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CHAPTER 1

Heat Equation

1. Introduction

In Rn+1 = Rn × R, n ≥ 1, let us consider the coordinates x ∈ Rn and t ∈ R. The
differential operator in Rn+1

H =
∂

∂t
−∆, where ∆ =

n∑
j=1

∂2

∂x2
j

is called the heat operator. The three most important problems concerning the heat
operator are the Cauchy Problem, the Dirichlet Problem, and the Neumann Problem.

Cauchy Problem in Rn. The problem consists in finding a function u ∈ C2(Rn×
(0,∞)) ∩ C(Rn × [0,∞)) such that

(1.1)

{
ut(x, t) = ∆u(x, t), x ∈ Rn, t > 0,
u(x, 0) = f(x), x ∈ Rn,

where f ∈ C(Rn) is an initial distribution of temperature.

Dirichlet Problem. Let Ω ⊂ Rn be a bounded open set. The problem consists
in finding a function u ∈ C2(Ω× (0,∞)) ∩ C(Ω̄× [0,∞)) such that

(1.2)

 ut(x, t) = ∆u(x, t), x ∈ Ω, t > 0,
u(x, t) = g(x, t), x ∈ ∂Ω, t > 0,
u(x, 0) = f(x), x ∈ Ω.

The problem describes the evolution of the temperature of a body Ω having prescribed
temperature g ∈ C(∂Ω × (0,∞)) at the boundary of Ω (for any positive time) and
having an initial distribution of temperature f ∈ C(Ω) at time t = 0.

Neumann Problem. Let Ω ⊂ Rn be a bounded open set of class C1. We search
for a function u defined in the cylinder Ω × (0,∞) (with gradient defined up to the
boundary) such that

(1.3)


ut(x, t) = ∆u(x, t), x ∈ Ω, t > 0,
∂u

∂ν
(x, t) = g(x, t), x ∈ ∂Ω, t > 0,

u(x, 0) = f(x), x ∈ Ω,

where
∂u

∂ν
is the normal derivative of u at the boundary of Ω. In this case, prescribed

is the variation g of the temperature on the boundary.
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6 1. HEAT EQUATION

2. The foundamental solution and its properties

We derive a representation formula for the (a) solution of the Cauchy Problem
using a formal argument.

2.1. Preliminaries on the Fourier transform. For a given function f ∈
L1(Rn), we define its Fourier transform f̂ : Rn → C as

(2.4) f̂(ξ) =

∫
Rn

e−2πi〈ξ,x〉f(x)dx, ξ ∈ Rn.

We shall also write F(f)(ξ) = f̂(ξ). Let us recall some properties of the Fourier
transform.

1) If f, g ∈ L1(Rn) are integrable functions, then also their convolution

f ∗ g(x) =

∫
Rn
f(x− y)g(y)dy =

∫
Rn
g(x− y)f(y)dy

is in L1(Rn) and there holds

(2.5) F(f ∗ g) = F(f)F(g).

2) If f, f̂ ∈ L1(Rn) are both integrable functions then we have the inversion formula:

(2.6) F(F(f))(x) = F2(f)(x) = f(−x) for almost every x ∈ Rn.

3) If f ∈ L1(Rn) and also
∂f

∂xj
∈ L1(Rn) for some j = 1, ..., n, then

(2.7) F
( ∂f
∂xj

)
(ξ) = 2πiξj f̂(ξ).

4) Consider the Gaussian function fs(x) = e−s|x|
2
, where s > 0 is a parameter. The

Fourier transform of fs is the function

(2.8) f̂s(ξ) =
(π
s

)n
2
e−

π2|ξ|2
s .

2.2. Euristic computation of the foundamental solution. We transform
the Cauchy Problem (1.1) with a Fourier transform in the spatial variables x ∈ Rn.
Assuming that the Fourier transform commutes with the partial derivative in t we
obtain

∂̂u

∂t
(ξ, t) =

∂û

∂t
(ξ, t).

From the rule (2.7) – we assume that the rule can be applied to all second derivatives
in x of u, – we obtain

F(∆u)(ξ, t) = −4π2|ξ|2û(ξ, t).
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Finally, if the initial datum f ∈ L1(Rn) is integrable, then we also have û(ξ, 0) = f̂(ξ).
Thus, we obtain the transformed problem

∂û

∂t
(ξ, t) = −4π2|ξ|2û(ξ, t), ξ ∈ Rn, t > 0

û(ξ, 0) = f̂(ξ), ξ ∈ Rn.

The solution of the problem is the function

(2.9) û(ξ, t) = f̂(ξ)e−4π2t|ξ|2 .

From the formula (2.8) with s = 1/4t we obtain

e−4π2t|ξ|2 = Γ̂t(ξ), dove Γt(x) =
( 1

4πt

)n/2
e−
|x|2
4t .

By the convolution formula (2.5), identity (2.9) reads as follows:

û(ξ, t) = f̂(ξ)Γ̂t(ξ) = F(f ∗ Γt)(ξ).

Using the inversion formula (2.6), we obtain the representation formula for the solu-
tion

(2.10) u(x, t) = f ∗ Γt(x) =
( 1

4πt

)n/2 ∫
Rn
f(y)e−

|x−y|2
4t dy, x ∈ Rn.

Definition 2.1. The function Γ : Rn+1 → R defined by

Γ(x, t) =

{
1

(4πt)n/2
e−
|x|2
4t , x ∈ Rn, t > 0,

0 t ≤ 0

is called the foundamental solution of the heat equation.

Theorem 2.2. The function Γ has the following properties:

1) Γ ∈ C∞(Rn+1 \ {0});

2)
∂Γ(x, t)

∂t
= ∆Γ(x, t) for all (x, t) ∈ Rn+1 \ {0};

3) For any t > 0 we have

(2.11)

∫
Rn

Γ(x, t)dx = 1.

4) The function Γ verifies the equation HΓ = δ0 in Rn+1 in the sense of dis-
tributions, where δ0 is the Dirac mass in 0. Namely, for any test function
ϕ ∈ C∞c (Rn+1) there holds∫

Rn+1

Γ(x, t)H∗ϕ(x, t)dxdt = −ϕ(0),

whre H∗ = ∂/∂t+ ∆ is the adjoint operator of H.

Proof. Claim 1) follows from the fact that, for any x 6= 0, the function

t 7→
( 1

4πt

)n/2
e−
|x|2
4t , t > 0,

can be continuously extended to t = 0, is differentiable infinitely many times at t = 0,
and all derivatives vanish. Claim 2) can be verified by a short computation which is
left as an exercise.
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Identity (2.11) follows from the well known formula∫ +∞

−∞
e−s

2

ds =
√
π

and from Fubini-Tonelli theorem. In fact, we have:∫
Rn

( 1

4πt

)n/2
e−
|x|2
4t dx =

( 1

4πt

)n/2 n∏
i=1

∫ +∞

−∞
e−

x2i
4t dxi =

1

πn/2

n∏
i=1

∫ +∞

−∞
e−x

2
i dxi = 1.

We prove Claim 4). For ΓH∗ϕ ∈ L1(Rn+1), by dominated convergence we have:∫
Rn+1

Γ(x, t)H∗ϕ(x, t)dxdt =

∫ ∞
0

∫
Rn

Γ(x, t)H∗ϕ(x, t)dx dt

= lim
ε↓0

∫ ∞
ε

∫
Rn

Γ(x, t)H∗ϕ(x, t)dx dt.

For any fixed t > 0, by an integration by parts we obtain∫
Rn

Γ(x, t)∆ϕ(x, t)dx =

∫
Rn

∆Γ(x, t)ϕ(x, t)dx.

There is no boundary contribution, because ϕ has compact support. Moreover, we
have ∫ ∞

ε

Γ(x, t)
∂ϕ(x, t)

∂t
dt = −

∫ ∞
ε

∂Γ(x, t)

∂t
ϕ(x, t)dt− Γ(x, ε)ϕ(x, ε).

Summing up and using HΓ = 0, that holds on the set where t > 0, we obtain∫ ∞
ε

∫
Rn

Γ(x, t)H∗ϕ(x, t)dx dt =

∫ ∞
ε

∫
Rn
HΓ(x, t)ϕ(x, t)dx dt−

∫
Rn

Γ(x, ε)ϕ(x, ε)dx

= −
∫

Rn
Γ(x, ε)ϕ(x, ε)dx

= −
∫

Rn
Γ(ξ, 1)ϕ(2

√
εξ, ε)dξ.

Taking the limit as ε ↓ 0, by dominated convergence we prove the claim. �

2.3. Cauchy Problem: existence of solutions.

Theorem 2.3. Let f ∈ C(Rn) ∩ L∞(Rn). The function u defined by the repre-
sentation formula (2.10) solves the Cauchy Problem (1.1), and namely:

1) u ∈ C∞(Rn × (0,∞)) and ut(x, t) = ∆u(x, t) for all x ∈ Rn and t > 0;
2) For any x0 ∈ Rn there holds

lim
x→x0,t↓0

u(x, t) = f(x0),

with uniform convergence for x0 belonging to a compact set;
3) Moreover, ‖u(·, t)‖∞ ≤ ‖f‖∞ for all t > 0.

Proof. Claim 1) follows from the fact that we can take partial derivatives of any
order in x and t into the integral in the representation formula (2.10). We prove, for
instance, that for any x ∈ Rn and for any t > 0 there holds

∂

∂t

∫
Rn
f(y)e−

|x−y|2
4t dy =

∫
Rn
f(y)

∂

∂t
e−
|x−y|2

4t dy.
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By the Corollary to the Dominated Convergence Theorem, it suffices to show that
for any 0 < t0 ≤ T < ∞ there exists a function g ∈ L1(Rn), in variable y, such that
(for fixed x ∈ Rn and) for any t ∈ [t0, T ] we have

|x− y|2

4t2
e−
|x−y|2

4t ≤ g(y), for all y ∈ Rn.

This holds with the choice

g(y) =
|x− y|2

4t20
e−
|x−y|2

4T .

The case of derivatives in the variables x and the case of higher order derivatives is
analogous and is left as an exercise.

By the previous argument, it follows that, for t > 0, we can take the heat operator
into the integral:

ut(x, t)−∆u(x, t) =

∫
Rn
f(y)

( ∂
∂t
−∆x

)
Γ(x− y, t)dy

=

∫
Rn
f(y)

{
Γt(x− y, t)−∆Γ(x− y, t)

}
dy = 0.

Thus, u solves the heat equation for positive times.
We prove claim 2). Let K ⊂ Rn be a compact set and let x0 ∈ K. We may rewrite

the representation formula (2.10) in the following way:

u(x, t) =
1

πn/2

∫
Rn

Γ(ξ, 1/4)f(2
√
tξ + x)dξ, x ∈ Rn, t > 0.

Hence, we have

|u(x, t)− f(x0)| ≤ 1

πn/2

∫
Rn

Γ(ξ, 1/4)|f(2
√
tξ + x)− f(x0)|dξ.

Fix now ε > 0 and choose R > 0 such that

1

πn/2

∫
|ξ|>R

Γ(ξ, 1/4)dξ ≤ ε.

As f is uniformly continuous on compact sets, there exists a δ > 0 such that for all
|ξ| ≤ R we have

|x− x0| < δ and 0 < t < δ ⇒ |f(2
√
tξ − x)− f(x0)| < ε.

The choice of δ is uniform in x0 ∈ K. After all, we get

|u(x, t)− f(x0)| ≤ 1

πn/2

∫
|ξ|≤R

Γ(ξ, 1/4)|f(2
√
tξ + x)− f(x0)|dξ

+
1

πn/2

∫
|ξ|>R

Γ(ξ, 1/4)|f(2
√
tξ + x)− f(x0)|dξ

≤ ε+ 2‖f‖∞ε.

This proves claim 2). Claim 3) follows directly from the representation formula. �
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2.4. Tychonov’s counterexample. In general, the solution of the Cauchy Pro-
blem

(2.12)

{
ut(x, t) = ∆u(x, t), x ∈ Rn, t > 0,
u(x, 0) = f(x), x ∈ Rn,

even with f ∈ C(Rn)∩L∞(Rn), is not unique in the class of functions C(Rn×[0,∞))∩
C∞(Rn ∩ (0,∞)).

In dimension n = 1, let us consider the problem

(2.13)

{
ut(x, t) = uxx(x, t), x ∈ R, t > 0,
u(x, 0) = 0, x ∈ R.

The function u = 0 is a solution. We construct a second solution that is not identically
zero.

Let ϕ : C→ C be the function

ϕ(z) =

{
e−1/z2 , if z 6= 0,
0, if z = 0.

The function ϕ is holomorphic in C\{0}. Moreover, the function t 7→ ϕ(t) with t ∈ R
is of class C∞(R) and ϕ(n)(0) = 0 for all n ∈ N. Let us consider the series of functions

u(x, t) =
∞∑
n=0

ϕ(n)(t)
x2n

(2n)!
, t ≥ 0, x ∈ R.

We shall prove the following facts:

1) The sum defining u and the series of the derivatives of any order converge
uniformly on any set of the form [−R,R]× [T,∞) with R, T > 0;

2) u is a continuous function up to the boundary in the halfspace t ≥ 0.

From 2) it follows that u attains the initial datum 0 at the time t = 0. By 1), we can
interchange sum and partial derivatives. Then we can compute

uxx(x, t) =
∞∑
n=1

ϕ(n)(t)
x2n−2

(2n− 2)!
=

∞∑
m=0

ϕ(m+1)(t)
x2m

(2m)!

=
∂

∂t

∞∑
m=0

ϕ(m)(t)
x2m

(2m)!
= ut(x, t).

Let us prove claim 1). For fixed t > 0, by the Cauchy formula for holomorphic
functions we obtain

ϕ(n)(t) =
n!

2πi

∫
|z−t|=t/2

ϕ(z)

(z − t)n+1
dz.

On the circle |z − t| = t/2, we have |ϕ(z)| ≤ e−Re(1/z2) ≤ e−4/t2 and thus

|ϕ(n)(t)| ≤ n!

2π

∫ 2π

0

e−4/t2

(t/2)n+1

t

2
dϑ = n!2n

e−4/t2

tn
.

We shall use the following inequality, that can be proved by induction:

n!2n

(2n)!
≤ 1

n!
.
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Thus we get:

|u(x, t)| ≤
∞∑
n=0

|ϕ(n)(t)| |x|
2n

(2n)!
≤

∞∑
n=0

n!2n
e−4/t2

tn
|x|2n

(2n)!

≤ e−4/t2
∞∑
n=0

1

n!

( |x|2
t

)n
= e−4/t2+|x|2/t,

where the last sum converges uniformly for t ≥ T > 0 and |x| ≤ R < ∞. By
Weierstrass’ criterion, the sum defining u converges uniformly on the same set. In
particular, by comparison we find

lim
t→0

e−4/t2+|x|2/t = 0 ⇒ lim
t→0
|u(x, t)| = 0

with uniform convergence for |x| ≤ R. This proves claim 2).
The study of convergence of the series of derivatives is analogous and is left as an

exercise to the reader.

2.5. Nonhomogeneous problem. Let us consider the nonhomogeneous Cauchy
problem

(2.14)

{
ut(x, t)−∆u(x, t) = f(x, t), x ∈ Rn, t > 0,
u(x, 0) = 0, x ∈ Rn,

where f : Rn × (0,∞) → R is a suitable function. We discuss the regularity of f
later. A candidate solution of the problem can be obtained on using the “Duhamel’s
Principle”. Fix s > 0 and assume there exists a (the) solution v(·; s) of the Cauchy
Problem

(2.15)

{
vt(x, t; s) = ∆v(x, t; s), x ∈ Rn, t > s,
v(x, s; s) = f(x, s), x ∈ Rn.

On integrating the solutions v(x, t; s) for s ∈ (0, t) we obtain the function

(2.16) u(x, t) =

∫ t

0

v(x, t; s)ds.

When we formally insert t = 0 into this identity, we get u(x, 0) = 0. If we formally
differentiate the identity – taking derivatives into the integral is a idelicate issue, here,
– we obtain

ut(x, t) = v(x, t; t) +

∫ t

0

vt(x, t; s)ds e ∆u(x, t) =

∫ t

0

∆v(x, t; s)ds,

and thus ut(x, t) − ∆u(x, t) = v(x, t; t) = f(x, t). If the previous computations are
allowed, the function u is a solution to the problem (2.14).

Inserting the representation formula (2.10) for the solutions v(x, t; s) into (2.16),
we get the representation formula for the solution u

(2.17) u(x, t) =

∫ t

0

∫
Rn

Γ(x− y, t− s)f(y, s)dy ds, x ∈ Rn, t > 0.

In order the make rigorous the previuous argument, we need estimates for the
solution to the Cauchy problem near time t = 0.
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Proposizione 2.4. Let f ∈ L∞(Rn) and let u ∈ C∞(Rn× (0,∞)) be the function
given by the representation formula (2.10). There exists a dimensional constant C =
C(n) > 0 such that for all x ∈ Rn and t > 0 we have

(2.18) |∇u(x, t)| ≤ C√
t
‖f‖∞.

Proof. We can take derivatives in x into the integral in formula (2.10). We
obtain:

∇u(x, t) =
1

(4πt)n/2

∫
Rn

x− y
−2t

e−|x−y|
2/4tf(y)dy,

and thus

|∇u(x, t)| ≤ ‖f‖∞
(4πt)n/2

∫
Rn

|x− y|
2t

e−|x−y|
2/4tdy =

‖f‖∞
(4π)n/2

√
t

∫
Rn
|y|e−|y|2dy.

�

Proposizione 2.5. Let f ∈ L∞(Rn) be a function in Cα
loc(Rn) for some α ∈ (0, 1],

i.e., for any compact set K ⊂ Rn there exists a constant CK > 0 such that for all
x, y ∈ K we have

(2.19) |f(x)− f(y)| ≤ CK |x− y|α.

Let u ∈ C∞(Rn × (0,∞)) be the function given by the representation formula (2.10).
Then, for any R > 0 and T > 0 there exists a constant C > 0 depending on R,

T , ‖f‖∞, α, and n ∈ N, such that for all |x| ≤ R and t ∈ (0, T ) we have

(2.20)
∣∣∣ ∂2u

∂xi∂xj
(x, t)

∣∣∣ ≤ C

t1−α/2
,

for all indeces i, j = 1, ..., n.

Proof. We compute second order derivatives in x in the identity:∫
Rn

Γ(x− y, t)dy = 1, x ∈ Rn, t > 0.

We obtain, for any i, j = 1, ..., n,∫
Rn

Γij(x− y, t)dy =
∂2

∂xi∂xj

∫
Rn

Γ(x− y, t)dy = 0, x ∈ Rn, t > 0.

Here and hereafter, we let Γij = ∂2Γ
∂xi∂xj

. Taking derivatives into the integral is allowed.

On using this piece of information, the second order derivatives of u may be written
in the following way

uij(x, t) =

∫
Rn

Γij(x− y, t)
(
f(y)− f(x)

)
dy, x ∈ Rn, t > 0,

where a short computation shows that

Γij(x, t) =
{
− δij

2t
+
xixj
4t2

}
Γ(x, t).
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Eventually, we obtain the estimate

|uij(x, t)| ≤
∫

Rn

{ 1

2t
+
|x− y|2

4t2

}
Γ(x− y, t)|f(y)− f(x)|dy,

=

∫
|y−x|≤R

(
. . .
)
dy +

∫
|y−x|>R

(
. . .
)
dy = A+B.

Let CK be the constant in (2.19) relative to K = B̄2R. The term A can be estimated
in the following way:

A ≤ CK

∫
|y−x|≤R

( 1

2t
+
|x− y|2

4t2

)
Γ(x− y, t)|x− y|αdy

≤ 2αCKt
α/2−1

∫
Rn

(1

2
+ |η|2

)
Γ(η, 1/4)|η|αdη.

We performed the change of variable x− y = 2
√
tη. The estimate for A holds for all

t > 0 and for all |x| ≤ R.
Analogously, we can obtain the estimate

B ≤ 2‖f‖∞
t

∫
|η|>r/2

√
t

(1

2
+ |η|2

)
Γ(η, 1/4)dη.

Now, for any T > 0 there exists a constant CT > 0 such that for all 0 < t < T we
have ∫

|η|>r/2
√
t

(1

2
+ |η|2

)
Γ(η, 1/4)dη ≤ CT t

α/2.

The proof of this fact is left as an exercise. The claim of the theorem now follows. �

Definition 2.6. Let U ⊂ Rn+1 be an open set. We denote by C2,1(U) the set
of functions u : U → R such that the following partial derivatives exist and are
continuous

∂u

∂t
∈ C(U),

∂2u

∂xi∂xj
∈ C(U), i, j = 1, ..., n.

Theorem 2.7. Let f ∈ L∞(Rn× (0,∞))∩C(Rn× (0,∞)) be a function such that
x 7→ f(x, t) is in Cα

loc(Rn), 0 < α ≤ 1, uniformly in t > 0. Then the function u in
(2.17) satisfies:

1) u ∈ C2,1(Rn × (0,∞));
2) ut(x, t)−∆u(x, t) = f(x, t) for all x ∈ Rn, t > 0;
3) limt↓0 u(x, t) = 0 uniformly in x ∈ Rn.

Proof. As in (2.17), letting

v(x, t; s) =

∫
Rn

Γ(x− y, t− s)f(y, s)dyds,

the solution u may be written in the following way:

u(x, t) =

∫ t

0

v(x, t; s)ds, x ∈ Rn, t > 0.
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By Proposition 2.4, it follows that there exists a constant C > 0 such that

|∇v(x, t; s)| ≤ C‖f‖∞√
t− s

∈ L1
s(0, t), 0 < s < t,

and thus we can take derivatives in x into the integral in ds:

∇u(x, t) =

∫ t

0

∇v(x, t; s)ds =

∫ t

0

∫
Rn
∇Γ(x− y, t− s)f(y, s)dyds.

Analogously, by Proposition 2.5, for any R > 0 and T > 0 there exists a constant
C = C(R, T, ‖f‖∞, α) such that for |x| ≤ R and 0 < t < T we have, with i, j =
1, ..., n,

|vij(x, t; s)| ≤
C

(t− s)1−α/2 ∈ L
1
s(0, t).

We can therefore take derivatives in x into the integral:

uij(x, t) =

∫ t

0

vij(x, t; s)ds.(2.21)

It also follows that the function (x, t) 7→ uij(x, t) is continuous for x ∈ Rn and t > 0.
The proof of this claim is left as an exercise.

In an analogous way, we can prove that the function t 7→ u(x, t) is differentiable
and

(2.22) ut(x, t) =
∂

∂t

∫ t

0

v(x, t; s)ds = v(x, t; t) +

∫ t

0

vt(x, t; s)ds.

In order to prove this claim, notice that

|vt(x, t; s)| = |∆v(x, t; s)| ≤ C

(t− s)1−α/2 .

Finally, the function (x, t) 7→ ut(x, t) is also continuous (exercise).
Summing up (2.21) and (2.22), we obtain

ut(x, t)−∆u(x, t) = v(x, t; t) +

∫ t

0

{
vt(x, t; s)−∆v(x, t; s)

}
ds = f(x, t).

Claim iii) follows from the inequalities:

|u(x, t)| ≤
∫ t

0

|v(x, t; s)|ds ≤ ‖f‖∞t.

�

3. Parabolic mean formula

Definition 3.8. Let r > 0 and (x, t) ∈ Rn+1. The set

Er(x, t) =
{

(y, s) ∈ Rn+1 : s < t and Γ(x− y, t− s) > 1

rn

}
is called parabolic ball with radius r centered at (x, t). For (x, t) = (0, 0) we also let
Er = Er(0, 0).

Proposizione 3.9. For all r > 0 and (x, t) ∈ Rn+1 there holds:

i) Er(x, t) = (x, t) + Er;
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ii) Letting δλ(x, t) = (λx, λ2t), λ > 0, we have δλ(Er(x, t)) = Eλr(δλ(x, t)).

Proof. Claim i) follows from the fact that the definition of Er(x, t) depends
only on the differences x − y and t − s. Claim ii) follows from the fact that (y, s) ∈
δλ(Er(x, t)) is equivalent to

e
− |x−y/λ|

2

t−s/λ2

[4π(t− s/λ2)]n/2
>

1

rn
⇔ e

− |λx−y|
2

λ2t−s

[4π(λ2t− s)]n/2
>

1

λnrn
,

that is equivalent with (y, s) ∈ Eλr(λx, λ2t).
�

Remark 3.10. The parabolic ball Er is the set of points (y, s) ∈ Rn+1 with s < 0
such that Γ(y,−s) > 1/rn, condition that is equivalent to

(3.23) |y|2 < 4s
(n

2
log(−4πs)− n log r

)
= ϑ(s).

In particular, the balls is contained in the strip −r2/4π < s < 0. The maximum value
of ϑ is nr2/2πe.

The balls Er has a size of order r in the spatial directions and of order r2 in the
time direction. The center of the ball is in fact the “north pole”.

Theorem 3.11. let U ⊂ Rn+1 be an open set and let u ∈ C2(U) be a function
that satisfies ut = ∆u in U . Then for any r > 0 and for all (x, t) ∈ U such that
Er(x, t) ⊂ U there holds the mean formula

(3.24) u(x, t) =
1

cnrn

∫
Er(x,t)

u(y, s)
|y − x|2

(t− s)2
dyds,

where cn > 0 is a dimensional constant (and in fact cn = 4 does not depend on
n ∈ N).

Proof. It sufficies to prove the theorem in the case x = 0 and t = 0. Consider
the function

ϕ(r) =
1

rn

∫
Er

u(y, s)
|y|2

s2
dyds,

for r > 0 small enough. We claim that the function ϕ is constant. Formula (3.24)
then follows from the limit

lim
r↓0

1

rn

∫
Er

u(y, s)
|y|2

s2
dyds = lim

r↓0

∫
E1

u(ry, r2s)
|y|2

s2
dyds = cnu(0),

where cn > 0 is the constant

cn =

∫
E1

|y|2

s2
dyds.

The fact that cn is finite and the computation of its value are left as exercises. In the
change of variable, we used Proposition 3.9.

It suffices to show that ϕ′(r) = 0 for r > 0. We can take the derivative into the
integral in the definition of ϕ, after the change of variable transforming the integration
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domain into E1:

ϕ′(r) =

∫
E1

{
y · ∇u(ry, r2s) + 2rsus(ry, r

2s)
} |y|2
s2
dyds

=
1

rn+1

∫
Er

{
y · ∇u(y, s) + 2sus(y, s)

} |y|2
s2
dyds

=
1

rn+1

∫
Er

y · ∇u(y, s)
|y|2

s2
dyds+

1

rn+1

∫
Er

2us(y, s)
|y|2

s
dyds

=
1

rn+1

(
A+B

)
.

Consider the function

ψ(y, s) =
|y|2

4s
− n

2
log(−4πs) + n log r.

The definition of ψ is suggested by condition (3.23) that characterizes the parabolic
ball Er. The function satisfies ψ = 0 on ∂Er and, moreover,

(3.25) ∇ψ(y, s) =
y

2s
.

We use the last identity to transform B in the following way:

B =

∫
Er

2us(y, s)
|y|2

s
dyds = 4

∫
Er

us(y, s)y · ∇ψ(y, s)dyds

= −4

∫
Er

ψ(y, s)div(us(y, s)y)dyds

= −4

∫
Er

ψ(y, s)
{
y · ∇us(y, s) + nus(y, s)

}
dyds.

We used the divergence theorem (integration by parts) in the variables y for fixed
s (and, implicitly, also Fubini-Tonelli theorem). Now we integrate by parts in s for
fixed y in the first term, and we use the differential equation us = ∆u in the second
one. We get

B = 4

∫
Er

{
ψs(y, s)y · ∇u(y, s)− nψ(y, s)∆u(y, s)

}
dyds

= 4

∫
Er

{
− |y|

2

4s2
− n

2s

}
y · ∇u(y, s)dyds+ 4n

∫
Er

∇ψ(y, s) · ∇u(y, s)dyds

= −
∫
Er

|y|2

s2
y · ∇u(y, s)dyds = −A.

We used again the divergence theorem and the properties of ψ.
We eventually obtain A+B = 0 identically in r > 0 and the theorem is proved. �

4. Parabolic maximum principles

Let Ω ⊂ Rn be an open set and T > 0. We denote by ΩT = Ω×(0, T ) the cylinder
of height T over Ω. With abuse of notation, we define the parabolic boundary of ΩT

as the set ∂ΩT ⊂ Rn+1 defined in the following way

∂ΩT = ∂Ω× [0, T ] ∪ Ω× {0}.
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Theorem 4.12 (Weak maximum principle). Let Ω ⊂ Rn be a bounded open set
and let u ∈ C2(ΩT ) ∩ C(Ω̄T ) be a solution of the equation ut −∆u = 0 in ΩT . Then
we have

max
Ω̄T
|u| = max

∂ΩT
|u|.

The weak maximum principle is a corollary of the strong maximum principle. We
postpone the proof.

Theorem 4.13 (Strong maximum principle). Let Ω ⊂ Rn be a connected open set
and let u ∈ C2(ΩT ) be a solution to the differential equation ut −∆u = 0 in ΩT . If
there is a point (x0, t0) ∈ ΩT such that

|u(x0, t0)| = max
(x,t)∈ΩT

|u(x, t)|

then we have u(x, t) = u(x0, t0) for all (x, t) ∈ Ω× (0, t0].

Proof. Let (x0, t0) ∈ ΩT be a point such that

u(x0, t0) = M := max
(x,t)∈ΩT

u(x, t).

Let (x, t) ∈ ΩT be any point such that t < t0 and such that the line segment S
connecting (x0, t0) to (x, t), i.e.,

S =
{

(xτ , tτ ) = (1− τ)(x0, t0) + τ(x, t) ∈ Rn+1 : 0 ≤ τ ≤ 1
}
,

is entirely contained in ΩT . Let

A =
{
τ ∈ [0, 1] : u(xτ , tτ ) = M

}
.

We have A 6= ∅ because 0 ∈ A. We shall prove that if τ ∈ A then also τ + δ ∈ A for
all 0 < δ < δ0, for some δ0 > 0. Indeed, there exists r > 0 such that Er(xτ , tτ ) ⊂ ΩT ,
because ΩT is open and thus, by the parabolic mean formula, we have

M = u(xτ , tτ ) =
1

4rn

∫
Er(xτ ,tτ )

u(y, s)
|y − xτ |2

(s− tτ )2
dyds

≤ M

4rn

∫
Er(xτ ,tτ )

|y − xτ |2

(s− tτ )2
dyds = M.

It follows that u = M in Er(xτ , tτ ) and the existence of δ > 0 is implied by the
“shape” of parabolic balls. From the previous argument it follows that A = [0, 1] and
thus u = M on S.

Let (x, t) ∈ ΩT be any point such that 0 < t < t0. As Ω is a connected
open set, then it is pathwise connected by polygonal arcs: there exist m + 1 points
x0, x1, ..., xm = x contained Ω such that each segment [xi−1, xi], i = 1, ...,m, is con-
tained in Ω. Choose times t0 > t1 > ... > tm = t. A successive application of the previ-
ous argument shows that u = M on each segment Si =

{
(1−τ)(xi−1, ti−1)+τ(xi, ti) ∈

ΩT : 0 ≤ τ ≤ 1
}

and thus u(x, t) = M . By continuity, the claim holds also for
t = t0. �

Proof of Theorem 4.12. We prove for instance that

M = max
Ω̄T

u = max
∂ΩT

u.
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Notice that the maximum on the left hand side is attained, beacause u is continuous
in Ω̄T , that is a compact set. Then there exists (x0, t0) ∈ Ω̄T such that u(x0, t0) = M .

If (x0, t0) ∈ ∂ΩT the proof is finished. Let (x0, t0) ∈ Ω×(0, T ]. Let Ωx0 ⊂ Ω denote
the connected component of Ω containing x0. From the strong maximum principle it
follows that u = M on Ωx0 × (0, t0]. This holds also in the case t0 = T . Eventually,
u attaines the maximum (also) on the parabolic boundary ∂ΩT . �

The weak maximum principle implies the uniqueness of the solution of the para-
bolic Dirichlet problem on a bounded domain with initial and boundary conditions.

Theorem 4.14 (Uniqueness for the Dirichlet problem). Let Ω ⊂ Rn be a bounded
set, T > 0, f ∈ C(ΩT ) and g ∈ C(∂ΩT ). Then the problem

(4.26)

{
ut −∆u = f, in ΩT ,
u = g, su ∂ΩT ,

has at most one solution u ∈ C2(ΩT ) ∩ C(Ω̄T ).

Proof. Indeed, if u, v are solutions then the function w = u − v satisfies w = 0
on ∂ΩT and wt −∆w = 0 in ΩT . From the weak maximum principle, it follows that
maxΩ̄T |w| = max∂Ωt |w| = 0 and thus u = v. �

The uniqueness for the Cauchy problem on Rn requires a global version of the
maximum principle.

Theorem 4.15. Let f ∈ C(Rn) and let u ∈ C2(Rn × (0, T )) ∩ C(Rn × [0, T ]) be
a solution of the Cauchy problem

(4.27)

{
ut −∆u = 0, in Rn × (0, T ),
u = f, su Rn

that satisfies for some constants A, b > 0

(4.28) |u(x, t)| ≤ Aeb|x|
2

, x ∈ Rn, t ∈ [0, T ].

Then we have

(4.29) sup
x∈Rn, t∈[0,T ]

|u(x, t)| ≤ sup
x∈Rn
|f(x)|.

Proof. We prove, for instance, that u(x, t) ≤ supRn f for x ∈ Rn and t ∈ [0, T ].
Assume that there also holds 4bT < 1. This assumption will be removed at the end
of the proof. Then there exists ε > 0 such that 4b(T + ε) < 1 and thus 1

4(T+ε)
= b+ γ

for some γ > 0. Let δ > 0 be a positive parameter and consider the function

v(x, t) = u(x, t)− δ

(T + ε− t)n/2
e

|x|2
4(T+ε−t) , x ∈ Rn, t ∈ [0, T ].

An explicit computation, that is omitted, shows that vt = ∆v. Moreover, from (4.28)
it follows that for x ∈ Rn and t ∈ [0, T ] we have

v(x, t) ≤ Aeb|x|
2 − δ

(T + ε)n/2
e
|x|2

4(T+ε) = Aeb|x|
2 − δ

(T + ε)n/2
e(b+γ)|x|2 .

As δ > 0, there exists R > 0 such that for |x| ≥ R and for all t ∈ [0, T ] we have

v(x, t) ≤ sup
x∈Rn

f(x).
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On the other hand, letting Ω = {|x| < R}, by the weak maximum principle we have

max
(x,t)∈Ω̄T

v(x, t) = max
(x,t)∈∂ΩT

v(x, t) ≤ sup
x∈Rn

f(x).

After all, we obtain

u(x, t)− δ

(T + ε− t)n/2
e

|x|2
4(T+ε−t) = v(x, t) ≤ sup

x∈Rn
f(x), x ∈ Rn, t ∈ [0, T ],

and letting δ ↓ 0 we obtain the claim.
The restriction 4bT < 1 can be removed on dividing the interval [0, T ] into subin-

tervals [0, T1], [T1, 2T1], [(k−1)T1, kT1] with kT1 = T and 4bT1 < 1, and then applying
the previous argument to each subinterval.

�

Theorem 4.16 (Uniqueness for the Cauchy problem). Let T > 0, f ∈ C(Rn ×
[0, T ]) and g ∈ C(Rn). Then the Cauchy problem

(4.30)

{
ut −∆u = f, in Rn × (0, T ),
u(x, 0) = g(x), for x ∈ Rn,

has at most one solution u ∈ C2(Rn × (0, T )) ∩ C(Rn × [0, T ]) within the class of
functions that satisfies the growth condition

(4.31) |u(x, t)| ≤ Aeb|x|
2

, x ∈ Rn, t ∈ [0, T ],

for some constants A, b > 0.

The proof is an elementary exercise.

5. Regularity of local solutions and Cauchy estimates

Let us define the parabolic cylinder centered at (x, t) ∈ Rn+1 with radius r > 0 as
the set Cr(x, t) ⊂ Rn+1 defined in the following way

Cr(x, t) =
{

(y, s) ∈ Rn+1 : |y − x| < r, t− r2 < s < t
}
.

In the sequel, we shall also let Cr = Cr(0, 0). The sets Cr(x, t) are a cylindrical
version of the parabolic balls Er(x, t).

Theorem 5.17. Let Ω ⊂ Rn be an open set, T > 0, and let u ∈ C2,1(ΩT ) be a
solution to the equation ut −∆u = 0 in ΩT . Then there holds u ∈ C∞(ΩT ).

Proof. Let (x0, t0) ∈ ΩT be a fixed point and let us define the cylinders

C ′ = Cr(x0, t0), C ′′ = C2r(x0, t0), C ′′′ = C3r(x0, t0).

We fix the radius r > 0 small enough in such a way that C ′′′ ⊂ ΩT .
Let ζ ∈ C∞(Rn+1) be a cutt-off function with the following properties: ζ = 1

on C ′′ and ζ = 0 on Rn × [0, t0] \ C ′′′. The function v = ζu satisfies the following
differential equation

vt −∆v = ζ(ut −∆u) + uζt − 2∇ζ · ∇u− u∆ζ = uζt − 2∇ζ · ∇u− u∆ζ = f.
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The function f defined via the last equality is continuous on Rn × [0, t0] and it is
Lipschitz-continuous in x uniformly in t ∈ [0, t0]. Then, v solves the following prob-
lem: {

vt −∆v = f in Rn × [0, t0]
v(x, 0) = 0 per x ∈ Rn.

By Theorem 4.16, the bounded solution of the problem is unique. By Theorem 2.7,
the solution is therefore given by the representation formula

v(x, t) =

∫ t

0

∫
Rn
K(x, t; y, s)dy ds, x ∈ Rn, t ∈ [0, t0],

where we let K(x, t; y, s) = Γ(x− y, t− s)f(y, s). In the cylinder C ′′, we have v = u
and f = 0. If (x, t) ∈ C ′ and (y, s) /∈ C ′′ then either |x − y| ≥ r or |t − s| ≥ r2.
It follows that the function (x, t) 7→ K(x, t; y, s) is of class C∞ for (x, t) ∈ C ′, and,
moreover, all derivatives in x and t of any order are continuous functions of the
variables x, t, y, s. Thus, in C ′ we can take derivatives into the integral

u(x, t) =

∫ t

0

∫
Rn
K(x, t; y, s)dy ds.

This proves that u ∈ C∞(C ′). �

Let us introduce the notation for the avaraged integral. Given a function u that
is integrable on the set Cr(x0, t0) we let∫

Cr(x0,t0)

u(x, t)dxdt =
1

Ln+1(Cr(x0, t0))

∫
Cr(x0,t0)

u(x, t)dxdt.

Theorem 5.18 (Cauchy estimates). There exist constants γ, C > 0 depending on
the dimension n ∈ N with the following property. Given Ω ⊂ Rn open set, T > 0,
u ∈ C∞(ΩT ) solution of the equation ut − ∆u = 0 in ΩT , (x0, t0) ∈ ΩT , and r > 0
such that C4r(x0, t0) ⊂⊂ ΩT , we have for any multi-index α = (α1, ..., αn) ∈ Nn

(5.32) sup
(x,t)∈Cr(x0,t0)

|∂αu(x, t)| ≤ γ
C |α||α|!
r|α|

∫
Cr(x0,t0)

|u(x, t)|dxdt,

where |α| = α1 + ...+ αn e ∂α = ∂α1
x1
. . . ∂αnxn . Moreover, for any k ∈ N we have

(5.33) sup
(x,t)∈Cr(x0,t0)

∣∣∣∂ku(x, t)

∂tk

∣∣∣ ≤ γ
C2k(2k)!

r2k

∫
Cr(x0,t0)

|u(x, t)|dxdt.

Proof. Estimates (5.33) follow from (5.32) and from the differential equation
ut = ∆u. We shall only prove formulae (5.32) in the case |α| = 1. We shall indicate
how the general estimates can be obtained.

The proof starts from the ideas of the proof of Theorem 5.17. Without loss of
generality, assume that (x0, t0) = (0, 0). Let ζ ∈ C∞(Rn+1) be a cutt-off function
with the following properties:

i) ζ = 1 on C2r (and 0 ≤ ζ ≤ 1);
ii) ζ(x, t) = 0 if |x− x0| ≥ 4r or t ≤ −16r2;

iii) |∇ζ| ≤ 1/r;
iv) |∆ζ| ≤ 1/r2 and |ζt| ≤ 1/r2.
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The construction of such a function is left as an exercise. The function v = ζu is in
C∞(Rn × [−16r2, 0)), there holds v = u in C2r, and, finally, letting f = u(ζt −∆ζ)−
2∇u · ∇ζ, v solves {

vt −∆v = f in Rn × (−16r2, 0),
v(x,−16r2) = 0 x ∈ Rn.

By Theorem 2.7, the function v is given by the formula

v(x, t) =

∫ t

−16r2

∫
Rn

Γ(x− y, t− s)
{
u(ζs −∆ζ)− 2∇u · ∇ζ

}
(y, s)dyds

=

∫ t

−16r2

∫
Rn
u
{

Γ(x− y, t− s)(ζs + ∆ζ)− 2∇Γ(x− y, t− s) · ∇ζ
}
dyds.

We performed an integration by parts of the term containing ∇u · ∇ζ. Inside the
integral, the function u and the derivatives of ζ are evaluated at (y, s). The integration
over Rn can be replaced with an integration on C4r \ C2r.

We may differentiate in x the previous identity at a generic point (x, t) ∈ Cr. We
obtain

∂u(x, t)

∂xi
=

∫ t

−16r2

∫
Rn
u
{

Γi(x− y, t− s)(ζs + ∆ζ) + 2∇Γi(x− y, t− s) · ∇ζ
}
dyds.

Let us recall the identities

Γi(x, t) = −xi
2t

Γ(x, t) e Γij(x, t) =
{
− δij

2t
+
xixj
4t2

}
Γ(x, t).

If (x, t) ∈ Cr and (y, s) ∈ C4r \C2r, then we have |x− y| ≤ 5r and t− s ≥ 3r2. Thus
we have the following estimates:

|Γ(x− y, t− s)| ≤ c0

rn
,

|Γi(x− y, t− s)| ≤
c1

rn+1
,

|Γij(x− y, t− s)| ≤
c2

rn+2
,

where c0, c2, c2 > 0 are dimensional constants. Using these estimats along with the
estimates for ζ we obtain:∣∣∣∂u(x, t)

∂xi

∣∣∣ ≤ ∫
C4r

|u|
{
|Γi(x− y, t− s)|(|ζs|+ |∆ζ|) + 2|∇Γi(x− y, t− s)||∇ζ|

}
dyds

≤ c3

rn+3

∫
C4r

|u|dyds,

where c3 > 0 is a new dimensional constant. This finishes the proof when |α| = 1.
Estimates (5.32) for a generic multi-index α follow from the existence of a constant

C > 0 indipendent of α such that for (x, t) ∈ Cr and (y, s) ∈ C4r we have

|∂αΓ(x− y, t− s)| ≤ C |α|
(( r

t− s
)|α|

+
|α|!
r|α|

)
Γ(x− y, t− s).

the proof of this estimate, which is not completely elementary, can be found in the
book Di Benedetto, Partial Differential Equations, on page 261. �
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6. Harnack inequality

For any (x, t) ∈ Rn+1 and for any r > 0 let us define the cylinder

Qr(x, t) =
{

(y, s) ∈ Rn+1 : |x− y| < r and t− r2 < s < t+ r2
}
.

We also consider the following subsets of Qr(x, t):

Q+
r (x, t) =

{
(y, s) ∈ Rn+1 : |x− y| < r/2 and t+ r2/2 < s < t+ r2

}
,

Q−r (x, t) =
{

(y, s) ∈ Rn+1 : |x− y| < r/2 and t− r2 < s < t− r2/2
}
.

Theorem 6.19 (Harnack inequality). There exists a constant C > 0 depending
on n ∈ N with the following property. Let u ∈ C∞(Q4r(x, t)), (x, t) ∈ Rn+1 and r > 0,
be a solution of ut = ∆u such that u ≥ 0 in Q4r(x, t). Then there holds

inf
Q+
r (x,t)

u ≥ C sup
Q−r (x,t)

u.

For a proof, see Di Benedetto, Partial Differential Equations, on page 265. Har-
nack inequality for the heat operator was proved by J. Hadamard1 and B. Pini2.

1J. Hadamard, Extension à l’équation de la chaleur d’un théorème de A. Harnack, Rend. Circ.
Mat. Palermo (2) 3 (1954), 337346.

2B. Pini, Sulla soluzione generalizzata di Wiener per il primo problema di valori al contorno nel
caso parabolico. Rend. Sem. Mat. Univ. Padova 23, (1954), 422434.



CHAPTER 2

Maximum principles

1. Maximum principle for elliptic-parabolic operators

Let Ω ⊂ Rn be an open set and let aij, bi, c : Ω → R, i, j = 1, ..., n, be functions.
Let us consider the second order differential opearator

(1.34) L =
n∑

i,j=1

aij(x)∂ij +
n∑
i=1

bi(x)∂i + c(x).

Let A = (aij)i,j=1,...,n denote the matrix of the coefficients of the principal term. When
A = In, b = (b1, ..., bn) = 0, and c = 0 we have the Laplace operator.

The operator L is called elliptic-parabolic (or degenerate elliptic) in Ω if the matrix
A(x) is symmetric and positive semidefinite at any point x ∈ Ω, and namely

(1.35)
n∑

i,j=1

aij(x)ξiξj = 〈A(x)ξ, ξ〉 ≥ 0, x ∈ Ω, ξ ∈ Rn.

The operator L is called elliptic in Ω if the matrix A is symmetric and there exists
a constant λ > 0 such that

(1.36) 〈A(x)ξ, ξ〉 ≥ λ|ξ|2, x ∈ Ω, ξ ∈ Rn.

Theorem 1.20 (Weak maximum principle). Let Ω ⊂ Rn be a bounded open set
and let L be an elliptic-parabounlic operator in Ω such that:

i) c ≤ 0 in Ω;
ii) there exists a function w ∈ C2(Ω) such that Lw > 0 and w < 0 in Ω.

Then for any function u ∈ C2(Ω) we have

(1.37)
Lu ≥ 0 in Ω
lim sup
y→x∈∂Ω

u(y) ≤ 0

}
⇒ u ≤ 0 in Ω.

Proof. We preliminarly assume that Lu > 0 in Ω. By Weierstrass’ Lemma,
there exists x0 ∈ Ω̄ such that for any r > 0 there holds

sup
x∈Ω

u(x) = sup
x∈Ω∩B(x0,r)

u(x).

Case 1): x0 ∈ Ω. As x0 is a maximum point for u, we have ∇u(x0) = 0 and
∇2u(x0) ≤ 0, where ∇2u is the Hessian matrix of u. Thus we have
(1.38)

0 < Lu(x0) =
n∑

i,j=1

aij(x0)∂iju(x0) + c(x0)u(x0) = tr
(
A(x0)∇2u(x0)

)
+ c(x0)u(x0).

23
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Recall that if A,B are n × n-matrices that are symmetric and positive semidefinite,
then there holds tr(AB) ≥ 0. Indeed, letting (dij) = D =

√
B, we have bij =∑n

k=1 dikdkj, and thus

tr(AB) =
n∑
i=1

A(i)B
(i) =

n∑
i=1

aijbij =
n∑
k=1

n∑
i,j=1

aijdikdjk ≥ 0.

In our case, we have A ≥ 0 and B = −∇2u(x0) ≥ 0, and thus

tr
(
A(x0)∇2u(x0)

)
≤ 0.

From (1.38) we deduce that c(x0)u(x0) > 0. By assumption i), we therefore have
u(x0) < 0. This shows that u(x) < 0 for all x ∈ Ω.

Case 2): x0 ∈ ∂Ω. In this case, the claim follows directly from the following
inequality:

sup
x∈Ω

u(x) = lim sup
x→x0

u(x) ≤ 0.

Now assume that Lu ≥ 0 in Ω. The function u + εw with ε > 0 satisfies the
assumptions of the previous argument:

L(u+ εw) = Lu+ εLw > 0 and lim sup
y→x∈∂Ω

(u(y) + εw(y)) ≤ 0.

Thus we have u+ εw ≤ 0 in Ω, and letting ε ↓ 0 we obtain u ≤ 0 in Ω. �

Remark 1.21. Assume that a11(x) > δ for some δ > 0 and for all x ∈ Ω. Assume
also that b1 and c are bounded in the bounded open set Ω ⊂ Rn, with c ≤ 0. The
function w ∈ C∞(Rn)

w(x) = e−λx1 −M, x ∈ Rn,

satisfies Lw > 0 and w < 0 in Ω, provided that λ,M ∈ R+ are large enough. Indeed,
we have

Lw(x) =
(
λ2a11(x)− λb1(x) + c(x)

)
e−λx1 −Mc(x).

We can can thus find λ > 0 such that (λ2a11(x) − λb1(x) + c(x) > 0 in Ω, and then
we can find M > 0 such that e−λx1 −M < 0 for all x ∈ Ω.

2. Hopf Lemma

Definition 2.22 (Interior ball property). An open set Ω ⊂ Rn has the interior
ball property at the point x0 ∈ ∂Ω if there exist x ∈ Ω and r > 0 such that B(x, r) ⊂ Ω
and ∂B(x, r)∩∂Ω = {x0}. The unit vector ν = x−x0

|x−x0| is called interior normal to ∂Ω

at the point x0.

If Ω ⊂ Rn is an open set with boundary of class C2, then it has the interior ball
property at any point of the boundary.

Theorem 2.23 (Hopf Lemma). Let Ω be an open set with the interior ball property
at the point x0 ∈ ∂Ω. Let L be an elliptic operator in Ω with bounded coeffecients
bi, aij, i, j = 1, ..., n, and with c = 0. Let u ∈ C2(Ω) ∩ C1(Ω̄) be a function such that:

i) Lu ≥ 0 in Ω;
ii) u(x) < u(x0) for all x ∈ Ω.
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Then we have

∂u(x0)

∂ν
< 0,

where ν is an interior normal to ∂Ω at x0.

Proof. By assumption, there exist y ∈ Ω and r > 0 such that B(y, r) ⊂ Ω and
∂B(y, r) ∩ ∂Ω = {x0}. Let us consider the comparison function

v(x) = e−α|x−y|
2 − e−αr2 ,

where α > 0 is a parameter to be discussed later. A short computation shows that

vj = −2αe−α|x−y|
2

(xj − yj),

vij = −2α
[
− 2α(xj − yj)(xi − yi) + δij

]
e−α|x−y|

2

,

and thus

Lv =
n∑

i,j=1

aijvij +
n∑
j=1

bjvj

= e−α|x−y|
2[

4α2〈A(x− y), (x− y)〉 − 2α(tr(A) + 〈b, x− y〉)
]
,

where A = (aij)i,j=1,...,n and b = (b1, ..., bn) depend on x. If |x − y| ≥ % > 0, then by
the ellipticity condition (1.36) we have

〈A(x− y), (x− y)〉 ≥ λ|x− y|2 ≥ λ%2,

As tr(A) + 〈b, x− y〉 is bounded for x ∈ Ω, for any fixed % > 0 there exists α > 0 such
that Lv(x) > 0 for all x ∈ Ω such that |x− y| ≥ %.

Let us consider the anulus Ω0 =
{
x ∈ Ω : % < |x − y| < r

}
, and for ε > 0 let us

define the auxiliary function w = u − u(x0) + εv. The function w has the following
properties:

(i) Lw = Lu+ εLv > 0 in Ω0.
(ii) If |x− y| = r then w(x) = u(x)− u(x0) ≤ 0, because x0 is a maximum point

for u.
(iii) If |x − y| = % then w(x) = u(x) − u(x0) + εv(x) ≤ 0 provided that ε > 0 is

small enough. This is possible, because x0 is a strict maximum point.

By the weak maximum principle, it follows that w ≤ 0 in Ω0, i.e.,

u(x)− u(x0) ≤ −εv(x), x ∈ Ω0.

Thus, denoting by ν = y−x0

|y−x0| the interior normal to ∂Ω at x0, we have

∂u(x0)

∂ν
= lim

t→0+

u(x0 + tν)− u(x0)

t
≤ −ε lim

t→0+

v(x0 + tν)

t
= −2εαre−αr

2

< 0.

�
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3. Strong maximum principle

Theorem 3.24 (Strong maximum principle). Let Ω ⊂ Rn be a connected open set
and let L be an elliptic operator in Ω with bounded coefficients bi, aij, i, j = 1, ..., n,
and c = 0. Let u ∈ C2(Ω) be a function such that Lu ≥ 0 in Ω. If there exists x0 ∈ Ω
such that u(x0) = maxx∈Ω u(x), then we have u(x) = u(x0) for all x ∈ Ω.

Proof. The set Ω0 =
{
x ∈ Ω : u(x) < u(x0)

}
is open because u is continuous.

Assume by contradiction that Ω0 6= ∅. As Ω is connected, we have ∂Ω0 ∩ Ω 6= ∅.
Indeed, if ∂Ω0 ∩ Ω = ∅, then we would have

Ω = Ω0 ∪ Ω \ Ω0 = Ω0 ∪ Ω \ Ω̄0,

and Ω would be the union of two nonempty, disjoint open sets.
It follows that there exist y ∈ Ω0 and r > 0 such that B(y, r) ⊂ Ω0 and ∂B(y, r)∩

∂Ω0 = {x1} for some point x1 ∈ Ω. As u(x0) = u(x1), we have ∇u(x1) = 0. On the
other hand, u(x1) > u(x) for all x ∈ B(y, r) and Lu ≥ 0 in B(y, r). Hopf Lemma
implies that

〈∇u(x1), ν〉 =
∂u(x1)

∂ν
< 0,

where ν = y−x1

|y−x1| is an interior normal to Ω0 at x1 ∈ ∂Ω0. This is a contradiction. �


