; but we have,
for every α > 0:

lim
x→0+

f(x)

xα
= (Hôpital’s rule) =

1

α
lim
x→0+

1

xα (1 + log2 x)
=∞,

recalling that limx→0+ x
α log2 x = 0 for every α > 0. It is not necessary to evaluate f , however the

integral is immediate:

f(x) =

ˆ x

0

dt

t (1 + log2 t)
= [arctan log t]

t=x
t=0 = arctan log x+

π

2
.

Remark. Unfortunately the text given at the exam was with f ′(x) = 1/(x log2 x) instead of the correct
version above, so that we get f(x) = 1/ log(1/x); in fact f is not even absolutely continuous on [0, 1],
being not continuous at x = 1, so the solution is trivial in this case, and the exercise becomes too easy
and quite meaningless. I have given full credit to solutions, anyway.

One word on question (i): it is NOT true that ν(E)− ν(F ) = ν(E M F )! We have

|ν(E)− ν(F )| =
∣∣∣∣ˆ
X

f χE −
ˆ
X

f χF

∣∣∣∣ =

∣∣∣∣ˆ
X

f (χE − χF )

∣∣∣∣ ,
and now χE − χF = χErF − χFrE ; what is true is that |χE − χF | = χEMF so that we may argue as
follows ∣∣∣∣ˆ

X

f (χE − χF )

∣∣∣∣ ≤ ˆ
X

|f | |χE − χF | =
ˆ
X

|f |χEMF =

ˆ
EMF
|f |,

as required. But in general it is NOT true that |ν(E)− ν(F )| ≤ |ν(E M F )|.
Many have also the strange delusion that if f ∈ L1(µ) then we have

∣∣´
E
f dµ

∣∣ ≤ ‖f‖1 µ(E) for every
set E of finite measure. This is clearly FALSE: assuming for simplicity f ≥ 0 this implies that every
average of f is less than its integral on X, which in general is not true: consider e.g. f(x) = χ]0,1]/(2

√
x)

in L1(R) with Lebesgue measure: we have ‖f‖1 = 1, and if E = [0, a] with a < 1 we haveˆ
E

f(x) dx =

ˆ a

0

dx

2
√
x

=
√
a > a = ‖f‖1m(E)

(
and

 
E

f dm =
1√
a
> 1 = ‖f‖1

)
.
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What is true is of course an inequality like (0 < µ(E) <∞):∣∣∣∣ 
E

f dµ

∣∣∣∣ ≤ ‖f‖∞ ⇐⇒ ∣∣∣∣ˆ
E

f dµ

∣∣∣∣ ≤ ‖f‖∞ µ(E)

(the average is less than the sup–norm of the function, equivalently the integral is less than the sup–norm
times the measure of the set on which we are integrating).

�

Exercise 12. Let Bn be the σ−algebra of Borel subsets of Rn, and let µ : Bn → [0,∞] be a positive
measure (not necessarily a Radon measure). We consider the set V = {V ⊆ Rn : V open, µ(V ) = 0}
and set A =

⋃
V ∈V V .

(i) Prove that µ(A) = 0 (caution: V is in general not countable . . . ).

The closed set S = Supp(µ) = Rn r A is the support (topological support if emphasis is needed) of the
measure µ: S is the smallest closed set that supports µ, in the sense that Rn r S is null for µ.

(ii) Let c ∈ Rn be given. Prove that the following are equivalent:
(a) c ∈ Supp(µ).
(b) For every open set U containing c we have µ(U) > 0.
(c) For every positive u ∈ Cc(Rn) such that u(c) > 0 we have

´
Rn u dµ > 0.

(iii) Let (X,M, µ) be a measure space, and let f : X → K be measurable. Let ν : B(K)→ [0,∞] be
the image measure of µ by means of f , that is ν(B) = µf←(B) := µ(f←(B)) for every B ∈ B(K).
The essential range of f is, by definition, the support of ν:

essrange(f) = Supp(µf←).

Prove that f ∈ L∞(µ) if and only if the essential range of f is a compact subset of K, and that
in this case ‖f‖∞ = max{|z| : z ∈ essrange(f)}.

(4 extra points) If E ∈ M with 0 < µ(E) < ∞, and f : X → K is a measurable function such that
f χE ∈ L1(µ), then the average of f over E is defined as

AEf :=

 
E

f dµ :=

ˆ
E

f
dµ

µ(E)
.

Prove that if (X,M, µ) is semifinite and C ⊆ K is a closed subset of K that contains all averages of f ,
then C contains also the essential range of f .

Solution. (i) (i) Given a countable base C for the topology of Rn (e.g. all open cubes with center in Qn
and rational side length) we have V =

⋃
{C ∈ C : C ⊆ V } for every open set V , so that

A =
⋃
V ∈V

V =
⋃
V ∈V

⋃
{C ∈ C : C ⊆ V };

now C ⊆ V and µ(V ) = 0 implies µ(C) = 0, and C ∈ C, µ(C) = 0 implies C ∈ V. It follows that the set

{C ∈ C : C ⊆ V, for some V ∈ V},
coincides with the set {C ∈ C : µ(C) = 0} = C ∩ V. Then

A =
⋃
{C ∈ C : µ(C) = 0},

and hence µ(A) = 0 by countable subadditivity, because this last is a countable union (= the union of a
countable family of sets).

(ii) (a) is equivalent to (b): immediate by definition, an open set has measure µ(U) = 0 if and only if
the support of µ is disjoint from U . (b) implies (c): If u(c) > 0 then U = {u > u(c)/2} is an open set
containing c, so that µ(U) > 0; and by Čebičeff’s inequality

µ(U) ≤ 2

u(c)

ˆ
Rn

u dµ so that also

ˆ
Rn

u dµ > 0.

(c) implies (b): given an open set U containing c, we get a positive function u ∈ Cc(Rn) with Supp(u) ⊆ U
and u(c) > 0: in fact there is r > 0 such that B(c, r] ⊆ U (U is open) and we can take u(x) =
max{r−|x−c|}∨0, which has B(c, r] as support, and is such that u(c) = r > 0. Then

´
Rn u(x) dµ(x) > 0,

and this implies µ(Coz(u)) = µ(B(c, r[) > 0, and since U ⊇ B(c, r[ we also get µ(U) > 0.
(iii) We have f ∈ L∞(µ) iff there is α > 0 such that µ({|f | > α}) = 0. This is equivalent to say

that Supp(ν) ⊆ {z ∈ K : |z| ≤ α}, the closed ball of K of center 0 and radius α. Then f ∈ L∞(µ)
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iff Supp(ν) is bounded, and since Supp(ν) is closed, then f ∈ L∞(µ) iff Supp(ν) is compact. Moreover
‖f‖∞ is the minimum {α ≥ 0} such that µ({|f | > α})(= ν({z : |z| > α})) = 0, the minimum radius
of a closed disc centered at the origin of K that contains Supp(ν), and this of course coincides with
max{|z| : z ∈ Supp(ν)}.

We assume that c ∈ essrange(f) rC, and get a contradiction. Since C is closed, we find an open disc
centered at c disjoint from C, say B(c, r[= {z ∈ K : |z − c| < r}, for some r > 0. Since c ∈ Supp(ν), and
B(c, r[ is an open set containing c we have 0 < ν(B(c, r[) = µ({|f − c| < r}); since µ is semifinite there
is E ∈ M with 0 < µ(E) < ∞ and E ⊆ {|f − c| < r}. Then we have AEf ∈ B(c, r[, so that AEf /∈ C,
contradicting the assumption that C contains all averages of f ; in fact

|AEf − c| =
∣∣∣∣ˆ
E

f
dµ

µ(E)
− c
∣∣∣∣ =

∣∣∣∣ˆ
E

(f − c) dµ

µ(E)

∣∣∣∣ ≤ ˆ
E

|f − c| dµ

µ(E)
<

ˆ
E

r
dµ

µ(E)
= r,

(the strict inequality is due to the fact that |f(x)− c| < r holds for every x ∈ E, and µ(E) > 0; clearly
f χE ∈ L1(µ) because f is bounded on E and E has finite measure).

�

Analisi Reale per Matematica – Primo appello – 5 febbraio 2013

Exercise 13. Let f : R → R be defined by f(x) = −e−x2

if x < 0; f(x) = (x2 + ψ(x))/2 if 0 ≤ x < 1,
where ψ is the Cantor function with δn = (2/3)n ; f(x) = 1− e−(x−1) if x ≥ 1.

(i) Plot f . Describe the function T (x) = V f(]−∞, x]), plot it, and write f as the difference of two
increasing functions A, B; plot A and B.

(ii) Find a Hahn decomposition of the signed measure µ = df .
(iii) Find the decomposition for µ+ and µ− into absolutely continuous and singular part with respect

to Lebesgue measure m.
(iv) Determine the set of p > 0 such that u(x) = |x− 1|+ |x| belong to Lp(|µ|). Computeˆ

R
u d|µ|.

Solution. (i) The plot of f is easy: Since f is right–continuous, so is T . We have T (x) = e−x
2

for x < 0;

-1 1

-1

1

Figure 8. Plot of f .

T (0+) = T (0) = T (0−)+1, since the jump of f at 0 is 1, hence T (x) = T (0)+f(x)−f(0) = 1+(x2+ψ(x))/2
for 0 < x < 1, since f is increasing on [0, 1[, so T (1−) = 3; and T (1+) = T (1) = T (1−1) + 1 = 4, since
the jump of f at 1 is −1; finally T (x) = T (1+) + 1 − e−(x−1) = 5 − e−(x−1) for x > 1. The plot of T is
as follows:

Next we have A = (T + f)/2 and B = (T − f)/2 as follows
(ii) A positive set for µ is clearly P = [0, 1[∪ ]1,∞[, with complement Q =]−∞, 0[∪{1} a negative set,

so P, Q is a Hahn decomposition for µ.
(iii) The absolutely continuous part of µ+ = µA is as usual A′(x) dm, with A′(x) described as

A′(x) = 0 if x < 0; A′(x) = x if 0 < x < 1; A′(x) = e−(x−1) if 1 < x;

the singular part is δ0 + dψ/2. Similarly, the absolutely continuous part of µ− = µB is B′(x) dm, with
B′(x) described as

B′(x) = −2x e−x
2

if x < 0; B′(x) = 0 if 0 < x < 1; B′(x) = 0 if 1 < x;

and the singular part is δ1.
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-1 1

1

2

3

4

5

Figure 9. Plot of T .

-1 1

1

2

3

-1 1

1

2

Figure 10. Plot of the functions A,B.

(iv) Notice that u(x) = 1 if 0 ≤ x ≤ 1; thenˆ
[0,1]

up d|µ| =
ˆ
[0,1]

u d|µ| = |µ|([0, 1]) = δ0([0, 1]) + δ1([0, 1]) +

ˆ
[0,1]

x dx+

ˆ
[0,1]

dψ

2
= 1 + 1 +

1

2
+

1

2
= 3.

For x < 0 we have u(x) = −x+ (−(x− 1)) = 1− 2x; for x > 1 we have u(x) = 2x− 1 we have to see the
values of p for which the integrals:ˆ 0

−∞
(1− 2x)p(−2x e−x

2

) dx = 2

ˆ 0

−∞
(1− 2x)p|x| e−x

2

dx;

ˆ ∞
1

(2x− 1)p e−(x−1) dx

are both finite; it is immediate that this happens for every p > 0 (because of the exponential factors, the
integrands are o(1/|x|α) for every α > 0, as x → ±∞). So f ∈ Lp(|µ|) for every p > 0. It remains to
compute the last two integrals for p = 1. Changing x into −x the first is

2

ˆ ∞
0

(2x2 + x) e−x
2

dx =

ˆ ∞
0

2x e−x
2

dx+ 4

ˆ ∞
0

x2 e−x
2

dx =[
−e−x

2
]∞
0
− 2

[
−x e−x

2
]∞
0

+ 2

ˆ ∞
0

e−x
2

dx = 1 +
√
π.

For the second integral we have:ˆ ∞
1

(2x− 1) e−(x−1) dx =
[
−(2x− 1) e−(x−1)

]∞
1

+ 2

ˆ ∞
1

e−(x−1) dx = 2 +
[
−e−(x−1)

]∞
1

= 3.

Collecting the partial results we get ˆ
R
u d|µ| = 7 +

√
π.
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�

Exercise 14. Let (X,M) be a measurable space, and let ν : M→ R̃ = R ∪ {−∞,∞} be a countably
additive function, that is, ν is a signed measure.

(i) Prove that if ν(E) = −∞ (resp. ν(E) = +∞) for some E ∈ M then ν(F ) = −∞ (resp.
ν(F ) = +∞) for every F ∈ M with F ⊇ E; deduce from this that if ν(E) = −∞ for some
E ∈M then ∞ /∈ ν(M).

(ii) Is it true that sup{ν(E) : E ∈ M} = max{ν(E) : E ∈ M}? and that inf{ν(E) : E ∈ M} =
min{ν(E) : E ∈M}?

Assume now that µ : M → [0,∞] is a positive measure, and that f : X → R is a measurable function
such that ν(E) =

´
E
f dµ, for every E ∈M.

(iii) What is a Hahn decomposition for ν, in terms of f? and how can ν± be expressed in terms of
f? under which condition on f is ν a finite measure?

(iv) Assume that µ is a σ−finite measure and that f ≥ 0, so that ν is also a positive measure, and
that f ∈ L1(µ). What condition on f is equivalent to assert that there is a measurable g ≥ 0
such that µ(E) =

´
E
g dν for every E ∈M?

Solution. (i) We have ν(F ) = ν(E) + ν(F r E). If ν(E) = −∞ (resp: ν(E) = ∞) then the sum
−∞+ ν(F r E), if meaningful, can only have value −∞ (resp: ∞). Then ν(F ) = ν(E); if some set has
measure −∞ (resp: ∞) then ν(X) = −∞ (resp: ∞) so that ν cannot assume both values.

(ii) There is a lemma that says that if a signed measure does not assume the value −∞, then there is
P ∈ M such that ν(P ) = max{ν(E) : E ∈ M}. Then the answer is affirmative: if ν does not assume
the value ∞ the set ν(M) has a maximum. If ν(E) = −∞ for some E ∈ M then −∞ = min ν(M); if
∞ /∈ ν(M) the the previously mentioned lemma applied to −ν implies that for some Q ∈ M we have
ν(Q) = min ν(M)(∈ R). Clearly this concludes the question with an affirmative answer.

(iii) Trivially P = {f > 0} with Q = X r P = {f ≤ 0}, or P = {f ≥ 0} and Q = X r P = {f < 0}.
Also

ν+(E) = ν(P ∩ E) =

ˆ
E

f+ dµ; ν−(E) = −ν(Q ∩ E) =

ˆ
E

f− dµ.

Clearly ν is finite if and only if ν± are both finite measures, that is iffˆ
X

f+ dµ <∞,
ˆ
X

f− dµ <∞

equivalently f ∈ L1
µ(X,R).

(iv) Since f ∈ L1(µ) the measure ν is finite, and positive since f ≥ 0. By hypothesis µ is σ−finite, By
the Radon–Nikodym theorem g exists iff ν(E) = 0 implies µ(E) = 0. Now, since f ≥ 0 we have, calling
Z = Z(f) = {f = 0} the zero–set of f

ν(E) =

ˆ
E

f dµ = 0 ⇐⇒ µ(E r Z) = 0

Ten, for every E ∈ M we have that µ(E r Z) = 0 must imply µ(E) = 0; this is clearly true for every
E ∈ M iff µ(Z) = 0. In this case of course we have g(x) = 1/f(x) for x /∈ Z (and g(x) arbitrary for
x ∈ Z, i.e. g(x) = 0). �

Exercise 15. Let (X,M, µ) be a probability space (that is, a measure space with µ(X) = 1).

(i) For g : X → K measurable and 0 < p < q, how do you compare ‖g‖p and ‖g‖q? And what is
limp→∞ ‖g‖p? (no proof required for this last question; simply state the result).

Assume that f ∈ L1
µ(X,R).

(ii) State Jensen’s inequality: if ω : R→ R is convex then ω
(´
X
f
)
≤ . . . (complete the statement)

(iii) Prove that for every p > 0 we have

exp

(ˆ
X

f

)
≤
(ˆ

X

ep f(x) dµ(x)

)1/p

.

(iv) Setting a(p) =
(´
X
ep f(x) dµ(x)

)1/p
, prove that limp→∞ a(p) exists in R̃ and express it by some-

thing related to f . Is this limit necessarily finite?
(v) Prove that limp→0+ a(p) exists and is strictly positive.
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(4 extra points) Is it true that limp→0+ a(p) = exp
(´
X
f
)
? if not, under which conditions on f does this

hold?

Solution. (i) We know that if p < q then ‖g‖p ≤ ‖g‖q: simply use Hölder’s inequality applied to functions
|g|p and 1 with conjugate exponents q/p and 1/(1− (p/q)) = q/(q − p):

ˆ
X

|g|p ≤
(ˆ

X

(|g|p)q/p
)p/q

=⇒
(ˆ

X

|g|p
)1/p

≤
(ˆ

X

|g|q
)1/q

;

and limp→∞ ‖g‖p = ‖g‖∞, essential supremum of |g|.
(ii) For Jensen’s inequality see Weeks, eighth week.
(iii) Apply Jensen’s inequality to f , with ω(x) = epx, clearly a strictly convex function, obtaining

exp

(
p

ˆ
X

f dµ

)
≤
ˆ
X

exp(p f) dµ ⇐⇒ exp

(ˆ
X

f

)
≤
(ˆ

X

ep f(x) dµ(x)

)1/p

.

(iv) If we define g(x) = exp(f(x)) we have

a(p) =

(ˆ
X

ep f(x) dµ(x)

)1/p

=

(ˆ
X

gp(x) dµ(x)

)1/p

= ‖g‖p,

so that p 7→ a(p) is increasing and its limit as p → ∞ is ‖g‖∞, which of course is eesssup f . Taking
X = [0, 1] with Lebesgue measure, and f(x) = 1/(2

√
x) we have f ∈ L1 with

´
X
f = 1, but ep f(x) /∈ L1,

for no p > 0 (we have limx→0+ e
p f(x)/x = limx→0+ exp(p/(2

√
x)− log x) = e∞ =∞), so that for every p

we have a(p) =∞).
(v) Since p 7→ a(p) is increasing, we have that limp→0+ a(p) exists and coincides with inf{a(p) : p > 0};

and since a(p) ≥ exp
(´
X
f
)
> 0 for every p, this limit is strictly positive.

If a(p) = ∞ for every p > 0 then of course limp→0+ a(p) = ∞; this happens for instance with

f(x) = 1/(2
√
x) on [0, 1] as above, whereas exp

(´
X
f
)

is finite by hypothesis. But if a(q) <∞ for some

q > 0, then we have limp→0+ a(p) = exp
(´
X
f
)
: for a proof see Weekly, Eighth week, Geometric Mean

(Exercise 19). �

Exercise 16. Let I = [a, b] be a compact interval of R, and let f : I → R be a function.

(i) State the (ε, δ)−condition for the absolute continuity of the function f , and prove that if f is
Lipschitz continuous then it is absolutely continuous.

(ii) Assume that f is absolutely continuous, that f([a, b]) = J , and that g : J → R is Lipschitz
continuous. Prove that then the composition g ◦ f is absolutely continuous on [a, b].

(iii) For α > 0 define fα : [0,∞[→ R by the formula fα(x) = | sin(xα)|. Find the values of α > 0 for
which fα is absolutely continuous on every compact subinterval of [0,∞[.

Solution. (i) See Lecture Notes, 7.3.2. If there is k > 0 such that |f(x2)− f(x1)| ≤ k |x2 − x1| for every
x1, x2 ∈ [a, b] then f verifies the (ε, δ)− condition of absolute continuity: given ε > 0 let δ = ε/k; if
([aj , bj ])1≤j≤m is sequence of non–overlapping subintervals of [a, b] and

∑m
j=1(bj − aj) ≤ δ, then

m∑
j=1

|f(bj)− f(aj)| ≤
m∑
j=1

k |bj − aj | ≤ k δ ≤ ε.

(ii) Given ε > 0, let ρ = ε/k; since f is absolutely continuous, we find δ > 0 such that for every
sequence ([aj , bj ])1≤j≤m of non overlapping intervals with

∑m
j=1(bj − aj) ≤ δ we have

m∑
j=1

|f(bj)− f(aj)| ≤ ρ =
ε

k
;

then we get
m∑
j=1

|g(f(bj))− g(f(aj))| ≤
m∑
j=1

k |f(bj)− f(aj)| ≤ k
ε

k
= ε,

thus proving absolute continuity of g ◦ f .
(iii) The function xα is locally absolutely continuous for every α > 0; in fact it is a C1 function on

]0,∞[, and clearly, if α > 0 and x > 0 thenˆ x

0

α tα−1 dt = xα that is, f(x) =

ˆ x

0

f ′(t) dt, for every x > 0.
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The function y 7→ | sin y| is Lipschitz continuous, so fα is locally absolutely continuous by (ii), for every
α > 0.

�

Analisi Reale per Matematica – Secondo appello – 25 febbraio 2013

Exercise 17. Let F : R → R be defined by F (x) = x e−(x−1) U(x) + ex U(−x), with U = χ]0,∞[ the
characteristic function of the open half–line ]0,∞[.

(i) Plot F ; is F right–continuous?

Define µ = dF (= µF ) the Radon–Stieltjes signed measure associated to F .

(ii) Find a Hahn decomposition for µ, and find the decomposition for µ+ and µ− into absolutely
continuous and singular part with respect to Lebesgue measure m.

(iii) Find functions A, B such that µ+ = dA and µ− = dB; plot A and B.
(iv) Given a > 0 let T (a) = {(x, y) ∈ R2 : 0 < x ≤ y ≤ a} Compute

m⊗ µ+(T (a)) and m⊗ µ−(T (a)),

(with m Lebesgue measure).
(v) Using (iii) compute ˆ

[0,∞[

t dµ+(t)

ˆ
[0,∞[

t dµ−(t)

ˆ
[0,∞[

t d|µ|(t).

Solution. (i) Clearly F is continuous on R r {0} and limx→0− F (x) = 1, while limx→0+ F (x) = 0;
F (0) = 0 so that F is right–continuous, but not continuous, at 0. The plot is easy (notice that F ′(x) =
(1− x) e−(x−1) for x > 0, so that F is increasing in [0, 1] and decreasing in [1,∞[):

1

1

Figure 11. Plot of F .

(ii) A positive set for F is P =]−∞, 0[∪ ]0, 1[; the complement Q = {0} ∪ [1,∞[ is negative, so P, Q
is a Hahn decomposition for µ. Since F ′(x) = e−(x−1) (1−x)U(x) + ex U(−x), the absolutely continuous
part of µ+ is where F ′(x) ≥ 0, that is dA(x) = (ex U(−x) + e−(x−1) (1− x)χ]0,1[(x)) dx, and that of µ−

is e−(x−1) (x− 1)χ[1,∞[(x) dx; we have µ+ � m; the singular part of µ− is δ0.
(iii) We have

A(x) = ex U(−x) + (1 +x e−(x−1))χ[0,1[(x) + 2χ[1,∞[(x); B(x) = χ[0,1[(x) + (2−x e−(x−1))χ[1,∞[(x).

1

1

2

1

1

2

Figure 12. Plot of the functions A,B.

(iv) Clearly the set T (a) is a bounded Borel set, hence of finite m ⊗ µ± measure. Using Fubini’s
theorem we get (with Tx(a) = {y ∈ R : (x, y) ∈ T (a)} =]x, a] the x−section of T (a), for x ∈]0, a]):

m⊗ µ+(T (a)) =

ˆ
]0,a]

(
µ+(Tx(a))

)
dm(x) =

ˆ a

0

(A(a)−A(x)) dx = A(a) a−
ˆ a

0

A(x) dx;
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now we have, for 0 < a ≤ 1:ˆ a

0

A(x) dx =

ˆ a

0

(1 + x e−(x−1)) dx = a+
[
−x e−(x−1)

]a
0

+

ˆ a

0

e−(x−1) dx = a− a e−(a−1) + e− e−(a−1) =

= e+ a− (a+ 1) e−(a−1),

so that m ⊗ µ+(T (a)) = (a2 + a + 1) e−(a−1) − e for 0 < a ≤ 1. Since µ+(]1,∞[) = 0 we have that
m⊗ µ+(T (a)) = m⊗ µ+(T (1)) for a > 1; then

m⊗ µ+(T (a)) =

{
(a2 + a+ 1) e−(a−1) − e for 0 < a ≤ 1

3− e for a > 1.

Next:

m⊗ µ−(T (a)) =

ˆ
]0,a]

(
µ−(Tx(a))

)
dm(x) =

ˆ a

0

(B(a)−B(x)) dx = B(a) a−
ˆ a

0

B(x) dx;

Now, for 0 < a < 1 we have B(a) = 1 so that the preceding is a− a = 0; if a ≥ 1

aB(a)−
ˆ a

0

B(x) dx =a (2− a e−(a−1))−
ˆ a

0

(2− x e−(x−1) dx =

a (2− a e−(a−1))−
ˆ 1

0

dx−
ˆ a

1

(2− x e−(x−1) dx =

a (2− a e−(a−1))− 1− 2(a− 1) +
[
−x e−(x−1)

]a
1

+

ˆ a

1

e−(x−1) dx =

3− (1 + a+ a2) e−(a−1).

Then

m⊗ µ−(T (a)) =

{
0 for 0 < a < 1

3− (1 + a+ a2) e−(a−1) for a ≥ 1.

(v) Integrating first in the x−coordinate and then in the y−coordinate we get (with Ty(a) = {x ∈ R :
(x, y) ∈ T (a)} =]0, y] if 0 < y ≤ a)

m⊗ µ+(T (a)) =

ˆ
]0,a]

(m(Ty(a))) dA =

ˆ
]0,a]

y dA(y),

and similarly

m⊗ µ−(T (a)) =

ˆ
]0,a]

(m(Ty(a))) dB =

ˆ
]0,a]

y dB(y);

by the dominated convergence theorem we haveˆ
]0,∞[

y dA(y) = lim
a→+∞

ˆ
]0,a]

y dA(y) and

ˆ
]0,∞[

y dB(y) = lim
a→+∞

ˆ
]0,a]

y dB(y);

but we have, for a > 1:ˆ
]0,a]

y dA(y) = m⊗ µ+(T (a)) = 3− e;
ˆ
]0,a]

y dA(y) = m⊗ µ−(T (a)) = 3− (1 + a+ a2) e−(a−1),

so that, taking limits as a→ +∞:ˆ
]0,∞[

y dµ+(y) = 3− e;
ˆ
]0,∞[

y dµ−(y) = 3,

and of course ˆ
]0,∞[

y d|µ|(y) =

ˆ
]0,∞[

y dµ+(y) +

ˆ
]0,∞[

y dµ−(y) = 6− e.

�

Exercise 18. Let (X,M, µ) be a measure space.

(i) Assume that fn and f are measurable functions, that fn → f a.e. on X, and that |fn| ↑ |f | a.e.
on X. Given p with 0 < p < ∞ prove that f ∈ Lp(µ) if and only if sup{‖fn‖p : n ∈ N} < ∞.
Does fn also converge to f in Lp(µ), under this hypothesis?

We denote by S(µ) the space of measurable simple functions contained in L1(µ).

(ii) Is it true that S(µ) is dense in every Lp(µ), for p <∞? sketch a proof, or give a counterexample.
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(iii) Let 0 < p, q < ∞. Assume that there is a constant C > 0 such that ‖f‖q ≤ C ‖f‖p for every
f ∈ S(µ). Prove that then the same inequality holds for every f ∈ Lp(µ), and that Lp(µ) ⊆ Lq(µ).

Solution. (i) Assume M = sup{‖fn‖p : n ∈ N} < ∞. Then
´
X
|fn|p ≤ Mp for every n. By monotone

convergence we have ˆ
X

|f |p = lim
n→∞

ˆ
X

|fn|p ≤Mp,

so that f ∈ Lp(µ). Conversely, if f ∈ Lp(µ) then clearly we have, from |fn| ≤ |f |, that
´
X
|fn|p ≤

´
X
|f |p,

so that sup{‖fn‖p : n ∈ N} ≤ ‖f‖p <∞. Clearly in these hypotheses we also have that ‖f − fn‖p → 0:

|f − fn|p ≤ (|f |+ |fn|)p ≤ (|f |+ |f |)p = 2p|f |p;
and since 2p|f |p ∈ L1(µ) and |f − fn| → 0 pointwise a.e., we get that ‖f − fn‖pp → 0 by dominated
convergence.

(ii) It is well–known that S(µ) is dense in Lp(µ) for every p <∞: we know that for every measurable
f : X → K there exists a sequence sn of measurable simple functions converging pointwise to f , and
such that |sn| ↑ |f |. If f ∈ Lp(µ) then (i) applies to say that sn ∈ Lp(µ) and ‖f − sn‖p → 0 as
n→∞. Now, a simple function in Lp(µ) for p <∞ is of course also in S(µ): simply note that a simple
function is always in L∞, and that L1(µ)∩L∞(µ) ⊆ Lp(µ) for every p ≥ 1; trivially, in any case we have
|
∑m
k=1 αk χAk

|p =
∑m
k=1 |ak|p χAk

, if the Ak’s are pairwise disjoint, so that if 0 < p <∞ we have that a
measurable simple function is in L1(µ) iff it is in Lp(µ).

(iii) Given f ∈ Lp(µ). pick a sequence sn of simple functions as in (ii). We have ‖sn‖q ≤ C ‖sn‖pfor
every n; since |sn| ↑ |f |, by monotone convergence the left–hand side tends to ‖f‖q, the right–hand side to
‖f‖p. Then ‖f‖q ≤ C ‖f‖p for every f ∈ Lp(µ), and this of course implies ‖f‖q <∞, that is, f ∈ Lq(µ),
so that f ∈ Lq(µ) when f ∈ Lp(µ), in other words Lp(µ) ⊆ Lq(µ).

�

Exercise 19. The formula:

(*) F (x) =

ˆ ∞
0

1− e−xt

sinh t
dt

defines a function F : [0,∞[→ R (immediate, accept for the moment this fact).

(i) Using the theorem on differentiation of parameter depending integrals, prove that F is smooth,
i.e. F ∈ C∞([0,∞[).

We have, for t > 0:

1

sinh t
=

2

et − e−t
= 2

e−t

1− e−2t
= 2

∞∑
n=0

e−(2n+1)t,

so that, for t > 0:

(**)
1− e−xt

sinh t
= 2

∞∑
n=0

(1− e−xt) e−(2n+1)t.

(ii) Compute, for x ≥ 0: ˆ ∞
0

(1− e−xt) e−(2n+1)t;

is it possible to use the representation of the integrand in the series (**) to express F as the sum
of a series of rational functions? in other words, can the series (**) be integrated termwise on
[0,∞[, if x ≥ 0?

(iii) Formula (*) defines F on set D larger than [0,∞[. Find D. Is F ∈ C∞(D)?

Solution. (i) The integrand is f(x, t) = (1− e−xt)/ sinh t so that ∂xf(x, t) = (t/ sinh t) e−xt, ∂2xf(x, t) =
(−t/ sinh t) e−xtand in general

∂nxf(x, t) = (−1)n−1
tn

sinh t
e−xt (n ≥ 1).

For x ≥ 0 we have

|∂nxf(x, t)| = tn

sinh t
|e−xt| ≤ tn

sinh t
,

with the function t 7→ tn/ sinh t in L1
m([0,∞[), for every n ≥ 1: in fact at t = 0 this function is continuous,

and at ∞ it is dominated by a function such as e−t/2. This proves that F ∈ C∞([0,∞[).
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(ii) The series has positive terms, so that it can certainly be integrated termwise (monotone conver-
gence). We get:ˆ ∞

0

(1− e−xt) e−(2n+1)t dt =

ˆ ∞
0

e−(2n+1)t dt−
ˆ ∞
0

e−(2n+1+x)t dt =
1

2n+ 1
− 1

2n+ 1 + x
.

Then

F (x) =

∞∑
n=0

(
1

2n+ 1
− 1

2n+ 1 + x

)
=

∞∑
n=0

x

(2n+ 1 + x)(2n+ 1)
(x ≥ 0).

(iii) The integrand is continuous at t = 0, for every x, so that there are no problems at 0. For t→∞
the integrand is asymptotic to 1/ sinh t ∼ 2e−t for x ≥ 0, so that (as asserted) trivially t 7→ f(x, t) belongs
to L1

m([0,∞[) is x ≥ 0. If x < 0 the integrand is asymptotic to e−xt/ sinh t ∼ 2e−(x+1)t as t → ∞, so
that the integrand is in L1

m([0,∞[) iff x > −1. In other words we have D =] − 1,∞[. We still have
F ∈ C∞(D). In fact, given x > −1, pick a with −1 < a < x; in the neighborhood [a,∞[ of x we have:

|∂nxf(x, t)| = tn

sinh t
|e−xt| ≤ tn

sinh t
e−at,

Remark. Even if it is not required, we observe that the series representation is valid also for x > −1,
i.e. for every x ∈ D. In fact, the terms of the series become all negative if x < 0: for every t > 0 and
x < 0 we have 1− e−xt < 0.

�

Exercise 20. Let (X,M, µ) be a measure space.

(i) Prove that the following are equivalent:
(a) There exists a sequence En ∈M with limn→∞ µ(En) = 0 and 0 < µ(En) for every n.
(b) There is a sequence Ak ∈M with 0 < µ(Ak) ≤ 1/2k for every k.
(c) There is a function f ∈ L1(µ) r L∞(µ).
(d) There is a disjoint sequence Bk ∈M with 0 < µ(Bk) ≤ 1/2k for every k.

((a) implies (b) easy; for (b) implies (c) prove that the formula f(x) =
∑∞
k=0 k χAk

defines a.e. a
function f ∈ L1(µ) r L∞(µ); for (c) implies (d) consider a suitable subsequence of the sequence
En = {n < |f | ≤ n+ 1}, with f ∈ L1(µ) r L∞(µ) . . . ).

(ii) [3] Given a sequence Bk ∈M as in (d) above (0 < µ(Bk) ≤ 1/2k), set bk = µ(Bk), and for α > 0
define the measurable function gα : X → R by gα =

∑∞
k=0 b

−α
k χBk

. Given 0 < p < q <∞, prove
that if 1/q < α < 1/p we have gα ∈ Lp(µ) r Lq(µ).

Solution. (i) That (a) implies (b) is trivial: if a sequence of strictly positive numbers tends to 0, then
there is a subsequence (µ(En(k)))k∈N such that µ(En(k)) ≤ 1/2k; simply set Ak = En(k).

(b) implies (c) The series
∑∞
k=0 k χAk

is a series of positive measurable functions, so that we haveˆ
X

f =

∞∑
k=0

k µ(Ak) ≤
∞∑
k=0

k

2k
<∞.

Then {f = ∞} has measure 0, and f ∈ L1(µ) (to be more precise for the punctilious: f coincides a.e.
with a function in L1(µ), which we still call f). And f /∈ L∞(µ): since all terms are positive, we have
f ≥ k χAk

, so that {f ≥ k} ⊇ Ak, hence µ({f ≥ k}) ≥ µ(Ak) > 0, for every k ∈ N, and hence ‖f‖∞ =∞.
(c) implies (d) Since f /∈ L∞(µ), infinitely many En have strictly positive measure. Moreover

limn→∞ µ(En) = 0, since by Čebičeff’s inequality we have µ(En) ≤ (1/n)‖f‖1; and the En are pair-
wise disjoint. Some subsequence Bk = En(k) will then be such that µ(Bk) ≤ 1/2k.

That (d) implies (a) is trivial.

(ii) We have ˆ
X

gpα =

∞∑
k=0

b−αpk bk =

∞∑
k=0

b1−αpk ≤
∞∑
k=0

1

2kβ
,

where β = 1− αp > 0, by the hypothesis α < 1/p. Since the series
∑∞
k=0 1/(2β)k is convergent, we have

gα ∈ Lp(µ). And ˆ
X

gqα =

∞∑
k=0

b−αqk bk =

∞∑
k=0

b1−αqk =∞,

because 1− αq < 0, so that limk→∞ b1−αqk =∞. �
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Analisi reale – Recupero – 12 luglio 2013

Exercise 21. Let F : R→ R be defined by

F (x) = x2 χ]−∞,0[(x) + frac(x)χ[0,3[(x) + (2− e3−x)χ[3,∞[(x),

where frac(x) = x− [x] is the fractional part of x.

(i) Plot F ; find the points of discontinuity of F ; is F right–continuous?

Define µ = dF (= µF ) the Radon–Stieltjes signed measure associated to F .

(ii) Find a Hahn decomposition for µ, and find the decomposition for µ+ and µ− into absolutely
continuous and singular part with respect to Lebesgue measure m.

(iii) Find right continuous functions A, B with A(0) = B(0) = 0 such that µ+ = dA and µ− = dB;
plot A and B.

(iv) Compute the integrals ˆ
R
e−|x| dµ+(x),

ˆ
R
e−|x| dµ−(x)

(v) If T = {(x, y) ∈ R2 : y ≤ x} compute

µ+ ⊗m(T ).

Solution. (i) The possible discontinuities for f are 0, 1, 2, 3; but it’s easy to see that F is continuous at
0 and 3, so that the only discontinuities are 1 and 2, with jumps σF (1) = σF (2) = −1. Plainly F is
right–continuous, because so is x 7→ frac(x). The plot of F is immediate:

-1 1 2 3 4 5

0.5

1.0

1.5

2.0

Figure 13. Plot of F .

(ii) A positive set for µ is P =]0, 1[∪]1, 2[∪]2,∞[, with negative complement ]−∞, 0]∪{1}∪ {2}. The
derivative F ′(x) exists in Rr {0, 1, 2}, and we have

F ′(x) = 2x x < 0; F ′(x) = 1 x ∈]0, 3[r{1, 2}; F ′(x) = e3−x x ≥ 3

(it is easy to check that F ′(3) exists and that F ′(3) = 1). The measure µ+ is absolutely continuous with
respect to m and we have

dµ+ = F ′ χ]0,∞[ dm so thatµ+(E) = m(E∩]0, 3[) +

ˆ
E∩[3,∞[

e3−x dx,

The absolutely continuous part of µ− is −2xχ]−∞,0] dx, the singular part is δ1 + δ2, so that

µ−(E) =

ˆ
E∩]−∞,0]

(−2x) dx+ χE(1) + χE(2).

(iii) Clearly A(x) = 0 for x ≤ 0, and A(x) = x for 0 ≤ x < 3, while for x ≥ 3:

A(x) = µ+(]0, x]) = µ+(]0, 3]) + µ+(]3, x]) = 3 +

ˆ x

3

e3−t dt = 3 +
[
−e3−t

]t=x
t=3

= 4− e3−x.

For B we get

B(x) = −µ−([x, 0[) = −
ˆ 0

x

(−2x) dx = −x2 (x < 0); B(x) = 0 0 ≤ x < 1; B(x) = 1 0 ≤ x < 2;

B(x) = 2 x ≥ 2.

(iv) We have ˆ
R
e−|x| dµ+(x) =

ˆ ∞
0

e−|x| F ′(x) dx =

ˆ 3

0

e−x dx+

ˆ ∞
3

e3−2x dx =
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-1 1 2 3 4 5

-2

-1

1

2

Figure 14. Plot of the functions A,B.

= [−e−x]30 +
1

−2

[
e3−2x

]∞
0

= 1− e−3 +
e−3

2
= 1− 1

2e3
.

ˆ
R
e−|x| dµ−(x) =

ˆ 0

−∞
e−|x| (−2x) dx+ δ1(e−|x|) + δ2(e−|x|) =

= [ex(−2x)]
0
−∞ + 2

ˆ 0

−∞
ex dx+ e−1 + e−2 = 2 + e−1 + e−2.

(v) µ+ is finite and m is σ−finite, so Tonelli’s theorem is applicable. Given x ∈ R the x−section T (x)
of T is of course ]−∞, x], with Lebesgue measure ∞. Then

µ+ ⊗m(T ) =

ˆ
R
m(]−∞, x]) dµ+(x) =

ˆ
R
∞ dµ+ =∞.

Remark. To confirm the result, we can integrate with respect to dm the µ+−measure of the y−sections;
For every y 6= 0 the y−section T (y) = [y,∞[ of T has measure µ+(T (y)) = µ+([0,∞[r[0, y[) = 4 −
µ+([0, y[) = 4−A(y), so that

µ+ ⊗m(T ) =

ˆ 0

−∞
4 dy +

ˆ ∞
0

(4−A(y)) dy =∞+

ˆ ∞
0

(4−A(y)) dy =∞

Some people interpreted T as contained in the first quadrant, that is they took

S = {(x, y) ∈ R2 : 0 ≤ y ≤ x}
instead of T (because other times it was so!). I accepted this change. The µ+ ⊗m−measure of S is then

µ+ ⊗m(S) =

ˆ ∞
0

(4−A(y)) dy =

ˆ 3

0

(4− y) dy +

ˆ ∞
3

e3−y dy =

= 12− 9

2
− [e3−y]∞3 =

24− 9

2
+ 1 =

17

2
.

We can of course also integrate on [0,∞[ the Lebesgue measure of the x−sections of S with respect to
µ+; the x section is [0, x] with Lebesgue measure x, so that

µ+ ⊗m(S) =

ˆ ∞
0

x dµ+(x) =

ˆ 3

0

x dx+

ˆ ∞
3

x e3−x dx =
9

2
+
[
−xe3−x

]∞
3

+

ˆ ∞
3

e3−x dx =

=
9

2
+ 3 +

[
−e3−x

]∞
3

=
15

2
+ 1 =

17

2
.

�

Exercise 22. Let A be an algebra of parts of X, and let µ : A → [0,∞] be a (positive) premeasure. Let
µ∗ : P(X)→ [0,∞] be the outer measure associated to µ in the usual way.

(i) Give the precise definition of µ∗(E) for every E ⊆ X, and prove that µ∗(A) = µ(A) for every
A ∈ A. Where does countable additivity of µ enter the proof?

If φ : P(X)→ [0,∞] is an outer measure, and A, E ⊆ X, we say that A splits E additively (with respect
to φ) if φ(E) = φ(E ∩A) + φ(E rA).

(ii) With µ and µ∗ as above, prove that B ⊆ X is µ∗−measurable if and only if B splits additively
every A ∈ A with µ(A) <∞. Deduce from this that every B ∈ A is µ∗−measurable.
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Solution. (i) We have

µ∗(E) = inf

{ ∞∑
n=0

µ(An) : An ∈ A, A ⊆
∞⋃
n=0

An

}
,

infimum taken over all countable covers (An)n∈N of E by elements of A. Given A ∈ A since (A, ∅, ∅, . . . )
is a cover of A we have µ∗(A) ≤ µ(A) for every A ∈ A. And if (An)n∈N is a countable cover of A by
elements of A, then A =

⋃∞
n=0A ∩An so that, by countable subadditivity and monotonicity of µ:

µ(A) ≤
∞∑
n=0

µ(A ∩An) ≤
∞∑
n=0

µ(An),

which implies µ(A) ≤ µ∗(A). We know that for positive finitely additive functions countable additivity
is equivalent to countable subadditivity; countable additivity has then just been used in the proof.

(ii) If B is µ∗−measurable, then it splits additively every subset of X, and not only the sets of A with
µ finite. For the converse, assuming that B splits additively every A ∈ F(µ) = {A ∈ A : µ(A) <∞}, we
have to prove that for every E ⊆ X with µ∗(E) <∞ we have

µ∗(E) ≥ µ∗(E ∩B) + µ∗(E rB).

Given ε > 0 pick a cover (An)n∈N of E by elements of A such that
∑∞
n=0 µ(An) ≤ µ∗(E) + ε. Then

µ∗(E) + ε ≥
∞∑
n=0

µ(An);

of course µ(An) <∞ for every n ∈ N so that by the hypothesis we have

µ(An) = µ(An ∩B) + µ(An rB),

and the preceding inequality yields

µ∗(E) + ε ≥
∞∑
n=0

µ(An) =

∞∑
n=0

µ(An ∩B) +

∞∑
n=0

µ(An rB);

by countable subadditivity , setting A =
⋃∞
n=0An we now get

∞∑
n=0

µ∗(An ∩B) ≥ µ∗(A ∩B);

∞∑
n=0

µ(An rB) ≥ µ∗(ArB);

and by monotonicity

µ∗(A ∩B) ≥ µ∗(E ∩B); µ∗(ArB) ≥ µ∗(E rB).

We have proved that for every ε > 0:

µ∗(E) + ε ≥ µ∗(E ∩B) + µ∗(E rB),

and since ε > 0 is arbitrary we conclude.
Finally, if B ∈ A then we have, for every A ∈ A

µ(A) = µ(A ∩B) + µ(ArB),

by (finite) additivity of µ on A. By (i) the preceding relation may be also written

µ∗(A) = µ∗(A ∩B) + µ∗(ArB),

thus proving that B splits additively with respect to µ∗ all elements of A, so that is µ∗−measurable.

Remark. The argument used to prove (ii) is of course exactly the one that shows µ∗−measurability of
elements of A.

�

Exercise 23. (i) State the theorem on continuity and differentiability of parameter depending in-
tegrals (the version with general measure spaces).

(ii) Using the preceding theorem prove that the formula:

(*) ϕ(x) =

ˆ ∞
0

e−xt
sin t

t
dt

defines a function ϕ ∈ C1(]0,∞[,R).
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(iii) Give an esplicit formula for ϕ′(x), not containing integrals, and deduce from it an analogous
expression for ϕ(x).

Solution. (i) See Lecture Notes, 7.6.
(ii) The derivative with respect to x of the integrand is −e−xt sin t. Given x > 0, let a = x/2 (or

simply pick any a with 0 < a < x), and let U = [a,∞[. For y ∈ U we have

| − e−yt sin t| = e−yt | sin t| ≤ e−yt ≤ e−at;
of course t 7→ e−at belongs to L1([0,∞[), since a > 0. Then ϕ ∈ C1(]0,∞[, and

(iii) (see formula for the primitive of e−xt sin t):

ϕ′(x) =

ˆ ∞
0

(−e−xt sin t) dt =

[
e−xt

1 + x2
(sin t+ cos t)

]t=∞
t=0

=
−1

1 + x2
.

Then we get
ϕ(x) = arccotanx+ k (x > 0);

but one easily sees that limx→∞ ϕ(x) = 0 (e.g., by dominated convergence; or simply because |ϕ(x)| ≤´∞
0
e−xt dt = 1/x), so that

ϕ(x) = arccotanx (x > 0).

Remark. Nobody seems to be able to verify the hypotheses of the theorem in this particular case, and
apparently many have not even understood the statement.

�

Exercise 24. Let (X,M, µ) be a measure space..

(i) Assume that L1(µ) is contained in L∞(µ). Prove that then we also have Lp(µ) ⊆ L∞(µ), for
every p > 0

(ii) Prove that the hypothesis L1(µ) ⊆ L∞(µ) implies that the spaces Lp(µ) increase with p (that is,
if 0 < p < q then Lp(µ) ⊆ Lq(µ)).

(iii) Assume that there is f ∈ L1(µ) r L∞(µ). Prove that then there is a disjoint sequence En ∈ M
with 0 < µ(En) < ∞ and limn→∞ µ(En) = 0. Conversely, the existence of such a sequence
implies the existence of a function f ∈ L1(µ) r L∞(µ).

Solution. (i) Recall that f ∈ Lp(µ) is equivalent to |f |p ∈ L1(µ), if 0 < p <∞. But clearly |f |p ∈ L∞(µ)
holds if and only if f ∈ L∞(µ) (|f |p ≤M ⇐⇒ |f | ≤M1/p).

(ii) If 0 < p < q <∞ we have |f |q = |f |q−p |f |p ≤ ‖f‖q−p∞ |f |p; integrating both sides we have

‖f‖qq ≤ ‖f‖q−p∞ ‖f‖pp =⇒ ‖f‖q ≤ ‖f‖1−p/q∞ ‖f‖p/qp .

If f ∈ Lp(µ) then also f ∈ L∞(µ) by the hypothesis made and (i), so that the right–hand side is finite,
forcing finiteness of the left–hand side. That is f ∈ Lp(µ) implies f ∈ Lq(µ), as desired.

(iii) See the exam of February 25, 2013. Everybody ought to look at previous exams!
�

Analisi Reale per Matematica – Recupero – 3 settembre 2013

Exercise 25. Let F : R→ R be defined by

F (x) = ex χ]−∞,0[(x) + [x]χ[0,3[(x) + (3− e3−x)χ[3,∞[(x),

where [x] is the integer part of x.

(i) Plot F ; find the points of discontinuity of F ; is F right–continuous?

Define µ = dF (= µF ) the Radon–Stieltjes signed measure associated to F .

(ii) Find a Hahn decomposition for µ, and find the decomposition for µ+ and µ− into absolutely
continuous and singular part with respect to Lebesgue measure m.

(iii) Find right continuous functions A, B : R → R with A(−∞) = B(−∞) = 0 such that µ+ = dA
and µ− = dB; plot A and B.

(iv) ] Compute the integrals ˆ
R
eiαx dµ+(x),

ˆ
R
eiαx dµ−(x)

(α ∈ R is a constant).
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(v) If T = {(x, y) ∈ R2 : 0 ≤ y ≤ |x|} compute

|µ| ⊗m(T )

in two ways, by integrating the measures of both x– and y−sections.

Solution. (i) Characteristic functions of upper half–open intervals are right–continuous, and x 7→ [x] is
right–continuous, so F is also right–continuous, as the sum of three right–continuous functions. We have
F (0−) = 1, F (0)+ = 0, so µF ({0}) = −1; F (1−) = 0, F (1+) = F (1) = 1, so µF ({1}) = 1; F (2−) = 1,
F (2+) = 2 and µF ({2}) = 1; there are no other points of discontinuity besides {0, 1, 2}. The plot is easy.

1 2 3

1

2

3

Figure 15. Plot of F .

(ii) La derivata di F esiste in Rr {0, 1, 2, 3} ed in tale insieme coincide con

F ′(x) = ex χ]−∞,0[(x) + e3−x χ]3,∞[(x);

Posto P =]−∞, 0[∪]0,∞[ ed N = {0}, la coppia P,N è una decomposizione di Hahn per µ. Si ha

µ+ = F ′(x) dx+ (δ1 + δ2); µ− = δ0,

dove ovviamente F ′(x) dx è la parte assolutamente continua e δ1 + δ2 quella singolare; µ− ha parte
assolutamente continua nulla.

(iii) Since A(x) = µ+(]−∞, x]) we get

A(x) = ex x < 0; A(x) = 1 0 ≤ x < 1; A(x) = 2 1 ≤ x < 2; A(x) = 3 2 ≤ x < 3;

A(x) = 4− e3−x 3 < x.

1 2 3

1

2

3

4

Figure 16. Plot of A.

And B(x) = µ−(]−∞, x]) coincides with χ[0,∞[, the Heaviside step.
(iv) We have ˆ

R
eiαx dµ−(x) =

ˆ
R
eiαx dδ0 = eiα0 = 1.

Andˆ
R
eiαx dµ+(x) =

ˆ
R
eiαx(F ′(x) dx+ d(δ1 + δ2)) =

ˆ 0

−∞
e(iαx+1)x dx+ eiα + e2iα +

ˆ ∞
3

e3+(iα−x) dx =[
e(iαx+1)x

iα+ 1

]0
−∞

+ eiα + e2iα + e3
[
e(iα−1)x

iα− 1

]∞
3

=
1

iα+ 1
+ eiα + e2iα − e3iα

iα− 1
.

(v) The x−section [0, |x|] has Lebesgue measure |x|, so that

|µ| ⊗m(T ) =

ˆ
R
|x| d|µ| =

ˆ
R
|x| dA(x) +

ˆ
R
|x| dδ0(x) =

ˆ 0

−∞
(−x) ex dx+ 1 + 2 +

ˆ ∞
3

x e3−x dx =
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[−x ex]0−∞ +

ˆ 0

−∞
ex dx+ 3− [x e3−x]∞3 +

ˆ ∞
3

e3−x dx = 0 + 1 + 3 + 3 + 1 = 8.

The y−section is empty for y < 0, and is T (y) =]−∞,−y]∪ [y,∞[ if y ≥ 0, with measure |µ|(T (0)) =
|µ|(R) = 4 + 1 = 5, whereas for y > 0 we get:

|µ|(T (y)) = µ+(T (y)) = µ+(]−∞,−y]) + µ+([y,∞[) = A(−y) + (4−A(y−));

then

|µ| ⊗m(T ) =

ˆ ∞
0

µ+(T (y)) dy =

ˆ ∞
0

A(−y) dy +

ˆ ∞
0

(4−A(y−)) dy =

ˆ ∞
0

ey dy +

ˆ 1

0

(4− 1) dy +

ˆ 2

1

(4− 2) dy +

ˆ 3

2

(4− 3) dy +

ˆ ∞
0

(4− (4− e3−y) dy =

1 + 3 + 2 + 1 + 1 = 8.

�

Exercise 26. Consider the sequence of functions fn : R→ R, where f0(x) = (1/2)χ[0,1/2[ − χ[1/2,1[ and
fn(x) = (1/n) f0(x/n) for n ≥ 1. Plot f0, f2, f3, f7, evaluate f(x) = limn→∞ fn(x), compute the integrals´
R fn(x) dx and notice that ˆ

R
f(x) dx > lim

n→∞

ˆ
R
fn(x) dx;

why does this not contradict Fatou’s lemma (3 points)? Let now (X,M, µ) be a measure space.

(i) Assume that fn : X → R is a sequence of functions in L1(µ) that converges uniformly to
f ∈ L1(µ). Is it true that limn

´
X
fn =

´
X
f? if not, can you give a counterexample? what

hypothesis can be added to µ to ensure that this holds?
(ii) Let un be a sequence in L1

µ(X,R) which converges pointwise a.e. to u ∈ L1
µ(X,R), and is such

that limn

´
X
un =

´
X
u; let fn ∈ L1

µ(X,R) be a sequence with un ≤ fn a.e., for every n ∈ N.
Prove that ˆ

X

lim inf fn ≤ lim inf

ˆ
X

fn.

Solution. Notice that the plot of fn is obtained from the plot of f0 by a dilation of ratio n in the direction
of the x−axis, and one of ratio 1/n in the direction y, so that the plots are as in the following figure.

1 2 3 4 5 6 7

1

2

1
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Figure 17. Plots of some fn.

Since ‖fn‖∞ = 1/n for n ≥ 1 the sequence fn converges uniformly to the identically zero function,
whose integral is 0. The integral of f0 is clearly 1/4− 1/2 = −1/4; and setting x = nt we haveˆ

R
fn(x) dx =

ˆ
R
fn(nt)ndt =

ˆ
R

1

n
f0(nt/n)ndt =

ˆ
R
f0(t) dt = −1

4
.

Fatou’s lemma is not violated because it concerns positive functions.
(i) Not true: the above is a counterexample. If µ(X) < ∞ then uniform convergence of L1 functions

implies convergence in L1(µ), according to the inequality:

‖f − fn‖1 =

ˆ
X

|f − fn| dµ ≤
ˆ
X

‖f − fn‖∞ dµ = ‖f − fn‖∞ µ(X).
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(ii) We have fn − un ≥ 0, so that Fatou’s lemma may be applied to the sequence fn − un; we get:

(*)

ˆ
X

lim inf
n

(fn − un) dµ ≤ lim inf
n

ˆ
X

(fn − un) dµ;

But since limn un(x) = u(x) exists for a.e. x ∈ X we get a.e in X:

lim inf
n

(fn(x)− un(x)) = lim inf
n

fn(x)− u(x),

and since limn

´
X
un exists and coincides with

´
X
u we also have

lim inf
n

ˆ
X

(fn − un) = lim inf
n

ˆ
X

fn −
ˆ
X

u,

so that (*) isˆ
X

(lim inf
n

fn − u) ≤ lim inf
n

ˆ
X

fn −
ˆ
X

u ⇐⇒
ˆ
X

lim inf
n

fn −
ˆ
X

u ≤ lim inf
n

ˆ
X

fn −
ˆ
X

u,

ad cancelling −
´
X
u we conclude. �

Exercise 27. (i) Using the theorem on differentiability of parameter depending integrals prove that
the formula:

(*) ϕ(x) =

ˆ
R
e−t

2−xt dt

defines a function ϕ ∈ C1(R,R), whose derivative is

ϕ′(x) =

ˆ
R
(−t)e−t

2

e−xt dt.

(ii) Integrating ϕ′ by parts, find a differential equation verified by ϕ, and from it deduce an explicit
expression of ϕ, not containing integrals.

(iii) The explicit formula for ϕ(x) can also be easily obtained directly (complete the square . . . ).

Solution. (i) It is clear that for every given x ∈ R the integrand is in L1
m(R), so that ϕ is defined. We have

∂x(e−t
2−xt) = (−t) e−t2−xt. Given x ∈ R, the function γ(t) = e−t

2

e(|x|+1)|t| is in L1(R) and dominates

e−t
2−yt for y ∈ [x− 1, x+ 1] and t ∈ R. Then ϕ ∈ C1(R), and

ϕ′(x) =

ˆ
R

(−t) e−t
2

e−xt dt.

(ii) Integrating by parts in the preceding formula we get

ϕ′(x) =

[
e−t

2

2
e−xt

]t=∞
t=−∞

+
x

2

ˆ +∞

−∞
e−t

2

2 e−xt dt =
x

2
ϕ(x);

Then ϕ′ satisfies the differential equation ϕ′(x) = (x/2)ϕ(x); since ϕ(0) =
√
π we have

ϕ(x) =
√
π ex

2/4 (x ∈ R).

(iii) We have −t2−xt = −(t2 +xt) = −(t2 +xt+x2/4−x2/4) = −(t+x/2)2 +x2/4, so that (recalling
also translation invariance of the Lebesgue integral)

ϕ(x) =

ˆ
R
e−t

2−xt dt =

ˆ
R
e−(t+x)

2+x2/4 dt = ex
2/4

ˆ
R
e−(t+x)

2

dt =
√
π ex

2/4.

�

Exercise 28. Let (X,M, µ) be a measure space.

(i) If g ∈ L1
µ(X,C) give a careful proof of the fact thatˆ

X

g dµ =

ˆ
X

|g| dµ

holds if and only if g(x) = |g(x)| for a.e. x ∈ X.
(ii) Given g ∈ L1

µ(X,C) find a bounded measurable function u : X → C such thatˆ
X

g u dµ =

ˆ
X

|g| dµ.

Let p, q > 1 be conjugate exponents, 1/p+ 1/q = 1, and fix a nonzero g ∈ Lq(µ).



REAL ANALYSIS EXAMS A.A 2012–13 31

(iii) Prove that the formula

ϕg(f) =

ˆ
X

fg dµ

defines ϕg as a (trivially linear) continuous map of Lp(µ) into C, of (operator) norm ‖ϕg‖ not
larger than ‖g‖q.

(iv) Accepting the following fact: if f, g ∈ L(X) and 0 < ‖f‖p < ∞, 0 < ‖g‖q < ∞ then ‖fg‖1 =
‖f‖p ‖g‖q holds if and only if there is a constant k > 0 such that |g(x)|q = k|f(x)|p for a.e.
x ∈ X, prove that ‖ϕg‖ = ‖g‖q, and find a ∈ Lp(µ) with ‖a‖p = 1 and ϕg(a) = ‖g‖q.

Solution. (i) Sufficiency is trivial. For necessity, write g = u+ i v, with u = Re g and v = Im g. We getˆ
X

g :=

ˆ
X

u+ i

ˆ
X

v =

ˆ
X

|g|

Since
´
X
|g| is real, we have

´
X
v = 0, so that the preceding equality writesˆ

X

u =

ˆ
X

|g|;

now of course we have u ≤ |u| ≤ |g| so that the equality impliesˆ
X

(|g| − u) = 0 and since |g| − u ≥ 0, this holds iff |g(x)| = u(x)(= Re g(x)) for a.e. x ∈ X;

and since the modulus of a complex number equals its real part iff this number is real and positive, we
are done.

(ii) To ensure equality we simply take u in such a way that g(x)u(x) = |g(x)| for every x ∈ X;

since g(x) = sgn g(x) |g(x)|, we have g(x) sgn g(x) = |g(x)|; so we set u(x) = sgn g(x), recalling that

|sgn g(x)| = 1 or 0, so that u is bounded. Measurability of u follows from the fact that the sign function
sgn : C→ C, although not continuous, is Borel measurable, as we have seen.

(iii) Simply use Hölder’s inequality:

|ϕg(f)| =
∣∣∣∣ˆ
X

fg dµ

∣∣∣∣ ≤ ˆ
X

|fg| dµ = ‖fg‖1 ≤ ‖f‖p ‖g‖q = (‖g‖q) ‖f‖p.

this shows that ‖g‖q is a Lipschitz constant for ϕg; the operator norm is the smallest such constant.

(iv) To get ‖f g‖1 = ‖f‖p ‖g‖q we have to use f such that |f |p = k|g|q, hence |f | = k1/p|g|q/p = ρ |g|q−1
with ρ > 0 a constant. We have to make such an f of Lp−norm 1, so that:

1 =

(ˆ
X

ρp |g|(q−1)p dµ
)1/p

⇐⇒ ρ =

(ˆ
X

|g|q dµ
)−1/p

= 1/‖g‖q−1q .

Finally to make ϕg(f) = ‖fg‖1 we have to makeˆ
X

fg =

ˆ
X

|f g|;

so we take f(x) = sgn g(x)|g(x)|q−1/‖g‖q−1q .
�

Analisi Reale per Matematica – III Recupero – 24 settembre 2013

Exercise 29. Let F : R→ R be defined by

F (x) =
χ]−∞,0[(x)

1− x3
+
x+ ψ(x)

2
χ[0,1[(x) +

χ[1,∞[(x)

1 + (x− 1)3
,

where ψ is the Cantor function with δn = (2/3)n.

(i) Plot F ; find the points of discontinuity of F ; is F right–continuous? Plot T (x) = V F (]−∞, x])

Define µ = dF (= µF ) the Radon–Stieltjes signed measure associated to F .

(ii) Find right continuous functions A, B : R → R with A(−∞) = B(−∞) = 0 such that µ+ = dA
and µ− = dB; plot A and B.

(iii) For µ+ and µ− write the decomposition into absolutely continuous and singular part.
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-3 -2 -1 1 2 3
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Figure 18. Plot of F .

Solution. (i) The plot is easy. It is clear that 0 is the only jump point, and that F is right–continuous.
By piecewise monotonicity of F , it is clear that we have

T (x) = F (x) =
1

1− x3
for x < 0;

T (x) = 2 +
x+ ψ(x)

2
for 0 ≤ x < 1;

T (x) = 4− 1

1 + (x− 1)3
for 1 ≤ x.

Notice that T (0−) = 1, T (0+) = 1 + 1 = 2. The plot is easy:

-3 -2 -1 1 2 3

1

2

3

Figure 19. Plot of T .

(iii) It is boring but easy to plot A = (T +F )/2 and B = (T −F )/2, for which µ+ = dA and µ− = dB;
we do not give the expressions

-3 -2 -1 1 2 3

1

2

-3 -2 -1 1 2 3

1

Figure 20. Plot of A (left) and B.

(iv) The absolutely continuous part of µ+ = dA is

A′(x) dx =

(
3x2

(1− x3)2
χ]−∞,0[(x) +

1

2
χ]0,1[(x)

)
dx;

the singular part is dψ/2. For µ− the singular part is δ0, the absolutely continuous part is

B′(x) dx =
3(x− 1)2

(1 + (x− 1)3)2
χ[1,∞[(x) dx.

�

Exercise 30. In this problem Lp = Lpm([0, 1]), with m Lebesgue measure. For n = 3, 4, 5, . . . set
fn = (n/ log n)χ]0,1/n].

(i) Plot f3, f4, f7 and prove that fn converges everywhere on [0, 1] to a function f ; find f .
(ii) Find all p ∈ [1,∞] such that fn converges in Lp.
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(iii) Find all p ∈ [1,∞] such that the series
∞∑
n=3

n

log n
χ]1/(n+1),1/n]

converges in Lp; prove first that this series converges pointwise everywhere on [0, 1] to a function
g; plot g.

(iv) Deduce from the above that a sequence of positive functions can converge pointwise and in L1

without being dominated by a function in L1.

Solution. (i) The plots are easy.
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Figure 21. Plot of some fn (not on scale).

Given x ∈ [0, 1], if x = 0 we have fn(x) = 0 for all n ≥ 3, and if x > 0 for n > 1/x we have fn(x) = 0;
the sequence converges everywhere to the zero function, f(x) = 0 for every x ∈ [0, 1].

(ii) We have

‖fn‖pp =

ˆ 1

0

np

logp n
χ]0,1/n] dx =

np

logp n

1

n
=

np−1

logp n
;

if p > 1 we clearly have limn→∞ np−1/ logp n =∞, for p = 1 we have limn→∞(1/ log n) = 0. For p =∞
we have ‖fn‖∞ = n/ log n, with limit ∞ for n→∞. Then the sequence converges in Lp only for p = 1,
to the zero function.

(iii) The important fact is that the intervals ]1/(n+ 1), 1/n] are pairwise disjoint so that the series is
pointwise convergent to the function g : [0, 1] → R defined by g(x) = (n/ log n) if 1/(n + 1) < x ≤ 1/n,
for n ≥ 3, and g(x) = 0 for all other x. We also have

(g(x))p =

∞∑
n=3

np

logp n
χ]1/(n+1),1/n],

(for every given x ∈ [0, 1] there is at most one term in the sum which is nonzero!) so that, by the theorem
on termwise integration of series of positive functions:

‖g‖pp =

∞∑
n=3

np

logp n

(
1

n
− 1

n+ 1

)
=

∞∑
n=3

np−1

(n+ 1) logp n
.

For p = 1 we have the series
∞∑
n=3

1

(n+ 1) log n
,

which is not convergent (use the integral test: 1/((n+1) log n) ∼ 1/(n log n) and the integral
´∞
2
dx/(x log x)

diverges); for p > 1 we have, if n is large enough:

np−1

(n+ 1) logp n
≥ 1

n+ 1

(
in fact lim

n→∞

np−1

logp n
=∞

)
,

so that the series is divergent. So the series never converges in Lp, for no p with 1 ≤ p < ∞; and since
the sum is not in L∞, it does not converge in L∞, either.

We observe next that we have, for every x ∈ [0, 1]

g(x) = sup{fn(x) : n ≥ 3};
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in fact the sequence n 7→ n/ log n is increasing for n ≥ 3:

n

log n
<

n+ 1

log(n+ 1)
⇐⇒ n log(n+ 1) < (n+ 1) log n ⇐⇒ log(n+ 1)n < log nn+1 ⇐⇒

⇐⇒ (n+ 1)n < log nn+1 ⇐⇒
(

1 +
1

n

)n
< n,

certainly true for n ≥ 3, since (1+1/n)n < e < 3. Then there is no function h ∈ L1 such that fn(x) ≤ h(x)
for every n ≥ 3.
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Figure 22. Plot of g (not on scale).

�

Exercise 31. (i) Using the theorem on differentiability of parameter depending integrals prove that
the formula:

(*) ϕ(x) =

ˆ ∞
1

e−xt

t
dt

defines a function ϕ ∈ C1(]0,∞[,R).
(ii) Find for ϕ′ an expression not containing integrals.
(iii) What are the limits

lim
x→0+

ϕ(x); lim
x→∞

ϕ(x)?

(iv) Prove that for every a > 0 we have ϕ ∈ L1([a,∞[) and espress the integral
´∞
a
ϕ(x) dx by means

of ϕ(a) (use Fubini – Tonelli’s theorem . . . ).

Solution. (i) Clearly t 7→ e−xt/t belongs to L1([1,∞[) for every x > 0, so ϕ is defined for x > 0. We have
∂x(e−xt/t) = −e−xt. Given x > 0, let U = [x/2,∞[; the function γ(t) = e−(x/2)t) is in L1([1,∞[) and
e−yt(= | − e−yt|) ≤ γ(t) for every y ∈ U and t ≥ 1. By the theorem on differentiability we get

ϕ′(x) =

ˆ ∞
1

∂x(e−xt/t) dt =

ˆ ∞
1

(−e−xt) dt =

[
e−xt

x

]t=∞
t=1

= −e
−x

x
.

We have also solved (ii).
(iii) Notice that for fixed t ≥ 1 the function x 7→ e−xt/t is decreasing on ]0,∞[ (trivially). If xj ↓ 0

we then have that the sequence fj(t) = e−xjt/t is increasing and converges to t 7→ 1/t. By the monotone
convergence theorem we then haveˆ ∞

1

fj(t) dt ↑
ˆ ∞
1

dt

t
=∞ in other words lim

x→0+
ϕ(x) =∞.

And if xj ↑ ∞ then fj(t) = e−xjt/t is dominated by f0 ∈ L1([1,∞[) and converges pointwise to 0 so that,
by dominated convergence:

lim
j→∞

ˆ ∞
1

fj(t) dt = 0 in other words lim
x→∞

ϕ(x) = 0.

Of course we can also argue like that: e−xt/t ≤ e−xt for t ≥ 1, so that

0 < ϕ(x) ≤
ˆ ∞
1

e−xt dt =
e−x

x
,
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and e−x/x→ 0 as x→ +∞.
(iv) We have to compute ˆ ∞

a

ϕ(x) dx =

ˆ ∞
a

(ˆ ∞
1

e−xt

t
dt

)
dx;

all spaces have σ−finite measure and the integrand is measurable and positive; so the iterated integral
obtained by exchanging the order of integration coincides with the given one:ˆ ∞

a

(ˆ ∞
1

e−xt

t
dt

)
dx =

ˆ ∞
1

(ˆ ∞
a

e−xt

t
dx

)
dt =

ˆ ∞
1

[
e−xt

−t2

]x=∞
x=a

dt =

=

ˆ ∞
1

e−at

t2
dt = (by parts) =

[
−e
−at

t

]t=∞
t=1

+ a

ˆ ∞
1

e−at

t
dt = e−a + aϕ(a);

we have obtained: ˆ ∞
a

ϕ(x) dx = e−a + aϕ(a).

�

Exercise 32. In Rn let xk be a sequence converging to x ∈ Rn, and let rk > 0 converge to r > 0.

(i) If χk = χB(xk,rk] then χk converges a.e. to χ = χB(x,r].

(ii) Prove that if f ∈ L1
loc(Rn) then

lim
k→∞

ˆ
Rn

f χk dm =

ˆ
Rn

f χ dm

(hint: if R = supk{rk + |x− xk|} then B(xk, rk] ⊆ B(x,R] for every k ∈ N. . . )
(iii) Assume now that f ∈ L1(Rn), and define g : Rn → K by

g(x) =

ˆ
B(x,1]

f dm.

Then g is continuous, and lim|x|→∞ g(x) =?

Solution. (i) and (ii) are Exercise 7.1.1.1 of the Lecture Notes, and the solution shan’t be repeated here.
(iii) Continuity of g is clear from (ii), keeping r = 1 fixed. Clearly the limit is 0: if xk is a sequence

in Rn with limk |xk| = ∞, the sequence fk = f χB(xk,1] is dominated by |f | ∈ L1(Rn) and converges to
0 a.e. (given x ∈ Rn, if |xk| > |x| + 1 then fk(x) = 0). By dominated convergence the limit of g(xk) is
0. �


