REAL ANALYSIS EXAMS
 A.A 2012-13

GIUSEPPE DE MARCO

1. Analisi Reale per Matematica - Precompitino - 7 novembre 2012

Exercise 1. Let (X, \mathcal{M}, μ) be a measure space.
(i) Recall that $E \in \mathcal{M}$ is said to be of σ-finite measure if it can be covered by a sequence of sets in \mathcal{M} of finite measure. Prove that for $E \in \mathcal{M}$ the following are equivalent:
(a) E has σ-finite measure.
(b) E can be written as a countable disjoint union of sets in \mathcal{M} of finite measure.
(c) E can be written as the union of an increasing sequence of sets in \mathcal{M} of finite measure.
(ii) Prove that if $\mathcal{S}=\{E \in \mathcal{M}: E$ has σ-finite measure $\}$ then \mathcal{S} is a σ-ideal of \mathcal{M}, that is, \mathcal{S} is closed under countable union and the formation of subsets (i.e., if $E \in \mathcal{S}, F \in \mathcal{M}$ and $F \subseteq E$, then $F \in \mathcal{S}$).
(iii) Recall that an atom of infinite measure is a set $A \in \mathcal{M}$ such that $\mu(A)=\infty$, and for every $E \in \mathcal{M}$ with $E \subseteq A$ we have either $\mu(E)=0$ or $\mu(A \backslash E)=0$. Prove that if A is an atom of infinite measure and E has σ-finite measure then $\mu(E \cap A)=0$.
The questions that follow are not related to the preceding ones
(iv) Let $\left(c_{n}\right)_{n \in \mathbb{N}}$ be an arbitrary sequence of real numbers, with $c_{0}=0$, and let $f_{0} \in L_{m}^{1}(\mathbb{R})$. If we define, for $n \in \mathbb{N}, f_{n}(x)=2^{n} f_{0}\left(4^{n}\left(x-c_{n}\right)\right)$, then the formula

$$
f(x)=\sum_{n=0}^{\infty} f_{n}(x)
$$

defines for m-a.e. $x \in \mathbb{R}$ a function $f \in L_{m}^{1}(\mathbb{R})$: give a careful explanation, quoting the relevant theorems (m is Lebesgue measure).
(v) Prove that if $g \in L_{m}^{1}(\mathbb{R})$ then $\lim _{\inf }^{x \rightarrow \infty}|~| g(x) \mid=0$; find a continuous $g \in L_{m}^{1}(\mathbb{R})$ such that $\lim \sup _{x \rightarrow \infty}|g(x)|=\infty$ (and this limsup remains infinite even after modification of g on a set of measure 0).

Solution. (i) (a) implies (b): if $E=\bigcup_{k=0}^{\infty} A_{k}$, with $A_{k} \in \mathcal{M}$, with the usual trick we make the union disjoint, setting $B_{0}=A_{0}$ and $B_{k}=A_{k} \backslash \bigcup_{j=0}^{k-1} A_{j}$; clearly $\mu\left(B_{k}\right) \leq \mu\left(A_{k}\right)<\infty$, for every $k \in \mathbb{N}$. (b) implies (c): if $E=\bigcup_{k \in \mathbb{N}} B_{k}$, with $B_{k} \in \mathcal{M}$ (disjoint or not) and $\mu\left(B_{k}\right)<\infty$, setting $A_{m}=\bigcup_{k=1}^{m} B_{k}$ we have $A_{m} \uparrow E$ and by subadditivity $\mu\left(A_{m}\right) \leq \sum_{k=0}^{m} \mu\left(B_{k}\right)<\infty$. (c) implies (a): trivial.
(ii) If $\left(E_{m}\right)_{m \in \mathbb{N}}$ is a sequence of sets of σ-finite measure, and $E_{m}=\bigcup_{n \in \mathbb{N}} A_{m n}$, with each $A_{m n} \in \mathcal{M}$ of finite measure, we have

$$
\bigcup_{m \in \mathbb{N}} E_{m}=\bigcup_{m \in \mathbb{N}}\left(\bigcup_{n \in \mathbb{N}} A_{m n}\right)=\bigcup_{(m, n) \in \mathbb{N} \times \mathbb{N}} A_{m n}
$$

a countable union of sets of finite measure, since $\mathbb{N} \times \mathbb{N}$ is countable. Any measurable subset F of a set E of σ-finite measure is of course of σ-finite measure: if $E=\bigcup_{k \in \mathbb{N}} A_{k}$ we have $F=\bigcup_{k \in \mathbb{N}} F \cap A_{k}$, and $\mu\left(F \cap A_{k}\right) \leq \mu\left(A_{k}\right)<\infty$.
(iii) $E \cap A$ has σ-finite measure, being a subset of E, as just proved; since every subset of finite measure of an atom of infinite measure has measure $0, E \cap A$ is countable union of sets of measure 0 , and has then measure 0 .
(iv) We have:

$$
\left\|f_{n}\right\|_{1}=\int_{\mathbb{R}} 2^{n}\left|f_{0}\left(2^{n}\left(x-c_{n}\right)\right)\right| d x=2^{n} \int_{\mathbb{R}}\left|f_{0}(t)\right| \frac{d t}{4^{n}}=\frac{1}{2^{n}} \int_{\mathbb{R}}\left|f_{0}(t)\right| d t=\frac{\left\|f_{0}\right\|_{1}}{2^{n}}
$$

so that the series $\sum_{n=0}^{\infty}\left\|f_{n}\right\|_{1}=2\left\|f_{0}\right\|_{1}$ is convergent. The theorem on normally convergent series says that then the series of functions $\sum_{n=0}^{\infty} f_{n}(x)$ converges a.e. an in $L_{m}^{1}(\mathbb{R})$ to an $f \in L_{m}^{1}(\mathbb{R})$. We also have $\int_{\mathbb{R}} f(x) d x=2 \int_{\mathbb{R}} f_{0}(x) d x$.
(v) If $\lim \inf _{x \rightarrow \infty}|g(x)|=\alpha>0$, given $\beta \in \mathbb{R}$ with $0<\beta<\alpha$ there is $a \in \mathbb{R}$ such that $|g(x)|>\beta$ for every $x \geq a$. Then $|g|$ cannot have a finite integral: $\int_{\mathbb{R}}|g| \geq \int_{\mathbb{R}} \beta \chi_{[a, \infty[}=\infty$. To construct g as required we may take f_{0} continuous with support in $[0,1]$, e.g, $f_{0}(x)=(1-|2 x-1|) \vee 0$, and $c_{n}=n$; since $f_{n}(x)=2^{n} f_{0}\left(4^{n}(x-n)\right)$ has $\left[n, n+1 / 4^{n}\right]$ as support, the sum $f=\sum_{n=0}^{\infty} f_{n}$ is continuous (on the interval] $-m, m$ [the function f coincides with $\sum_{n=0}^{m} f_{n}$, a finite sum of continuous functions, hence a continuous function, see the figure). It is clear that $\lim _{\sup _{x \rightarrow \infty}} f(x)=\infty$, and that changing f on a set of measure 0 cannot destroy this fact (for every $a>0$ the essential supremum of f on $[a, \infty[$ is $\infty)$. We set $g=f$.

Figure 1. Plot of $g=f$ (not on scale).

ExERCISE 2. Let $\alpha: \mathbb{R} \rightarrow \mathbb{R}$ be increasing; denote by $\mu=d \alpha$ the Radon-Stieltjes measure associated to α. A Borel measurable function $f: \mathbb{R} \rightarrow \mathbb{C}$ is said to be locally in $L^{1}(\mu)$ if for every compact subset K of \mathbb{R} we have $f \chi_{K} \in L^{1}(\mu)$. For such an f, assuming for simplicity that $c \in \mathbb{R}$ is such that α is continuous at c, we define $F: \mathbb{R} \rightarrow \mathbb{C}$ by

$$
F(x)=\int_{] c, x]} f d \mu\left(=\int_{[c, x]} f d \mu\right) \quad \text { for } x \geq c, \quad F(x)=-\int_{] x, c]} f d \mu \quad \text { for } x<c
$$

(i) Prove that F is right-continuous and has finite left limits at every point (use dominated convergence: if $x, x_{n} \in I$ and $x_{n} \downarrow x$, resp $x_{n} \uparrow x$ increasing strictly, then the sequence χ_{n} of the characteristic functions of the intervals of extremes c, x_{n} tends to ...). Compute the jump $F(x)-F\left(x^{-}\right)$and prove that if α is continuous at x then also F is continuous at x.
(ii) Prove that if $f \geq 0$, then F is increasing, and as such defines a Radon-Stieltjes measure $d F$ on the Borel subsets of \mathbb{R}. Prove that $d F=f d \mu$.
From now on we assume that α is continuous. Recall that if F, G are right-continuous increasing functions $F, G: I \rightarrow \mathbb{R}$ we have the formula of integration by parts:

$$
\int_{] a, b]} F\left(x^{-}\right) d G(x)+\int_{] a, b]} G(x) d F(x)=F(b) G(b)-F(a) G(a)
$$

for every $a, b \in I$, with $a<b$, so that in particular, if F is as above, with $f \geq 0$ locally in $L^{1}(\mu)$ we have

$$
\begin{equation*}
\int_{a}^{b} G(x) f(x) d \mu(x)=F(b) G(b)-F(a) G(a)-\int_{] a, b]} F(x) d G(x) \tag{*}
\end{equation*}
$$

(iii) Prove that formula $\left(^{*}\right)$ holds for every f locally in $L^{1}(\mu)$, of any sign and also complex-valued, and not only for $f \geq 0$.

Solution. (i) Assuming first $x>c$, let χ_{n} be the characteristic function of the interval]c, $\left.x_{n}\right]$; if $x_{n} \downarrow x$ then $\chi_{n} \leq \chi_{\left[c, x_{0}\right]}$, and χ_{n} converges pointwise everywhere to $\chi_{] c, x]}$.

If $x_{n} \uparrow x$ (with x_{n} strictly increasing) then $\chi_{n} \leq \chi_{[c, x]}$, for every n, and χ_{n} converges pointwise everywhere to $\chi_{] c, x[}$. In any case $\left|f \chi_{n}\right| \leq|f| \chi_{K}$, with K compact ($K=\left[c, x_{0}\right]$ in the first case, $K=[c, x]$ in the second case); since this function is in $L^{1}(\mu)$ we can apply dominate convergence to show that

$$
\lim _{n \rightarrow \infty} F\left(x_{n}\right)=\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f \chi_{n} d \alpha=\int_{\mathbb{R}}\left(\lim _{n \rightarrow \infty} f \chi_{n}\right) d \alpha=\int_{\mathbb{R}} f\left(\lim _{n \rightarrow \infty} \chi_{n}\right) d \alpha
$$

If $x_{n} \downarrow x$, then as observed above we have $\lim _{n \rightarrow \infty} \chi_{n}=\chi_{] c, x]}$ so that

$$
\lim _{n \rightarrow \infty} F\left(x_{n}\right)=\int_{\mathbb{R}} f\left(\lim _{n \rightarrow \infty} \chi_{n}\right) d \alpha=\int_{[c, x]} f d \alpha=F(x)
$$

so that F is right-continuous at x. And if $x_{n} \uparrow x$ with $x_{n}<x$ for every n, then

$$
\lim _{n \rightarrow \infty} F\left(x_{n}\right)=\int_{\mathbb{R}} f\left(\lim _{n \rightarrow \infty} \chi_{n}\right) d \alpha=\int_{] c, x[} f d \alpha
$$

this proves that $F\left(x^{-}\right)=\int_{] c, x[} f d \alpha$; then

$$
F(x)-F\left(x^{-}\right)=\int_{] c, x]} f d \alpha-\int_{] c, x[} f d \alpha=\int_{\{x\}} f d \alpha=f(x)\left(\alpha\left(x^{+}\right)-\alpha\left(x^{-}\right)\right)
$$

in particular F is continuous wherever α is continuous. The proofs for $x \leq c$ are similar, we only have to change some signs.
(ii) Clearly F is increasing : one easily sees that if $x_{1}<x_{2}$, with $x_{1}, x_{2} \in \mathbb{R}$ then

$$
F\left(x_{2}\right)-F\left(x_{1}\right)=\int_{] x_{1}, x_{2}\right]} f d \alpha \geq 0 \quad(\text { by positivity of } f)
$$

Moreover, for every compact interval $[a, b]$ we have

$$
F(b)-F\left(a^{-}\right)=\int_{[a, b]} f d \alpha
$$

so that the measure $d F$ and $f d \alpha$ coincide and are finite on compact intervals, and hence on every Borel set, since the set of compact intervals is closed under intersection and generates the Borel σ-algebra.
(iii) For real f we write $f=f^{+}-f^{-}$, and we have the formulae:

$$
\begin{aligned}
& \int_{a}^{b} G(x) f^{+}(x) d \mu(x)=F_{+}(b) G(b)-F_{+}(a) G(a)-\int_{] a, b]} F_{+}(x) d G(x) \\
& \int_{a}^{b} G(x) f^{-}(x) d \mu(x)=F_{-}(b) G(b)-F_{-}(a) G(a)-\int_{] a, b]} F(x) d G(x)
\end{aligned}
$$

where of course $F_{ \pm}(x)=\operatorname{sgn}(x-c) \int_{j c, x]} f^{ \pm} d \alpha$. Subtracting the second formula from the first we get the result. Similarly, for complex f we use real and imaginary parts: the general formula, for a non necessarily positive f, is due to its linearity in f and F.

ExERCISE 3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{C}$ be defined by $f(x, y)=e^{-x y^{2}} e^{i x}$. For $a>0$ let $E(a)=[0, a] \times[0, \infty[$, $E=\left[0, \infty\left[^{2}\right.\right.$ the first quadrant.
(i) Prove that $f \in L^{1}(E(a))$ and that $f \notin L^{1}(E)$.
(ii) Reduce the integral of f on $E(a)$ to one dimensional integrals; compute then the limit

$$
\lim _{a \rightarrow \infty} \int_{E(a)} f(x, y) d x d y
$$

in terms of these integrals, and deduce from it the value of the generalized integrals:

$$
\int_{0}^{\infty} \frac{\cos t}{\sqrt{t}} d t ; \quad \int_{0}^{\infty} \frac{\sin t}{\sqrt{t}} d t
$$

(Fresnel's integrals; they are not Lebesgue integrals, being non-absolutely convergent).
A careful application of the theorems of Tonelli and Fubini is required. It is useful to know that

$$
\int_{0}^{\infty} e^{-\alpha y^{2}} d y=\frac{1}{2} \sqrt{\frac{\pi}{\alpha}} \quad(\alpha>0) ; \quad \int_{0}^{\infty} \frac{y^{2}}{1+y^{4}} d y=\int_{0}^{\infty} \frac{d y}{1+y^{4}}=\frac{\pi}{2 \sqrt{2}}
$$

Solution. (i) The function f is continuous and hence Borel measurable. We have $|f(x, y)|=e^{-x y^{2}}$ so that

$$
\int_{E(a)}|f(x, y)| d x d y=\int_{x=0}^{x=a}\left(\int_{0}^{\infty} e^{-x y^{2}} d y\right) d x=\int_{0}^{a} \frac{\sqrt{\pi}}{2 \sqrt{x}} d x<\infty \quad \text { for every } a>0
$$

while

$$
\int_{E}|f(x, y)| d x d y=\int_{0}^{\infty} \frac{\sqrt{\pi}}{2 \sqrt{x}} d x=\infty
$$

(i) is proved: by Tonelli's theorem we have $f \in L^{1}(E(a))$ and $f \notin L^{1}(E)$.
(ii) Since $f \in L^{1}(E(a))$ Fubini's theorem applies and we get

$$
\begin{aligned}
\int_{E(a)} f(x, y) d x d y= & \int_{x=0}^{x=a}\left(\int_{y=0}^{y=\infty} e^{-x y^{2}} d y\right) e^{i x} d x=\frac{\sqrt{\pi}}{2} \int_{0}^{a} \frac{e^{i x}}{\sqrt{x}} d x \\
= & \int_{y=0}^{y=\infty}\left(\int_{x=0}^{x=a} e^{-\left(y^{2}-i\right) x} d x\right) d y=\int_{0}^{\infty}\left[-\frac{e^{-\left(y^{2}-i\right) x}}{y^{2}-i}\right]_{x=0}^{x=a} d y= \\
& \int_{0}^{\infty} \frac{1-e^{-\left(y^{2}-i\right) a}}{y^{2}-i} d y=\int_{0}^{\infty} \frac{d y}{y^{2}-i}-\int_{0}^{\infty} \frac{e^{-\left(y^{2}-i\right) a}}{y^{2}-i} d y
\end{aligned}
$$

Notice now that $\left|e^{-\left(y^{2}-i\right) a}\right|=e^{-y^{2} a}\left|e^{i a}\right|=e^{-y^{2} a}$ and that $1 /\left|y^{2}-i\right| \leq 1$; as $a \rightarrow+\infty$ the function $y \mapsto e^{-\left(y^{2}-i\right) a}$ converges to zero for every $y>0$ (its module is $e^{-y^{2} a}$), and for $a \geq 1$ all integrands are dominated by $e^{-y^{2}}$, which is in $L^{1}([0, \infty[)$. Then

$$
\lim _{a \rightarrow \infty} \int_{0}^{\infty} \frac{e^{-\left(y^{2}-i\right) a}}{y^{2}-i} d y=0
$$

Since

$$
\int_{E(a)} f(x, y) d x d y=\frac{\sqrt{\pi}}{2} \int_{0}^{a} \frac{e^{i x}}{\sqrt{x}} d x=\int_{0}^{\infty} \frac{d y}{y^{2}-i}-\int_{0}^{\infty} \frac{e^{-\left(y^{2}+i\right) a}}{y^{2}-i} d y
$$

taking limits as $a \rightarrow+\infty$ we get

$$
\frac{\sqrt{\pi}}{2} \int_{0}^{\uparrow \infty} \frac{e^{i x}}{\sqrt{x}} d x=\int_{0}^{\infty} \frac{d y}{y^{2}-i}=\left(\int_{0}^{\infty} \frac{y^{2}}{1+y^{4}} d y+i \int_{0}^{\infty} \frac{d y}{1+y^{4}}\right)=\frac{\pi}{2 \sqrt{2}}(1+i)
$$

and equating real and imaginary parts:

$$
\int_{0}^{\uparrow \infty} \frac{\cos x}{\sqrt{x}} d x=\sqrt{\frac{\pi}{2}} ; \quad \int_{0}^{\uparrow \infty} \frac{\sin x}{\sqrt{x}} d x=\sqrt{\frac{\pi}{2}}
$$

2. Analisi Reale per Matematica - Primo Compitino - 17 novembre 2012

Exercise 4. Let (X, \mathcal{M}, μ) be a measure space, and let u_{n}, f_{n}, v_{n} be sequences in $L_{\mu}^{1}(X, \mathbb{R})$, pointwise converging a.e. to u, f, v, respectively; assume that $u, v \in L^{1}(\mu)$ and

$$
u_{n}(x) \leq f_{n}(x) \leq v_{n}(x) \quad \text { for every } n \in \mathbb{N} \text { and a.e. } x \in X ; \quad \lim _{n \rightarrow \infty} \int_{X} u_{n}=\int_{X} u ; \quad \lim _{n \rightarrow \infty} \int_{X} v_{n}=\int_{X} v
$$

(i) Prove that in these hypotheses also $f \in L_{\mu}^{1}(X, \mathbb{R})$ and $\lim _{n \rightarrow \infty} \int_{X} f_{n}=\int_{X} f$; use only Fatou's lemma for the proof, and not the dominated convergence theorem.
(ii) State the dominated convergence theorem.
(iii) The generalized dominated convergence theorem says that if f_{n}, g_{n} are sequences in $L^{1}(\mu)$, pointwise converging to f and g respectively, $\left|f_{n}\right| \leq g_{n}$ and $\int_{X} g_{n} \rightarrow \int_{X} g<\infty$, then $f \in L^{1}(\mu)$ and $\int_{X} f_{n} \rightarrow \int_{X} f$. Prove this theorem using the previous result (i) on the three sequences.
Solution. (i) Clearly $u(x) \leq f(x) \leq v(x)$ for a.e. $x \in X$. Since $u, v \in L^{1}(\mu)$ by hypothesis we have also $f \in L^{1}(\mu)$ (e.g. because $-v \leq-f \leq-u$, so that $|f|=f \vee(-f) \leq v \vee(-u)$, and the \vee of two functions in $L^{1}(\mu)$ is in $L^{1}(\mu)$; at any rate, it is clear that $|f| \leq|u|+|v|$, and this function is in $L^{1}(\mu)$ because u and v are in $L^{1}(\mu)$ by hypothesis).

Apply Fatou's lemma to $f_{n}-u_{n} \geq 0$, obtaining

$$
\begin{aligned}
\int_{X} \liminf _{n \rightarrow \infty}\left(f_{n}-u_{n}\right) \leq & \liminf _{n \rightarrow \infty} \int_{X}\left(f_{n}-u_{n}\right)=\liminf _{n \rightarrow \infty}\left(\int_{X} f_{n}-\int_{X} u_{n}\right)= \\
& \liminf _{n \rightarrow \infty} \int_{X} f_{n}-\lim _{n \rightarrow \infty} \int_{X} u_{n}=\liminf _{n \rightarrow \infty} \int_{X} f_{n}-\int_{X} u
\end{aligned}
$$

the left hand side is $\int_{X}(f-u)=\int_{X} f-\int_{X} u$, so that we get

$$
\int_{X} f-\int_{X} u \leq \liminf _{n \rightarrow \infty} \int_{X} f_{n}-\int_{X} u \Longleftrightarrow \int_{X} f \leq \liminf _{n \rightarrow \infty} \int_{X} f_{n}
$$

Now apply Fatou's lemma to the sequence $v_{n}-f_{n} \geq 0$, obtaining

$$
\begin{aligned}
\int_{X} \liminf _{n \rightarrow \infty}\left(v_{n}-f_{n}\right) \leq & \liminf _{n \rightarrow \infty} \int_{X}\left(v_{n}-f_{n}\right)=\liminf _{n \rightarrow \infty}\left(\int_{X} v_{n}-\int_{X} f_{n}\right)= \\
& \lim _{n \rightarrow \infty} \int_{X} v_{n}+\liminf _{n \rightarrow \infty}\left(-\int_{X} f_{n}\right)=\int_{X} v-\limsup _{n \rightarrow \infty} \int_{X} f_{n}
\end{aligned}
$$

the left hand side is $\int_{X}(v-f)=\int_{X} v-\int_{X} f$, so that we get

$$
\int_{X} v-\int_{X} f \leq \int_{X} v-\limsup _{n \rightarrow \infty} \int_{X} f_{n} \Longleftrightarrow \limsup _{n \rightarrow \infty} \int_{X} f_{n} \leq \int_{X} f
$$

which combined with the previous result yields $\int_{X} f=\lim _{n \rightarrow \infty} \int_{X} f_{n}$; (i) has been proved.
(ii) See the Lecture Notes.
(iii) $\left|f_{n}\right| \leq g_{n}$ is equivalent to $-g_{n} \leq f_{n} \leq g_{n}$ if f_{n} is a real valued function; we simply set $u_{n}=-g_{n}$ and $v_{n}=g_{n}$, and the hypotheses are all verified: clearly $\int_{X} u_{n}=-\int_{X} g_{n} \rightarrow-\int_{X} g$, etc. For f_{n} complex valued, use real and imaginary parts.

Remark. Fatou's lemma applies only to sequences of positive functions! Many applied the lemma directly to the sequences $u_{n} \leq f_{n} \leq v_{n}$, a very serious blunder.

Moreover, some incorrectly presumed the following: if $g_{n} \in L_{\mu}^{1}(X, \mathbb{R})$ is a sequence converging a.e. to $g \in L_{\mu}^{1}(X, \mathbb{R})$, and $\int_{X} g_{n} \rightarrow \int_{X} g$, then $\int_{X}\left|g_{n}\right| \rightarrow \int_{X}|g|$, or $\int_{X} g_{n}^{ \pm} \rightarrow \int_{X} g^{ \pm}$, or even more, g_{n} converges to g in $L_{\mu}^{1}(X, \mathbb{R})$. This is in general not true when g_{n} may change sign. Let $X=[0,1]$ with Lebesgue measure m, and let $g_{n}=n^{2}\left(\chi_{] 0,1 /(2 n)]}-\chi_{] 1 /(2 n), 1 / n]}\right)$. Then $g_{n} \in L^{1}(m), \lim _{n \rightarrow \infty} g_{n}(x)=0$ for every $x \in[0,1]$, so that the limit function 0 is in $L^{1}(m)$; moreover $\int_{[0,1]} g_{n}=0$ for every n, so that $\lim _{n \rightarrow \infty} \int_{[0,1]} g_{n}=\int_{[0,1]} g=0$; but $g_{n}^{+}=n^{2} \chi_{] 0,1 /(2 n)]}$ and $g_{n}^{-}=n^{2} \chi_{] 1 /(2 n), 1 / n]}$ are such that

$$
\int_{[0,1]} g_{n}^{+}=\int_{[0,1]} g_{n}^{-}=\frac{n}{2} \rightarrow \infty
$$

whereas, of course, $\lim _{n \rightarrow \infty} g_{n}^{+}(x)=\lim _{n \rightarrow \infty} g_{n}^{-}(x)=0$ for every $x \in[0,1]$.
ExERCISE 5. Let μ be a positive finite measure on the Borel subsets of $\mathbb{R}, 0<\mu(\mathbb{R})=a<\infty$; we also suppose that $\mu(]-\infty, 0[)=0$. Let $F(x)=\mu(]-\infty, x])$ be the right continuous distribution function of μ, with initial point $-\infty$.
(i) Under what condition on μ is $F(0)=0$?
(ii) Denoting by m the one-dimensional Lebesgue measure, compute $\mu \otimes m(T)$, where

$$
T=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq y \leq x\right\}
$$

and deduce from it the formula

$$
\int_{[0, \infty[} x d \mu(x)=\int_{0}^{\infty}(F(\infty)-F(x)) d x \quad(d x=d m(x))
$$

Is it true that the identity function $f(x)=x$ belongs to $L^{1}(\mu)$ if and only if $x \mapsto(F(\infty)-F(x))$ belongs to $L_{m}^{1}([0, \infty[) ?$
(iii) Prove that the formula

$$
\varphi(x)=\int_{[0, \infty[} \cos (x t) d \mu(t) \quad \text { defines a continuous function } \varphi: \mathbb{R} \rightarrow \mathbb{R}
$$

(iv) Assume that $F(t)=F(\infty)+O\left(1 / t^{2}\right)$ for $t \rightarrow \infty$. Prove that then the function φ defined in (iii) belongs to $C^{1}(\mathbb{R})$.

Solution. (i) Clearly $F(x)=0$ for every $x<0$, so that $F\left(0^{-}\right)=0$; then the jump of F at 0 , namely $F(0)-F\left(0^{-}\right)=\mu(\{0\})$ coincides with $F(0): F(0)=0$ iff $\mu(\{0\})=0$.
(ii) T is closed in \mathbb{R}^{2}, hence Lebesgue measurable; both measures are σ-finite, μ even finite; then, if $T^{y}=\{x \in \mathbb{R}:(x, y) \in T\}=\left[y, \infty\left[\right.\right.$ if $y \geq 0$, and otherwise $T^{y}=\emptyset:$

$$
\mu \otimes m(T)=\int_{[0, \infty]} \mu\left(T^{y}\right) d m(y)=\int_{[0, \infty[}\left(F(\infty)-F\left(y^{-}\right)\right) d m(y)
$$

The set of discontinuities of the monotone function F is at most countable, hence of Lebesgue measure 0 , so that $F\left(y^{-}\right)=F(y)$ for m a.e. $y \in \mathbb{R}$, and

$$
\int_{[0, \infty[}\left(F(\infty)-F\left(y^{-}\right)\right) d m(y)=\int_{[0, \infty[}(F(\infty)-F(y)) d m(y)
$$

Now we integrate exchanging the variables; for every $x \in \mathbb{R}$ we consider the $x-\operatorname{section}$ of $T, T_{x}=\{y \in$ $\mathbb{R}:(x, y) \in T\}=[0, x]$ if $x \geq 0$, otherwise $T_{x}=\emptyset$. We get

$$
\mu \otimes m(T)=\int_{[0, \infty]} m\left(T_{x}\right) d \mu(x)=\int_{[0, \infty[} x d \mu(x)
$$

We have proved, as requested, that

$$
\mu \otimes m(T)=\int_{[0, \infty[}(F(\infty)-F(y)) d m(y)=\int_{[0, \infty[} x d \mu(x)
$$

Since $\mu(]-\infty, 0[)=0, f(x)=x$ coincides μ-a.e. with $f^{+}(x)=|f(x)|=|x|$ on \mathbb{R}, so that

$$
\int_{[0, \infty]} x d \mu(x)=\int_{\mathbb{R}}|x| d \mu(x)
$$

and the formula just proved implies that $\|f\|_{1}=\int_{0}^{\infty}(F(\infty)-F(y)) d m(y)$; the answer is yes (notice also that $F(\infty)-F(y) \geq 0$, because F is increasing).
(iii) The function $x \mapsto \cos (x t)$ is continuous for every t, and $|\cos (x t)| \leq 1$, with the constant $1 \in L^{1}(\mu)$ since $\mu(\mathbb{R})<\infty$. The theorem on continuity of parameter depending integrals then applies, and proves continuity of φ.
(iv) We have

$$
\frac{\partial}{\partial x}(\cos (x t))=-t \sin (x t), \quad \text { so that } \quad\left|\frac{\partial}{\partial x}(\cos (x t))\right|=|t||\sin (x t)| \leq|t|
$$

If $t \mapsto|t|$ is in $L^{1}(\mu)$, the theorem on differentiation of parameter depending integrals says that $\varphi^{\prime}(x)$ exists for every $x \in \mathbb{R}$, and

$$
\varphi^{\prime}(x)=\int_{\mathbb{R}}(-t \sin (x t)) d \mu(t)
$$

and then the continuity part of the theorem implies that this function φ^{\prime} is continuous. In (ii) we have seen that the identity function of \mathbb{R} is in $L^{1}(\mu)$ if and only if $t \mapsto F(\infty)-F(t)$ belongs to $L_{m}^{1}([0, \infty[)$. The hypothesis says that there is a constant $k>0$ and $b>0$ such that $0 \leq F(\infty)-F(t) \leq k / t^{2}$ for $t \geq b$; on $[0, b]$ the function is of course bounded. Then $t \mapsto F(\infty)-F(t)$ belongs to $L_{m}^{1}([0, \infty[)$. Thus $\varphi \in C^{1}(\mathbb{R})$, and the derivative is obtained by differentiating under the integral sign.

ExERCISE 6. Let (X, \mathcal{M}, μ) be a measure space. We say that a sequence f_{n} of measurable functions converges to 0 in measure if for every $t>0$ we have $\lim _{n \rightarrow \infty} \mu\left(\left\{\left|f_{n}\right|>t\right\}\right)=0$.
(i) Using Čebičeff inequality prove that if $\left\|f_{n}\right\|_{1} \rightarrow 0$, then f_{n} converges to 0 in measure.
(ii) With $X=[0,1]$ and μ Lebesgue measure, let $f_{n}=n \chi_{] 0,1 / n]}$. Is it true that f_{n} converges to 0 in measure? and in $L^{1}(\mu)$ also?
(iii) Assume now that f_{n} is a uniformly bounded sequence of measurable functions on X (that is, there is a constant $M>0$ such that $\left\|f_{n}\right\|_{\infty} \leq M$ for every $n \in \mathbb{N}$), and that $\mu(X)<\infty$. Prove that if f_{n} converges to 0 in measure then it converges to 0 in $L^{1}(\mu)$ (given $\varepsilon>0$ write

$$
\int_{X}\left|f_{n}\right|=\int_{\left\{\left|f_{n}\right|>\varepsilon\right\}}\left|f_{n}\right|+\int_{\left\{\left|f_{n}\right| \leq \varepsilon\right\}}\left|f_{n}\right|
$$

and estimate separately the two terms).
(iv) A sequence f_{n} of real-valued measurable functions converges to 0 in measure if and only if the sequence $\arctan f_{n}$ converges to 0 in measure.
(v) On a finite measure space a sequence f_{n} of real-valued measurable functions converges to 0 in measure if and only if the sequence $\arctan f_{n}$ converges to 0 in $L^{1}(\mu)$.
Solution. (i) For every $t>0$ and every $n \in \mathbb{N}$ we have $\mu\left(\left\{f_{n}>t\right\}\right) \leq(1 / t) \int_{X}\left|f_{n}\right|=(1 / t)\left\|f_{n}\right\|_{1}$; letting $n \rightarrow \infty$ in this inequality we get $\lim _{n \rightarrow \infty} \mu\left(\left\{f_{n}>t\right\}\right)=0$.
(ii) Given $t>0$ we have that $\left.\left.\left\{\left|f_{n}\right|>t\right\}=\left\{f_{n}>t\right\}=\right] 0,1 / n\right]$ for $n>t$ (and $\left\{f_{n}>t\right\}=\emptyset$ for $n \leq t$) so that $\mu\left(\left\{\left|f_{n}\right|>t\right\}=1 / n\right.$ tends to 0 as $n \rightarrow \infty$, and f_{n} converges to 0 in measure. On the other hand
$\left.\left.\left\|f_{n}\right\|_{1}=\int_{[0,1]} f_{n} d m=n m(] 0,1 / n\right]\right)=1$ for every n, so that f_{n} does not converge in $L_{m}^{1}([0,1])$ (to 0 , or to any other function).
(iii) Accepting the hint we write

$$
\begin{align*}
\int_{X}\left|f_{n}\right|= & \int_{\left|f_{n}\right|>\varepsilon}\left|f_{n}\right|+\int_{\left\{\left|f_{n}\right| \leq \varepsilon\right\}}\left|f_{n}\right| \leq \int_{\left|f_{n}\right|>\varepsilon} M+\int_{\left\{\left|f_{n}\right| \leq \varepsilon\right\}} \varepsilon \leq \tag{}\\
& \leq M \mu\left(\left\{\left|f_{n}\right|>\varepsilon\right\}\right)+\varepsilon \mu\left(\left\{\left|f_{n}\right| \leq \varepsilon\right\}\right) \leq M \mu\left(\left\{\left|f_{n}\right|>\varepsilon\right\}\right)+\varepsilon \mu(X) ;
\end{align*}
$$

by hypothesis $\lim _{n \rightarrow \infty} \mu\left(\left\{\left|f_{n}\right|>\varepsilon\right\}\right)=0$, so that we may pick $n_{\varepsilon} \in \mathbb{N}$ such that if $n \geq n_{\varepsilon}$ then $\mu\left(\left\{\left|f_{n}\right|>\varepsilon\right\}\right) \leq \varepsilon / M$; then

$$
\left\|f_{n}\right\|_{1}=\int_{X}\left|f_{n}\right| \leq(1+\mu(X)) \varepsilon \quad \text { for } \quad n \geq n_{\varepsilon} ;
$$

the proof of (iii) is completed.
(iv) Since \arctan is odd we have $\left|\arctan f_{n}\right|=\arctan \left(\left|f_{n}\right|\right)$ for every real valued function f_{n}. Then, if $0<t<\pi / 2$ we have $\left\{\left|\arctan f_{n}\right|>t\right\}=\left\{\arctan \left|f_{n}\right|>t\right\}=\left\{\left|f_{n}\right|>\tan t\right\}$ (if $t \geq \pi / 2$ we have $\left\{\left|\arctan f_{n}\right|>t\right\}=\emptyset$). From this the result is immediate: if $\left|f_{n}\right|$ tends to 0 in measure then $\lim _{n \rightarrow \infty} \mu\left(\left\{\left|f_{n}\right|>\tan t\right\}\right)=0$ for every $\left.t \in\right] 0, \pi / 2\left[\right.$, implying that $\arctan f_{n}$ tends to 0 in measure. And if $\arctan f_{n}$ tends to 0 in measure then for every $t>0$ we have $\lim _{n \rightarrow \infty} \mu\left(\left\{\arctan \left|f_{n}\right|>\arctan t\right\}\right)=0$, proving that $\left|f_{n}\right|$ tends to 0 in measure, since $\left\{\left|f_{n}\right|>t\right\}=\left\{\left|\arctan \left(f_{n}\right)\right|>\arctan t\right\}$
(v) Simply combine (i), (iii) and (iv): if f_{n} tends to 0 in measure then $\arctan f_{n}$ also tends to 0 in measure, by (iv); since $\mu(X)<\infty$, and $\left|\arctan f_{n}(x)\right| \leq \pi / 2$ for every $n \in \mathbb{N}$ and every $x \in X$ (iii) implies that $\arctan f_{n}$ tends to 0 in $L^{1}(\mu)$. And if this happens, then arctan f_{n} tends to 0 in measure, by (i), and by (iv) then also f_{n} tends to 0 in measure.

Remark. In (ii) many write $\int_{[0,1]} f_{n}=n \mu([0,1 / n])$ (correctly); then instead of saying that $\mu([0,1 / n])=$ $1 / n$ an hence that the integral is always 1 , for every n, make complicated computations ending with the conclusion that $\lim _{n \rightarrow \infty} \int_{[0,1]} f_{n}=0$!

In the proof of (iii) many argue in the following way: passing to the limit as n tends to ∞ in (*) one gets $\lim _{n \rightarrow \infty} \int_{X}\left|f_{n}\right| \leq \varepsilon \mu(X)$, hence the limit is 0 because "one can take ε tending to 0 ". This way of arguing is of course incorrect, we cannot write $\lim _{n \rightarrow \infty} \int_{X}\left|f_{n}\right|$ if we do not yet know that the limit exists. A correct way of reasoning along these lines is: in the inequality

$$
\int_{X}\left|f_{n}\right| \leq M \mu\left(\left\{\left|f_{n}\right|>\varepsilon\right\}\right)+\varepsilon \mu(X)
$$

take the limsup on both sides as $n \rightarrow \infty$, obtaining $\left(\right.$ since $\left.\lim _{n \rightarrow \infty} \mu\left(\left\{\left|f_{n}\right|>\varepsilon\right\}\right)=0\right)$

$$
\limsup _{n \rightarrow \infty} \int_{X}\left|f_{n}\right| \leq \limsup _{n \rightarrow \infty}\left(M \mu\left(\left\{\left|f_{n}\right|>\varepsilon\right\}\right)+\varepsilon \mu(X)\right)=\varepsilon \mu(X) .
$$

Since $\varepsilon>0$ is arbitrary, this implies $\lim \sup _{n \rightarrow \infty} \int_{X}\left|f_{n}\right|=0$, hence also $\lim _{n \rightarrow \infty} \int_{X}\left|f_{n}\right|=0$, since $\int_{X}\left|f_{n}\right| \geq 0$.

Analisi Reale per Matematica - Secondo precompitino - 21 gennaio 2013

Exercise 7. (10) Let \mathcal{B}_{n} be the σ-algebra of Borel subsets of \mathbb{R}^{n}, and let $\mu: \mathcal{B}_{n} \rightarrow[0, \infty]$ be a Radon measure. We consider the set $\mathcal{V}=\left\{V \subseteq \mathbb{R}^{n}: V\right.$ open, $\left.\mu(V)=0\right\}$ and set $A=\bigcup_{V \in \mathcal{V}} V$.
(i) [3] Prove that $\mu(A)=0$ (caution: in general \mathcal{V} is not countable. However, \mathbb{R}^{n} has a countable base for its topology ...).
The closed set $S=\operatorname{Supp}(\mu)=\mathbb{R}^{n} \backslash A$ is the support (topological support if emphasis is needed) of the measure μ : S is the smallest closed set that supports μ, in the sense that $\mathbb{R}^{n} \backslash S$ is null for μ.
(ii) [1] What is the support of Lebesgue measure on \mathbb{R}^{n} ?
(iii) [2] Let $D \subseteq \mathbb{R}^{n}$ be a countable set, let $\left.\rho: D \rightarrow\right] 0, \infty$ [be summable (i.e. $\left.\sum_{x \in D} \rho(x)<\infty\right)$ and let $\nu: \mathcal{B}_{n} \rightarrow\left[0, \infty\left[\right.\right.$ be defined by $\nu(A)=\sum_{x \in A \cap D} \rho(x)$. What is $\operatorname{Supp}(\nu)$? (remember that it has to be a closed set, with complement of null measure).
(iv) [1] Give an example of two mutually singular measures, both having as topological support all the space \mathbb{R}^{n}.
(v) [3] Let $f \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n}\right)$ be positive, and define $\mu(E):=\int_{E} f d m$ for every Borel set E. As usual we set

$$
A_{r} f(x)=f_{B(x, r]} f d m \quad \text { for every } x \in \mathbb{R}^{n} \text { and } r>0
$$

Prove that if $\lim \sup _{r \rightarrow 0+} A_{r} f(x)>0$ then $x \in \operatorname{Supp}(\mu)$. Conversely, assuming $x \in \operatorname{Supp}(\mu)$ does it follow that $\lim \sup _{r \rightarrow 0+} A_{r} f(x)>0$?

Solution. (i) Given a countable base \mathcal{C} for the topology of \mathbb{R}^{n} (e.g. all open cubes with center in \mathbb{Q}^{n} and rational side length) we have $V=\bigcup\{C \in \mathcal{C}: C \subseteq V\}$ for every open set V, so that

$$
A=\bigcup_{V \in \mathcal{V}} V=\bigcup_{V \in \mathcal{V}} \bigcup\{C \in \mathcal{C}: C \subseteq V\}
$$

now $C \subseteq V$ and $\mu(V)=0$ implies $\mu(C)=0$, and $C \in \mathcal{C}, \mu(C)=0$ implies $C \in \mathcal{V}$. It follows that the set

$$
\{C \in \mathcal{C}: C \subseteq V, \text { for some } V \in \mathcal{V}\}
$$

coincides with the set $\{C \in \mathcal{C}: \mu(C)=0\}=\mathcal{C} \cap \mathcal{V}$. Then

$$
A=\bigcup\{C \in \mathcal{C}: \mu(C)=0\}
$$

and hence $\mu(A)=0$ by countable subadditivity, because this last is a countable union.
(ii) Every non-empty open subset of \mathbb{R}^{n} has strictly positive Lebesgue measure, as often remarked. Then the support of Lebesgue measure is all of \mathbb{R}^{n}.
(iii) An open subset of \mathbb{R}^{n} has ν-measure 0 if and only if it is disjoint from D. Then A is the union of all open subsets of \mathbb{R}^{n} disjoint from D, and its complement, support of ν, is \bar{D}, the closure of D in \mathbb{R}^{n}.
(iv) We may take Lebesgue measure m and ν as above, ν, with $D=\mathbb{Q}^{n}$ dense in \mathbb{R}^{n}, so that $\operatorname{Supp}(\nu)=\mathbb{R}^{n}$, too. Since $m\left(\mathbb{Q}^{n}\right)=0$ and $\nu\left(\mathbb{R}^{n} \backslash \mathbb{Q}^{n}\right)=0$ the measures are mutually singular.
(v) If the limsup is strictly positive then we have

$$
A_{r} f(x)=\frac{\mu(B(x, r])}{m(B(x, r])}>0 \quad \text { for every } r>0
$$

in particular $\mu(B(x, r])>0$ for every $r>0$. Then x belongs to the support of μ, since $\mu(B(x, r])=$ $\mu(B(x, r[)>0$ for every $r>0$. But $x \in \operatorname{Supp}(\mu)$ is exactly equivalent to $\mu(B(x, r[)>0$ for every $r>0$ and does not imply $\lim \sup A_{r} f(x)>0$: take e.g $f(x)=|x|$ on \mathbb{R}^{1} and $x=0$; we have $\operatorname{Supp}(\mu)=\mathbb{R}$, since every open non empty interval has clearly strictly positive measure; and since f is continuous

$$
\lim _{r \rightarrow 0^{+}} A_{r} f(0)=f(0)=|0|=0
$$

Exercise 8. (10) For $1 \leq p \leq \infty$ and Ω an open subset of \mathbb{R}^{n} we denote by $L_{\mathrm{loc}}^{p}(\Omega)$ the set of all measurable functions $f: \Omega \rightarrow \mathbb{K}$ such that $f \chi_{K} \in L^{p}(\Omega)$ for every compact subset K of Ω.
(i) [4] Prove that $L_{\mathrm{loc}}^{p}(\Omega)$ is a vector subspace of the space of all measurable functions from Ω to \mathbb{K}, containing all bounded measurable functions and in particular all constants, and that if $p<q$ then $L_{\mathrm{loc}}^{p}(\Omega) \supsetneqq L_{\mathrm{loc}}^{q}(\Omega)$ (for this last, you may assume $n=1$).
(ii) [6] Given $1 \leq p<\infty$ and $f \in L_{\mathrm{loc}}^{p}(\Omega)$ we say that $x \in \Omega$ is a Lebesgue point for f, as a function of $L_{\mathrm{loc}}^{p}(\Omega)$ if

$$
\lim _{r \rightarrow 0^{+}} f_{B(x, r]}|f(y)-f(x)|^{p} d y=0
$$

By imitating, mutatis mutandis, the proof given for $L_{\text {loc }}^{1}$ prove that almost all points of Ω are Lebesgue points for f as a function of $L_{\text {loc }}^{p}$.

Solution. (i) Since $m(K)<\infty$, spaces $L_{m}^{p}(K)$ decrease as p increases, and $L^{p}(K) \supseteq L^{\infty}(K)$ for every p. If $c \in \Omega$ we know that the function $f_{\alpha}(x)=1 /|x-c|^{\alpha}$ is summable in a nbhd of c iff $\alpha<n$; then f_{α} is in $L_{\mathrm{loc}}^{p}(\Omega)$ iff $\alpha p<n \Longleftrightarrow \alpha<n / p$; if $n / q<\alpha<n / p$ then $f_{\alpha} \in L_{\mathrm{loc}}^{p}(\Omega) \backslash L_{\mathrm{loc}}^{q}(\Omega)$.
(ii) For every $c \in \mathbb{K}$ and $f \in L_{\mathrm{loc}}^{p}(\Omega)$ the function $x \mapsto|f(x)-c|^{p}$ is in $L_{\mathrm{loc}}^{1}(\Omega)$, so that, by the differentiation theorem:

$$
\lim _{r \rightarrow 0^{+}} A_{r}|f-c|^{p}=|f(x)-c|^{p} \quad \text { for every } x \in \mathbb{R}^{n} \backslash E(c), \text { where } m(E(c))=0
$$

Let D be a countable dense subset of \mathbb{K}, and let $E=\bigcup_{c \in D} E(c)$. Then $m(E)=0$. Let's prove that $\lim _{r \rightarrow 0^{+}} f_{B(x, r]}|f(y)-f(x)|^{p} d y=0$ for every $x \in \Omega \backslash E$. Given $x \in \Omega \backslash E$ and $\varepsilon>0$ pick $c \in D$ such that $|f(x)-c|^{p} \leq \varepsilon$; then

$$
\begin{aligned}
& \limsup _{r \rightarrow 0^{+}} f_{B(x, r]}|f(y)-f(x)|^{p} d y \leq \limsup _{r \rightarrow 0^{+}}\left(f_{B(x, r]}(|f(y)-c|+|c-f(x)|)^{p} d y\right)= \\
& \limsup _{r \rightarrow 0^{+}}\left(2^{p-1} f_{B(x, r]}|f(y)-c|^{p} d y+2^{p-1}|c-f(x)|^{p}\right)= \\
& 2^{p-1} \limsup _{r \rightarrow 0^{+}} f_{B(x, r]}|f(y)-c|^{p} d y+2^{p-1}|f(x)-c|^{p} \leq \\
& \leq 2^{p-1} 2|f(x)-c|^{p} \leq 2^{p} \varepsilon
\end{aligned}
$$

Exercise 9. (16) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=e^{-x^{2}}$ if $x<0 ; f(x)=(1-\cos (\pi x)) / 2$ if $0 \leq x<1$; $f(x)=e^{-(x-1)}$ if $x \geq 1$.
(i) [3] Plot f. Describe the function $T(x)=V_{-\infty, x]} f$, plot it, and write f as the difference of two increasing functions.
(ii) [1] Find a Hahn decomposition of the signed measure μ.
(iii) [4] State the Lebesgue-Radon-Nikodym theorem, and find the decomposition for μ into absolutely continuous and singular part with respect to Lebesgue measure m.
(iv) [4] Given $u(x)=x$, compute all four integrals

$$
\int_{\mathbb{R}} u^{ \pm} d \mu^{ \pm} \quad \text { and also } \quad \int_{\mathbb{R}} u d \mu
$$

(v) [4] Define now $g: \mathbb{R} \rightarrow \mathbb{R}$ as $f(x)$ above if $x \notin[0,1[$, and for $0 \leq x<1$ set $g(x)=\psi(x)$, where $\psi:[0,1] \rightarrow \mathbb{R}$ is the Cantor function with $\delta_{n}=(2 / 3)^{n}$. How does the answer to (iii) change, with $\nu=d g$? can you still compute (with $u(x)=x$, as in (iv))

$$
\int_{\mathbb{R}} u d \nu ?
$$

(you may use the fact that $\int_{0}^{1} \psi(x) d x=1 / 2$).
Solution. (i) The plot of f is easy:

Figure 2. Plot of the function f.
Since $x \mapsto f(x)$ has limit 0 at $-\infty$ and is increasing in $-\infty, 0$ [we have $T(x)=f(x)=e^{-x^{2}}$ for $x<0$. Since f is right-continuous T is also right-continuous; moreover $T(0)=T\left(0^{+}\right)=T\left(0^{-}\right)+1=2$, where 1 is the absolute value of the jump of f at 0 . For $x \in[0,1[$ we have $T(x)=T(0)+f(x)-f(0)=$ $2+(1-\cos (\pi x)) / 2$. Finally on $\left[1, \infty\left[f\right.\right.$ is decreasing so that $T(x)=T(2)+f(2)-f(x)=4-e^{-(x-1)}$. Here is the plot of T :

Write $A(x)=(T(x)+f(x)) / 2$; we have $A(x)=e^{-x^{2}}$ for $x<0, A(x)=1+(1-\cos (\pi x)) / 2$ for $0 \leq x \leq 1$ and $A(x)=2$ for $x \geq 1$, while $B(x)=(T(x)-f(x)) / 2$ is 0 for $x<0$, is 1 for $0 \leq x \leq 1$, and is $3-e^{-(x-1)}$ for $x \geq 1$.

Of course $\mu^{+}=\mu_{A}$ and $\mu^{-}=\mu_{B}$. (ii) A Hahn decomposition is $\left.P=\right]-\infty, 0[\cup] 0,1[$, positive, with complement $Q=\{0\} \cup[1, \infty[$, negative.
(iii) For the statement of Radon-Nikodym theorem see the Lecture Notes. The singular part of μ is $-\delta_{0}$, the regular part is $f^{\prime} d m$, where f^{\prime} is the classical derivative of f where it exists, that is in $\mathbb{R} \backslash\{0,1\}$:

$$
f^{\prime}(x)=-2 x e^{-x^{2}} \quad x<0 ; \quad f^{\prime}(x)=\frac{\pi}{2} \sin (\pi x) \quad 0<x<1 ; \quad f^{\prime}(x)=-e^{-(x-1)} \quad x>1
$$

Figure 3. Plot of the function T.

Figure 4. Plot of the functions A, B.
(iv) Since $\int_{\mathbb{R}} u d \delta_{0}=u(0)=0$ there is no contribution to the integrals from the singular part. Of course $u^{+}(x)=x$ for $x \geq 0$, and $u^{+}(x)=0$ for $x \leq 0$, while $u^{-}(x)=0$ for $x>0$ and $u^{-}(x)=-x$ for $x \leq 0$. Then

$$
\begin{gathered}
\int_{\mathbb{R}} u^{+} d \mu^{+}=\int_{0}^{1} x\left(f^{\prime}(x)\right) d x=[x f(x)]_{x=0}^{x=1} \int_{0}^{1} f(x) d x=f(1)-\int_{0}^{1} \frac{1-\cos (\pi x)}{2} d x=1-\frac{1}{2}=\frac{1}{2} \\
\int_{\mathbb{R}} u^{+} d \mu^{-}=-\int_{1}^{\infty} x\left(f^{\prime}(x)\right) d x=-[x f(x)]_{x=0}^{x=\infty}+\int_{1}^{\infty} f(x) d x=-[0-f(1)]+1=2 \\
\int_{\mathbb{R}} u^{-} d \mu^{+}=\int_{-\infty}^{0}(-x) f^{\prime}(x) d x=\left[(-x) e^{-x^{2}}\right]_{x=-\infty}^{x=0}-\int_{-\infty}^{0}(-1) e^{-x^{2}} d x=0+\frac{\sqrt{\pi}}{2}=\frac{\sqrt{\pi}}{2}
\end{gathered}
$$

and, finally

$$
\int_{\mathbb{R}} u^{-} d \mu^{-}=0
$$

Then

$$
\int_{\mathbb{R}} u d \mu=\int_{\mathbb{R}} u^{+} d \mu^{+}-\int_{\mathbb{R}} u^{+} d \mu^{-}-\int_{\mathbb{R}} u^{-} d \mu^{+}+\int_{\mathbb{R}} u^{-} d \mu^{-}=\frac{1}{2}-2-\frac{\sqrt{\pi}}{2}=-\frac{3}{2}-\frac{\sqrt{\pi}}{2} .
$$

(v) The singular part is now $-\delta_{0}+d \psi$, where $d \psi$ is the Radon measure of the Cantor function. The only integral that may change is $\int_{\mathbb{R}} u^{+} d \mu^{+}$, which is now $\int_{[0,1]} x d \psi$. Using again integration by parts we get

$$
\int_{[0,1]} x d \psi=[x \psi(x)]_{x=0}^{x=1}-\int_{[0,1]} \psi(x) d x=1-\frac{1}{2}=\frac{1}{2}
$$

(unchanged!).
Analisi Reale per Matematica - Secondo compitino - 26 gennaio 2013
ExERCISE 10. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=1 /(1-x)^{3}$ if $x<0 ; f(x)=(x+\psi(x)) / 2$ if $0 \leq x<1$, where ψ is the Cantor function with $\delta_{n}=(2 / 3)^{n} ; f(x)=1-1 / x^{3}$ if $x \geq 1$.
(i) Plot f. Describe the function $T(x)=V f(]-\infty, x])$, plot it, and write f as the difference of two increasing functions A, B; plot A and B.
(ii) State a theorem which implies that any signed measure can be written as the difference of two positive measures, and find a Hahn decomposition of the signed measure $\mu=d f$.
(iii) Find the decomposition for μ into absolutely continuous and singular part with respect to Lebesgue measure m.
(iv) Determine the set of $p>0$ such that $u(x)=|x|$ belong to $L^{p}(|\mu|)$. Compute

$$
\int_{\mathbb{R}} u d|\mu|
$$

Solution. (i) The plot is very easy

Figure 5. Plot of f.
Notice that f is right-continuous, so that T is also right continuous; we have $T(x)=g(x)=1 /(1-x)^{3}$ for $x<0, T(0)=2, T(x)=2+f(x)=2+(x+\psi(x)) / 2$ for $x \in\left[0,1\left[, T(1)=4, T(x)=5-1 / x^{3}\right.\right.$ for $x \geq 1$.

Figure 6. Plot of T.
We have $A(x)=(T(x)+f(x)) / 2$, and $A(x)=f(x)=1 /(1-x)^{3}$ for $x<0, A(x)=1+f(x)$ for $0 \leq x, 1, A(x)=3-1 / x^{3}$ for $x \geq 1$. For $B(x)=(T(x)-f(x)) / 2$ we have $B(x)=0$ for $x<0 ; B(x)=1$ for $x \in[0,1[, B(x)=2$ for $x \in[1, \infty[$.
(ii) For the statement see Lecture Notes, 6.1.3, the Hahn decomposition theorem. A Hahn decomposition in our case is $P=\mathbb{R} \backslash\{0,1\}, Q=\{0,1\}$.
(iii) The absolutely continuous part is $f^{\prime}(x) d m$ where

$$
f^{\prime}(x)=\frac{3}{(1-x)^{4}} \quad \text { if } \quad x<0 ; f^{\prime}(x)=\frac{1}{2} \quad \text { if } \quad 0<x<1 ; f^{\prime}(x)=\frac{3}{x^{4}} \quad \text { if } \quad x>1
$$

Figure 7. Plot of the functions A, B.
the singular part is

$$
\frac{d \psi}{2}-\delta_{0}-\delta_{1}
$$

remember that $\psi^{\prime}(x)=0$ a.e. in \mathbb{R}. (iv) The measure $|\mu|$ is

$$
|\mu|=f^{\prime} d m+\frac{d \psi}{2}+\delta_{0}+\delta_{1}
$$

We have $u \in L^{p}(|\mu|)$ if and only if $u^{p} \in L^{1}$ of each of these four measures. Clearly $u^{p} \in L^{1}\left(\delta_{0}\right)$ (with integral 0) and $u^{p} \in L^{1}\left(\delta_{1}\right)$ (with integral 1) for every $p>0$; moreover $u^{p} \in L^{1}(d \psi)$ for every p, since u^{p} is bounded on $[0,1]$, a set of $d \psi$ measure 1 containing the support of $d \psi$. We have to find the set of $p>0$ such that $u^{p} \in L^{1}\left(f^{\prime} d m\right)$, the absolutely continuous part of $|\mu|$. This is equivalent to finding the set of all $p>0$ such that the integrals

$$
\int_{0}^{1} x^{p} \frac{d x}{2} ; \quad \int_{-\infty}^{0}|x|^{p} \frac{3 d x}{(1-x)^{4}} ; \quad \int_{1}^{\infty} x^{p} \frac{3 d x}{x^{4}}
$$

are all finite. The first integral is finite for every $p>0$; the second and third are finite iff $4-p>1 \Longleftrightarrow$ $p<3$ (as $x \rightarrow \pm \infty$ the integrand is asymptotic to $1 /|x|^{4-p}$). So $u \in L^{p}(|\mu|)$ if $0<p<3$. For the integral:

$$
\begin{gathered}
\int_{\mathbb{R}} u d\left(\delta_{0}+\delta_{1}\right)=u(0)+u(1)=1 ; \int_{0}^{1} x \frac{d x}{2}=\frac{1}{4} \\
\int_{-\infty}^{0}|x| \frac{3 d x}{(1-x)^{4}}=(\text { setting } 1-x=t)=\int_{1}^{\infty} 3(1-t) \frac{d t}{t^{4}}
\end{gathered}
$$

and

$$
\int_{1}^{\infty} x \frac{3 d x}{x^{4}}
$$

summing the last three integrals we get the contribution to the integral of the absolutely continuous part, that is

$$
\frac{1}{4}+3 \int_{1}^{\infty} \frac{d x}{x^{4}}=\frac{1}{4}+1=\frac{5}{4}
$$

It remains to compute the integral $\int_{[0,1]} x d \psi / 2$; integrating by parts we get

$$
\int_{0}^{1} x d \psi=[x \psi(x)]_{0}^{1}-\int_{0}^{1} \psi(x) d x=1-\frac{1}{2}=\frac{1}{2}
$$

Then

$$
\int_{\mathbb{R}} u d|\mu|=1+\frac{1}{4}+\frac{5}{4}=\frac{5}{2}
$$

Exercise 11. Let (X, \mathcal{M}, μ) be a measure space, and let $\mathcal{F}=\mathcal{F}(\mu)$ be the ideal of sets of finite measure, $\mathcal{F}=\{A \in \mathcal{M}: \mu(A)<\infty\} ;$ recall that \mathcal{F} is a metric space under the metric

$$
\rho(E, F)=\mu(E \Delta F)=\left\|\chi_{E}-\chi_{F}\right\|_{1},
$$

provided that we identify sets E, F with zero distance, i.e. such that $\mu(E \Delta F)=0$. If $f: X \rightarrow \mathbb{K}$ is measurable and $f \chi_{E} \in L^{1}(\mu)$ for every $E \in \mathcal{F}$, we can define a set function $\nu=\nu_{f}: \mathcal{F} \rightarrow \mathbb{K}$ by

$$
\nu(E):=\int_{E} f d \mu
$$

(i) Prove that ν is countably additive, and that for $E, F \in \mathcal{F}$ we have

$$
|\nu(E)-\nu(F)|=|\nu(E \backslash F)-\nu(F \backslash E)| \leq \int_{E \Delta F}|f| d \mu
$$

(ii) Given $f \in L^{\infty}(\mu)$, prove that ν can be defined and that $|\nu(E)| \leq k \mu(E)$ for some $k>0$ and deduce that ν is Lipschitz continuous from \mathcal{F} to \mathbb{K}.
(iii) Assume now that $f \in L^{p}(\mu)$ for some $p, 1<p<\infty$. Prove that ν can be defined, and that there is $k>0$ such that

$$
|\nu(E)| \leq k(\mu(E))^{1 / q} \quad \text { for every } E \in \mathcal{F}
$$

(here $q=p /(p-1)$ is the exponent conjugate to p). Deduce that ν is still a uniformly continuous function from \mathcal{F} to \mathbb{K}.
(iv) Finally assume $f \in L^{1}(\mu)$. In this case the formula $\nu(E)=\int_{E} f d \mu$ defines ν on all of \mathcal{M}. Prove that on \mathcal{F} of this function is still uniformly continuous.
A function $f: I \rightarrow \mathbb{K}$, where I is an interval of \mathbb{R} is said to satisfy a Hölder condition of exponent α (where $0<\alpha<1$) if there is a constant $k>0$ such that $\left|f\left(x_{2}\right)-f\left(x_{1}\right)\right| \leq k\left|x_{2}-x_{1}\right|^{\alpha}$ for every $x_{1}, x_{2} \in I$.
(v) Prove that if $f:[0,1] \rightarrow \mathbb{K}$ is absolutely continuous and $f^{\prime} \in L_{m}^{p}([0,1]), p>1$ then f satisfies a Hölder condition of exponent $1 / q=(p-1) / p$.
(vi) Assume that $f:[0,1] \rightarrow \mathbb{R}$ is absolutely continuous, $f(0)=0$ and $f^{\prime}(x)=1 /\left(x\left(1+\log ^{2} x\right)\right)$ for $x>0$. Find f, and prove that f does not satisfy a Hölder condition, for no exponent $\alpha>0$.
Solution. (i) We have to prove that if $\left(E_{n}\right)_{n \in \mathbb{N}}$ is a disjoint sequence of sets of finite measure, with union $E=\bigcup_{n \in \mathbb{N}} E_{n}$ still of finite measure, then $\nu(E)=\sum_{n=0}^{\infty} \nu\left(E_{n}\right)$. Setting $f_{n}=f \chi_{E_{n}}$ and $g=f \chi_{E}$, this is equivalent to say that

$$
\int_{X} g d \mu=\sum_{n=0}^{\infty} \int_{X} f_{n} d \mu
$$

and this is an immediate consequence of the theorem on normally convergent series: since the f_{n} are pairwise disjoint, we have $|g|=\sum_{n=0}^{\infty}\left|f_{n}\right|$ (pointwise), so that by the theorem on series with positive terms we have

$$
\int_{X}|g| d \mu=\sum_{n=0}^{\infty} \int_{X}\left|f_{n}\right| d \mu, \quad \text { equivalently } \quad\|g\|_{1}=\sum_{n=0}^{\infty}\left\|f_{n}\right\|_{1}
$$

which implies, as well-known, using the dominated convergence theorem, that the integral of the sum is the sum of the series of integrals, exactly what required .

Trivially we have, for every $E \in \mathcal{F}$:

$$
|\nu(E)|=\left|\int_{E} f d \mu\right| \leq \int_{E}|f| d \mu
$$

By additivity, for $E, F \in \mathcal{F}$ we have:

$$
\begin{aligned}
|\nu(E)-\nu(F)|=\mid & (\nu(E \backslash F)+\nu(E \cap F))-(\nu(F \backslash E)+\nu(E \cap F))|=|\nu(E \backslash F)-\nu(F \backslash E)| \leq \\
& \leq|\nu(E \backslash F)|+|\nu(F \backslash E)| \leq \int_{E \backslash F}|f| d \mu+\int_{F \backslash E}|f| d \mu=\int_{E \Delta F}|f| d \mu
\end{aligned}
$$

(ii) If $f \in L^{\infty}(\mu)$ clearly $f \chi_{E} \in L^{1}(\mu)$ for every $E \in \mathcal{F}$, so that ν is defined, and by (i)

$$
|\nu(E)-\nu(F)| \leq \int_{E \Delta F}|f| d \mu \leq\|f\|_{\infty} \mu(E \Delta F)=k \rho(E, F)
$$

so that ν is Lipschitz continuous, with $k=\|f\|_{\infty}$.
(iii) Using Hölder inequality applied to $\left|f_{\mid E}\right|$ and the constant 1 on $E \in \mathcal{F}$ we have, for $E \in \mathcal{F}$:

$$
|\nu(E)| \leq \int_{E}|f| d \mu \leq\left(\int_{E}|f|^{p} d \mu\right)^{1 / p}\left(\int_{E} 1^{q} d \mu\right)^{1 / q} \leq\left(\int_{X}|f|^{p} d \mu\right)^{1 / p}(\mu(E))^{1 / q}=\|f\|_{p}(\mu(E))^{1 / q}
$$

and arguing as above we get, for $E, F \in \mathcal{F}$:

$$
|\nu(E)-\nu(F)| \leq \int_{E \backslash F}|f| d \mu+\int_{F \backslash E}|f| d \mu=\int_{E \Delta F}|f| d \mu
$$

and, with $k=\|f\|_{p}$

$$
\int_{E \Delta F}|f| d \mu \leq\|f\|_{p}(\mu(E \Delta F))^{1 / q}=k(\rho(E, F))^{1 / q}
$$

This of course immediately implies uniform continuity of ν : given $\varepsilon>0$ take $\delta=(\varepsilon / k)^{q}$.
(iv) In this case $\nu: \mathcal{M} \rightarrow \mathbb{K}$ is a finite measure, absolutely continuous with respect to μ, and hence also (ε, δ)-absolutely continuous; and this is exactly the needed uniform continuity; by the preceding argument in fact we have

$$
|\nu(E)-\nu(F)| \leq \int_{E \Delta F}|f| d \mu=|\nu|(E \Delta F)
$$

now given $\varepsilon>0$ we find $\delta>0$ such that $\mu(G) \leq \delta$ implies $|\nu|(G) \leq \varepsilon$, we are done (setting $G=E \Delta F$). Recall the proof of (ε, δ)-absolute continuity, by contradiction: if there is $\varepsilon>0$ such that for every $n \in \mathbb{N}$ we find $F_{n} \in \mathcal{M}$ with $\mu\left(F_{n}\right) \leq 2^{-(n+1)}$ and $|\nu|\left(F_{n}\right)>\varepsilon$, then setting $F=\limsup _{n \rightarrow \infty} F_{n}$ we have $\mu(F)=0$ and $|\nu|(F) \geq \varepsilon$, a contradiction (Lecture Notes, 6.2.5.3,4).
(v) Since f is absolutely continuous we have $f\left(x_{2}\right)-f\left(x_{1}\right)=\int_{\left[x_{1}, x_{2}\right]} f^{\prime}(x) d x$ so that

$$
\left|f\left(x_{2}\right)-f\left(x_{1}\right)\right|=\left|\int_{\left[x_{1}, x_{2}\right]} f^{\prime}(x) d x\right| \leq \int_{\left[x_{1}, x_{2}\right]}\left|f^{\prime}(x)\right| d x
$$

and using the proof above given for (ii), with $E=\left[x_{1}, x_{2}\right]$ we get

$$
\int_{\left[x_{1}, x_{2}\right]}\left|f^{\prime}(x)\right| d x \leq k\left|x_{2}-x_{1}\right|^{1 / q} \quad k=\left\|f^{\prime}\right\|_{p}=\left(\int_{\left[x_{1}, x_{2}\right]}\left|f^{\prime}(x)\right|^{p} d x\right)^{1 / p}
$$

(vi) If f satisfies a Hölder condition then $f(x) / x^{\alpha}$ ought to be bounded for some $\alpha>0$; but we have, for every $\alpha>0$:

$$
\lim _{x \rightarrow 0^{+}} \frac{f(x)}{x^{\alpha}}=(\text { Hôpital's rule })=\frac{1}{\alpha} \lim _{x \rightarrow 0^{+}} \frac{1}{x^{\alpha}\left(1+\log ^{2} x\right)}=\infty
$$

recalling that $\lim _{x \rightarrow 0^{+}} x^{\alpha} \log ^{2} x=0$ for every $\alpha>0$. It is not necessary to evaluate f, however the integral is immediate:

$$
f(x)=\int_{0}^{x} \frac{d t}{t\left(1+\log ^{2} t\right)}=[\arctan \log t]_{t=0}^{t=x}=\arctan \log x+\frac{\pi}{2}
$$

Remark. Unfortunately the text given at the exam was with $f^{\prime}(x)=1 /\left(x \log ^{2} x\right)$ instead of the correct version above, so that we get $f(x)=1 / \log (1 / x)$; in fact f is not even absolutely continuous on $[0,1]$, being not continuous at $x=1$, so the solution is trivial in this case, and the exercise becomes too easy and quite meaningless. I have given full credit to solutions, anyway.

One word on question (i): it is NOT true that $\nu(E)-\nu(F)=\nu(E \Delta F)$! We have

$$
|\nu(E)-\nu(F)|=\left|\int_{X} f \chi_{E}-\int_{X} f \chi_{F}\right|=\left|\int_{X} f\left(\chi_{E}-\chi_{F}\right)\right|
$$

and now $\chi_{E}-\chi_{F}=\chi_{E \backslash F}-\chi_{F \backslash E}$; what is true is that $\left|\chi_{E}-\chi_{F}\right|=\chi_{E \Delta F}$ so that we may argue as follows

$$
\left|\int_{X} f\left(\chi_{E}-\chi_{F}\right)\right| \leq \int_{X}|f|\left|\chi_{E}-\chi_{F}\right|=\int_{X}|f| \chi_{E \Delta F}=\int_{E \Delta F}|f|
$$

as required. But in general it is NOT true that $|\nu(E)-\nu(F)| \leq|\nu(E \Delta F)|$.
Many have also the strange delusion that if $f \in L^{1}(\mu)$ then we have $\left|\int_{E} f d \mu\right| \leq\|f\|_{1} \mu(E)$ for every set E of finite measure. This is clearly FALSE: assuming for simplicity $f \geq 0$ this implies that every average of f is less than its integral on X, which in general is not true: consider e.g. $f(x)=\chi_{] 0,1]} /(2 \sqrt{x})$ in $L^{1}(\mathbb{R})$ with Lebesgue measure: we have $\|f\|_{1}=1$, and if $E=[0, a]$ with $a<1$ we have

$$
\int_{E} f(x) d x=\int_{0}^{a} \frac{d x}{2 \sqrt{x}}=\sqrt{a}>a=\|f\|_{1} m(E) \quad\left(\text { and } \quad f_{E} f d m=\frac{1}{\sqrt{a}}>1=\|f\|_{1}\right) .
$$

What is true is of course an inequality like $(0<\mu(E)<\infty)$:

$$
\left|f_{E} f d \mu\right| \leq\|f\|_{\infty} \Longleftrightarrow\left|\int_{E} f d \mu\right| \leq\|f\|_{\infty} \mu(E)
$$

(the average is less than the sup-norm of the function, equivalently the integral is less than the sup-norm times the measure of the set on which we are integrating).

Exercise 12. Let \mathcal{B}_{n} be the σ-algebra of Borel subsets of \mathbb{R}^{n}, and let $\mu: \mathcal{B}_{n} \rightarrow[0, \infty]$ be a positive measure (not necessarily a Radon measure). We consider the set $\mathcal{V}=\left\{V \subseteq \mathbb{R}^{n}: V\right.$ open, $\left.\mu(V)=0\right\}$ and set $A=\bigcup_{V \in \mathcal{V}} V$.
(i) Prove that $\mu(A)=0$ (caution: \mathcal{V} is in general not countable ...).

The closed set $S=\operatorname{Supp}(\mu)=\mathbb{R}^{n} \backslash A$ is the support (topological support if emphasis is needed) of the measure μ : S is the smallest closed set that supports μ, in the sense that $\mathbb{R}^{n} \backslash S$ is null for μ.
(ii) Let $c \in \mathbb{R}^{n}$ be given. Prove that the following are equivalent:
(a) $c \in \operatorname{Supp}(\mu)$.
(b) For every open set U containing c we have $\mu(U)>0$.
(c) For every positive $u \in C_{c}\left(\mathbb{R}^{n}\right)$ such that $u(c)>0$ we have $\int_{\mathbb{R}^{n}} u d \mu>0$.
(iii) Let (X, \mathcal{M}, μ) be a measure space, and let $f: X \rightarrow \mathbb{K}$ be measurable. Let $\nu: \mathcal{B}(\mathbb{K}) \rightarrow[0, \infty]$ be the image measure of μ by means of f, that is $\nu(B)=\mu f^{\leftarrow}(B):=\mu\left(f^{\leftarrow}(B)\right)$ for every $B \in \mathcal{B}(\mathbb{K})$. The essential range of f is, by definition, the support of ν :

$$
\operatorname{essrange}(f)=\operatorname{Supp}\left(\mu f^{\leftarrow}\right)
$$

Prove that $f \in L^{\infty}(\mu)$ if and only if the essential range of f is a compact subset of \mathbb{K}, and that in this case $\|f\|_{\infty}=\max \{|z|: z \in$ essrange $(f)\}$.
(4 extra points) If $E \in \mathcal{M}$ with $0<\mu(E)<\infty$, and $f: X \rightarrow \mathbb{K}$ is a measurable function such that $f \chi_{E} \in L^{1}(\mu)$, then the average of f over E is defined as

$$
A_{E} f:=f_{E} f d \mu:=\int_{E} f \frac{d \mu}{\mu(E)} .
$$

Prove that if (X, \mathcal{M}, μ) is semifinite and $C \subseteq \mathbb{K}$ is a closed subset of \mathbb{K} that contains all averages of f, then C contains also the essential range of f.

Solution. (i) (i) Given a countable base \mathcal{C} for the topology of \mathbb{R}^{n} (e.g. all open cubes with center in \mathbb{Q}^{n} and rational side length) we have $V=\bigcup\{C \in \mathcal{C}: C \subseteq V\}$ for every open set V, so that

$$
A=\bigcup_{V \in \mathcal{V}} V=\bigcup_{V \in \mathcal{V}} \bigcup\{C \in \mathcal{C}: C \subseteq V\} ;
$$

now $C \subseteq V$ and $\mu(V)=0$ implies $\mu(C)=0$, and $C \in \mathcal{C}, \mu(C)=0$ implies $C \in \mathcal{V}$. It follows that the set

$$
\{C \in \mathcal{C}: C \subseteq V, \text { for some } V \in \mathcal{V}\}
$$

coincides with the set $\{C \in \mathcal{C}: \mu(C)=0\}=\mathcal{C} \cap \mathcal{V}$. Then

$$
A=\bigcup\{C \in \mathcal{C}: \mu(C)=0\}
$$

and hence $\mu(A)=0$ by countable subadditivity, because this last is a countable union ($=$ the union of a countable family of sets).
(ii) (a) is equivalent to (b): immediate by definition, an open set has measure $\mu(U)=0$ if and only if the support of μ is disjoint from U. (b) implies (c): If $u(c)>0$ then $U=\{u>u(c) / 2\}$ is an open set containing c, so that $\mu(U)>0$; and by Čebičeff's inequality

$$
\mu(U) \leq \frac{2}{u(c)} \int_{\mathbb{R}^{n}} u d \mu \quad \text { so that also } \quad \int_{\mathbb{R}^{n}} u d \mu>0
$$

(c) implies (b): given an open set U containing c, we get a positive function $u \in C_{c}\left(\mathbb{R}^{n}\right)$ with $\operatorname{Supp}(u) \subseteq U$ and $u(c)>0$: in fact there is $r>0$ such that $B(c, r] \subseteq U(U$ is open) and we can take $u(x)=$ $\max \{r-|x-c|\} \vee 0$, which has $B(c, r]$ as support, and is such that $u(c)=r>0$. Then $\int_{\mathbb{R}^{n}} u(x) d \mu(x)>0$, and this implies $\mu(\operatorname{Coz}(u))=\mu(B(c, r[)>0$, and since $U \supseteq B(c, r[$ we also get $\mu(U)>0$.
(iii) We have $f \in L^{\infty}(\mu)$ iff there is $\alpha>0$ such that $\mu(\{|f|>\alpha\})=0$. This is equivalent to say that $\operatorname{Supp}(\nu) \subseteq\{z \in \mathbb{K}:|z| \leq \alpha\}$, the closed ball of \mathbb{K} of center 0 and radius α. Then $f \in L^{\infty}(\mu)$
iff $\operatorname{Supp}(\nu)$ is bounded, and since $\operatorname{Supp}(\nu)$ is closed, then $f \in L^{\infty}(\mu)$ iff $\operatorname{Supp}(\nu)$ is compact. Moreover $\|f\|_{\infty}$ is the minimum $\{\alpha \geq 0\}$ such that $\mu(\{|f|>\alpha\})(=\nu(\{z:|z|>\alpha\}))=0$, the minimum radius of a closed disc centered at the origin of \mathbb{K} that contains $\operatorname{Supp}(\nu)$, and this of course coincides with $\max \{|z|: z \in \operatorname{Supp}(\nu)\}$.

We assume that $c \in \operatorname{essrange}(f) \backslash C$, and get a contradiction. Since C is closed, we find an open disc centered at c disjoint from C, say $B(c, r[=\{z \in \mathbb{K}:|z-c|<r\}$, for some $r>0$. Since $c \in \operatorname{Supp}(\nu)$, and $B(c, r$ [is an open set containing c we have $0<\nu(B(c, r[)=\mu(\{|f-c|<r\})$; since μ is semifinite there is $E \in \mathcal{M}$ with $0<\mu(E)<\infty$ and $E \subseteq\{|f-c|<r\}$. Then we have $A_{E} f \in B\left(c, r\left[\right.\right.$, so that $A_{E} f \notin C$, contradicting the assumption that C contains all averages of f; in fact

$$
\left|A_{E} f-c\right|=\left|\int_{E} f \frac{d \mu}{\mu(E)}-c\right|=\left|\int_{E}(f-c) \frac{d \mu}{\mu(E)}\right| \leq \int_{E}|f-c| \frac{d \mu}{\mu(E)}<\int_{E} r \frac{d \mu}{\mu(E)}=r
$$

(the strict inequality is due to the fact that $|f(x)-c|<r$ holds for every $x \in E$, and $\mu(E)>0$; clearly $f \chi_{E} \in L^{1}(\mu)$ because f is bounded on E and E has finite measure).

Analisi Reale per Matematica - Primo appello - 5 febbraio 2013

Exercise 13. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=-e^{-x^{2}}$ if $x<0 ; f(x)=\left(x^{2}+\psi(x)\right) / 2$ if $0 \leq x<1$, where ψ is the Cantor function with $\delta_{n}=(2 / 3)^{n} ; f(x)=1-e^{-(x-1)}$ if $x \geq 1$.
(i) Plot f. Describe the function $T(x)=V f(]-\infty, x]$), plot it, and write f as the difference of two increasing functions A, B; plot A and B.
(ii) Find a Hahn decomposition of the signed measure $\mu=d f$.
(iii) Find the decomposition for μ^{+}and μ^{-}into absolutely continuous and singular part with respect to Lebesgue measure m.
(iv) Determine the set of $p>0$ such that $u(x)=|x-1|+|x|$ belong to $L^{p}(|\mu|)$. Compute

$$
\int_{\mathbb{R}} u d|\mu|
$$

Solution. (i) The plot of f is easy: Since f is right-continuous, so is T. We have $T(x)=e^{-x^{2}}$ for $x<0$;

Figure 8. Plot of f.
$T\left(0^{+}\right)=T(0)=T\left(0^{-}\right)+1$, since the jump of f at 0 is 1 , hence $T(x)=T(0)+f(x)-f(0)=1+\left(x^{2}+\psi(x)\right) / 2$ for $0<x<1$, since f is increasing on $\left[0,1\left[\right.\right.$, so $T\left(1^{-}\right)=3$; and $T\left(1^{+}\right)=T(1)=T\left(1^{-} 1\right)+1=4$, since the jump of f at 1 is -1 ; finally $T(x)=T\left(1^{+}\right)+1-e^{-(x-1)}=5-e^{-(x-1)}$ for $x>1$. The plot of T is as follows:

Next we have $A=(T+f) / 2$ and $B=(T-f) / 2$ as follows
(ii) A positive set for μ is clearly $P=[0,1[\cup] 1, \infty[$, with complement $Q=]-\infty, 0[\cup\{1\}$ a negative set, so P, Q is a Hahn decomposition for μ.
(iii) The absolutely continuous part of $\mu^{+}=\mu_{A}$ is as usual $A^{\prime}(x) d m$, with $A^{\prime}(x)$ described as

$$
A^{\prime}(x)=0 \quad \text { if } x<0 ; \quad A^{\prime}(x)=x \quad \text { if } 0<x<1 ; A^{\prime}(x)=e^{-(x-1)} \quad \text { if } 1<x
$$

the singular part is $\delta_{0}+d \psi / 2$. Similarly, the absolutely continuous part of $\mu^{-}=\mu_{B}$ is $B^{\prime}(x) d m$, with $B^{\prime}(x)$ described as

$$
B^{\prime}(x)=-2 x e^{-x^{2}} \quad \text { if } x<0 ; B^{\prime}(x)=0 \quad \text { if } 0<x<1 ; B^{\prime}(x)=0 \quad \text { if } 1<x
$$

and the singular part is δ_{1}.

Figure 9. Plot of T.

Figure 10. Plot of the functions A, B.
(iv) Notice that $u(x)=1$ if $0 \leq x \leq 1$; then
$\int_{[0,1]} u^{p} d|\mu|=\int_{[0,1]} u d|\mu|=|\mu|([0,1])=\delta_{0}([0,1])+\delta_{1}([0,1])+\int_{[0,1]} x d x+\int_{[0,1]} \frac{d \psi}{2}=1+1+\frac{1}{2}+\frac{1}{2}=3$.
For $x<0$ we have $u(x)=-x+(-(x-1))=1-2 x$; for $x>1$ we have $u(x)=2 x-1$ we have to see the values of p for which the integrals:

$$
\int_{-\infty}^{0}(1-2 x)^{p}\left(-2 x e^{-x^{2}}\right) d x=2 \int_{-\infty}^{0}(1-2 x)^{p}|x| e^{-x^{2}} d x ; \int_{1}^{\infty}(2 x-1)^{p} e^{-(x-1)} d x
$$

are both finite; it is immediate that this happens for every $p>0$ (because of the exponential factors, the integrands are $o\left(1 /|x|^{\alpha}\right)$ for every $\alpha>0$, as $\left.x \rightarrow \pm \infty\right)$. So $f \in L^{p}(|\mu|)$ for every $p>0$. It remains to compute the last two integrals for $p=1$. Changing x into $-x$ the first is

$$
\begin{aligned}
& 2 \int_{0}^{\infty}\left(2 x^{2}+x\right) e^{-x^{2}} d x=\int_{0}^{\infty} 2 x e^{-x^{2}} d x+4 \int_{0}^{\infty} x^{2} e^{-x^{2}} d x= \\
& {\left[-e^{-x^{2}}\right]_{0}^{\infty}-2\left[-x e^{-x^{2}}\right]_{0}^{\infty}+2 \int_{0}^{\infty} e^{-x^{2}} d x=1+\sqrt{\pi}}
\end{aligned}
$$

For the second integral we have:

$$
\int_{1}^{\infty}(2 x-1) e^{-(x-1)} d x=\left[-(2 x-1) e^{-(x-1)}\right]_{1}^{\infty}+2 \int_{1}^{\infty} e^{-(x-1)} d x=2+\left[-e^{-(x-1)}\right]_{1}^{\infty}=3
$$

Collecting the partial results we get

$$
\int_{\mathbb{R}} u d|\mu|=7+\sqrt{\pi}
$$

Exercise 14. Let (X, \mathcal{M}) be a measurable space, and let $\nu: \mathcal{M} \rightarrow \tilde{\mathbb{R}}=\mathbb{R} \cup\{-\infty, \infty\}$ be a countably additive function, that is, ν is a signed measure.
(i) Prove that if $\nu(E)=-\infty$ (resp. $\nu(E)=+\infty$) for some $E \in \mathcal{M}$ then $\nu(F)=-\infty$ (resp. $\nu(F)=+\infty)$ for every $F \in \mathcal{M}$ with $F \supseteq E$; deduce from this that if $\nu(E)=-\infty$ for some $E \in \mathcal{M}$ then $\infty \notin \nu(\mathcal{M})$.
(ii) Is it true that $\sup \{\nu(E): E \in \mathcal{M}\}=\max \{\nu(E): E \in \mathcal{M}\}$? and that $\inf \{\nu(E): E \in \mathcal{M}\}=$ $\min \{\nu(E): E \in \mathcal{M}\}$?
Assume now that $\mu: \mathcal{M} \rightarrow[0, \infty]$ is a positive measure, and that $f: X \rightarrow \mathbb{R}$ is a measurable function such that $\nu(E)=\int_{E} f d \mu$, for every $E \in \mathcal{M}$.
(iii) What is a Hahn decomposition for ν, in terms of f ? and how can $\nu^{ \pm}$be expressed in terms of f ? under which condition on f is ν a finite measure?
(iv) Assume that μ is a σ-finite measure and that $f \geq 0$, so that ν is also a positive measure, and that $f \in L^{1}(\mu)$. What condition on f is equivalent to assert that there is a measurable $g \geq 0$ such that $\mu(E)=\int_{E} g d \nu$ for every $E \in \mathcal{M}$?
Solution. (i) We have $\nu(F)=\nu(E)+\nu(F \backslash E)$. If $\nu(E)=-\infty($ resp: $\nu(E)=\infty)$ then the sum $-\infty+\nu(F \backslash E)$, if meaningful, can only have value $-\infty$ (resp: ∞). Then $\nu(F)=\nu(E)$; if some set has measure $-\infty$ (resp: ∞) then $\nu(X)=-\infty$ (resp: ∞) so that ν cannot assume both values.
(ii) There is a lemma that says that if a signed measure does not assume the value $-\infty$, then there is $P \in \mathcal{M}$ such that $\nu(P)=\max \{\nu(E): E \in \mathcal{M}\}$. Then the answer is affirmative: if ν does not assume the value ∞ the set $\nu(\mathcal{M})$ has a maximum. If $\nu(E)=-\infty$ for some $E \in \mathcal{M}$ then $-\infty=\min \nu(\mathcal{M})$; if $\infty \notin \nu(\mathcal{M})$ the the previously mentioned lemma applied to $-\nu$ implies that for some $Q \in \mathcal{M}$ we have $\nu(Q)=\min \nu(\mathcal{M})(\in \mathbb{R})$. Clearly this concludes the question with an affirmative answer.
(iii) Trivially $P=\{f>0\}$ with $Q=X \backslash P=\{f \leq 0\}$, or $P=\{f \geq 0\}$ and $Q=X \backslash P=\{f<0\}$. Also

$$
\nu^{+}(E)=\nu(P \cap E)=\int_{E} f^{+} d \mu ; \quad \nu^{-}(E)=-\nu(Q \cap E)=\int_{E} f^{-} d \mu .
$$

Clearly ν is finite if and only if $\nu^{ \pm}$are both finite measures, that is iff

$$
\int_{X} f^{+} d \mu<\infty, \quad \int_{X} f^{-} d \mu<\infty
$$

equivalently $f \in L_{\mu}^{1}(X, \mathbb{R})$.
(iv) Since $f \in L^{1}(\mu)$ the measure ν is finite, and positive since $f \geq 0$. By hypothesis μ is σ-finite, By the Radon-Nikodym theorem g exists iff $\nu(E)=0$ implies $\mu(E)=0$. Now, since $f \geq 0$ we have, calling $Z=Z(f)=\{f=0\}$ the zero-set of f

$$
\nu(E)=\int_{E} f d \mu=0 \quad \Longleftrightarrow \mu(E \backslash Z)=0
$$

Ten, for every $E \in \mathcal{M}$ we have that $\mu(E \backslash Z)=0$ must imply $\mu(E)=0$; this is clearly true for every $E \in \mathcal{M}$ iff $\mu(Z)=0$. In this case of course we have $g(x)=1 / f(x)$ for $x \notin Z$ (and $g(x)$ arbitrary for $x \in Z$, i.e. $g(x)=0$).

Exercise 15. Let (X, \mathcal{M}, μ) be a probability space (that is, a measure space with $\mu(X)=1$).
(i) For $g: X \rightarrow \mathbb{K}$ measurable and $0<p<q$, how do you compare $\|g\|_{p}$ and $\|g\|_{q}$? And what is $\lim _{p \rightarrow \infty}\|g\|_{p}$? (no proof required for this last question; simply state the result).
Assume that $f \in L_{\mu}^{1}(X, \mathbb{R})$.
(ii) State Jensen's inequality: if $\omega: \mathbb{R} \rightarrow \mathbb{R}$ is convex then $\omega\left(\int_{X} f\right) \leq \ldots$ (complete the statement)
(iii) Prove that for every $p>0$ we have

$$
\exp \left(\int_{X} f\right) \leq\left(\int_{X} e^{p f(x)} d \mu(x)\right)^{1 / p}
$$

(iv) Setting $a(p)=\left(\int_{X} e^{p f(x)} d \mu(x)\right)^{1 / p}$, prove that $\lim _{p \rightarrow \infty} a(p)$ exists in $\tilde{\mathbb{R}}$ and express it by something related to f. Is this limit necessarily finite?
(v) Prove that $\lim _{p \rightarrow 0^{+}} a(p)$ exists and is strictly positive.
(4 extra points) Is it true that $\lim _{p \rightarrow 0^{+}} a(p)=\exp \left(\int_{X} f\right)$? if not, under which conditions on f does this hold?

Solution. (i) We know that if $p<q$ then $\|g\|_{p} \leq\|g\|_{q}$: simply use Hölder's inequality applied to functions $|g|^{p}$ and 1 with conjugate exponents q / p and $1 /(1-(p / q))=q /(q-p)$:

$$
\int_{X}|g|^{p} \leq\left(\int_{X}\left(|g|^{p}\right)^{q / p}\right)^{p / q} \Longrightarrow\left(\int_{X}|g|^{p}\right)^{1 / p} \leq\left(\int_{X}|g|^{q}\right)^{1 / q}
$$

and $\lim _{p \rightarrow \infty}\|g\|_{p}=\|g\|_{\infty}$, essential supremum of $|g|$.
(ii) For Jensen's inequality see Weeks, eighth week.
(iii) Apply Jensen's inequality to f, with $\omega(x)=e^{p x}$, clearly a strictly convex function, obtaining

$$
\exp \left(p \int_{X} f d \mu\right) \leq \int_{X} \exp (p f) d \mu \Longleftrightarrow \exp \left(\int_{X} f\right) \leq\left(\int_{X} e^{p f(x)} d \mu(x)\right)^{1 / p}
$$

(iv) If we define $g(x)=\exp (f(x))$ we have

$$
a(p)=\left(\int_{X} e^{p f(x)} d \mu(x)\right)^{1 / p}=\left(\int_{X} g^{p}(x) d \mu(x)\right)^{1 / p}=\|g\|_{p}
$$

so that $p \mapsto a(p)$ is increasing and its limit as $p \rightarrow \infty$ is $\|g\|_{\infty}$, which of course is $e^{\operatorname{esssup} f}$. Taking $X=[0,1]$ with Lebesgue measure, and $f(x)=1 /(2 \sqrt{x})$ we have $f \in L^{1}$ with $\int_{X} f=1$, but $e^{p f(x)} \notin L^{1}$, for no $p>0$ (we have $\lim _{x \rightarrow 0^{+}} e^{p f(x)} / x=\lim _{x \rightarrow 0^{+}} \exp (p /(2 \sqrt{x})-\log x)=e^{\infty}=\infty$), so that for every p we have $a(p)=\infty)$.
(v) Since $p \mapsto a(p)$ is increasing, we have that $\lim _{p \rightarrow 0^{+}} a(p)$ exists and coincides with $\inf \{a(p): p>0\}$; and since $a(p) \geq \exp \left(\int_{X} f\right)>0$ for every p, this limit is strictly positive.

If $a(p)=\infty$ for every $p>0$ then of course $\lim _{p \rightarrow 0^{+}} a(p)=\infty$; this happens for instance with $f(x)=1 /(2 \sqrt{x})$ on $[0,1]$ as above, whereas $\exp \left(\int_{X} f\right)$ is finite by hypothesis. But if $a(q)<\infty$ for some $q>0$, then we have $\lim _{p \rightarrow 0^{+}} a(p)=\exp \left(\int_{X} f\right)$: for a proof see Weekly, Eighth week, Geometric Mean (Exercise 19).
ExERCISE 16. Let $I=[a, b]$ be a compact interval of \mathbb{R}, and let $f: I \rightarrow \mathbb{R}$ be a function.
(i) State the (ε, δ)-condition for the absolute continuity of the function f, and prove that if f is Lipschitz continuous then it is absolutely continuous.
(ii) Assume that f is absolutely continuous, that $f([a, b])=J$, and that $g: J \rightarrow \mathbb{R}$ is Lipschitz continuous. Prove that then the composition $g \circ f$ is absolutely continuous on $[a, b]$.
(iii) For $\alpha>0$ define $f_{\alpha}:\left[0, \infty\left[\rightarrow \mathbb{R}\right.\right.$ by the formula $f_{\alpha}(x)=\left|\sin \left(x^{\alpha}\right)\right|$. Find the values of $\alpha>0$ for which f_{α} is absolutely continuous on every compact subinterval of $[0, \infty[$.

Solution. (i) See Lecture Notes, 7.3.2. If there is $k>0$ such that $\left|f\left(x_{2}\right)-f\left(x_{1}\right)\right| \leq k\left|x_{2}-x_{1}\right|$ for every $x_{1}, x_{2} \in[a, b]$ then f verifies the $(\varepsilon, \delta)-$ condition of absolute continuity: given $\varepsilon>0$ let $\delta=\varepsilon / k$; if $\left(\left[a_{j}, b_{j}\right]\right)_{1 \leq j \leq m}$ is sequence of non-overlapping subintervals of $[a, b]$ and $\sum_{j=1}^{m}\left(b_{j}-a_{j}\right) \leq \delta$, then

$$
\sum_{j=1}^{m}\left|f\left(b_{j}\right)-f\left(a_{j}\right)\right| \leq \sum_{j=1}^{m} k\left|b_{j}-a_{j}\right| \leq k \delta \leq \varepsilon
$$

(ii) Given $\varepsilon>0$, let $\rho=\varepsilon / k$; since f is absolutely continuous, we find $\delta>0$ such that for every sequence $\left(\left[a_{j}, b_{j}\right]\right)_{1 \leq j \leq m}$ of non overlapping intervals with $\sum_{j=1}^{m}\left(b_{j}-a_{j}\right) \leq \delta$ we have

$$
\sum_{j=1}^{m}\left|f\left(b_{j}\right)-f\left(a_{j}\right)\right| \leq \rho=\frac{\varepsilon}{k}
$$

then we get

$$
\sum_{j=1}^{m}\left|g\left(f\left(b_{j}\right)\right)-g\left(f\left(a_{j}\right)\right)\right| \leq \sum_{j=1}^{m} k\left|f\left(b_{j}\right)-f\left(a_{j}\right)\right| \leq k \frac{\varepsilon}{k}=\varepsilon
$$

thus proving absolute continuity of $g \circ f$.
(iii) The function x^{α} is locally absolutely continuous for every $\alpha>0$; in fact it is a C^{1} function on $] 0, \infty[$, and clearly, if $\alpha>0$ and $x>0$ then

$$
\int_{0}^{x} \alpha t^{\alpha-1} d t=x^{\alpha} \quad \text { that is, } f(x)=\int_{0}^{x} f^{\prime}(t) d t, \text { for every } x>0
$$

The function $y \mapsto|\sin y|$ is Lipschitz continuous, so f_{α} is locally absolutely continuous by (ii), for every $\alpha>0$.

Analisi Reale per Matematica - Secondo appello - 25 febbraio 2013
Exercise 17. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $F(x)=x e^{-(x-1)} U(x)+e^{x} U(-x)$, with $U=\chi_{] 0, \infty[}$ the characteristic function of the open half-line $] 0, \infty[$.
(i) Plot F; is F right-continuous?

Define $\mu=d F\left(=\mu_{F}\right)$ the Radon-Stieltjes signed measure associated to F.
(ii) Find a Hahn decomposition for μ, and find the decomposition for μ^{+}and μ^{-}into absolutely continuous and singular part with respect to Lebesgue measure m.
(iii) Find functions A, B such that $\mu^{+}=d A$ and $\mu^{-}=d B$; plot A and B.
(iv) Given $a>0$ let $T(a)=\left\{(x, y) \in \mathbb{R}^{2}: 0<x \leq y \leq a\right\}$ Compute

$$
m \otimes \mu^{+}(T(a)) \quad \text { and } \quad m \otimes \mu^{-}(T(a))
$$

(with m Lebesgue measure).
(v) Using (iii) compute

$$
\int_{[0, \infty[} t d \mu^{+}(t) \quad \int_{[0, \infty[} t d \mu^{-}(t) \quad \int_{[0, \infty[} t d|\mu|(t)
$$

Solution. (i) Clearly F is continuous on $\mathbb{R} \backslash\{0\}$ and $\lim _{x \rightarrow 0^{-}} F(x)=1$, while $\lim _{x \rightarrow 0^{+}} F(x)=0$; $F(0)=0$ so that F is right-continuous, but not continuous, at 0 . The plot is easy (notice that $F^{\prime}(x)=$ $(1-x) e^{-(x-1)}$ for $x>0$, so that F is increasing in $[0,1]$ and decreasing in $[1, \infty[)$:

Figure 11. Plot of F.
(ii) A positive set for F is $P=]-\infty, 0[\cup] 0,1[$; the complement $Q=\{0\} \cup[1, \infty[$ is negative, so P, Q is a Hahn decomposition for μ. Since $F^{\prime}(x)=e^{-(x-1)}(1-x) U(x)+e^{x} U(-x)$, the absolutely continuous part of μ^{+}is where $F^{\prime}(x) \geq 0$, that is $d A(x)=\left(e^{x} U(-x)+e^{-(x-1)}(1-x) \chi_{] 0,1[}(x)\right) d x$, and that of μ^{-} is $e^{-(x-1)}(x-1) \chi_{[1, \infty[}(x) d x$; we have $\mu^{+} \ll m$; the singular part of μ^{-}is δ_{0}.
(iii) We have
$A(x)=e^{x} U(-x)+\left(1+x e^{-(x-1)}\right) \chi_{[0,1[}(x)+2 \chi_{[1, \infty[}(x) ; \quad B(x)=\chi_{[0,1[}(x)+\left(2-x e^{-(x-1)}\right) \chi_{[1, \infty[}(x)$.

Figure 12. Plot of the functions A, B.
(iv) Clearly the set $T(a)$ is a bounded Borel set, hence of finite $m \otimes \mu^{ \pm}$measure. Using Fubini's theorem we get (with $\left.\left.T_{x}(a)=\{y \in \mathbb{R}:(x, y) \in T(a)\}=\right] x, a\right]$ the x-section of $T(a)$, for $\left.\left.\left.x \in\right] 0, a\right]\right)$:

$$
m \otimes \mu^{+}(T(a))=\int_{] 0, a]}\left(\mu^{+}\left(T_{x}(a)\right)\right) d m(x)=\int_{0}^{a}(A(a)-A(x)) d x=A(a) a-\int_{0}^{a} A(x) d x
$$

now we have, for $0<a \leq 1$:

$$
\begin{aligned}
\int_{0}^{a} A(x) d x= & \int_{0}^{a}\left(1+x e^{-(x-1)}\right) d x=a+\left[-x e^{-(x-1)}\right]_{0}^{a}+\int_{0}^{a} e^{-(x-1)} d x=a-a e^{-(a-1)}+e-e^{-(a-1)}= \\
& =e+a-(a+1) e^{-(a-1)}
\end{aligned}
$$

so that $m \otimes \mu^{+}(T(a))=\left(a^{2}+a+1\right) e^{-(a-1)}-e$ for $0<a \leq 1$. Since $\mu^{+}(] 1, \infty[)=0$ we have that $m \otimes \mu^{+}(T(a))=m \otimes \mu^{+}(T(1))$ for $a>1$; then

$$
m \otimes \mu^{+}(T(a))=\left\{\begin{array}{l}
\left(a^{2}+a+1\right) e^{-(a-1)}-e \quad \text { for } 0<a \leq 1 \\
3-e \text { for } a>1
\end{array}\right.
$$

Next:

$$
m \otimes \mu^{-}(T(a))=\int_{\mathrm{lo}, a]}\left(\mu^{-}\left(T_{x}(a)\right)\right) d m(x)=\int_{0}^{a}(B(a)-B(x)) d x=B(a) a-\int_{0}^{a} B(x) d x
$$

Now, for $0<a<1$ we have $B(a)=1$ so that the preceding is $a-a=0$; if $a \geq 1$

$$
\begin{aligned}
a B(a)-\int_{0}^{a} B(x) d x= & a\left(2-a e^{-(a-1)}\right)-\int_{0}^{a}\left(2-x e^{-(x-1)} d x=\right. \\
& a\left(2-a e^{-(a-1)}\right)-\int_{0}^{1} d x-\int_{1}^{a}\left(2-x e^{-(x-1)} d x=\right. \\
& a\left(2-a e^{-(a-1)}\right)-1-2(a-1)+\left[-x e^{-(x-1)}\right]_{1}^{a}+\int_{1}^{a} e^{-(x-1)} d x= \\
& 3-\left(1+a+a^{2}\right) e^{-(a-1)}
\end{aligned}
$$

Then

$$
m \otimes \mu^{-}(T(a))=\left\{\begin{array}{l}
0 \quad \text { for } \quad 0<a<1 \\
3-\left(1+a+a^{2}\right) e^{-(a-1)} \quad \text { for } \quad a \geq 1
\end{array}\right.
$$

(v) Integrating first in the x-coordinate and then in the y-coordinate we get (with $T_{y}(a)=\{x \in \mathbb{R}$: $(x, y) \in T(a)\}=] 0, y]$ if $0<y \leq a)$

$$
m \otimes \mu^{+}(T(a))=\int_{] 0, a]}\left(m\left(T_{y}(a)\right)\right) d A=\int_{j 0, a]} y d A(y)
$$

and similarly

$$
m \otimes \mu^{-}(T(a))=\int_{] 0, a]}\left(m\left(T_{y}(a)\right)\right) d B=\int_{] 0, a]} y d B(y)
$$

by the dominated convergence theorem we have

$$
\int_{] 0, \infty[} y d A(y)=\lim _{a \rightarrow+\infty} \int_{] 0, a]} y d A(y) \quad \text { and } \quad \int_{] 0, \infty[} y d B(y)=\lim _{a \rightarrow+\infty} \int_{] 0, a]} y d B(y)
$$

but we have, for $a>1$:

$$
\int_{[0, a]} y d A(y)=m \otimes \mu^{+}(T(a))=3-e ; \quad \int_{] 0, a]} y d A(y)=m \otimes \mu^{-}(T(a))=3-\left(1+a+a^{2}\right) e^{-(a-1)}
$$

so that, taking limits as $a \rightarrow+\infty$:

$$
\int_{] 0, \infty[} y d \mu^{+}(y)=3-e ; \quad \int_{] 0, \infty[} y d \mu^{-}(y)=3
$$

and of course

$$
\int_{] 0, \infty[} y d|\mu|(y)=\int_{] 0, \infty[} y d \mu^{+}(y)+\int_{] 0, \infty[} y d \mu^{-}(y)=6-e
$$

Exercise 18. Let (X, \mathcal{M}, μ) be a measure space.
(i) Assume that f_{n} and f are measurable functions, that $f_{n} \rightarrow f$ a.e. on X, and that $\left|f_{n}\right| \uparrow|f|$ a.e. on X. Given p with $0<p<\infty$ prove that $f \in L^{p}(\mu)$ if and only if $\sup \left\{\left\|f_{n}\right\|_{p}: n \in \mathbb{N}\right\}<\infty$. Does f_{n} also converge to f in $L^{p}(\mu)$, under this hypothesis?
We denote by $S(\mu)$ the space of measurable simple functions contained in $L^{1}(\mu)$.
(ii) Is it true that $S(\mu)$ is dense in every $L^{p}(\mu)$, for $p<\infty$? sketch a proof, or give a counterexample.
(iii) Let $0<p, q<\infty$. Assume that there is a constant $C>0$ such that $\|f\|_{q} \leq C\|f\|_{p}$ for every $f \in S(\mu)$. Prove that then the same inequality holds for every $f \in L^{p}(\mu)$, and that $L^{p}(\mu) \subseteq L^{q}(\mu)$.
Solution. (i) Assume $M=\sup \left\{\left\|f_{n}\right\|_{p}: n \in \mathbb{N}\right\}<\infty$. Then $\int_{X}\left|f_{n}\right|^{p} \leq M^{p}$ for every n. By monotone convergence we have

$$
\int_{X}|f|^{p}=\lim _{n \rightarrow \infty} \int_{X}\left|f_{n}\right|^{p} \leq M^{p}
$$

so that $f \in L^{p}(\mu)$. Conversely, if $f \in L^{p}(\mu)$ then clearly we have, from $\left|f_{n}\right| \leq|f|$, that $\int_{X}\left|f_{n}\right|^{p} \leq \int_{X}|f|^{p}$, so that $\sup \left\{\left\|f_{n}\right\|_{p}: n \in \mathbb{N}\right\} \leq\|f\|_{p}<\infty$. Clearly in these hypotheses we also have that $\left\|f-f_{n}\right\|_{p} \rightarrow 0$:

$$
\left|f-f_{n}\right|^{p} \leq\left(|f|+\left|f_{n}\right|\right)^{p} \leq(|f|+|f|)^{p}=2^{p}|f|^{p}
$$

and since $2^{p}|f|^{p} \in L^{1}(\mu)$ and $\left|f-f_{n}\right| \rightarrow 0$ pointwise a.e., we get that $\left\|f-f_{n}\right\|_{p}^{p} \rightarrow 0$ by dominated convergence.
(ii) It is well-known that $S(\mu)$ is dense in $L^{p}(\mu)$ for every $p<\infty$: we know that for every measurable $f: X \rightarrow \mathbb{K}$ there exists a sequence s_{n} of measurable simple functions converging pointwise to f, and such that $\left|s_{n}\right| \uparrow|f|$. If $f \in L^{p}(\mu)$ then (i) applies to say that $s_{n} \in L^{p}(\mu)$ and $\left\|f-s_{n}\right\|_{p} \rightarrow 0$ as $n \rightarrow \infty$. Now, a simple function in $L^{p}(\mu)$ for $p<\infty$ is of course also in $S(\mu)$: simply note that a simple function is always in L^{∞}, and that $L^{1}(\mu) \cap L^{\infty}(\mu) \subseteq L^{p}(\mu)$ for every $p \geq 1$; trivially, in any case we have $\left|\sum_{k=1}^{m} \alpha_{k} \chi_{A_{k}}\right|^{p}=\sum_{k=1}^{m}\left|a_{k}\right|^{p} \chi_{A_{k}}$, if the A_{k} 's are pairwise disjoint, so that if $0<p<\infty$ we have that a measurable simple function is in $L^{1}(\mu)$ iff it is in $L^{p}(\mu)$.
(iii) Given $f \in L^{p}(\mu)$. pick a sequence s_{n} of simple functions as in (ii). We have $\left\|s_{n}\right\|_{q} \leq C\left\|s_{n}\right\|_{p}$ for every n; since $\left|s_{n}\right| \uparrow|f|$, by monotone convergence the left-hand side tends to $\|f\|_{q}$, the right-hand side to $\|f\|_{p}$. Then $\|f\|_{q} \leq C\|f\|_{p}$ for every $f \in L^{p}(\mu)$, and this of course implies $\|f\|_{q}<\infty$, that is, $f \in L^{q}(\mu)$, so that $f \in L^{q}(\mu)$ when $f \in L^{p}(\mu)$, in other words $L^{p}(\mu) \subseteq L^{q}(\mu)$.

Exercise 19. The formula:

$$
\begin{equation*}
F(x)=\int_{0}^{\infty} \frac{1-e^{-x t}}{\sinh t} d t \tag{}
\end{equation*}
$$

defines a function $F:[0, \infty[\rightarrow \mathbb{R}$ (immediate, accept for the moment this fact).
(i) Using the theorem on differentiation of parameter depending integrals, prove that F is smooth, i.e. $F \in C^{\infty}([0, \infty[)$.

We have, for $t>0$:

$$
\frac{1}{\sinh t}=\frac{2}{e^{t}-e^{-t}}=2 \frac{e^{-t}}{1-e^{-2 t}}=2 \sum_{n=0}^{\infty} e^{-(2 n+1) t}
$$

so that, for $t>0$:

$$
\begin{equation*}
\frac{1-e^{-x t}}{\sinh t}=2 \sum_{n=0}^{\infty}\left(1-e^{-x t}\right) e^{-(2 n+1) t} \tag{**}
\end{equation*}
$$

(ii) Compute, for $x \geq 0$:

$$
\int_{0}^{\infty}\left(1-e^{-x t}\right) e^{-(2 n+1) t}
$$

is it possible to use the representation of the integrand in the series $\left(^{(* *)}\right.$ to express F as the sum of a series of rational functions? in other words, can the series $\left({ }^{* *}\right)$ be integrated termwise on $[0, \infty[$, if $x \geq 0$?
(iii) Formula $\left({ }^{*}\right)$ defines F on set D larger than $\left[0, \infty\left[\right.\right.$. Find D. Is $F \in C^{\infty}(D)$?

Solution. (i) The integrand is $f(x, t)=\left(1-e^{-x t}\right) / \sinh t$ so that $\partial_{x} f(x, t)=(t / \sinh t) e^{-x t}, \partial_{x}^{2} f(x, t)=$ $(-t / \sinh t) e^{-x t}$ and in general

$$
\partial_{x}^{n} f(x, t)=(-1)^{n-1} \frac{t^{n}}{\sinh t} e^{-x t} \quad(n \geq 1)
$$

For $x \geq 0$ we have

$$
\left|\partial_{x}^{n} f(x, t)\right|=\frac{t^{n}}{\sinh t}\left|e^{-x t}\right| \leq \frac{t^{n}}{\sinh t}
$$

with the function $t \mapsto t^{n} / \sinh t$ in $L_{m}^{1}([0, \infty[)$, for every $n \geq 1$: in fact at $t=0$ this function is continuous, and at ∞ it is dominated by a function such as $e^{-t / 2}$. This proves that $F \in C^{\infty}([0, \infty[)$.
(ii) The series has positive terms, so that it can certainly be integrated termwise (monotone convergence). We get:

$$
\int_{0}^{\infty}\left(1-e^{-x t}\right) e^{-(2 n+1) t} d t=\int_{0}^{\infty} e^{-(2 n+1) t} d t-\int_{0}^{\infty} e^{-(2 n+1+x) t} d t=\frac{1}{2 n+1}-\frac{1}{2 n+1+x}
$$

Then

$$
F(x)=\sum_{n=0}^{\infty}\left(\frac{1}{2 n+1}-\frac{1}{2 n+1+x}\right)=\sum_{n=0}^{\infty} \frac{x}{(2 n+1+x)(2 n+1)} \quad(x \geq 0)
$$

(iii) The integrand is continuous at $t=0$, for every x, so that there are no problems at 0 . For $t \rightarrow \infty$ the integrand is asymptotic to $1 / \sinh t \sim 2 e^{-t}$ for $x \geq 0$, so that (as asserted) trivially $t \mapsto f(x, t)$ belongs to $L_{m}^{1}\left(\left[0, \infty[)\right.\right.$ is $x \geq 0$. If $x<0$ the integrand is asymptotic to $e^{-x t} / \sinh t \sim 2 e^{-(x+1) t}$ as $t \rightarrow \infty$, so that the integrand is in $L_{m}^{1}([0, \infty[)$ iff $x>-1$. In other words we have $D=]-1, \infty[$. We still have $F \in C^{\infty}(D)$. In fact, given $x>-1$, pick a with $-1<a<x$; in the neighborhood [$a, \infty[$ of x we have:

$$
\left|\partial_{x}^{n} f(x, t)\right|=\frac{t^{n}}{\sinh t}\left|e^{-x t}\right| \leq \frac{t^{n}}{\sinh t} e^{-a t}
$$

REmARk. Even if it is not required, we observe that the series representation is valid also for $x>-1$, i.e. for every $x \in D$. In fact, the terms of the series become all negative if $x<0$: for every $t>0$ and $x<0$ we have $1-e^{-x t}<0$.

Exercise 20. Let (X, \mathcal{M}, μ) be a measure space.
(i) Prove that the following are equivalent:
(a) There exists a sequence $E_{n} \in \mathcal{M}$ with $\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)=0$ and $0<\mu\left(E_{n}\right)$ for every n.
(b) There is a sequence $A_{k} \in \mathcal{M}$ with $0<\mu\left(A_{k}\right) \leq 1 / 2^{k}$ for every k.
(c) There is a function $f \in L^{1}(\mu) \backslash L^{\infty}(\mu)$.
(d) There is a disjoint sequence $B_{k} \in \mathcal{M}$ with $0<\mu\left(B_{k}\right) \leq 1 / 2^{k}$ for every k.
((a) implies (b) easy; for (b) implies (c) prove that the formula $f(x)=\sum_{k=0}^{\infty} k \chi_{A_{k}}$ defines a.e. a function $f \in L^{1}(\mu) \backslash L^{\infty}(\mu)$; for (c) implies (d) consider a suitable subsequence of the sequence $E_{n}=\{n<|f| \leq n+1\}$, with $\left.f \in L^{1}(\mu) \backslash L^{\infty}(\mu) \ldots\right)$.
(ii) [3] Given a sequence $B_{k} \in \mathcal{M}$ as in (d) above $\left(0<\mu\left(B_{k}\right) \leq 1 / 2^{k}\right)$, set $b_{k}=\mu\left(B_{k}\right)$, and for $\alpha>0$ define the measurable function $g_{\alpha}: X \rightarrow \mathbb{R}$ by $g_{\alpha}=\sum_{k=0}^{\infty} b_{k}^{-\alpha} \chi_{B_{k}}$. Given $0<p<q<\infty$, prove that if $1 / q<\alpha<1 / p$ we have $g_{\alpha} \in L^{p}(\mu) \backslash L^{q}(\mu)$.
Solution. (i) That (a) implies (b) is trivial: if a sequence of strictly positive numbers tends to 0 , then there is a subsequence $\left(\mu\left(E_{n(k)}\right)\right)_{k \in \mathbb{N}}$ such that $\mu\left(E_{n(k)}\right) \leq 1 / 2^{k}$; simply set $A_{k}=E_{n(k)}$.
(b) implies (c) The series $\sum_{k=0}^{\infty} k \chi_{A_{k}}$ is a series of positive measurable functions, so that we have

$$
\int_{X} f=\sum_{k=0}^{\infty} k \mu\left(A_{k}\right) \leq \sum_{k=0}^{\infty} \frac{k}{2^{k}}<\infty
$$

Then $\{f=\infty\}$ has measure 0 , and $f \in L^{1}(\mu)$ (to be more precise for the punctilious: f coincides a.e. with a function in $L^{1}(\mu)$, which we still call f). And $f \notin L^{\infty}(\mu)$: since all terms are positive, we have $f \geq k \chi_{A_{k}}$, so that $\{f \geq k\} \supseteq A_{k}$, hence $\mu(\{f \geq k\}) \geq \mu\left(A_{k}\right)>0$, for every $k \in \mathbb{N}$, and hence $\|f\|_{\infty}=\infty$.
(c) implies (d) Since $f \notin L^{\infty}(\mu)$, infinitely many E_{n} have strictly positive measure. Moreover $\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)=0$, since by Čebičeff's inequality we have $\mu\left(E_{n}\right) \leq(1 / n)\|f\|_{1}$; and the E_{n} are pairwise disjoint. Some subsequence $B_{k}=E_{n(k)}$ will then be such that $\mu\left(B_{k}\right) \leq 1 / 2^{k}$.

That (d) implies (a) is trivial.
(ii) We have

$$
\int_{X} g_{\alpha}^{p}=\sum_{k=0}^{\infty} b_{k}^{-\alpha p} b_{k}=\sum_{k=0}^{\infty} b_{k}^{1-\alpha p} \leq \sum_{k=0}^{\infty} \frac{1}{2^{k \beta}}
$$

where $\beta=1-\alpha p>0$, by the hypothesis $\alpha<1 / p$. Since the series $\sum_{k=0}^{\infty} 1 /\left(2^{\beta}\right)^{k}$ is convergent, we have $g_{\alpha} \in L^{p}(\mu)$. And

$$
\int_{X} g_{\alpha}^{q}=\sum_{k=0}^{\infty} b_{k}^{-\alpha q} b_{k}=\sum_{k=0}^{\infty} b_{k}^{1-\alpha q}=\infty
$$

because $1-\alpha q<0$, so that $\lim _{k \rightarrow \infty} b_{k}^{1-\alpha q}=\infty$.

Analisi reale - Recupero - 12 luglio 2013
Exercise 21. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
F(x)=x^{2} \chi_{]-\infty, 0[}(x)+\operatorname{frac}(x) \chi_{[0,3[}(x)+\left(2-e^{3-x}\right) \chi_{[3, \infty[}(x)
$$

where $\operatorname{frac}(x)=x-[x]$ is the fractional part of x.
(i) Plot F; find the points of discontinuity of F; is F right-continuous?

Define $\mu=d F\left(=\mu_{F}\right)$ the Radon-Stieltjes signed measure associated to F.
(ii) Find a Hahn decomposition for μ, and find the decomposition for μ^{+}and μ^{-}into absolutely continuous and singular part with respect to Lebesgue measure m.
(iii) Find right continuous functions A, B with $A(0)=B(0)=0$ such that $\mu^{+}=d A$ and $\mu^{-}=d B$; plot A and B.
(iv) Compute the integrals

$$
\int_{\mathbb{R}} e^{-|x|} d \mu^{+}(x), \quad \int_{\mathbb{R}} e^{-|x|} d \mu^{-}(x)
$$

(v) If $T=\left\{(x, y) \in \mathbb{R}^{2}: y \leq x\right\}$ compute

$$
\mu^{+} \otimes m(T)
$$

Solution. (i) The possible discontinuities for f are $0,1,2,3$; but it's easy to see that F is continuous at 0 and 3 , so that the only discontinuities are 1 and 2 , with jumps $\sigma_{F}(1)=\sigma_{F}(2)=-1$. Plainly F is right-continuous, because so is $x \mapsto \operatorname{frac}(x)$. The plot of F is immediate:

Figure 13. Plot of F.
(ii) A positive set for μ is $P=] 0,1[\cup] 1,2[\cup] 2, \infty[$, with negative complement $]-\infty, 0] \cup\{1\} \cup\{2\}$. The derivative $F^{\prime}(x)$ exists in $\mathbb{R} \backslash\{0,1,2\}$, and we have

$$
\left.F^{\prime}(x)=2 x \quad x<0 ; F^{\prime}(x)=1 \quad x \in\right] 0,3\left[\backslash\{1,2\} ; F^{\prime}(x)=e^{3-x} \quad x \geq 3\right.
$$

(it is easy to check that $F^{\prime}(3)$ exists and that $F^{\prime}(3)=1$). The measure μ^{+}is absolutely continuous with respect to m and we have

$$
d \mu^{+}=F^{\prime} \chi_{] 0, \infty[} d m \quad \text { so that } \mu^{+}(E)=m(E \cap] 0,3[)+\int_{E \cap[3, \infty[} e^{3-x} d x
$$

The absolutely continuous part of μ^{-}is $-2 x \chi_{]-\infty, 0]} d x$, the singular part is $\delta_{1}+\delta_{2}$, so that

$$
\mu^{-}(E)=\int_{E \cap]-\infty, 0]}(-2 x) d x+\chi_{E}(1)+\chi_{E}(2)
$$

(iii) Clearly $A(x)=0$ for $x \leq 0$, and $A(x)=x$ for $0 \leq x<3$, while for $x \geq 3$:

$$
\left.\left.\left.\left.\left.\left.A(x)=\mu^{+}(] 0, x\right]\right)=\mu^{+}(] 0,3\right]\right)+\mu^{+}(] 3, x\right]\right)=3+\int_{3}^{x} e^{3-t} d t=3+\left[-e^{3-t}\right]_{t=3}^{t=x}=4-e^{3-x}
$$

For B we get

$$
\begin{aligned}
& B(x)=-\mu^{-}\left(\left[x, 0[)=-\int_{x}^{0}(-2 x) d x=-x^{2} \quad(x<0) ; B(x)=0 \quad 0 \leq x<1 ; B(x)=1 \quad 0 \leq x<2\right.\right. \\
& B(x)=2 \quad x \geq 2
\end{aligned}
$$

(iv) We have

$$
\int_{\mathbb{R}} e^{-|x|} d \mu^{+}(x)=\int_{0}^{\infty} e^{-|x|} F^{\prime}(x) d x=\int_{0}^{3} e^{-x} d x+\int_{3}^{\infty} e^{3-2 x} d x=
$$

Figure 14. Plot of the functions A, B.

$$
\begin{gathered}
=\left[-e^{-x}\right]_{0}^{3}+\frac{1}{-2}\left[e^{3-2 x}\right]_{0}^{\infty}=1-e^{-3}+\frac{e^{-} 3}{2}=1-\frac{1}{2 e^{3}} \\
\begin{aligned}
\int_{\mathbb{R}} e^{-|x|} d \mu^{-}(x)= & \int_{-\infty}^{0} e^{-|x|}(-2 x) d x+\delta_{1}\left(e^{-|x|}\right)+\delta_{2}\left(e^{-|x|}\right)= \\
= & {\left[e^{x}(-2 x)\right]_{-\infty}^{0}+2 \int_{-\infty}^{0} e^{x} d x+e^{-1}+e^{-2}=2+e^{-1}+e^{-2} }
\end{aligned} .
\end{gathered}
$$

(v) μ^{+}is finite and m is σ-finite, so Tonelli's theorem is applicable. Given $x \in \mathbb{R}$ the $x-\operatorname{section} T(x)$ of T is of course] $-\infty, x$], with Lebesgue measure ∞. Then

$$
\left.\left.\mu^{+} \otimes m(T)=\int_{\mathbb{R}} m(]-\infty, x\right]\right) d \mu^{+}(x)=\int_{\mathbb{R}} \infty d \mu^{+}=\infty
$$

REmark. To confirm the result, we can integrate with respect to $d m$ the μ^{+}-measure of the y-sections; For every $y \neq 0$ the y-section $T(y)=\left[y, \infty\left[\right.\right.$ of T has measure $\mu^{+}(T(y))=\mu^{+}([0, \infty[\backslash[0, y[)=4-$ $\mu^{+}([0, y[)=4-A(y)$, so that

$$
\mu^{+} \otimes m(T)=\int_{-\infty}^{0} 4 d y+\int_{0}^{\infty}(4-A(y)) d y=\infty+\int_{0}^{\infty}(4-A(y)) d y=\infty
$$

Some people interpreted T as contained in the first quadrant, that is they took

$$
S=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq y \leq x\right\}
$$

instead of T (because other times it was so!). I accepted this change. The $\mu^{+} \otimes m-$ measure of S is then

$$
\begin{aligned}
\mu^{+} \otimes m(S) & =\int_{0}^{\infty}(4-A(y)) d y=\int_{0}^{3}(4-y) d y+\int_{3}^{\infty} e^{3-y} d y= \\
& =12-\frac{9}{2}-\left[e^{3-y}\right]_{3}^{\infty}=\frac{24-9}{2}+1=\frac{17}{2}
\end{aligned}
$$

We can of course also integrate on $[0, \infty[$ the Lebesgue measure of the x-sections of S with respect to μ^{+}; the x section is $[0, x]$ with Lebesgue measure x, so that

$$
\begin{aligned}
\mu^{+} \otimes m(S) & =\int_{0}^{\infty} x d \mu^{+}(x)=\int_{0}^{3} x d x+\int_{3}^{\infty} x e^{3-x} d x=\frac{9}{2}+\left[-x e^{3-x}\right]_{3}^{\infty}+\int_{3}^{\infty} e^{3-x} d x= \\
& =\frac{9}{2}+3+\left[-e^{3-x}\right]_{3}^{\infty}=\frac{15}{2}+1=\frac{17}{2}
\end{aligned}
$$

ExERCISE 22. Let \mathcal{A} be an algebra of parts of X, and let $\mu: \mathcal{A} \rightarrow[0, \infty]$ be a (positive) premeasure. Let $\mu^{*}: \mathcal{P}(X) \rightarrow[0, \infty]$ be the outer measure associated to μ in the usual way.
(i) Give the precise definition of $\mu^{*}(E)$ for every $E \subseteq X$, and prove that $\mu^{*}(A)=\mu(A)$ for every $A \in \mathcal{A}$. Where does countable additivity of μ enter the proof?
If $\phi: \mathcal{P}(X) \rightarrow[0, \infty]$ is an outer measure, and $A, E \subseteq X$, we say that A splits E additively (with respect to ϕ) if $\phi(E)=\phi(E \cap A)+\phi(E \backslash A)$.
(ii) With μ and μ^{*} as above, prove that $B \subseteq X$ is μ^{*}-measurable if and only if B splits additively every $A \in \mathcal{A}$ with $\mu(A)<\infty$. Deduce from this that every $B \in \mathcal{A}$ is μ^{*}-measurable.

Solution. (i) We have

$$
\mu^{*}(E)=\inf \left\{\sum_{n=0}^{\infty} \mu\left(A_{n}\right): A_{n} \in \mathcal{A}, A \subseteq \bigcup_{n=0}^{\infty} A_{n}\right\}
$$

infimum taken over all countable covers $\left(A_{n}\right)_{n \in \mathbb{N}}$ of E by elements of \mathcal{A}. Given $A \in \mathcal{A}$ since $(A, \emptyset, \emptyset, \ldots)$ is a cover of A we have $\mu^{*}(A) \leq \mu(A)$ for every $A \in \mathcal{A}$. And if $\left(A_{n}\right)_{n \in \mathbb{N}}$ is a countable cover of A by elements of \mathcal{A}, then $A=\bigcup_{n=0}^{\infty} A \cap A_{n}$ so that, by countable subadditivity and monotonicity of μ :

$$
\mu(A) \leq \sum_{n=0}^{\infty} \mu\left(A \cap A_{n}\right) \leq \sum_{n=0}^{\infty} \mu\left(A_{n}\right)
$$

which implies $\mu(A) \leq \mu^{*}(A)$. We know that for positive finitely additive functions countable additivity is equivalent to countable subadditivity; countable additivity has then just been used in the proof.
(ii) If B is μ^{*}-measurable, then it splits additively every subset of X, and not only the sets of \mathcal{A} with μ finite. For the converse, assuming that B splits additively every $A \in \mathcal{F}(\mu)=\{A \in \mathcal{A}: \mu(A)<\infty\}$, we have to prove that for every $E \subseteq X$ with $\mu^{*}(E)<\infty$ we have

$$
\mu^{*}(E) \geq \mu^{*}(E \cap B)+\mu^{*}(E \backslash B)
$$

Given $\varepsilon>0$ pick a cover $\left(A_{n}\right)_{n \in \mathbb{N}}$ of E by elements of \mathcal{A} such that $\sum_{n=0}^{\infty} \mu\left(A_{n}\right) \leq \mu^{*}(E)+\varepsilon$. Then

$$
\mu^{*}(E)+\varepsilon \geq \sum_{n=0}^{\infty} \mu\left(A_{n}\right)
$$

of course $\mu\left(A_{n}\right)<\infty$ for every $n \in \mathbb{N}$ so that by the hypothesis we have

$$
\mu\left(A_{n}\right)=\mu\left(A_{n} \cap B\right)+\mu\left(A_{n} \backslash B\right)
$$

and the preceding inequality yields

$$
\mu^{*}(E)+\varepsilon \geq \sum_{n=0}^{\infty} \mu\left(A_{n}\right)=\sum_{n=0}^{\infty} \mu\left(A_{n} \cap B\right)+\sum_{n=0}^{\infty} \mu\left(A_{n} \backslash B\right)
$$

by countable subadditivity, setting $A=\bigcup_{n=0}^{\infty} A_{n}$ we now get

$$
\sum_{n=0}^{\infty} \mu^{*}\left(A_{n} \cap B\right) \geq \mu^{*}(A \cap B) ; \quad \sum_{n=0}^{\infty} \mu\left(A_{n} \backslash B\right) \geq \mu^{*}(A \backslash B)
$$

and by monotonicity

$$
\mu^{*}(A \cap B) \geq \mu^{*}(E \cap B) ; \quad \mu^{*}(A \backslash B) \geq \mu^{*}(E \backslash B)
$$

We have proved that for every $\varepsilon>0$:

$$
\mu^{*}(E)+\varepsilon \geq \mu^{*}(E \cap B)+\mu^{*}(E \backslash B)
$$

and since $\varepsilon>0$ is arbitrary we conclude.
Finally, if $B \in \mathcal{A}$ then we have, for every $A \in \mathcal{A}$

$$
\mu(A)=\mu(A \cap B)+\mu(A \backslash B)
$$

by (finite) additivity of μ on \mathcal{A}. By (i) the preceding relation may be also written

$$
\mu^{*}(A)=\mu^{*}(A \cap B)+\mu^{*}(A \backslash B)
$$

thus proving that B splits additively with respect to μ^{*} all elements of \mathcal{A}, so that is μ^{*}-measurable.
REmARK. The argument used to prove (ii) is of course exactly the one that shows μ^{*}-measurability of elements of \mathcal{A}.

EXERCISE 23. (i) State the theorem on continuity and differentiability of parameter depending integrals (the version with general measure spaces).
(ii) Using the preceding theorem prove that the formula:

$$
\begin{equation*}
\varphi(x)=\int_{0}^{\infty} e^{-x t} \frac{\sin t}{t} d t \tag{}
\end{equation*}
$$

defines a function $\varphi \in C^{1}(] 0, \infty[, \mathbb{R})$.
(iii) Give an esplicit formula for $\varphi^{\prime}(x)$, not containing integrals, and deduce from it an analogous expression for $\varphi(x)$.
Solution. (i) See Lecture Notes, 7.6.
(ii) The derivative with respect to x of the integrand is $-e^{-x t} \sin t$. Given $x>0$, let $a=x / 2$ (or simply pick any a with $0<a<x)$, and let $U=[a, \infty[$. For $y \in U$ we have

$$
\left|-e^{-y t} \sin t\right|=e^{-y t}|\sin t| \leq e^{-y t} \leq e^{-a t}
$$

of course $t \mapsto e^{-a t}$ belongs to $L^{1}\left(\left[0, \infty[)\right.\right.$, since $a>0$. Then $\varphi \in C^{1}(] 0, \infty[$, and
(iii) (see formula for the primitive of $e^{-x t} \sin t$):

$$
\varphi^{\prime}(x)=\int_{0}^{\infty}\left(-e^{-x t} \sin t\right) d t=\left[\frac{e^{-x t}}{1+x^{2}}(\sin t+\cos t)\right]_{t=0}^{t=\infty}=\frac{-1}{1+x^{2}}
$$

Then we get

$$
\varphi(x)=\operatorname{arccotan} x+k \quad(x>0)
$$

but one easily sees that $\lim _{x \rightarrow \infty} \varphi(x)=0$ (e.g., by dominated convergence; or simply because $|\varphi(x)| \leq$ $\left.\int_{0}^{\infty} e^{-x t} d t=1 / x\right)$, so that

$$
\varphi(x)=\operatorname{arccotan} x \quad(x>0)
$$

Remark. Nobody seems to be able to verify the hypotheses of the theorem in this particular case, and apparently many have not even understood the statement.

Exercise 24. Let (X, \mathcal{M}, μ) be a measure space..
(i) Assume that $L^{1}(\mu)$ is contained in $L^{\infty}(\mu)$. Prove that then we also have $L^{p}(\mu) \subseteq L^{\infty}(\mu)$, for every $p>0$
(ii) Prove that the hypothesis $L^{1}(\mu) \subseteq L^{\infty}(\mu)$ implies that the spaces $L^{p}(\mu)$ increase with p (that is, if $0<p<q$ then $\left.L^{p}(\mu) \subseteq L^{q}(\mu)\right)$.
(iii) Assume that there is $f \in L^{1}(\mu) \backslash L^{\infty}(\mu)$. Prove that then there is a disjoint sequence $E_{n} \in \mathcal{M}$ with $0<\mu\left(E_{n}\right)<\infty$ and $\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)=0$. Conversely, the existence of such a sequence implies the existence of a function $f \in L^{1}(\mu) \backslash L^{\infty}(\mu)$.

Solution. (i) Recall that $f \in L^{p}(\mu)$ is equivalent to $|f|^{p} \in L^{1}(\mu)$, if $0<p<\infty$. But clearly $|f|^{p} \in L^{\infty}(\mu)$ holds if and only if $f \in L^{\infty}(\mu)\left(|f|^{p} \leq M \Longleftrightarrow|f| \leq M^{1 / p}\right)$.
(ii) If $0<p<q<\infty$ we have $|f|^{q}=|f|^{q-p}|f|^{p} \leq\|f\|_{\infty}^{q-p}|f|^{p}$; integrating both sides we have

$$
\|f\|_{q}^{q} \leq\|f\|_{\infty}^{q-p}\|f\|_{p}^{p} \Longrightarrow\|f\|_{q} \leq\|f\|_{\infty}^{1-p / q}\|f\|_{p}^{p / q}
$$

If $f \in L^{p}(\mu)$ then also $f \in L^{\infty}(\mu)$ by the hypothesis made and (i), so that the right-hand side is finite, forcing finiteness of the left-hand side. That is $f \in L^{p}(\mu)$ implies $f \in L^{q}(\mu)$, as desired.
(iii) See the exam of February 25, 2013. Everybody ought to look at previous exams!

Analisi Reale per Matematica - Recupero - 3 Settembre 2013

Exercise 25. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
F(x)=e^{x} \chi_{]-\infty, 0[}(x)+[x] \chi_{[0,3[}(x)+\left(3-e^{3-x}\right) \chi_{[3, \infty[}(x),
$$

where $[x]$ is the integer part of x.
(i) Plot F; find the points of discontinuity of F; is F right-continuous?

Define $\mu=d F\left(=\mu_{F}\right)$ the Radon-Stieltjes signed measure associated to F.
(ii) Find a Hahn decomposition for μ, and find the decomposition for μ^{+}and μ^{-}into absolutely continuous and singular part with respect to Lebesgue measure m.
(iii) Find right continuous functions $A, B: \mathbb{R} \rightarrow \mathbb{R}$ with $A(-\infty)=B(-\infty)=0$ such that $\mu^{+}=d A$ and $\mu^{-}=d B ;$ plot A and B.
(iv)] Compute the integrals

$$
\int_{\mathbb{R}} e^{i \alpha x} d \mu^{+}(x), \quad \int_{\mathbb{R}} e^{i \alpha x} d \mu^{-}(x)
$$

($\alpha \in \mathbb{R}$ is a constant).
(v) If $T=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq y \leq|x|\right\}$ compute

$$
|\mu| \otimes m(T)
$$

in two ways, by integrating the measures of both $x-$ and y-sections.
Solution. (i) Characteristic functions of upper half-open intervals are right-continuous, and $x \mapsto[x]$ is right-continuous, so F is also right-continuous, as the sum of three right-continuous functions. We have $F\left(0^{-}\right)=1, F(0)^{+}=0$, so $\mu_{F}(\{0\})=-1 ; F\left(1^{-}\right)=0, F\left(1^{+}\right)=F(1)=1$, so $\mu_{F}(\{1\})=1 ; F\left(2^{-}\right)=1$, $F\left(2^{+}\right)=2$ and $\mu_{F}(\{2\})=1$; there are no other points of discontinuity besides $\{0,1,2\}$. The plot is easy.

Figure 15. Plot of F.
(ii) La derivata di F esiste in $\mathbb{R} \backslash\{0,1,2,3\}$ ed in tale insieme coincide con

$$
F^{\prime}(x)=e^{x} \chi_{]-\infty, 0[}(x)+e^{3-x} \chi_{] 3, \infty[}(x)
$$

Posto $P=]-\infty, 0[\cup] 0, \infty[$ ed $N=\{0\}$, la coppia P, N è una decomposizione di Hahn per μ. Si ha

$$
\mu^{+}=F^{\prime}(x) d x+\left(\delta_{1}+\delta_{2}\right) ; \quad \mu^{-}=\delta_{0}
$$

dove ovviamente $F^{\prime}(x) d x$ è la parte assolutamente continua e $\delta_{1}+\delta_{2}$ quella singolare; μ^{-}ha parte assolutamente continua nulla.
(iii) Since $\left.\left.A(x)=\mu^{+}(]-\infty, x\right]\right)$ we get

$$
\begin{aligned}
& A(x)=e^{x} \quad x<0 ; A(x)=1 \quad 0 \leq x<1 ; \quad A(x)=2 \quad 1 \leq x<2 ; A(x)=3 \quad 2 \leq x<3 \\
& A(x)=4-e^{3-x} \quad 3<x
\end{aligned}
$$

Figure 16. Plot of A.
And $\left.\left.B(x)=\mu^{-}(]-\infty, x\right]\right)$ coincides with $\chi_{[0, \infty[}$, the Heaviside step.
(iv) We have

$$
\int_{\mathbb{R}} e^{i \alpha x} d \mu^{-}(x)=\int_{\mathbb{R}} e^{i \alpha x} d \delta_{0}=e^{i \alpha 0}=1
$$

And
$\int_{\mathbb{R}} e^{i \alpha x} d \mu^{+}(x)=\int_{\mathbb{R}} e^{i \alpha x}\left(F^{\prime}(x) d x+d\left(\delta_{1}+\delta_{2}\right)\right)=\int_{-\infty}^{0} e^{(i \alpha x+1) x} d x+e^{i \alpha}+e^{2 i \alpha}+\int_{3}^{\infty} e^{3+(i \alpha-x)} d x=$ $\left[\frac{e^{(i \alpha x+1) x}}{i \alpha+1}\right]_{-\infty}^{0}+e^{i \alpha}+e^{2 i \alpha}+e^{3}\left[\frac{e^{(i \alpha-1) x}}{i \alpha-1}\right]_{3}^{\infty}=\frac{1}{i \alpha+1}+e^{i \alpha}+e^{2 i \alpha}-\frac{e^{3 i \alpha}}{i \alpha-1}$.
(v) The x-section $[0,|x|]$ has Lebesgue measure $|x|$, so that
$|\mu| \otimes m(T)=\int_{\mathbb{R}}|x| d|\mu|=\int_{\mathbb{R}}|x| d A(x)+\int_{\mathbb{R}}|x| d \delta_{0}(x)=\int_{-\infty}^{0}(-x) e^{x} d x+1+2+\int_{3}^{\infty} x e^{3-x} d x=$

$$
\left[-x e^{x}\right]_{-\infty}^{0}+\int_{-\infty}^{0} e^{x} d x+3-\left[x e^{3-x}\right]_{3}^{\infty}+\int_{3}^{\infty} e^{3-x} d x=0+1+3+3+1=8
$$

The y-section is empty for $y<0$, and is $T(y)=]-\infty,-y] \cup[y, \infty[$ if $y \geq 0$, with measure $|\mu|(T(0))=$ $|\mu|(\mathbb{R})=4+1=5$, whereas for $y>0$ we get:

$$
\left.\left.|\mu|(T(y))=\mu^{+}(T(y))=\mu^{+}(]-\infty,-y\right]\right)+\mu^{+}\left(\left[y, \infty[)=A(-y)+\left(4-A\left(y^{-}\right)\right) ;\right.\right.
$$

then

$$
\begin{aligned}
& |\mu| \otimes m(T)=\int_{0}^{\infty} \mu^{+}(T(y)) d y=\int_{0}^{\infty} A(-y) d y+\int_{0}^{\infty}\left(4-A\left(y^{-}\right)\right) d y= \\
& \int_{0}^{\infty} e^{y} d y+\int_{0}^{1}(4-1) d y+\int_{1}^{2}(4-2) d y+\int_{2}^{3}(4-3) d y+\int_{0}^{\infty}\left(4-\left(4-e^{3-y}\right) d y=\right.
\end{aligned}
$$

$$
1+3+2+1+1=8
$$

Exercise 26. Consider the sequence of functions $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$, where $f_{0}(x)=(1 / 2) \chi_{[0,1 / 2[}-\chi_{[1 / 2,1[}$ and $f_{n}(x)=(1 / n) f_{0}(x / n)$ for $n \geq 1$. Plot $f_{0}, f_{2}, f_{3}, f_{7}$, evaluate $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$, compute the integrals $\int_{\mathbb{R}} f_{n}(x) d x$ and notice that

$$
\int_{\mathbb{R}} f(x) d x>\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f_{n}(x) d x
$$

why does this not contradict Fatou's lemma (3 points)? Let now (X, \mathcal{M}, μ) be a measure space.
(i) Assume that $f_{n}: X \rightarrow \mathbb{R}$ is a sequence of functions in $L^{1}(\mu)$ that converges uniformly to $f \in L^{1}(\mu)$. Is it true that $\lim _{n} \int_{X} f_{n}=\int_{X} f$? if not, can you give a counterexample? what hypothesis can be added to μ to ensure that this holds?
(ii) Let u_{n} be a sequence in $L_{\mu}^{1}(X, \mathbb{R})$ which converges pointwise a.e. to $u \in L_{\mu}^{1}(X, \mathbb{R})$, and is such that $\lim _{n} \int_{X} u_{n}=\int_{X} u$; let $f_{n} \in L_{\mu}^{1}(X, \mathbb{R})$ be a sequence with $u_{n} \leq f_{n}$ a.e., for every $n \in \mathbb{N}$. Prove that

$$
\int_{X} \liminf f_{n} \leq \liminf \int_{X} f_{n} .
$$

Solution. Notice that the plot of f_{n} is obtained from the plot of f_{0} by a dilation of ratio n in the direction of the x-axis, and one of ratio $1 / n$ in the direction y, so that the plots are as in the following figure.

Figure 17. Plots of some f_{n}.
Since $\left\|f_{n}\right\|_{\infty}=1 / n$ for $n \geq 1$ the sequence f_{n} converges uniformly to the identically zero function, whose integral is 0 . The integral of f_{0} is clearly $1 / 4-1 / 2=-1 / 4$; and setting $x=n t$ we have

$$
\int_{\mathbb{R}} f_{n}(x) d x=\int_{\mathbb{R}} f_{n}(n t) n d t=\int_{\mathbb{R}} \frac{1}{n} f_{0}(n t / n) n d t=\int_{\mathbb{R}} f_{0}(t) d t=-\frac{1}{4} .
$$

Fatou's lemma is not violated because it concerns positive functions.
(i) Not true: the above is a counterexample. If $\mu(X)<\infty$ then uniform convergence of L^{1} functions implies convergence in $L^{1}(\mu)$, according to the inequality:

$$
\left\|f-f_{n}\right\|_{1}=\int_{X}\left|f-f_{n}\right| d \mu \leq \int_{X}\left\|f-f_{n}\right\|_{\infty} d \mu=\left\|f-f_{n}\right\|_{\infty} \mu(X) .
$$

(ii) We have $f_{n}-u_{n} \geq 0$, so that Fatou's lemma may be applied to the sequence $f_{n}-u_{n}$; we get:

$$
\begin{equation*}
\int_{X} \liminf _{n}\left(f_{n}-u_{n}\right) d \mu \leq \liminf _{n} \int_{X}\left(f_{n}-u_{n}\right) d \mu ; \tag{}
\end{equation*}
$$

But since $\lim _{n} u_{n}(x)=u(x)$ exists for a.e. $x \in X$ we get a.e in X :

$$
\liminf _{n}\left(f_{n}(x)-u_{n}(x)\right)=\liminf _{n} f_{n}(x)-u(x),
$$

and since $\lim _{n} \int_{X} u_{n}$ exists and coincides with $\int_{X} u$ we also have

$$
\liminf _{n} \int_{X}\left(f_{n}-u_{n}\right)=\liminf _{n} \int_{X} f_{n}-\int_{X} u,
$$

so that $\left({ }^{*}\right)$ is

$$
\int_{X}\left(\liminf _{n} f_{n}-u\right) \leq \liminf _{n} \int_{X} f_{n}-\int_{X} u \Longleftrightarrow \int_{X} \liminf _{n} f_{n}-\int_{X} u \leq \liminf _{n} \int_{X} f_{n}-\int_{X} u,
$$

ad cancelling $-\int_{X} u$ we conclude.
EXERCISE 27. (i) Using the theorem on differentiability of parameter depending integrals prove that the formula:

$$
\begin{equation*}
\varphi(x)=\int_{\mathbb{R}} e^{-t^{2}-x t} d t \tag{}
\end{equation*}
$$

defines a function $\varphi \in C^{1}(\mathbb{R}, \mathbb{R})$, whose derivative is

$$
\varphi^{\prime}(x)=\int_{\mathbb{R}}(-t) e^{-t^{2}} e^{-x t} d t .
$$

(ii) Integrating φ^{\prime} by parts, find a differential equation verified by φ, and from it deduce an explicit expression of φ, not containing integrals.
(iii) The explicit formula for $\varphi(x)$ can also be easily obtained directly (complete the square \ldots).

Solution. (i) It is clear that for every given $x \in \mathbb{R}$ the integrand is in $L_{m}^{1}(\mathbb{R})$, so that φ is defined. We have $\partial_{x}\left(e^{-t^{2}-x t}\right)=(-t) e^{-t^{2}-x t}$. Given $x \in \mathbb{R}$, the function $\gamma(t)=e^{-t^{2}} e^{(|x|+1)|t|}$ is in $L^{1}(\mathbb{R})$ and dominates $e^{-t^{2}-y t}$ for $y \in[x-1, x+1]$ and $t \in \mathbb{R}$. Then $\varphi \in C^{1}(\mathbb{R})$, and

$$
\varphi^{\prime}(x)=\int_{\mathbb{R}}(-t) e^{-t^{2}} e^{-x t} d t
$$

(ii) Integrating by parts in the preceding formula we get

$$
\varphi^{\prime}(x)=\left[\frac{e^{-t^{2}}}{2} e^{-x t}\right]_{t=-\infty}^{t=\infty}+\frac{x}{2} \int_{-\infty}^{+\infty} e^{-t^{2}} 2 e^{-x t} d t=\frac{x}{2} \varphi(x) ;
$$

Then φ^{\prime} satisfies the differential equation $\varphi^{\prime}(x)=(x / 2) \varphi(x)$; since $\varphi(0)=\sqrt{\pi}$ we have

$$
\varphi(x)=\sqrt{\pi} e^{x^{2} / 4} \quad(x \in \mathbb{R}) .
$$

(iii) We have $-t^{2}-x t=-\left(t^{2}+x t\right)=-\left(t^{2}+x t+x^{2} / 4-x^{2} / 4\right)=-(t+x / 2)^{2}+x^{2} / 4$, so that (recalling also translation invariance of the Lebesgue integral)

$$
\varphi(x)=\int_{\mathbb{R}} e^{-t^{2}-x t} d t=\int_{\mathbb{R}} e^{-(t+x)^{2}+x^{2} / 4} d t=e^{x^{2} / 4} \int_{\mathbb{R}} e^{-(t+x)^{2}} d t=\sqrt{\pi} e^{x^{2} / 4}
$$

Exercise 28. Let (X, \mathcal{M}, μ) be a measure space.
(i) If $g \in L_{\mu}^{1}(X, \mathbb{C})$ give a careful proof of the fact that

$$
\int_{X} g d \mu=\int_{X}|g| d \mu
$$

holds if and only if $g(x)=|g(x)|$ for a.e. $x \in X$.
(ii) Given $g \in L_{\mu}^{1}(X, \mathbb{C})$ find a bounded measurable function $u: X \rightarrow \mathbb{C}$ such that

$$
\int_{X} g u d \mu=\int_{X}|g| d \mu .
$$

Let $p, q>1$ be conjugate exponents, $1 / p+1 / q=1$, and fix a nonzero $g \in L^{q}(\mu)$.
(iii) Prove that the formula

$$
\varphi_{g}(f)=\int_{X} f g d \mu
$$

defines φ_{g} as a (trivially linear) continuous map of $L^{p}(\mu)$ into \mathbb{C}, of (operator) norm $\left\|\varphi_{g}\right\|$ not larger than $\|g\|_{q}$.
(iv) Accepting the following fact: if $f, g \in L(X)$ and $0<\|f\|_{p}<\infty, 0<\|g\|_{q}<\infty$ then $\|f g\|_{1}=$ $\|f\|_{p}\|g\|_{q}$ holds if and only if there is a constant $k>0$ such that $|g(x)|^{q}=k|f(x)|^{p}$ for a.e. $x \in X$, prove that $\left\|\varphi_{g}\right\|=\|g\|_{q}$, and find $a \in L^{p}(\mu)$ with $\|a\|_{p}=1$ and $\varphi_{g}(a)=\|g\|_{q}$.
Solution. (i) Sufficiency is trivial. For necessity, write $g=u+i v$, with $u=\operatorname{Re} g$ and $v=\operatorname{Im} g$. We get

$$
\int_{X} g:=\int_{X} u+i \int_{X} v=\int_{X}|g|
$$

Since $\int_{X}|g|$ is real, we have $\int_{X} v=0$, so that the preceding equality writes

$$
\int_{X} u=\int_{X}|g|
$$

now of course we have $u \leq|u| \leq|g|$ so that the equality implies

$$
\int_{X}(|g|-u)=0 \quad \text { and since }|g|-u \geq 0, \text { this holds iff }|g(x)|=u(x)(=\operatorname{Re} g(x)) \text { for a.e. } x \in X
$$

and since the modulus of a complex number equals its real part iff this number is real and positive, we are done.
(ii) To ensure equality we simply take u in such a way that $g(x) u(x)=|g(x)|$ for every $x \in X$; since $g(x)=\operatorname{sgn} g(x)|g(x)|$, we have $g(x) \overline{\operatorname{sgn} g(x)}=|g(x)|$; so we set $u(x)=\overline{\operatorname{sgn} g(x)}$, recalling that $|\overline{\operatorname{sgn} g(x)}|=1$ or 0 , so that u is bounded. Measurability of u follows from the fact that the sign function $\operatorname{sgn}: \mathbb{C} \rightarrow \mathbb{C}$, although not continuous, is Borel measurable, as we have seen.
(iii) Simply use Hölder's inequality:

$$
\left|\varphi_{g}(f)\right|=\left|\int_{X} f g d \mu\right| \leq \int_{X}|f g| d \mu=\|f g\|_{1} \leq\|f\|_{p}\|g\| q=\left(\|g\|_{q}\right)\|f\|_{p}
$$

this shows that $\|g\|_{q}$ is a Lipschitz constant for φ_{g}; the operator norm is the smallest such constant.
(iv) To get $\|f g\|_{1}=\|f\|_{p}\|g\|_{q}$ we have to use f such that $|f|^{p}=k|g|^{q}$, hence $|f|=k^{1 / p}|g|^{q / p}=\rho|g|^{q-1}$ with $\rho>0$ a constant. We have to make such an f of L^{p} - norm 1 , so that:

$$
1=\left(\int_{X} \rho^{p}|g|^{(q-1) p} d \mu\right)^{1 / p} \Longleftrightarrow \rho=\left(\int_{X}|g|^{q} d \mu\right)^{-1 / p}=1 /\|g\|_{q}^{q-1}
$$

Finally to make $\varphi_{g}(f)=\|f g\|_{1}$ we have to make

$$
\int_{X} f g=\int_{X}|f g|
$$

so we take $f(x)=\overline{\operatorname{sgn} g(x)}|g(x)|^{q-1} /\|g\|_{q}^{q-1}$.

Analisi Reale per Matematica - III Recupero - 24 settembre 2013
Exercise 29. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
F(x)=\frac{\chi_{]-\infty, 0[}(x)}{1-x^{3}}+\frac{x+\psi(x)}{2} \chi_{[0,1[}(x)+\frac{\chi_{[1, \infty[}(x)}{1+(x-1)^{3}}
$$

where ψ is the Cantor function with $\delta_{n}=(2 / 3)^{n}$.
(i) Plot F; find the points of discontinuity of F; is F right-continuous? Plot $T(x)=V F(]-\infty, x])$

Define $\mu=d F\left(=\mu_{F}\right)$ the Radon-Stieltjes signed measure associated to F.
(ii) Find right continuous functions $A, B: \mathbb{R} \rightarrow \mathbb{R}$ with $A(-\infty)=B(-\infty)=0$ such that $\mu^{+}=d A$ and $\mu^{-}=d B$; plot A and B.
(iii) For μ^{+}and μ^{-}write the decomposition into absolutely continuous and singular part.

Figure 18. Plot of F.

Solution. (i) The plot is easy. It is clear that 0 is the only jump point, and that F is right-continuous. By piecewise monotonicity of F, it is clear that we have

$$
\begin{aligned}
& T(x)=F(x)=\frac{1}{1-x^{3}} \quad \text { for } \quad x<0 \\
& T(x)=2+\frac{x+\psi(x)}{2} \quad \text { for } \quad 0 \leq x<1 \\
& T(x)=4-\frac{1}{1+(x-1)^{3}} \quad \text { for } \quad 1 \leq x
\end{aligned}
$$

Notice that $T\left(0^{-}\right)=1, T\left(0^{+}\right)=1+1=2$. The plot is easy:

Figure 19. Plot of T.
(iii) It is boring but easy to plot $A=(T+F) / 2$ and $B=(T-F) / 2$, for which $\mu^{+}=d A$ and $\mu^{-}=d B$; we do not give the expressions

Figure 20. Plot of A (left) and B.
(iv) The absolutely continuous part of $\mu^{+}=d A$ is

$$
A^{\prime}(x) d x=\left(\frac{3 x^{2}}{\left(1-x^{3}\right)^{2}} \chi_{]-\infty, 0[}(x)+\frac{1}{2} \chi_{] 0,1[}(x)\right) d x
$$

the singular part is $d \psi / 2$. For μ^{-}the singular part is δ_{0}, the absolutely continuous part is

$$
B^{\prime}(x) d x=\frac{3(x-1)^{2}}{\left(1+(x-1)^{3}\right)^{2}} \chi_{[1, \infty[}(x) d x
$$

Exercise 30. In this problem $L^{p}=L_{m}^{p}([0,1])$, with m Lebesgue measure. For $n=3,4,5, \ldots$ set $f_{n}=(n / \log n) \chi_{[0,1 / n]}$.
(i) Plot f_{3}, f_{4}, f_{7} and prove that f_{n} converges everywhere on $[0,1]$ to a function f; find f.
(ii) Find all $p \in[1, \infty]$ such that f_{n} converges in L^{p}.
(iii) Find all $p \in[1, \infty]$ such that the series

$$
\sum_{n=3}^{\infty} \frac{n}{\log n} \chi_{] 1 /(n+1), 1 / n]}
$$

converges in L^{p}; prove first that this series converges pointwise everywhere on $[0,1]$ to a function g; plot g.
(iv) Deduce from the above that a sequence of positive functions can converge pointwise and in L^{1} without being dominated by a function in L^{1}.
Solution. (i) The plots are easy.

Figure 21. Plot of some f_{n} (not on scale).
Given $x \in[0,1]$, if $x=0$ we have $f_{n}(x)=0$ for all $n \geq 3$, and if $x>0$ for $n>1 / x$ we have $f_{n}(x)=0$; the sequence converges everywhere to the zero function, $f(x)=0$ for every $x \in[0,1]$.
(ii) We have

$$
\left\|f_{n}\right\|_{p}^{p}=\int_{0}^{1} \frac{n^{p}}{\log ^{p} n} \chi_{] 0,1 / n]} d x=\frac{n^{p}}{\log ^{p} n} \frac{1}{n}=\frac{n^{p-1}}{\log ^{p} n}
$$

if $p>1$ we clearly have $\lim _{n \rightarrow \infty} n^{p-1} / \log ^{p} n=\infty$, for $p=1$ we have $\lim _{n \rightarrow \infty}(1 / \log n)=0$. For $p=\infty$ we have $\left\|f_{n}\right\|_{\infty}=n / \log n$, with limit ∞ for $n \rightarrow \infty$. Then the sequence converges in L^{p} only for $p=1$, to the zero function.
(iii) The important fact is that the intervals $] 1 /(n+1), 1 / n]$ are pairwise disjoint so that the series is pointwise convergent to the function $g:[0,1] \rightarrow \mathbb{R}$ defined by $g(x)=(n / \log n)$ if $1 /(n+1)<x \leq 1 / n$, for $n \geq 3$, and $g(x)=0$ for all other x. We also have

$$
(g(x))^{p}=\sum_{n=3}^{\infty} \frac{n^{p}}{\log ^{p} n} \chi_{] 1 /(n+1), 1 / n]}
$$

(for every given $x \in[0,1]$ there is at most one term in the sum which is nonzero!) so that, by the theorem on termwise integration of series of positive functions:

$$
\|g\|_{p}^{p}=\sum_{n=3}^{\infty} \frac{n^{p}}{\log ^{p} n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sum_{n=3}^{\infty} \frac{n^{p-1}}{(n+1) \log ^{p} n} .
$$

For $p=1$ we have the series

$$
\sum_{n=3}^{\infty} \frac{1}{(n+1) \log n}
$$

which is not convergent (use the integral test: $1 /((n+1) \log n) \sim 1 /(n \log n)$ and the integral $\int_{2}^{\infty} d x /(x \log x)$ diverges); for $p>1$ we have, if n is large enough:

$$
\frac{n^{p-1}}{(n+1) \log ^{p} n} \geq \frac{1}{n+1} \quad\left(\text { in fact } \quad \lim _{n \rightarrow \infty} \frac{n^{p-1}}{\log ^{p} n}=\infty\right)
$$

so that the series is divergent. So the series never converges in L^{p}, for no p with $1 \leq p<\infty$; and since the sum is not in L^{∞}, it does not converge in L^{∞}, either.

We observe next that we have, for every $x \in[0,1]$

$$
g(x)=\sup \left\{f_{n}(x): n \geq 3\right\}
$$

in fact the sequence $n \mapsto n / \log n$ is increasing for $n \geq 3$:

$$
\begin{aligned}
& \frac{n}{\log n}<\frac{n+1}{\log (n+1)} \Longleftrightarrow n \log (n+1)<(n+1) \log n \Longleftrightarrow \log (n+1)^{n}<\log n^{n+1} \Longleftrightarrow \\
& \Longleftrightarrow(n+1)^{n}<\log n^{n+1} \Longleftrightarrow\left(1+\frac{1}{n}\right)^{n}<n
\end{aligned}
$$

certainly true for $n \geq 3$, since $(1+1 / n)^{n}<e<3$. Then there is no function $h \in L^{1}$ such that $f_{n}(x) \leq h(x)$ for every $n \geq 3$.

Figure 22. Plot of g (not on scale).

Exercise 31. (i) Using the theorem on differentiability of parameter depending integrals prove that the formula:

$$
\begin{equation*}
\varphi(x)=\int_{1}^{\infty} \frac{e^{-x t}}{t} d t \tag{}
\end{equation*}
$$

defines a function $\varphi \in C^{1}(] 0, \infty[, \mathbb{R})$.
(ii) Find for φ^{\prime} an expression not containing integrals.
(iii) What are the limits

$$
\lim _{x \rightarrow 0^{+}} \varphi(x) ; \quad \lim _{x \rightarrow \infty} \varphi(x) ?
$$

(iv) Prove that for every $a>0$ we have $\varphi \in L^{1}\left(\left[a, \infty[)\right.\right.$ and espress the integral $\int_{a}^{\infty} \varphi(x) d x$ by means of $\varphi(a)$ (use Fubini - Tonelli's theorem ...).
Solution. (i) Clearly $t \mapsto e^{-x t} / t$ belongs to $L^{1}([1, \infty[)$ for every $x>0$, so φ is defined for $x>0$. We have $\partial_{x}\left(e^{-x t} / t\right)=-e^{-x t}$. Given $x>0$, let $U=\left[x / 2, \infty\left[\right.\right.$; the function $\gamma(t)=e^{-(x / 2) t)}$ is in $L^{1}([1, \infty[)$ and $e^{-y t}\left(=\left|-e^{-y t}\right|\right) \leq \gamma(t)$ for every $y \in U$ and $t \geq 1$. By the theorem on differentiability we get

$$
\varphi^{\prime}(x)=\int_{1}^{\infty} \partial_{x}\left(e^{-x t} / t\right) d t=\int_{1}^{\infty}\left(-e^{-x t}\right) d t=\left[\frac{e^{-x t}}{x}\right]_{t=1}^{t=\infty}=-\frac{e^{-x}}{x}
$$

We have also solved (ii).
(iii) Notice that for fixed $t \geq 1$ the function $x \mapsto e^{-x t} / t$ is decreasing on $] 0, \infty\left[\right.$ (trivially). If $x_{j} \downarrow 0$ we then have that the sequence $f_{j}(t)=e^{-x_{j} t} / t$ is increasing and converges to $t \mapsto 1 / t$. By the monotone convergence theorem we then have

$$
\int_{1}^{\infty} f_{j}(t) d t \uparrow \int_{1}^{\infty} \frac{d t}{t}=\infty \quad \text { in other words } \quad \lim _{x \rightarrow 0^{+}} \varphi(x)=\infty
$$

And if $x_{j} \uparrow \infty$ then $f_{j}(t)=e^{-x_{j} t} / t$ is dominated by $f_{0} \in L^{1}([1, \infty[)$ and converges pointwise to 0 so that, by dominated convergence:

$$
\lim _{j \rightarrow \infty} \int_{1}^{\infty} f_{j}(t) d t=0 \quad \text { in other words } \quad \lim _{x \rightarrow \infty} \varphi(x)=0
$$

Of course we can also argue like that: $e^{-x t} / t \leq e^{-x t}$ for $t \geq 1$, so that

$$
0<\varphi(x) \leq \int_{1}^{\infty} e^{-x t} d t=\frac{e^{-x}}{x}
$$

and $e^{-x} / x \rightarrow 0$ as $x \rightarrow+\infty$.
(iv) We have to compute

$$
\int_{a}^{\infty} \varphi(x) d x=\int_{a}^{\infty}\left(\int_{1}^{\infty} \frac{e^{-x t}}{t} d t\right) d x
$$

all spaces have σ-finite measure and the integrand is measurable and positive; so the iterated integral obtained by exchanging the order of integration coincides with the given one:

$$
\begin{aligned}
& \int_{a}^{\infty}\left(\int_{1}^{\infty} \frac{e^{-x t}}{t} d t\right) d x=\int_{1}^{\infty}\left(\int_{a}^{\infty} \frac{e^{-x t}}{t} d x\right) d t=\int_{1}^{\infty}\left[\frac{e^{-x t}}{-t^{2}}\right]_{x=a}^{x=\infty} d t= \\
& =\int_{1}^{\infty} \frac{e^{-a t}}{t^{2}} d t=(\text { by parts })=\left[-\frac{e^{-a t}}{t}\right]_{t=1}^{t=\infty}+a \int_{1}^{\infty} \frac{e^{-a t}}{t} d t=e^{-a}+a \varphi(a) ;
\end{aligned}
$$

we have obtained:

$$
\int_{a}^{\infty} \varphi(x) d x=e^{-a}+a \varphi(a)
$$

Exercise 32. In \mathbb{R}^{n} let x_{k} be a sequence converging to $x \in \mathbb{R}^{n}$, and let $r_{k}>0$ converge to $r>0$.
(i) If $\chi_{k}=\chi_{B\left(x_{k}, r_{k}\right]}$ then χ_{k} converges a.e. to $\chi=\chi_{B(x, r]}$.
(ii) Prove that if $f \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n}\right)$ then

$$
\lim _{k \rightarrow \infty} \int_{\mathbb{R}^{n}} f \chi_{k} d m=\int_{\mathbb{R}^{n}} f \chi d m
$$

(hint: if $R=\sup _{k}\left\{r_{k}+\left|x-x_{k}\right|\right\}$ then $B\left(x_{k}, r_{k}\right] \subseteq B(x, R]$ for every $k \in \mathbb{N} \ldots$.)
(iii) Assume now that $f \in L^{1}\left(\mathbb{R}^{n}\right)$, and define $g: \mathbb{R}^{n} \rightarrow \mathbb{K}$ by

$$
g(x)=\int_{B(x, 1]} f d m
$$

Then g is continuous, and $\lim _{|x| \rightarrow \infty} g(x)=$?
Solution. (i) and (ii) are Exercise 7.1.1.1 of the Lecture Notes, and the solution shan't be repeated here.
(iii) Continuity of g is clear from (ii), keeping $r=1$ fixed. Clearly the limit is 0 : if x_{k} is a sequence in \mathbb{R}^{n} with $\lim _{k}\left|x_{k}\right|=\infty$, the sequence $f_{k}=f \chi_{B\left(x_{k}, 1\right]}$ is dominated by $|f| \in L^{1}\left(\mathbb{R}^{n}\right)$ and converges to 0 a.e. (given $x \in \mathbb{R}^{n}$, if $\left|x_{k}\right|>|x|+1$ then $f_{k}(x)=0$). By dominated convergence the limit of $g\left(x_{k}\right)$ is 0.

