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CHAPTER 1

Heat Equation

1. Introduction

In Rn+1 = Rn × R, n ≥ 1, let us consider the coordinates x ∈ Rn and t ∈ R. The
differential operator in Rn+1

H =
∂

∂t
−∆, where ∆ =

n∑
j=1

∂2

∂x2
j

is called the heat operator. The three most important problems concerning the heat
operator are the Cauchy Problem, the Dirichlet Problem, and the Neumann Problem.

Cauchy Problem in Rn. The problem consists in finding a function u ∈ C2(Rn×
(0,∞)) ∩ C(Rn × [0,∞)) such that

(1.1)

{
ut(x, t) = ∆u(x, t), x ∈ Rn, t > 0,
u(x, 0) = f(x), x ∈ Rn,

where f ∈ C(Rn) is an initial distribution of temperature.

Dirichlet Problem. Let Ω ⊂ Rn be a bounded open set. The problem consists
in finding a function u ∈ C2(Ω× (0,∞)) ∩ C(Ω̄× [0,∞)) such that

(1.2)

 ut(x, t) = ∆u(x, t), x ∈ Ω, t > 0,
u(x, t) = g(x, t), x ∈ ∂Ω, t > 0,
u(x, 0) = f(x), x ∈ Ω.

The problem describes the evolution of the temperature of a body Ω having prescribed
temperature g ∈ C(∂Ω × (0,∞)) at the boundary of Ω (for any positive time) and
having an initial distribution of temperature f ∈ C(Ω) at time t = 0.

Neumann Problem. Let Ω ⊂ Rn be a bounded open set of class C1. We search
for a function u defined in the cylinder Ω × (0,∞) (with gradient defined up to the
boundary) such that

(1.3)


ut(x, t) = ∆u(x, t), x ∈ Ω, t > 0,
∂u

∂ν
(x, t) = g(x, t), x ∈ ∂Ω, t > 0,

u(x, 0) = f(x), x ∈ Ω,

where
∂u

∂ν
is the normal derivative of u at the boundary of Ω. In this case, prescribed

is the variation g of the temperature on the boundary.
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4 1. HEAT EQUATION

2. The foundamental solution and its properties

We derive a representation formula for the (a) solution of the Cauchy Problem
using a formal argument.

2.1. Preliminaries on the Fourier transform. For a given function f ∈
L1(Rn), we define its Fourier transform f̂ : Rn → C as

(2.4) f̂(ξ) =

∫
Rn

e−2πi〈ξ,x〉f(x)dx, ξ ∈ Rn.

We shall also write F(f)(ξ) = f̂(ξ). Let us recall some properties of the Fourier
transform.

1) If f, g ∈ L1(Rn) are integrable functions, then also their convolution

f ∗ g(x) =

∫
Rn
f(x− y)g(y)dy =

∫
Rn
g(x− y)f(y)dy

is in L1(Rn) and there holds

(2.5) F(f ∗ g) = F(f)F(g).

2) If f, f̂ ∈ L1(Rn) are both integrable functions then we have the inversion formula:

(2.6) F(F(f))(x) = F2(f)(x) = f(−x) for almost every x ∈ Rn.

3) If f ∈ L1(Rn) and also
∂f

∂xj
∈ L1(Rn) for some j = 1, ..., n, then

(2.7) F
( ∂f
∂xj

)
(ξ) = 2πiξj f̂(ξ).

4) Consider the Gaussian function fs(x) = e−s|x|
2
, where s > 0 is a parameter. The

Fourier transform of fs is the function

(2.8) f̂s(ξ) =
(π
s

)n
2
e−

π2|ξ|2
s .

2.2. Euristic computation of the foundamental solution. We transform
the Cauchy Problem (1.1) with a Fourier transform in the spatial variables x ∈ Rn.
Assuming that the Fourier transform commutes with the partial derivative in t we
obtain

∂̂u

∂t
(ξ, t) =

∂û

∂t
(ξ, t).

From the rule (2.7) – we assume that the rule can be applied to all second derivatives
in x of u, – we obtain

F(∆u)(ξ, t) = −4π2|ξ|2û(ξ, t).
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Finally, if the initial datum f ∈ L1(Rn) is integrable, then we also have û(ξ, 0) = f̂(ξ).
Thus, we obtain the transformed problem

∂û

∂t
(ξ, t) = −4π2|ξ|2û(ξ, t), ξ ∈ Rn, t > 0

û(ξ, 0) = f̂(ξ), ξ ∈ Rn.

The solution of the problem is the function

(2.9) û(ξ, t) = f̂(ξ)e−4π2t|ξ|2 .

From the formula (2.8) with s = 1/4t we obtain

e−4π2t|ξ|2 = Γ̂t(ξ), dove Γt(x) =
( 1

4πt

)n/2
e−
|x|2
4t .

By the convolution formula (2.5), identity (2.9) reads as follows:

û(ξ, t) = f̂(ξ)Γ̂t(ξ) = F(f ∗ Γt)(ξ).

Using the inversion formula (2.6), we obtain the representation formula for the solu-
tion

(2.10) u(x, t) = f ∗ Γt(x) =
( 1

4πt

)n/2 ∫
Rn
f(y)e−

|x−y|2
4t dy, x ∈ Rn.

Definition 2.1. The function Γ : Rn+1 → R defined by

Γ(x, t) =

{
1

(4πt)n/2
e−
|x|2
4t , x ∈ Rn, t > 0,

0 t ≤ 0

is called the foundamental solution of the heat equation.

Theorem 2.2. The function Γ has the following properties:

1) Γ ∈ C∞(Rn+1 \ {0});

2)
∂Γ(x, t)

∂t
= ∆Γ(x, t) for all (x, t) ∈ Rn+1 \ {0};

3) For any t > 0 we have

(2.11)

∫
Rn

Γ(x, t)dx = 1.

4) The function Γ verifies the equation HΓ = δ0 in Rn+1 in the sense of dis-
tributions, where δ0 is the Dirac mass in 0. Namely, for any test function
ϕ ∈ C∞c (Rn+1) there holds∫

Rn+1

Γ(x, t)H∗ϕ(x, t)dxdt = −ϕ(0),

whre H∗ = ∂/∂t+ ∆ is the adjoint operator of H.

Proof. Claim 1) follows from the fact that, for any x 6= 0, the function

t 7→
( 1

4πt

)n/2
e−
|x|2
4t , t > 0,

can be continuously extended to t = 0, is differentiable infinitely many times at t = 0,
and all derivatives vanish. Claim 2) can be verified by a short computation which is
left as an exercise.
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Identity (2.11) follows from the well known formula∫ +∞

−∞
e−s

2

ds =
√
π

and from Fubini-Tonelli theorem. In fact, we have:∫
Rn

( 1

4πt

)n/2
e−
|x|2
4t dx =

( 1

4πt

)n/2 n∏
i=1

∫ +∞

−∞
e−

x2i
4t dxi =

1

πn/2

n∏
i=1

∫ +∞

−∞
e−x

2
i dxi = 1.

We prove Claim 4). For ΓH∗ϕ ∈ L1(Rn+1), by dominated convergence we have:∫
Rn+1

Γ(x, t)H∗ϕ(x, t)dxdt =

∫ ∞
0

∫
Rn

Γ(x, t)H∗ϕ(x, t)dx dt

= lim
ε↓0

∫ ∞
ε

∫
Rn

Γ(x, t)H∗ϕ(x, t)dx dt.

For any fixed t > 0, by an integration by parts we obtain∫
Rn

Γ(x, t)∆ϕ(x, t)dx =

∫
Rn

∆Γ(x, t)ϕ(x, t)dx.

There is no boundary contribution, because ϕ has compact support. Moreover, we
have ∫ ∞

ε

Γ(x, t)
∂ϕ(x, t)

∂t
dt = −

∫ ∞
ε

∂Γ(x, t)

∂t
ϕ(x, t)dt− Γ(x, ε)ϕ(x, ε).

Summing up and using HΓ = 0, that holds on the set where t > 0, we obtain∫ ∞
ε

∫
Rn

Γ(x, t)H∗ϕ(x, t)dx dt =

∫ ∞
ε

∫
Rn
HΓ(x, t)ϕ(x, t)dx dt−

∫
Rn

Γ(x, ε)ϕ(x, ε)dx

= −
∫

Rn
Γ(x, ε)ϕ(x, ε)dx

= −
∫

Rn
Γ(ξ, 1)ϕ(2

√
εξ, ε)dξ.

Taking the limit as ε ↓ 0, by dominated convergence we prove the claim. �

2.3. Cauchy Problem: existence of solutions.

Theorem 2.3. Let f ∈ C(Rn) ∩ L∞(Rn). The function u defined by the repre-
sentation formula (2.10) solves the Cauchy Problem (1.1), and namely:

1) u ∈ C∞(Rn × (0,∞)) and ut(x, t) = ∆u(x, t) for all x ∈ Rn and t > 0;
2) For any x0 ∈ Rn there holds

lim
x→x0,t↓0

u(x, t) = f(x0),

with uniform convergence for x0 belonging to a compact set;
3) Moreover, ‖u(·, t)‖∞ ≤ ‖f‖∞ for all t > 0.

Proof. Claim 1) follows from the fact that we can take partial derivatives of any
order in x and t into the integral in the representation formula (2.10). We prove, for
instance, that for any x ∈ Rn and for any t > 0 there holds

∂

∂t

∫
Rn
f(y)e−

|x−y|2
4t dy =

∫
Rn
f(y)

∂

∂t
e−
|x−y|2

4t dy.
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By the Corollary to the Dominated Convergence Theorem, it suffices to show that
for any 0 < t0 ≤ T < ∞ there exists a function g ∈ L1(Rn), in variable y, such that
(for fixed x ∈ Rn and) for any t ∈ [t0, T ] we have

|x− y|2

4t2
e−
|x−y|2

4t ≤ g(y), for all y ∈ Rn.

This holds with the choice

g(y) =
|x− y|2

4t20
e−
|x−y|2

4T .

The case of derivatives in the variables x and the case of higher order derivatives is
analogous and is left as an exercise.

By the previous argument, it follows that, for t > 0, we can take the heat operator
into the integral:

ut(x, t)−∆u(x, t) =

∫
Rn
f(y)

( ∂
∂t
−∆x

)
Γ(x− y, t)dy

=

∫
Rn
f(y)

{
Γt(x− y, t)−∆Γ(x− y, t)

}
dy = 0.

Thus, u solves the heat equation for positive times.
We prove claim 2). Let K ⊂ Rn be a compact set and let x0 ∈ K. We may rewrite

the representation formula (2.10) in the following way:

u(x, t) =
1

πn/2

∫
Rn

Γ(ξ, 1/4)f(2
√
tξ + x)dξ, x ∈ Rn, t > 0.

Hence, we have

|u(x, t)− f(x0)| ≤ 1

πn/2

∫
Rn

Γ(ξ, 1/4)|f(2
√
tξ + x)− f(x0)|dξ.

Fix now ε > 0 and choose R > 0 such that

1

πn/2

∫
|ξ|>R

Γ(ξ, 1/4)dξ ≤ ε.

As f is uniformly continuous on compact sets, there exists a δ > 0 such that for all
|ξ| ≤ R we have

|x− x0| < δ and 0 < t < δ ⇒ |f(2
√
tξ − x)− f(x0)| < ε.

The choice of δ is uniform in x0 ∈ K. After all, we get

|u(x, t)− f(x0)| ≤ 1

πn/2

∫
|ξ|≤R

Γ(ξ, 1/4)|f(2
√
tξ + x)− f(x0)|dξ

+
1

πn/2

∫
|ξ|>R

Γ(ξ, 1/4)|f(2
√
tξ + x)− f(x0)|dξ

≤ ε+ 2‖f‖∞ε.

This proves claim 2). Claim 3) follows directly from the representation formula. �
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2.4. Tychonov’s counterexample. In general, the solution of the Cauchy Pro-
blem

(2.12)

{
ut(x, t) = ∆u(x, t), x ∈ Rn, t > 0,
u(x, 0) = f(x), x ∈ Rn,

even with f ∈ C(Rn)∩L∞(Rn), is not unique in the class of functions C(Rn×[0,∞))∩
C∞(Rn ∩ (0,∞)).

In dimension n = 1, let us consider the problem

(2.13)

{
ut(x, t) = uxx(x, t), x ∈ R, t > 0,
u(x, 0) = 0, x ∈ R.

The function u = 0 is a solution. We construct a second solution that is not identically
zero.

Let ϕ : C→ C be the function

ϕ(z) =

{
e−1/z2 , if z 6= 0,
0, if z = 0.

The function ϕ is holomorphic in C\{0}. Moreover, the function t 7→ ϕ(t) with t ∈ R
is of class C∞(R) and ϕ(n)(0) = 0 for all n ∈ N. Let us consider the series of functions

u(x, t) =
∞∑
n=0

ϕ(n)(t)
x2n

(2n)!
, t ≥ 0, x ∈ R.

We shall prove the following facts:

1) The sum defining u and the series of the derivatives of any order converge
uniformly on any set of the form [−R,R]× [T,∞) with R, T > 0;

2) u is a continuous function up to the boundary in the halfspace t ≥ 0.

From 2) it follows that u attains the initial datum 0 at the time t = 0. By 1), we can
interchange sum and partial derivatives. Then we can compute

uxx(x, t) =
∞∑
n=1

ϕ(n)(t)
x2n−2

(2n− 2)!
=

∞∑
m=0

ϕ(m+1)(t)
x2m

(2m)!

=
∂

∂t

∞∑
m=0

ϕ(m)(t)
x2m

(2m)!
= ut(x, t).

Let us prove claim 1). For fixed t > 0, by the Cauchy formula for holomorphic
functions we obtain

ϕ(n)(t) =
n!

2πi

∫
|z−t|=t/2

ϕ(z)

(z − t)n+1
dz.

On the circle |z − t| = t/2, we have |ϕ(z)| ≤ e−Re(1/z2) ≤ e−4/t2 and thus

|ϕ(n)(t)| ≤ n!

2π

∫ 2π

0

e−4/t2

(t/2)n+1

t

2
dϑ = n!2n

e−4/t2

tn
.

We shall use the following inequality, that can be proved by induction:

n!2n

(2n)!
≤ 1

n!
.
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Thus we get:

|u(x, t)| ≤
∞∑
n=0

|ϕ(n)(t)| |x|
2n

(2n)!
≤

∞∑
n=0

n!2n
e−4/t2

tn
|x|2n

(2n)!

≤ e−4/t2
∞∑
n=0

1

n!

( |x|2
t

)n
= e−4/t2+|x|2/t,

where the last sum converges uniformly for t ≥ T > 0 and |x| ≤ R < ∞. By
Weierstrass’ criterion, the sum defining u converges uniformly on the same set. In
particular, by comparison we find

lim
t→0

e−4/t2+|x|2/t = 0 ⇒ lim
t→0
|u(x, t)| = 0

with uniform convergence for |x| ≤ R. This proves claim 2).
The study of convergence of the series of derivatives is analogous and is left as an

exercise to the reader.

2.5. Nonhomogeneous problem. Let us consider the nonhomogeneous Cauchy
problem

(2.14)

{
ut(x, t)−∆u(x, t) = f(x, t), x ∈ Rn, t > 0,
u(x, 0) = 0, x ∈ Rn,

where f : Rn × (0,∞) → R is a suitable function. We discuss the regularity of f
later. A candidate solution of the problem can be obtained on using the “Duhamel’s
Principle”. Fix s > 0 and assume there exists a (the) solution v(·; s) of the Cauchy
Problem

(2.15)

{
vt(x, t; s) = ∆v(x, t; s), x ∈ Rn, t > s,
v(x, s; s) = f(x, s), x ∈ Rn.

On integrating the solutions v(x, t; s) for s ∈ (0, t) we obtain the function

(2.16) u(x, t) =

∫ t

0

v(x, t; s)ds.

When we formally insert t = 0 into this identity, we get u(x, 0) = 0. If we formally
differentiate the identity – taking derivatives into the integral is a idelicate issue, here,
– we obtain

ut(x, t) = v(x, t; t) +

∫ t

0

vt(x, t; s)ds e ∆u(x, t) =

∫ t

0

∆v(x, t; s)ds,

and thus ut(x, t) − ∆u(x, t) = v(x, t; t) = f(x, t). If the previous computations are
allowed, the function u is a solution to the problem (2.14).

Inserting the representation formula (2.10) for the solutions v(x, t; s) into (2.16),
we get the representation formula for the solution u

(2.17) u(x, t) =

∫ t

0

∫
Rn

Γ(x− y, t− s)f(y, s)dy ds, x ∈ Rn, t > 0.

In order the make rigorous the previuous argument, we need estimates for the
solution to the Cauchy problem near time t = 0.
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Proposizione 2.4. Let f ∈ L∞(Rn) and let u ∈ C∞(Rn× (0,∞)) be the function
given by the representation formula (2.10). There exists a dimensional constant C =
C(n) > 0 such that for all x ∈ Rn and t > 0 we have

(2.18) |∇u(x, t)| ≤ C√
t
‖f‖∞.

Proof. We can take derivatives in x into the integral in formula (2.10). We
obtain:

∇u(x, t) =
1

(4πt)n/2

∫
Rn

x− y
−2t

e−|x−y|
2/4tf(y)dy,

and thus

|∇u(x, t)| ≤ ‖f‖∞
(4πt)n/2

∫
Rn

|x− y|
2t

e−|x−y|
2/4tdy =

‖f‖∞
(4π)n/2

√
t

∫
Rn
|y|e−|y|2dy.

�

Proposizione 2.5. Let f ∈ L∞(Rn) be a function in Cα
loc(Rn) for some α ∈ (0, 1],

i.e., for any compact set K ⊂ Rn there exists a constant CK > 0 such that for all
x, y ∈ K we have

(2.19) |f(x)− f(y)| ≤ CK |x− y|α.

Let u ∈ C∞(Rn × (0,∞)) be the function given by the representation formula (2.10).
Then, for any R > 0 and T > 0 there exists a constant C > 0 depending on R,

T , ‖f‖∞, α, and n ∈ N, such that for all |x| ≤ R and t ∈ (0, T ) we have

(2.20)
∣∣∣ ∂2u

∂xi∂xj
(x, t)

∣∣∣ ≤ C

t1−α/2
,

for all indeces i, j = 1, ..., n.

Proof. We compute second order derivatives in x in the identity:∫
Rn

Γ(x− y, t)dy = 1, x ∈ Rn, t > 0.

We obtain, for any i, j = 1, ..., n,∫
Rn

Γij(x− y, t)dy =
∂2

∂xi∂xj

∫
Rn

Γ(x− y, t)dy = 0, x ∈ Rn, t > 0.

Here and hereafter, we let Γij = ∂2Γ
∂xi∂xj

. Taking derivatives into the integral is allowed.

On using this piece of information, the second order derivatives of u may be written
in the following way

uij(x, t) =

∫
Rn

Γij(x− y, t)
(
f(y)− f(x)

)
dy, x ∈ Rn, t > 0,

where a short computation shows that

Γij(x, t) =
{
− δij

2t
+
xixj
4t2

}
Γ(x, t).
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Eventually, we obtain the estimate

|uij(x, t)| ≤
∫

Rn

{ 1

2t
+
|x− y|2

4t2

}
Γ(x− y, t)|f(y)− f(x)|dy,

=

∫
|y−x|≤R

(
. . .
)
dy +

∫
|y−x|>R

(
. . .
)
dy = A+B.

Let CK be the constant in (2.19) relative to K = B̄2R. The term A can be estimated
in the following way:

A ≤ CK

∫
|y−x|≤R

( 1

2t
+
|x− y|2

4t2

)
Γ(x− y, t)|x− y|αdy

≤ 2αCKt
α/2−1

∫
Rn

(1

2
+ |η|2

)
Γ(η, 1/4)|η|αdη.

We performed the change of variable x− y = 2
√
tη. The estimate for A holds for all

t > 0 and for all |x| ≤ R.
Analogously, we can obtain the estimate

B ≤ 2‖f‖∞
t

∫
|η|>r/2

√
t

(1

2
+ |η|2

)
Γ(η, 1/4)dη.

Now, for any T > 0 there exists a constant CT > 0 such that for all 0 < t < T we
have ∫

|η|>r/2
√
t

(1

2
+ |η|2

)
Γ(η, 1/4)dη ≤ CT t

α/2.

The proof of this fact is left as an exercise. The claim of the theorem now follows. �

Definition 2.6. Let U ⊂ Rn+1 be an open set. We denote by C2,1(U) the set
of functions u : U → R such that the following partial derivatives exist and are
continuous

∂u

∂t
∈ C(U),

∂2u

∂xi∂xj
∈ C(U), i, j = 1, ..., n.

Theorem 2.7. Let f ∈ L∞(Rn× (0,∞))∩C(Rn× (0,∞)) be a function such that
x 7→ f(x, t) is in Cα

loc(Rn), 0 < α ≤ 1, uniformly in t > 0. Then the function u in
(2.17) satisfies:

1) u ∈ C2,1(Rn × (0,∞));
2) ut(x, t)−∆u(x, t) = f(x, t) for all x ∈ Rn, t > 0;
3) limt↓0 u(x, t) = 0 uniformly in x ∈ Rn.

Proof. As in (2.17), letting

v(x, t; s) =

∫
Rn

Γ(x− y, t− s)f(y, s)dyds,

the solution u may be written in the following way:

u(x, t) =

∫ t

0

v(x, t; s)ds, x ∈ Rn, t > 0.
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By Proposition 2.4, it follows that there exists a constant C > 0 such that

|∇v(x, t; s)| ≤ C‖f‖∞√
t− s

∈ L1
s(0, t), 0 < s < t,

and thus we can take derivatives in x into the integral in ds:

∇u(x, t) =

∫ t

0

∇v(x, t; s)ds =

∫ t

0

∫
Rn
∇Γ(x− y, t− s)f(y, s)dyds.

Analogously, by Proposition 2.5, for any R > 0 and T > 0 there exists a constant
C = C(R, T, ‖f‖∞, α) such that for |x| ≤ R and 0 < t < T we have, with i, j =
1, ..., n,

|vij(x, t; s)| ≤
C

(t− s)1−α/2 ∈ L
1
s(0, t).

We can therefore take derivatives in x into the integral:

uij(x, t) =

∫ t

0

vij(x, t; s)ds.(2.21)

It also follows that the function (x, t) 7→ uij(x, t) is continuous for x ∈ Rn and t > 0.
The proof of this claim is left as an exercise.

In an analogous way, we can prove that the function t 7→ u(x, t) is differentiable
and

(2.22) ut(x, t) =
∂

∂t

∫ t

0

v(x, t; s)ds = v(x, t; t) +

∫ t

0

vt(x, t; s)ds.

In order to prove this claim, notice that

|vt(x, t; s)| = |∆v(x, t; s)| ≤ C

(t− s)1−α/2 .

Finally, the function (x, t) 7→ ut(x, t) is also continuous (exercise).
Summing up (2.21) and (2.22), we obtain

ut(x, t)−∆u(x, t) = v(x, t; t) +

∫ t

0

{
vt(x, t; s)−∆v(x, t; s)

}
ds = f(x, t).

Claim iii) follows from the inequalities:

|u(x, t)| ≤
∫ t

0

|v(x, t; s)|ds ≤ ‖f‖∞t.

�


