σ -algebre, misure, \mathscr{L}^n ed \mathscr{H}^s

9 Ottobre 2015

Esercizio 1 Sia X un insieme e sia $\mathcal{Q} \subset \mathcal{P}(X)$. Provare che l'insieme

$$\bigcap \big\{ \mathscr{A} : \mathscr{Q} \subset \mathscr{A} \ \text{ ed } \mathscr{A} \text{ è una } \sigma\text{-algebra di } X \big\}$$

è la più piccola σ -algebra contenente \mathcal{Q} , detta σ -algebra generata da \mathcal{Q} .

Esercizio 2 Sia (X, \mathcal{A}, μ) uno spazio di misura. Un punto $x \in X$ tale che $\{x\} \in \mathcal{A}$ si dice atomo di μ se $\mu(\{x\}) > 0$. Provare che se $\mu(X) < \infty$ allora l'insieme degli atomi è al più numerabile.

Esercizio 3 Sia μ una misura esterna su \mathbb{R}^n , $n \geq 2$, tale che

$$\mu(B_r(x)) \le r^{n+\varepsilon}$$

per ogni r > 0, $x \in \mathbb{R}^n$ e per un fissato $\varepsilon > 0$. Provare che $\mu = 0$. Notazione: $B_r(x) = \{y \in \mathbb{R}^n : |y - x| < r\}$ è la palla Euclidea.

Esercizio 4 Siano $A \subset \mathbb{R}^n$, $x_0 \in \mathbb{R}^n$ e $\lambda > 0$. Definiamo $x_0 + A = \{x_0 + x \in \mathbb{R}^n : x \in A\}$ e $\lambda A = \{\lambda x \in \mathbb{R}^n : x \in A\}$. Provare che $\mathcal{L}^n(x_0 + A) = \mathcal{L}^n(A)$ e che $\mathcal{L}^n(\lambda A) = \lambda^n \mathcal{L}^n(A)$.

Esercizio 5 Sia $\mu : \mathscr{P}(\mathbb{R}^n) \to [0, \infty]$ la funzione $\mu(A) = \sqrt{\mathscr{L}^n(A)}$, con $A \subset \mathbb{R}^n$. Stabilire se μ è una misura esterna su \mathbb{R}^n (fatto in classe). Stabilire se μ è una misura sulla σ -algebra dei Lebesgue misurabili.

Esercizio 6 Provare che, per ogni $s \geq 0$, la misura di Hausdorff $\mathscr{H}^s : \mathscr{P}(\mathbb{R}^n) \to [0, \infty]$ definita in classe è effettivamente una misura esterna su \mathbb{R}^n .

Esercizio 7 Sia \mathcal{H}^s la misura di Hausdorff s-dimensionale in \mathbb{R}^n , $s \geq 0$.

- i) Provare che $\mathcal{H}^s(\mathbb{R}^n) = 0$ se s > n.
- ii) Provare che se $\mathcal{H}^s(A) < \infty$ allora $\mathcal{H}^t(A) = 0$ per ogni t > s.
- iii) Provare che se $\mathcal{H}^s(A) > 0$ allora $\mathcal{H}^t(A) = \infty$ per ogni $0 \le t < s$.
- iv) Quando n=1, è vero che $\mathcal{L}^1=\mathcal{H}^1$ su \mathbb{R} ?